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the mammalian early visual system (DeBusk et al., 1997; Martinez-
Conde et al., 2002; Gaudry and Reinagel, 2008), and grasshopper 
auditory receptors (Eyherabide et al., 2009; Sabourin and Pollack, 
2009). In other cases, the patterns are spike doublets of different 
inter-spike interval (ISI) duration. Reich et al. (2000) presented an 
example of this type in primate V1; and Oswald et al. (2007) found 
a similar code in the electrosensory lobe of the weakly electric fish. 
In yet other cases, patterns are more abstract spatiotemporal com-
binations of spikes and silences defined in single neurons (Fellous 
et al., 2004) and neural populations (Nádasdy, 2000; Gütig and 
Sompolinsky, 2006).

If different spike patterns represent different stimulus fea-
tures, which aspects of the pattern are relevant to the distinction 
between the different features? To answer this question, previous 
studies have classified the response patterns into different types of 
categories, depending on different response aspects. The relevance 
of each candidate aspect was addressed using what we here define 
as the category information. For example, in the auditory cortex, 
Furukawa and Middlebrooks (2002) assessed how informative 
patterns were when categorized in three different ways, using the 
first spike latency, the total number of spikes, or the variability 
in the spike timing. In an even more ambitious study, Gawne 
et al. (1996) have not only compared the information separately 
transmitted by response latency and spike count, but also related 
these two response properties to two different stimulus features: 
contrast and orientation, respectively. However, these works 
have not addressed how the stimulus timing is represented by 
the response patterns.

1 IntroductIon: Patterns In the neural resPonse
Sensory neurons represent external stimuli. In realistic conditions, 
different stimulus features (for example, the presence of a predator 
or a prey) appear at irregular times. Therefore, an efficient sensory 
system should not only represent the identity of each perceived 
stimulus, but also, its timing. Colloquially, qualitative differences 
between stimulus features have been called the what in the stimulus, 
whereas the temporal locations of the features constitute the when. 
Spike trains can encode both the what and the when, for example, as 
a sequence of spike patterns. This idea constitutes a standard view 
(Theunissen and Miller, 1995; Borst and Theunissen, 1999; Krahe 
and Gabbiani, 2004), where the timing of patterns indicates when 
stimulus features occur, while the pattern identities tag what stimu-
lus features happened (Martinez-Conde et al., 2002; Alitto et al., 
2005; Oswald et al., 2007; Eyherabide et al., 2008). The information 
provided by the distinction between different spike patterns is here 
called category information. In the same manner, the information 
transmitted by the timing of spike patterns is here called time infor-
mation. According to the standard view, the category and the time 
information represent the knowledge of the what and the when in 
the stimulus, respectively. In this work, we address the conditions 
under which these assumptions hold, as well as departures from 
the standard view.

Many studies have shown the ubiquitous presence of patterns 
in the neural response. The patterns can be, for instance, high-
frequency burst-like discharges of varying length and latency. 
Examples have been found in primary auditory cortex (Nelken 
et al., 2005), the salamander retina (Gollisch and Meister, 2008), 
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The role of patterns in signaling the occurrence of the stimulus 
features can only be addressed in those experiments where the 
stimulus features appear at irregular times. In this context, previ-
ous approaches have estimated the time information (Gaudry and 
Reinagel, 2008; Eyherabide and Samengo, 2010), or have either 
employed other statistical measures such as reverse correlation 
(Martinez-Conde et al., 2000; Eyherabide et al., 2008). The time 
information was calculated as the one encoded by the pattern 
onsets alone, without distinguishing between different types 
of patterns.

In this paper, we analyze the role of timing and categories 
of patterns in the neural code. To this aim, we build different 
representations of the neural response preserving one of these 
two aspects at a time. This allows us to quantify the time and 
the category information separately. We determine the precise 
meaning of these quantities and study of their variations for 
different representations of the neural response. Unlike previ-
ous works (Gaudry and Reinagel, 2008; Eyherabide et al., 2009; 
Foffani et al., 2009), we quantify the information preserved 
and lost when the neural response is read out in such a way 
that only the categories (timing) of patterns are preserved. As 
a result, the relevance of each aspect of the neural response is 
unambiguously determined.

In principle, the timing and the categories of spike patterns 
may be correlated. These interactions may be due to properties 
of the encoding neuron (such as latency codes Furukawa and 
Middlebrooks, 2002; Gollisch and Meister, 2008), properties of 
the decoding neuron (when reading a pattern-based code Lisman, 
1997; Reinagel et al., 1999), the convention used to assigned a time 
reference to the patterns (Nelken et al., 2005; Eyherabide et al., 
2008), or the convention used to identify the patterns from the 
neural response (Fellous et al., 2004; Alitto et al., 2005; Gaudry 
and Reinagel, 2008). A statistical dependence between timing and 
categories of patterns may, for example, introduce redundancy 
between the time and category information. Thus, the same infor-
mation may be contained in different aspects of the response 
(categorical or temporal aspects). In addition, the statistical 
dependence might also induce synergy, in which case extracting 
all the information about the what and the when requires the 
simultaneous read-out of both aspects. The presence of synergy 
and redundancy between the time and category information may 
affect the way each of them represents the what and the when in 
the stimulus.

In the present study, we provide a formal framework to gain 
insight of the interaction between the timing and the categories 
of patterns for different neural codes. We formally define the what 
and the when as representations of the stimulus preserving only 
the identities and timing of stimulus features, respectively. We 
then establish the conditions under which the pattern categories 
encode the what in the stimulus, and the timings the when. We 
also study departures from this standard interpretation, in particu-
lar, when the time position of patterns depends on their internal 
structure. We show the impact of this dependence on both the 
link with the what and the when and the relative relevance of the 
timing and categories of patterns. Our study is therefore intended 
to motivate more systematic explorations of the neural code in 
sensory systems.

2 Methods
2.1 reduced rePresentatIons of the neural resPonse
A representation is a description of the neural response. Formally, 
it is obtained by transforming the recorded neural activity through 
a deterministic mapping. Throughout this paper, the expressions 
“deterministic mapping” and “function” are used as synonyms. We 
only consider functions that transform the unprocessed neural 
response U into sequences of events e

i
 = (t

i
, c

i
), characterized by 

their time positions (t
i
) and categories (c

i
). An event is a definite 

response stretch. Based on their internal structure, events are clas-
sified into different categories, as explained later in this section. 
Individual spikes may be regarded as the simplest events. In this 
case, the sequence of events is called the spike representation (see 
Figure 1A), comprising events belonging to a single category: the 
category “spikes.”

From the spike representation, we can define more complex 
events, hereafter called patterns (see bold symbols in the spike 
representation in Figure 1A). Patterns may be defined in terms of 
spikes, bursts or ISIs (Alitto et al., 2005; Luna et al., 2005; Oswald 
et al., 2007; Eyherabide et al., 2008). They may involve one or sev-
eral neurons. Examples of population patterns are coincident fir-
ing, precise firing events and sequences, or distributed patterns 
(Hopfield, 1995; Abeles and Gat, 2001; Reinagel and Reid, 2002; 
Gütig and Sompolinsky, 2006). The sequence of patterns obtained 
by transforming the spike representation is called the pattern repre-
sentation. Analogously, the sequence of patterns only characterized 
by either their time positions or their categories constitute the time 
representation and category representation, respectively. Details on 
how to build these sequences are explained below. For simplicity, 
these sequences are represented in Figure 1 as sequences of symbols 
n, indicating specific events (n > 0) and silences (n = 0).

Formally, to obtain the spike representation (R), the unprocessed 
neural response (U) is transformed into a sequence of spikes (1) 
and silences (0) (Figure 1A). The time bin is taken small enough to 
include at most one spike. Differences in shape of action potentials 
are ignored, while their time positions are preserved, with temporal 
precision limited by the bin size. As a result, several sequences of 
action potentials may be represented by the same spike sequence 
(see Figure 1B).

In the pattern representation (B), the spike sequence is trans-
formed into a sequence of silences (n = 0) and spike patterns 
(n = b > 0), distinguished solely by their category b. For example, 
in Figure 1, patterns are defined as response stretches contain-
ing consecutive spikes separated by at most one silence. The time 
positions of the patterns are defined as the first spike in each pat-
tern stretch, whereas patterns with the same number of spikes are 
grouped into the same pattern category. Only information about 
pattern categories and time positions remains (compare the bold 
symbols in the spike and the pattern representation in Figure 1A). 
By ignoring differences among patterns within categories, several 
spike sequences can be mapped into the same pattern sequence, 
as shown in Figure 1C.

The time position of patterns is measured with respect to a com-
mon origin, in general, the beginning of the experiment. It can be 
defined, for example, as the first (or any other) spike of the pat-
tern or as the mean response time (Lisman, 1997; Nelken et al., 
2005; Eyherabide et al., 2009). Patterns are classified into categories 
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 according to  different aspects describing their internal structure, such 
as the latency, the number of spikes or the spike-time dispersion 
(Theunissen and Miller, 1995; Gawne et al., 1996; Furukawa and 
Middlebrooks, 2002). Notice that latencies are usually defined with 
respect to the stimulus onset, which is not a response property (Chase 
and Young, 2007; Gollisch and Meister, 2008). Thus, latencies and tim-
ing of spike patterns are different concepts, and the latency cannot be 
read out from the neural response alone. However, latencies have also 
been defined with respect to the local field potential (Montemurro 
et al., 2008) or population activity (Chase and Young, 2007). These 
definitions can be regarded as internal aspects of spatiotemporal 
spike patterns (Theunissen and Miller, 1995; Nádasdy, 2000).

Categories of patterns can be built by discretizing the range of 
one or several internal aspects. For example, Reich et al. (2000) 
defined patterns as individual ISIs, and categorized them in terms 
of their duration. Three categories were considered, depending on 
whether the ISI was short, medium or large. In other cases, patterns 
may be sequences of spikes separated by less than a certain time 
interval. Categories of patterns can then be defined, depending 
on the number of spikes in each pattern (Reinagel and Reid, 2000; 
Martinez-Conde et al., 2002; Eyherabide and Samengo, 2010), as 
shown in Figure 1, or depending on the length of the first ISI 
(Oswald et al., 2007). The theory developed in this paper is valid 
irrespective of the way in which one chooses to define the pattern 
time positions and the pattern categories.

From the pattern sequence, we obtain the time representation 
(T) by only keeping the time positions of patterns. As a result, the 
neural response is transformed into a sequence of silences (0) and 
events (1), indicating the occurrence of a pattern in the correspond-
ing time bin and disregarding its category. The temporal precision 
of the pattern representation is preserved in the time representation. 
However, by ignoring differences between categories, different pat-
tern sequences can be mapped into the same time representation, 
as illustrated in Figure 1D.

The category representation (C) is complementary to the time 
representation. It is obtained from the pattern sequence, by only keep-
ing information about the categories of patterns while ignoring their 
time positions. The neural response is transformed into a sequence of 
integer symbols n > 0, representing the sequence of pattern categories 
in the response. The exact time position of patterns is lost: only their 
order remains. Therefore, several pattern sequences may be mapped 
onto the same category sequence, as indicated in Figure 1E.

The spike (R), pattern (B), time (T), and category (C) repre-
sentations are derived through functions that depend only on the 
previous representation, as denoted by the arrows in Figure 1A, 
and formally expressed by the following equations:

Neural response U(experiment) (1a)

Spike representation R = h
U→R

(U) (1b)

Pattern representation B = h
R→B

(R) (1c)

Time representation T = h
B→T

(B) (1d)

Category representation C = h
B→C

(B); (1e)

where h
X→Y

 represents the function h that is applied to the repre-
sentation X to obtain the representation Y. These transformations 
progressively reduce both the variability in the neural response and 
the number of possible responses

A

B

C

D

E

Figure 1 | representations of the neural response. (A) In the spike 
representation, only the timing of action potentials is described, discarding the 
fine structure of the voltage traces. In the pattern representation, only the 
timing and categories of spike patterns remain. This representation is further 
transformed, to obtain the time and the category representations. The time 
(category) representation only keeps information about the timing (categories) 
of the spike patterns. (B), (C), (D), and (e) Each successive transformation of 
the neural response through a deterministic function simultaneously reduces 
both the variability in the neural response and number of possible responses.
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the experimental data (Nemenman et al., 2004). For the simula-
tions, we used instead the quadratic extrapolation (Strong et al., 
1998), due to its simplicity and the possibility of generating large 
amounts of data. The standard deviation of the information was 
estimated from the linear extrapolation to infinitely long words 
(Rice, 1995). The bias correction was always lower than 1.5% and 
the standard deviation, always lower than 1%, for all simulations 
and all word lengths; thus error bars are not visible in the figures. 
When comparisons between information estimations were needed, 
one-sided t-tests were performed (Rice, 1995).

2.3 sIMulated data
Simulations are used to exemplify the theoretical results and to 
gain additional insight on how different response conditions affect 
information transmission in well-known neural models and neural 
codes. They represent highly idealized cases, with unrealistically 
long runs and number of trials, that allow us to readily exemplify 
the theoretical results and transparently obtain reliable information 
estimates. Firstly, we define the parameters used in the simulations 
and relate them to the specific aspects of the stimulus and the 
response. Then, we report the specific values for the parameters.

2.3.1 General description
In the simulations, the stimulus consists of a random sequence of 
instantaneous discrete events, here called stimulus features. Each 
stimulus feature is characterized by specific physical properties, as 
for example, the color of a visual stimulus, the pitch of an audi-
tory stimulus, the intensity of a tactile stimulus, or the odor of an 
olfactory stimulus (Poulos et al., 1984; Rolen and Caprio, 2007; 
Nelken, 2008; Mancuso et al., 2009). In the real world, however, 
features are not necessarily discrete. If they are continuous, one can 
discretize them by dividing their domain into discrete categories 
(Martinez-Conde et al., 2002; Eyherabide et al., 2008; Marsat et al., 
2009). The present framework sets no upper limit to the number 
of features, nor to the similarity between different categories. In 
addition, features might not be instantaneous but rather develop in 
extended time windows, as it happens with the chirps in the weakly 
electric fish (Benda et al., 2005), the oscillations in the electric 
field potential (Oswald et al., 2007) and the amplitude of auditory 
stimuli (Eyherabide et al., 2008). In order to capture the duration 
of real stimuli, in the simulations we define a minimum inter-feature 
interval λmin ,s  for each feature s. After the presentation of a feature s, 
no other feature may appear in an interval lower or equal to λmin .s

In the simulated data, each stimulus feature elicits a neural 
response (see Figure 2A). Since in this paper we are interested 
in pattern-based codes, each feature generates a pattern of spikes 
belonging to some pattern category. The correspondence between 
stimulus features and pattern categories may be noisy. We consider 
both categorical noise (the pattern category varies from trial to trial) 
and temporal noise (the timing of the pattern varies from trial to 
trial). In Figure 2B, we show examples of all noise conditions using 
burst-like response patterns. In those examples, categories were 
defined according to the number of spikes in each burst.

Symbolically, the stimulus S is represented as a sequence of sym-
bols s, one per time bin ∆t. Each s is drawn randomly from the set of 
all possible outcomes Σ

s
 = {0, 1,…,N

S
}. The symbol s = 0 indicates 

a silence (the absence of a feature), whereas s > 0 tags the presence 

H H H
H

H
( ) ( ) ( )

( )

( )
;U R B

T

C
≥ ≥ ≥



  

(2a)

| | | | | |
| |

| |
;U R B

T

C
≥ ≥ ≥



  

(2b)

where H(X) means the entropy H of the set X (Cover and Thomas, 
1991), and |X| indicates its cardinality, i.e., the number of elements 
of the set X.

2.2 calculatIon of Mutual InforMatIon rates
The mutual information I(X; S) between two random variables X 
and S is defined as the reduction in the uncertainty of one of the 
random variables due to the knowledge of the other. It is formally 
expressed as a difference between two entropies

I H H( ; ) ( ) ( );X S X X S= − |  (3)

where H(X) is the total entropy of X and H(X|S) represents the 
conditional or noise entropy of X provided that S is known (Cover 
and Thomas, 1991).

We estimate the mutual information between the stimulus S 
and a representation X of the neural response using the so-called 
Direct Method, introduced by Strong et al. (1998). The unprocessed 
neural response U is divided into time intervals Uτ of length τ. Each 
response stretch Uτ is then transformed into the discrete-time rep-
resentation Xτ(Xτ = h

U→X
(Uτ)), also called words. As a result

I I( ; ) ( ; ).S V S Xτ τ≥  (4)

This inequality is valid for every time interval of length τ (Cover 
and Thomas, 1991) and is not limited to the asymptotic regime 
for long time intervals, as in previous calculations (Gaudry and 
Reinagel, 2008; Eyherabide et al., 2009). The mutual information 
calculated with words of length τ only quantifies properly the 
contribution of spike patterns that are shorter than τ. In order to 
include the correlations between these patterns, even longer words 
are needed. Therefore, in this study, the maximum window length 
ranged between 3 and 4 times the maximum pattern duration.

The total entropy (H(Xτ)) and noise entropy (H(Xτ|S)) are esti-
mated using the distributions of words Xτ unconditional (P(Xτ)) and 
conditional (P(Xτ|S)) on the stimulus S, respectively. The mutual 
information I(S; Xτ) is computed by subtracting H(Xτ|S) from H(Xτ) 
(Eq. 3). This calculation is repeated for increasing word lengths, and 
the mutual information rate I(S; X) between the stimulus S and a 
representation X of the neural response is estimated as

I
I

( ; ) lim
( ; )

.S X
S X=

→∞τ

τ

τ  
(5)

This quantity represents the mutual information per unit time 
when the stimulus and the response are read out with very long 
words. In this work we always calculate mutual information rates 
unless it is otherwise indicated. However, for compactness, we 
sometimes refer to this quantity simply as “information.”

The estimation of information suffers from both bias and vari-
ance (Panzeri et al., 2007). In this work, the sampling bias of the 
information estimation was corrected using the NSB approach for 
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to stimulus s (see Appendix A for the relation between P
b
(b|s) and 

P
r
(r|s)). The temporal noise is implemented as jitter in the pattern 

onset time. That is, temporal jitter affects the pattern as a whole, 
displacing all spikes in the pattern by the same amount of time. 
The temporal displacement is drawn from a uniform distribution 
in the interval (−σ

b
, σ

b
), where the jitter σ

b
 may depend on the 

pattern b.

2.3.2 Details and parameters
Simulated neural responses consisted of four different patterns, 
elicited by a stimulus with four different features. The response pat-
terns were bursts of spikes, containing between 1 and 4 spikes. The 
intra-burst ISI was γ

min
 = 2 ms. However, since the neural response 

is transformed into the pattern representation, the results are valid 
irrespective of the nature of the patterns (see Section 2.1). The 
stimulus was presented 200 times, each one lasting for 2000 s. The 
minimum inter-feature time interval is λ

min
 = 12 ms. In all cases, 

no interference between patterns was considered (see Section 3.8). 
We used a time bin of size ∆t = 1 ms.

Simulation 1. This simulation is used to illustrate the effect of using 
different representations of the neural response, and to compare 
an ideal situation where the correspondence between features and 
patterns is known, with a more realistic case, where the neural code 
is unknown. The temporal jitter was σ = 1 ms and the latency was 
μ = 1 ms. Stimulus features probability p(s) were set to: p(1) = 0.06, 
p(2) = 0.04, p(3) = 0.03, p(4) = 0.02. Categorical noise (p(b|s), b ≠ s): 
p(i + 1|i) = 0.1 (4 − i), 0 < i < 4; otherwise p(b|s) = 0.

Simulation 2. These simulations are used to address the role of the 
timing and category of patterns in the neural code, and to study the 
relation with the what and the when in the stimulus. The latency 
was μ = 1 ms. When present, temporal jitter was set to σ = 1 ms 
and categorical noise (p(b|s), b ≠ s) was given by: p(i + 1|i) = p(i|i + 
1) = p(3|1) = p(2|4) = 0.1, 0 < i < 4; otherwise p(b|s) = 0. Stimulus 
features probability p(s) = 0.025, 0 < s ≤ 4.

2.4 electroPhysIology
Experimental neural data were provided by Ariel Rokem and 
Andreas V. M. Herz; they performed intracellular recordings 
in vivo, on the auditory nerve of Locusta Migratoria (see Rokem 
et al., 2006, for details). Auditory stimuli consisted of a 3 kHz 
carrier sine wave, amplitude modulated by a low pass filtered 
signal with a Gaussian distribution. The AM signal had a mean 
amplitude of 53.9 dB, a 6 dB standard deviation and a cut-off 
frequency of 25 Hz (see Figure 3A upper cell). Each stimula-
tion lasted for 1000 ms with a pause of 700 ms between repeated 
presentations of the stimulus, in order to minimize the influence 
of slow adaptation. To eliminate fast adaptation effects, the first 
200 ms of each trial were discarded. The recorded response (see 
Figure 3A lower panel) consisted of 479 trials, with a mean firing 
rate of 108 ± 6 spikes/s (mean ± standard deviation across trials). 
Burst activity was observed and associated with specific features in 
the stimulus (see Eyherabide et al., 2008, for the analysis of burst 
activity in the whole data set). Bursts contained up to 14 spikes; 
Figure 3B shows the firing probability distribution as a function 
of the intra-burst spike count.

of a given feature. Each feature s elicits a response pattern r, drawn 
from the set Σ

r
 of all possible patterns, with probability P

r
(r|s). The 

response pattern r may appear with latency μ
r
, which might depend 

on the evoked pattern r. A neural response R, elicited by a sequence 
of stimulus features, may be composed of several response patterns 
(see bold symbol sequences in Figure 2A).

Figure 2B shows example neural codes with no noise (upper 
left panel), categorical noise alone (upper right), temporal noise 
alone (lower left), and a mixture of categorical and temporal noise 
(lower right). The categorical noise is defined by P

b
(b|s), quantifying 

the probability that a response category b be elicited in response 

A

B

Figure 2 | Simulations: design and construction. (A) Example of a 
stimulus stretch and the elicited response. The stimulus is depicted as an 
integer sequence of silences (0) and features (s > 0), one symbol per time bin 
of size ∆t. After a feature arrival, the stimulus remains silent for a period λmin.

S  
The response is represented as a binary sequence of spikes (1) and silences 
(0). Each stimulus feature elicits a response pattern: a burst containing n 
spikes. Different categories correspond to different intra-burst spike counts. 
(B) Examples of different response conditions. Upper panels: no temporal 
jitter; lower panels: the pattern, as a whole, is displaced due to temporal jitter; 
left panels: no categorical noise; right panels: each stimulus feature elicits 
pattern responses belonging to more than a single category.
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This result can be directly proved from the deterministic rela-
tion between U, R and B (Eqs. 1) and the data processing inequality 
(Cover and Thomas, 1991). Notwithstanding, several neuroscience 
papers have reported data contradicting Eq. 6 (see Section 4.3). 
Intuitively, out of all the information carried by the unprocessed 
neural response, the spike information only contains the informa-
tion preserved in the spike timing. Analogously, out of the informa-
tion carried in the spike representation, the pattern information 
only preserves the information carried by both the time positions 
and the categories of the chosen patterns.

3.2 choosIng the Pattern rePresentatIon
In this paper, we quantify the amount of time and category infor-
mation encoded by pattern-based codes. This information depends 
critically on the choice of the pattern representation. In this sub-
section, we discuss how to evaluate whether a given choice is con-
venient or not. One can choose any set of pattern categories to 
define the alphabet of the pattern representation. Some choices, 
however, preserve more information about the stimulus than oth-
ers. The comparison between the information carried by different 
pattern representations gives insight on how relevant to informa-
tion transmission the preserved structures are (Victor, 2002; Nelken 
and Chechik, 2007), i.e., formally, on whether they constitute suf-
ficient statistics (Cover and Thomas, 1991). A suitable representa-
tion should reduce the variability in the neural response due to 
noise, while preserving the variability associated with variations 
in the encoded stimulus. Thus, any representation preserving less 
information than the spike information is neglecting informative 
variability. In addition, one may also be interested in a neural rep-
resentation that can be easily or rapidly read out, or that is robust 
to environmental changes, etc. The chosen neural representation 
typically results from a trade-off between these requirements.

Here we focus on analyzing whether the chosen representation 
alters the correspondence between the stimulus and the response. 
For us, a good representation is one where the informative vari-
ability is preserved, and the non-informative variability is discarded. 
As an example, we analyze two different situations (Figure 4). In 
Figure 4A, we use simulated data, where we know exactly how the 
neural code is structured. We can therefore compare the perform-
ance of the spike representation, with two pattern representations: 
one of them intentionally tailored to capture the true neural code 
that generated the data, and another representation discarding 
some informative variability. The neural response consists of a 
sequence of four different patterns, associated with each of four 
stimulus features, in the presence of temporal jitter and categori-
cal noise (see Section 2.3.2 Simulation 1). In Figure 4B, we study 
experimental data (see Section 2.4), so the neural code is unknown. 
Therefore, in this case we compare the spike representation with 
two candidate pattern representations, ignoring a priori which is 
the most suitable.

For both simulation and experimental data, we estimated the 
information conveyed by the spike representation R; a pattern 
representation Bα, where all bursts are grouped into categories 
according to their intra-burst spike count; and a second pattern 
representation Bβ, with only two categories comprising isolated 
spikes and complex patterns. This is shown in Figure 4, where 
the information per unit time is plotted as a function of the 

3 results
3.1 InforMatIon transMItted by dIfferent rePresentatIons of 
the neural resPonse: sPIke and Pattern InforMatIon
In order to understand how stimuli are encoded in the neural 
response, the recorded neural activity U is transformed into several 
different representations. Each representation keeps some aspects 
of the original neural response while discarding others. The spike 
representation R is probably the most widely used (see Section 2.1). 
We define the spike information I(S; R) as the mutual information 
rate between the stimulus S and the spike representation R of the 
neural response.

The spike sequence can be further transformed into a sequence of 
patterns of spikes, called the pattern representation B. To that end, all 
possible patterns of spikes are classified into pre-defined categories, 
for example, burst codes, ISI codes, etc. (see Section 2.1 and references 
therein). We define pattern information I(S; B) as the information 
about the stimulus S, carried by the sequence of patterns B.

The pattern information cannot be greater than the spike infor-
mation, which in turn cannot be greater than the information in 
the unprocessed neural response

I I I( ; ) ( ; ) ( ; ).S B S R S U≤ ≤  (6)

A

B

Figure 3 | experimental data from a grasshopper auditory receptor 
neuron. (A) Upper panel: sample of the amplitude modulation of the sound 
stimulus used in the recordings. Lower panel: response to 30 of 479 repeated 
stimulus presentations showing conspicuous burst activity. Each vertical line 
represents a single spike. (B) Probability of firing a burst with n intra-burst 
spikes, in a time bin of size ∆t = 1 ms. Isolated spikes (n = 1) and burst activity 
(n > 1) represent 49.4 and 50.6% of the firing events, respectively.
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 representing about 68% of the spike information. In both examples, 
the representation Bα is “more sufficient” than Bβ. The difference 
I(S; Bα) − I(S; Bβ) constitutes a quantitative measure of the role 
of distinguishing between bursts of 2, 3, …, n spikes, provided 
that the distinction between isolated spikes and bursts has already 
been made (I(S; Bα|Bβ). However, Bα still preserves other response 
aspects, such as pattern timing, number of patterns, etc. In what 
follows, we study the role of different response aspects in informa-
tion transmission.

3.3 InforMatIve asPects of the neural resPonse
The pattern representation may preserve one or several aspects of 
the neural response that could, in principle, encode information 
about the stimulus. More specifically, if the response is analyzed 
using windows of duration τ, there are several candidate response 
aspects that might be informative, namely:

1. the number of patterns in the window (number of 
events – Figure 5A)

2. the precise timing of each pattern in the window (time 
 representation – Figure 1D)

3. the pattern categories present in the window with no specifica-
tion of their ordering (response set of categories – Figure 5B)

4. the temporally ordered pattern categories in the window 
( category representation – Figure 1E).

We find that these aspects are related through deterministic 
functions. Indeed, aspect a can be univocally determined from 
aspects b, c or d. Thus, the information transmitted by aspect a is 
also carried by any of the other aspects. In the same manner, aspect 
c can be determined from d. However, in Appendix B we prove that 
the number of patterns in the window (aspect a) makes a vanishing 

window size used to read the neural response. The representa-
tions are related through functions, in such a way that Bβ is a 
transformation of Bα, which is in turn a transformation of R. 
Therefore, I(S; Bβ) ≤ I(S; Bα) ≤ I(S; R), for all finite response 
windows (see Eq. 6). Nevertheless, notice that Bβ may be a faster-
to-read code than Bα, since the latter requires a time window 
long enough to distinguish not only the differences between 
isolated spikes and bursts, but also the differences among bursts 
of different categories.

In the simulation (Figure 4A), the information carried 
by Bα is equal to the spike information (I

Sim
(S; R) = I

Sim
(S; 

Bα) = 254.2 ± 0.2 bits/s, one-sided t-test, p(10) = 0.5). This is 
expected since, by construction, the neural code used in the simu-
lations is, indeed, Bα. Therefore, in this case, Bα is a lossless rep-
resentation. The choice of an adequate representation is more 
difficult in the experimental example (Figure 4B), where the neu-
ral code is not known beforehand. In this case, Bα preserves less 
information than the spike sequence (I

Exp
(S; R) = 133 ± 4 bits/s, 

I
Exp

(S; Bα) = 121 ± 3 bits/s, one-sided t-test, p(10) = 0.004). The 
information I(S; Bα) represents 91% of the spike information. In 
general, whether this amount of information is acceptable or not 
depends on whether the loss is compensated by the advantages of 
attaining a reduced representation of the response (Nelken and 
Chechik, 2007).

Distinguishing only between isolated spikes and bursts (Bβ) 
diminishes the information considerably in both examples (one-
sided t-test, p(10) < 0.001, both cases). In the simulation, the infor-
mation carried by Bβ is I

Sim
(S; Bβ) = 208.7 ± 0.6 bits/s, representing 

about 82.1% of the spike information. This is expected since, by 
construction, different stimulus features are encoded by differ-
ent patterns. For the experimental data, I

Exp
(S; Bβ) = 91 ± 7 bits/s, 

A B

Figure 4 | information per unit time transmitted by different choices of 
patterns. The spike representation (r) is transformed into a sequence of 
patterns grouped in categories according to the intra-pattern spike count 
(Bα), which is further transformed into a sequence of patterns classified as 
isolated spikes or complex patterns (Bβ). Comparing the amount of 
information transmitted gives insight about the relevance of the structures 

preserved in the representations. (A) Simulation of a neural response with 
four different patterns, elicited by a stimulus with four different features, in 
presence of temporal jitter and categorical noise (see Section 2.3.2 
Simulation 1 for details). (B) Experimental data from a grasshopper auditory 
receptor neuron. In all cases, error bars <1% (smaller than the size of the 
data points).
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I

I
I

( ; )

( ; )
( ; ).

S T

S C
S B





≤
 

(7)

When T and C are read out simultaneously, the pair (T,C) carries 
the same information as the pattern sequence B (I(T,C; S) = I(B; S)). 
In fact, B and the pair (T,C) are related through a bijective function. 
To prove this, consider any pattern representation B

i
 of a neural 

response U
i
. The pair (T

i
, C

i
) associated with U

i
 is a function of 

B
i
 (see Eqs. 1). Conversely, given the pair (T

i
, C

i
) associated with 

U
i
, all the information about the time positions and categories of 

patterns present in U
i
 is available, and thus B

i
 is univocally deter-

mined. Notice that the pairs (T, C) are a subset of the Cartesian 
product T × C.

The time positions of patterns may depend on their categories, 
and vice versa. To explore this relationship, and how it affects the 
transmitted information, we separate the pattern information as

I I I SR( ; ) ( ; ) ( ; ) ;B S S T S C= + + ∆  
(8)

where ∆
SR

 represents the synergy/redundancy between the time 
and the category representations, defined by

∆SR I= − ( ; ; ).S T C  (9)

Here, I(X; Y; Z) = I(X; Y) − I(X; Y|Z) is called triple mutual 
information (Cover and Thomas, 1991; Tsujishita, 1995). If ∆

SR
 

is positive, time and category information are synergistic: more 
information is available when T and C are read out simultaneously. 
Conversely, if ∆

SR
 is negative, time and category information are 

redundant. The proof of Eqs. 8 and 9 is shown in Appendix D. 
Previous studies have already defined the synergy/redundancy for 
populations of neurons (Schneidman et al., 2003). It has also been 
applied to single neurons, to determine how different aspects of 
response patterns encode the identity of single stimulus features 
(Furukawa and Middlebrooks, 2002; Nelken et al., 2005). Here 
we extend the concept to encompass also dynamic stimuli where 
stimulus features arrive at random times, as well as for arbitrary 
patterns, defined in time and/or across neurons.

As an example, consider the data presented in Figure 4, when 
the neural responses represented as a sequence of bursts (Bα). For 
the case of the simulations (Figure 4A), the time information is 
I

Sim
(S, Tα) = 180.4 ± 0.2 bits/s, and the category information, I

Sim
(S, 

Cα) = 74.2 ± 0.5 bits/s. The synergy/redundancy term is slightly 
negative, but not significant (∆SR

Sim = − ±0 4 0 5. . , two-sided t-test, 
p(15) = 0.44). By construction, in the simulation the time and 
category information are neither redundant nor synergistic. For 
the experimental data (Figure 4B), I

Exp
(S, Tα) = 63 ± 2 bits/s and 

I
Exp

(S, Cα) = 50.6 ± 0.6 bits/s. In this case, we do not know whether 
the time information and the category information are redundant 
or synergistic beforehand. Yet, by comparing them with the pattern 
information we obtain ∆ = ±SR

Exp bits/s,7 3  indicating that timings 
and categories of patterns are slightly synergistic (two-sided t-test, 
p(15) = 0.063).

The pattern, time and category information depend on the 
choice of the alphabet of patterns. For example, the category 
information may increase or decrease depending on the nature 
of the aspect defining the pattern categories (Furukawa and 
Middlebrooks, 2002; Gollisch and Meister, 2008). No general 

contribution to the information rate. That is, although aspect a 
might be informative for a finite window of length τ, its contribu-
tion becomes negligible in the limit of long windows. Surprisingly, 
the unordered set of pattern categories (aspect c) also makes no 
contribution to the information rate, as shown in Appendix C. 
Even more, the entropy rates of both aspects tend to zero in the 
limit of long time windows. Therefore, their information rate with 
respect to any other aspect, of either the stimulus and/or the neural 
response, vanishes as the window size increases. We thus do not 
discuss aspects a and c any further.

This is not the case of response aspects b and d. In other words, 
they may sometimes be informative; their definitions do not con-
strain them to be non-informative. Therefore, in what follows, we 
transform the pattern representation into two other representations 
preserving the precise timing of each pattern (the time representa-
tion) and the temporally ordered pattern categories (the category 
representation). Our goal is to determine in which way the pre-
cise timing of each pattern conveys information about the time 
positions of stimulus features (the when), and how the temporally 
ordered pattern categories provide information about the identity 
of the stimulus features (the what).

3.4 tIMe and category InforMatIon
We define the time information I(S; T) as the mutual information 
rate between the stimulus S and the time representation T. In 
addition, we define the category information I(S; C) as the mutual 
information rate between the stimulus S and the category repre-
sentation C. The category information is novel and, unlike and 
complementing previous studies (Gaudry and Reinagel, 2008; 
Eyherabide et al., 2009), allows us to address the relevance of pat-
tern categories in the neural code (see Section 3.5). Since both T 
and C are transformations of the pattern representation B (see 
Eqs 1), the time and category information cannot be greater than 
the pattern information, i.e.,

A

B

Figure 5 | identifying the information carriers in the neural response. 
(A) The representation η of the neural response is obtained by transforming 
the pattern sequence such that only the number of events is preserved. (B) By 
transforming the pattern sequence into the representation Θ, the information 
about the categories present in the neural response is preserved, while their 
order of occurrence is disregarded.
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Analogously, compare the left and right panels of Figure 6. 
In this case, both the pattern and time information decrease 
(I(S, Bα) = 254.2 ± 0.2 bits/s, I(S, Bγ) = 230.1 ± 0.1 bits/s, I(S, 
Tα) = 180.4 ± 0.2 bits/s, I(S, Tγ) = 156.0 ± 0.2 bits/s, in both cases, 
one-sided t-test, p(10) < 0.001), while the category information 
remains unchanged (I(S, Cα) = I(S, Cγ) = 74.2 ± 0.5 bits/s, one-
sided t-test, p(10) = 0.5). Thus, as mentioned previously, a reduc-
tion in the precision with which the patterns are read out always 
decreases the time information, while keeping the category infor-
mation constant.

In other examples, the variations in the time and category 
information may not be directly accompanied by variations in 
the pattern information, due to the presence of synergy and 
redundancy. For example, Alitto et al. (2005) studied the encod-
ing properties of tonic spikes, long-ISI tonic spikes (tonic spikes 
preceded by long ISIs) and bursts. To evaluate the relevance of 
distinguishing between tonic spikes and long-ISI tonic spikes, 
one can compare the information conveyed by two representa-
tions: Bξ, preserving the difference between tonic spikes and 
long-ISI tonic spikes, and Bφ, grouping them into the same cat-
egory (Gaudry and Reinagel, 2008). Both Bξ and Bφ only differ in 
the category representation, like Bα and Bβ. However, unlike those 
representations, ∆SR

ξ  and ∆SR
φ  need not be either equal or zero, 

and thus I I I I SR SR( ; ) ( ; ) ( ; ) ( ; ) .S B S B S C S Cξ φ ξ φ ξ φ−  = −  + ∆ − ∆   
Indeed, by reading simultaneously the timing and category of a 
pattern, the uncertainty on whether the following pattern will 
be a long-ISI tonic spike is reduced. Hence, this reduction is 
a source of redundancy in Bξ, where the long-ISI tonic spikes 
are explicitly identified. On the other hand, the inter-pattern 
time interval (IPI) preceding a long-ISI tonic spike may reveal 
the duration of the previous pattern. Any information con-
tained in it constitutes a source of synergy in Bξ. The distinction 
between tonic spikes and bursts produces analogous effects on 
the synergy and redundancy, affecting both representations Bξ 
and Bφ.

As shown in Cover and Thomas (1991), I(S; T; C) is symmetric 
in S, T and C. Hence, ∆

SR
 is upper and lower-bounded by

− ≤ ∆ ≤ ( )I X Y I X Y ZSR( ; ) ; ;|
 

(10)

where X, Y and Z represent the variables S, T and C in such an 
ordering that I(X; Y) = min{I(T; C),I(S; T),I(S; C)} (see proof in 
Appendix E). The same ordering applies for both bounds, in such 
a way that, for example, if I(S; T|C) is the least upper-bound, then 
I(S; T) is the greatest lower-bound, from the set of bounds derived 
in Eq. 10. These bounds are novel, tighter than the bounds previ-
ously mentioned Schneidman et al. (2003).

If the left side of Eq. 10 is zero, time and category informa-
tion are non-redundant (∆

SR
 ≥ 0). However, they may still be 

synergistic (0 ≤ ∆
SR

), even in the case when they are both zero 
(I(S; T) = I(S; C) = 0 ⇒ ∆

SR
 ≥ 0). This property has often been 

overlooked (see, for example, Foffani et al., 2009). Time and cat-
egory information are non-synergistic if and only if the right side 
of Eq. 10 is zero. From the definition of the synergy/redundancy 
∆

SR
 (Eq. 9), we show that

∆ = ⇔ =SR I X Y I X Y Z0 ( ; ) ( ; );|  (11)

rules can be given,  predicting these changes: they depend on the 
neural representation at hand. However, when the alternative pat-
tern representations are linked through functions, some relations 
between their variations can be predicted, without numerical cal-
culations. Compare, for instance, Bα and Bβ as defined in Section 
3.1. By grouping all bursts with more than one spike into a single 
category, not only Bβ is a function hα→β of Bα (Bβ = hα→β(Bα)), 
but also Cβ = hα→β(Cα). The time representation remains intact 
(Tβ = Tα). As a result, neither the pattern information nor the 
category information can increase, whereas the time information 
remains constant. In addition, if Tα and Cα are independent and 
conditionally independent given the stimulus, so are Tβ and Cβ. 
Therefore, the difference in the category information equals the 
difference in the pattern information (I(S; Cα) − I(S; Cβ) = I(S; 
Bα) − I(S; Bβ)).

Analogously, consider a representation Bγ in which the time 
positions of patterns identified in Bα are read out with lower pre-
cision (2 ∆t). Since Bγ is a function of Bα, two different responses 
Bi

α and B j
α that only differ little in the pattern time positions are 

indistinguishable in the representation B (B Bγ γ γ
i j= ). In this case, the 

comparison between Bα and Bγ is analogous to the case analyzed 
in the previous paragraph, with the role of the time and category 
representations interchanged.

We illustrate these results with an example. In Figure 6, the 
pattern, time and category information are shown for three dif-
ferent choices of the pattern representation. The simulated neural 
response is taken from Figure 4A. In the three cases, there is no 
synergy or redundancy between the time and the category informa-
tion (∆

SR
 = 0). From Figure 4A, we already know that I(S; Bβ) < I(S; 

Bα). Comparing the left and middle panels of Figure 6, we find 
that this reduction is due to a decrement in the category infor-
mation (I(S, Cα) = 74.2 ± 0.5 bits/s, I(S, Cβ) = 28.6 ± 0.3 bits/s, 
one-sided t-test, p(10) < 0.001), as expected (see Section 3.1). In 
agreement with the theoretical prediction, the time information 
remains unchanged (I(S, Tα) = I(S, Tβ) = 180.4 ± 0.2 bits/s, one-
sided t-test, p(10) = 0.5).

Figure 6 | Pattern, time and category information carried by different 
neural representations. The spike representation is transformed into a 
sequence of patterns: Bα (left): grouped in categories according to the 
intra-pattern spike count; Bβ (middle): classified as isolated spikes or complex 
patterns; and Bγ (right): classified as in Bα, reading out the time positions with 
a lower precision (2 ∆t). In all cases, error bars <1%. The simulation data is 
taken from Figure 4 (see Section 2.3.2 Simulation 1 for details).
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By using criterion I for the relevance of pattern timing and 
criterion II for the relevance of pattern categories, the informa-
tion that is repeated in both aspects (redundant information) 
only contributes to the relevance of the pattern timing. However, 
the information that is carried in both aspects simultaneously 
(synergistic information) only contributes to the relevance of 
the pattern categories. The discrepancies in this way induced are 
shown in the following example. Consider that I(S; R) = 10 bits/s, 
I(S; T) = 9 bits/s, I(S; C) = 10 bits/s and ∆I

th
 = 2 bits/s. Under 

criterion II, C is irrelevant because I(S; B) − I(S; T) = 1 bit/s. 
Nevertheless, under criterion I, C is necessarily relevant, since it 
constitutes a sufficient statistics (I(S; B) = I(S; C)). Analogous 
results are obtained for the relevance of pattern timing. In addi-
tion, different thresholds are used for the relevance of each aspect 
(compare Eqs. 12 and 14). In the previous example, the pattern 
timing is relevant only if I(S; T) > 8 bits/s whereas the pattern 
categories are relevant only if I(S; C) > 2 bits/s, showing an unjus-
tified asymmetry between both aspects.

3.6 tIMe and category entroPy of the stIMulus
Many studies have interpreted that pattern-based codes function as 
feature extractors, where the identity of each stimulus feature (the 
what) is represented in the pattern category C, and the timing of 
each stimulus feature (the when), in the pattern temporal reference 
T (see Introduction and references therein). To assess this standard 
view, we formally define the what and the when in the stimulus, 
and relate them with the time and category information. In the 
next subsection, we determine the conditions that are necessary 
and sufficient for the standard view to hold. Finally, we show that 
small category-dependent changes in the timing of patterns (such as 
latencies) may induce departures from the standard view (altering 
both the amount and the composition of the information carried 
by T and C).

Since the stimulus S is composed of discrete features (see 
Methods for a discussion on continuous stimuli), it can also be 
written in terms of a time (S

T
) and a category (S

C
) representation, 

such that S and the pair (S
T
, S

C
) are related through a bijective map. 

We formally define the what in the stimulus as the category repre-
sentation S

C
, and the when as the time representation S

T
. Indeed, 

S
T
 indicates when the stimulus features occurred, whereas S

C
 tags 

what features appeared.
The stimulus entropy is defined as the entropy rate H(S), while 

the stimulus time entropy and category entropy are the entropy rates 
H(S

T
) and H(S

C
), respectively. The time and category entropies 

are intimately related to when and what features happened: they 
are a measure of the variability in the time positions and catego-
ries of stimulus features, respectively. These quantities were pre-
viously defined for Poisson stimuli in Eyherabide and Samengo 
(2010), and here these definitions are generalized to encompass 
any stochastic stimulus. Since S and (S

T
, S

C
) are related through a 

bijective function,

H H H I( ) ( ) ( ) ( , );S S S S ST C T C= + −  
(16)

where the information rate I(S
T
, S

C
) is a measure of the redundancy 

between the time and category entropies of the stimulus. Since I(S
T
, 

S
C
) is always non-negative, S

T
 and S

C
 cannot be synergistic.

where X, Y and Z represent the variables S, T and C in any order. In 
this case, the time and category information add up to the pattern 
information. This situation may occur when either I(X; Y) = I(X; 
Y|Z) = 0 or I(X; Y) = I(X; Y|Z) > 0 (Nirenberg and Latham, 2003; 
Schneidman et al., 2003).

3.5 relevance and suffIcIency of dIfferent asPects of the 
neural resPonse
Previous studies have addressed the relevance of pattern timing 
in information transmission by quantifying the time informa-
tion and comparing it with the pattern information (Denning 
and Reinagel, 2005; Gaudry and Reinagel, 2008; Eyherabide et al., 
2009). In other words, the relevance of pattern timing is given by 
the amount of information carried by a representation that only 
preserves the time positions of patterns. We call this paradigm 
criterion I. Indeed, one can also address the relevance of pattern 
categories using criterion I. However, instead of quantifying the 
amount of information carried by the category representation, 
these previous works have determined the information loss due to 
ignoring the pattern categories. Here, this point of view is called 
criterion II. In what follows, we prove that criterion I and criterion 
II take into account different information, and can thus lead to 
opposite results when both of them are applied to the same aspect 
of the response.

Formally, under criterion I, the pattern timing is relevant (or 
sufficient) for information transmission if

I I Ith
I( ; ) ( ; ).S B S T− ≤∆  (12)

Here, ∆Ith
I  represents a previously set threshold. Although Cover 

and Thomas (1991) have defined sufficiency only for the case when 
∆Ith

I = 0, in practice, some amount of information loss (∆Ith
I > 0) is 

usually accepted (Nelken and Chechik, 2007). We can also employ this 
criterion to address the relevance of pattern categories, comparing

I I Ith
I( ; ) ( ; ).S B S C− ≤∆  

(13)

On the other hand, under criterion II, the pattern categories are 
relevant to information transmission if

I I Ith
II( ; ) ( ; ) .S T S B≤ − ∆  (14)

Therefore, pattern categories are relevant if pattern timings 
transmit little information, irrespective of the information car-
ried by categories themselves. Remarkably, if ∆ ∆I Ith

I
th
II= , the pattern 

categories are relevant (irrelevant) if and only if the pattern timings 
are irrelevant (relevant) (compare Eqs. 12 and 14).

From the bijectivity between B and (T; C) (see Section 3.4), we 
find that criterion II can be written as

∆ ∆I Ith
II

SR− ≤ ( ; ).S C  
(15)

As a result, under criterion II, the relevance of an aspect depends 
not only on the information conveyed by that very aspect – as 
in criterion I – but also on the synergy/redundancy between that 
aspect and the complementary ones. Both criteria coincide when 
∆ ∆ ∆I I Ith

I
th
II

SR+ = +( ; )S B  (compare Eqs. 13 and 15), implying that 
equality in the thresholds is neither necessary nor sufficient to 
obtain a coincidence.
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− ≤I SR( ; ) ;S ST C ∆  
(20)

(see proof in Appendix G). In other words, the synergy/redundancy 
term ∆

SR
 cannot be smaller than the redundancy – already present in 

the stimulus – between the timing and categories of stimulus features. 
In addition, the absence of redundancy in the stimulus (I(S

T
; S

C
) = 0) 

constrains the neural model to be non-redundant (∆
SR

 ≥ 0).
Consider a neural model in which T = f(S

T
;ψ

T
) and T = f(S

C
;ψ

C
), 

where ψ
T
 and ψ

C
 are independent sources of noise, such that p(ψ

T
, 

ψ
C
, S

T
, S

C
) = p(ψ

T
) p(ψ

C
) p(S

T
, S

C
). Thus, T and C are two channels 

of information under independent noise (Shannon, 1948; Cover 
and Thomas, 1991). This model constitutes a canonical feature 
extractor. Indeed, T (C) is only related to S

C
 (S

T
) through S

T
 (S

C
), 

thus complying with condition 17a (17b). In addition, if S
T
 and S

C
 

are independent, then T and C constitute independent channels 
of information (Cover and Thomas, 1991; Gawne and Richmond, 
1993). This model plays a prominent role in the interpretation of 
neurons and neural pathways as channels of information (Gawne 
and Richmond, 1993; Schneidman et al., 2003; Montemurro et al., 
2008; Krieghoff et al., 2009), as discussed in Section 4.5.

The independent channels of information may be regarded as 
the simplest canonical feature extractor. Since T and C are inde-
pendent and conditionally independent given S, the time and cat-
egory information add up to the pattern information (∆

SR
 = 0). An 

example of this model is shown in Figure 7. In the four simulations 
carried out, the neural responses consist of a sequence of four differ-
ent patterns, associated with four different stimulus features, under 
the presence or absence of temporal jitter and categorical noise (see 
Section 2.3.2 Simulation 2 for a detailed description; Figure 2B 
shows examples of the different noise conditions). In Figure 7, the 
spike information is omitted because it coincides with the pattern 
information (all cases, one-sided t-test, p(10) = 0.5). Indeed, by 
construction, all the information is transmitted by patterns, which 
can be univocally identified in the response. In agreement with the 
theoretical results (Eq. 18), the time and the category informa-
tion are always upper-bounded by the stimulus time and category 
entropy, respectively (all cases, one-sided t-test, p(10) > 0.4).

Comparing upper and lower panels of Figure 7, we show that 
the time information is degraded by the addition of temporal 
jitter (both cases, one-sided t-test, p(10) < 0.001), while the cat-
egory information remains constant (both cases, one-sided t-test, 
p(10) > 0.14). Analogously, comparing left and right panels of 
Figure 7, we find that the addition of categorical noise decreases the 
category information (both cases, one-sided t-test, p(10) < 0.001), 
while keeping the time information constant (Figures 7A,B, I(S; 
TA) = 223.3 ± 0.1 bits/s, I(S; TB) = 222.8 ± 0.1 bits/s, one-sided t-test, 
p(10) = 0.08; Figures 7C,D, one-sided t-test, p(10) = 0.5). This is 
expected since, by construction, the categorical noise only depends 
on the stimulus categories and affects solely the pattern categories, 
whereas the temporal jitter considered here only affects the pattern 
time positions, irrespective of their categories or the stimulus.

3.8 dePartures froM the canonIcal feature extractor
The example shown in Figure 7 turns out to be more complicated 
if the pattern timing depends on the pattern category, as occurs in 
latency codes (Gawne et al., 1996; Furukawa and Middlebrooks, 
2002; Chase and Young, 2007; Gollisch and Meister, 2008). Indeed, 

The standard view of the role of patterns formally implies that 
the category information I(S, C) (the time information I(S, T)) can 
be reduced to the mutual information I(S

C
, C)(I(S

T
, T)). Therefore, 

H(S
C
) and H(S

T
) must be upper-bounds for the category and time 

information, respectively. However, these bounds are not guaran-
teed by the mere presence of patterns in the neural response. Some 
cases may be more complicated because, for example, S

C
 and S

T
 

may not be independent variables (see Section 2.3). A dependency 
between these two stimulus properties implies that the what and 
the when are not separable concepts.

3.7 the canonIcal feature extractor
In this section, we determine the conditions under which the stand-
ard interpretation holds: The category information represents the 
knowledge on the what in the stimulus, and the time information, 
the knowledge on the when. To that aim, we define a canonical 
feature extractor as a neuron model in which

I( ; )T S SC T| = 0  
(17a)

I C S ST C; .|( ) = 0
 

(17b)

Under each of these conditions, the time and category informa-
tion become

I I H( ; ) ;T S T S ST T= ( ) ≤ ( )
 

(18a)

I I H( ; ) ( ; ) ( ).C S C S SC C= ≤  (18b)

Consequently, the response pattern categories represent what 
stimulus features are encoded, whereas the pattern time positions 
represent when the stimulus features occur. In particular, the time 
and category information are upper-bounded by the stimulus time 
and category entropies, respectively.

Condition 17a implies that all the information I(S
C
; T) is already 

contained in the information I(S
T
; T). In other words, I(S

C
; T) is 

completely redundant with I(S
T
; T), and I(S

C
; T) ≤ I(S

T
; T). In this 

sense, we say that the time information represents the when in the 
stimulus. Analogous implications can be obtained from condition 
17b for the category representation C, by interchanging T with C, and 
S

T
 with S

C
 (see formal proof in Appendix F). Therefore, conditions 

17 are necessary and sufficient to ensure that the standard view of the 
role of patterns in the neural code actually holds (see Section 4.1).

A canonical feature extractor does not require T and C to be 
independent nor conditionally independent given the stimulus. 
In other words, the time and category information may or may 
not be synergistic or redundant, and the timing (category) of each 
individual pattern may or may not be correlated with other pattern 
time positions (pattern categories) or even with pattern catego-
ries (pattern time positions). In addition, conditions 17 may also 
encompass situations in which some information about S

C
 (S

T
) is 

carried by T (C), but not by C (T).
In order to see how synergy and redundancy behave in a canoni-

cal feature extractor, we replace Eqs. 18 in Eq. 8, and obtain

I I I SR( ; ) ( ; ) ( ; ) .B S T S C ST C= + + ∆  
(19)

We find that, for a canonical feature extractor, the synergy/
redundancy ∆SR is lower-bounded by
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Due to the deterministic link between the pattern latencies and 
pattern categories, the pattern representations (B0, B2, and B4), 
associated with the different values of α

μ
 are related bijectively. 

In addition, the category representation does not depend on α
μ
. 

Only the time representation is altered by a change in the latency 
index, irrespective of the presence of absence of temporal jitter and 
categorical noise. Therefore, any change in the time information is 
immediately reflected in the synergy/redundancy term

∆ = −SR
x xI I( ; ) ( ; ).S T S T0

 
(21a)

= − −  + − H H H Hx x( ) ( ) ( ) ( ) .T T T S T S0 0| |
 

(21b)

Here, ∆SR
x  and Tx represent the synergy/redundancy term and 

the time representation, respectively, for α
μ
 = x ms.

The impact of different latencies is twofold. In the first place, 
the presence of categorical noise increments the temporal noise 
through the deterministic link between latencies and categories. 
Therefore, the time noise entropy (time information) when α

μ
 > 0 

is greater (less) than that when α
μ
 = 0. However, this does not 

occur when the time and category representations are read out 
simultaneously. Indeed, given the category representation, any time 
representation for α

μ
 = x > 0 can be univocally determined from 

the time representation for α
μ
 = 0, and vice versa, counteracting 

the effect of the temporal noise. Therefore, the variation in the 
time noise entropy (H(Tx|S) − H(T0|S) in Eq. 21) can be regarded 
as a source of synergy.

In the second place, the variation in the latencies modifies the inter-
pattern time interval distribution, incrementing the time total entropy 
(and the time information) when α

μ
 > 0 with respect to the case when 

α
μ
 = 0. In addition, this variation introduces information about the 

pattern categories in the inter-pattern time interval, and consequently 
it also introduces information about the stimulus identities. For exam-
ple, a short interval between two consecutive patterns indicates that 
the second patterns belongs to a category with a short latency. In 
consequence, the increment in the time total entropy (H(Tx) − H(T0) 
in Eq. 21) can be regarded as a source of redundancy.

To illustrate these theoretical inferences, the results of the simu-
lations are shown in Figure 8. As expected, when α

μ
 = x > 0, the 

latencies alter the time information. However, they do not alter 
the pattern nor the category information, and thus any variation 
in the time information is compensated by an opposite variation 
in the synergy/redundancy term. Notice that the changes in the 
time information not only depend on the latency index, but also 
on the presence of temporal and categorical noise. Indeed, in the 
absence of categorical noise, (H(Tx|S) = H(T0|S) = 0, and thus 
∆

SR
 ≤ 0. The effect of the temporal jitter depends on its distribu-

tion as well as the distribution of the inter-pattern time intervals, 
so this analysis if left for future work.

In these examples we see that for non-canonical feature extrac-
tors, one can no longer say that the pattern categories represent the 
what in the stimulus and the pattern timings represent the when, not 
even in the absence of synergy/redundancy. As shown in Eq. 21, ∆

SR
 

results from a complex trade-off between the effect of categorical 
noise on the total and noise time response entropies. This trade-off 
depends on the latency index and the amount of temporal noise in 
the system, as shown in Figure 8.

in those cases, the comparison between the timing of response pat-
terns and the timing of stimulus features carries information about 
the stimulus categories (I(S

C
; T|S

T
) > 0). As a result, Eq. 17a does 

not hold. Latency codes may be an intrinsic property of the encod-
ing neuron, may result as a consequence of synaptic transmission 
(Lisman, 1997; Reinagel et al., 1999), or may either arise from the 
convention used to construct the pattern representation, for exam-
ple, ascribing the timing of a pattern as the mean response time, 
the first or any other spike inside the pattern (Nelken et al., 2005; 
Eyherabide et al., 2008). In all these cases, a latency-like dependence 
between the time positions and categories of patterns may arise.

To assess the effect of different latencies associated with each 
pattern category on the neural response, consider the neural model 
used in Figure 7, except that now, the pattern latencies vary with the 
pattern category b, according to μ

b
 = 1 + α

μ
*(4 − b). Here α

μ
 is the 

latency index, representing the difference between the latencies of 
consecutive pattern categories. Three values of α

μ
 were considered: 

0, 2, and 4 ms. When α
μ
 = 0 ms, all patterns have the same laten-

cies. This case was analyzed in Figure 7. As α
μ
 increases, so does 

the latency difference of different patterns.

A B

C D

Figure 7 | information transmitted by a canonical feature extractor under 
different noise conditions. The left side of each panel shows the stimulus 
entropy, whereas the right side shows the pattern, time and category 
information. In all cases, ∆SR = 0, so the pattern information is equal to the sum 
of the category and the time information. From left to right: Absence (A,C) and 
presence (B,D) of categorical noise. The addition of categorical noise reduces 
only the category information irrespective of the amount of temporal jitter. From 
top to bottom: Absence (A,B) and presence (C,D) of temporal jitter. The 
presence of temporal jitter degrades solely the time information irrespective of 
the amount of categorical noise. The pattern information is upper bounded by 
the stimulus entropy, the time information by the stimulus time entropy, and the 
category information by the stimulus category entropy. In all cases, error bars 
<1%. For detailed description of the simulation see Section 2.3.2 Simulation 2.
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case of responses, these aspects can be latencies, spike counts, 
 spike-timing variability, autocorrelations, etc. Examples of stim-
ulus aspects are color, contrast, orientation, shape, pitch, posi-
tion, etc. The only requirement is that the considered aspects be 
obtained as transformations of the original representation, as 
defined in Section 2.1 (see Section 4.2). The information trans-
mitted by generic aspects can be analyzed by replacing B (S) with 
a vector representing the selected response (stimulus) aspects. 
The amount of synergy/redundancy between aspects is obtained 
from the comparison between the simultaneous and individual 
readings of the aspects. In addition, the results can be general-
ized for aspects defined as statistical (that is, non-deterministic) 
transformations of the neural response, or of the stimulus. The 
data processing inequality also holds in those cases (Cover and 
Thomas, 1991).

4.1 MeanIng of tIMe and category InforMatIon and theIr 
relatIon wIth the what and the when In the stIMulus
In this paper, we defined the category and the time information 
in terms of properties of the neural response. The category (time) 
information is the mutual information between the whole stimu-
lus S and the categories C (timing T) of response patterns (see 
Figure 9A). These definitions only require the neural response to be 
structured in patterns. No requirement is imposed on the stimulus, 
i.e., the stimulus need not be divided into features. Our definitions, 
hence, are not symmetric in the stimulus and the response. In some 
cases, however, the stimulus is indeed structured as a sequence of 
features. One may ask how the stimulus identity (the what) and tim-
ing (the when) is encoded in the neural response (see Figure 9B). 
To that end, we defined the what in the stimulus in terms of the 
category representation (S

C
), and the when, in terms of the time 

representation (S
T
).

These rigorous definitions allowed us to disentangle how the 
what and the when in the stimulus are encoded in the category 
and time representations of the neural response. We calculated the 
mutual information rates between different aspects of the stimulus 
and different aspects of the neural response (see Figure 9C). In 
the standard view, the pattern categories are assumed to encode 
the what in the stimulus, and the timing of patterns, the when 
(Theunissen and Miller, 1995; Borst and Theunissen, 1999; 
Martinez-Conde et al., 2002; Krahe and Gabbiani, 2004; Alitto 
et al., 2005; Oswald et al., 2007; Eyherabide et al., 2008). These 
assumptions have been stated in qualitative terms. There are two 
different ways in which the standard view can be formalized as a 
precise assertion.

On one hand, the standard view can be seen as the assumption that 
the category (time) representation only conveys information about 
the what (the when). Evaluating this assumption involves the com-
parison between the information conveyed by the category (time) 
representation about the whole stimulus (dotted lines in Figure 9C) 
with the information that this same representation conveys about 
the what (the when) in the stimulus (solid lines in Figure 9C). 
Formally, this means to address whether I(S; C) = I(S

C
; C) (whether 

I(S; T) = I(S
T
; T)). In this sense, we say that the category (time) 

information only represents the what (the when) in the stimulus. A 
system complying with this first interpretation of the standard view 
was called a canonical feature extractor (see Section 3.7).

Latency-like effects may be involved in a translation from a pat-
tern duration code into an inter-spike interval code (Reich et al., 
2000; Denning and Reinagel, 2005). Indeed, bursts may increase 
the reliability of synaptic transmission (Lisman, 1997), making it 
more probable to occur at the end of the burst. In that case, the 
duration of the burst determines the latency of the postsynaptic 
firing. In particular, this indicates that bursts can be simultaneously 
involved in noise filtering and stimulus encoding, in spite of the 
belief that these two functions cannot coexist (Krahe and Gabbiani, 
2004). Notice that here, latency codes have been studied for well-
separated stimuli. However, if patterns are elicited close enough in 
time, they may interfere in a diversity of manners (Fellous et al., 
2004), precluding the code from being read out. Although we can-
not address all these cases in all generality, the framework proposed 
here is valid to address each particular case.

4 dIscussIon
In this paper, we have focused on the analysis of temporal and 
categorical aspects, both in the stimulus and the response. Our 
results, however, are also applicable to other aspects. In the 

A B

C D

Figure 8 | examples of departures from the behavior of the canonical 
feature extractor: The effect of pattern-category dependent latencies. From 
left to right: Absence (A,C) and presence (B,D) of categorical noise. From top to 
bottom: Absence (A,B) and presence (C,D) of temporal jitter. In all cases, when 
latencies depend on the pattern category, the time information is affected while 
the category information remains unchanged. Furthermore, the addition of 
categorical noise not only affects the category information but also the time 
information. In general, how the addition of temporal and/or categorical noise 
affects the time information depends on the latency index, as well as on the noise 
already present in the response. For simulation details, see Section 2.3.2 
Simulation 2. The case where αµ = 0 ms was analyzed in Figure 7 and is 
reproduced here for comparison. In (A), the case where αµ = 0 ms also represents 
the stimulus entropies, as shown in Figure 7A. In all cases, error bars <1%.
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4.2 two dIfferent aPProaches to the analysIs of neural codes
In order to understand a neural code, one needs to identify those 
aspects of the neural response that are relevant to information 
transmission. To that aim, two different paradigms have been used: 
criterion I, assessing the information that one aspect conveys about 
the stimulus, and criterion II, assessing the information loss due to 
ignoring that aspect (see Section 3.5). Previous studies have used 
criterion I to analyze the relevance of spike counts (Furukawa and 
Middlebrooks, 2002; Foffani et al., 2009), spike patterns (Reinagel 
et al., 1999; Eyherabide et al., 2008), and pattern timing (Denning 
and Reinagel, 2005; Gaudry and Reinagel, 2008; Eyherabide et al., 
2009). However, when assessing the relevance of the complemen-
tary aspects, such as spike timing and internal structure of patterns, 
these studies have used criterion II. As a result, in these studies the 
relevance of the tested aspect is conditioned to the irrelevance of 
the other aspects.

There are cases where building a representation that preserves a 
definite response aspect is not evident (nor perhaps possible). Such 
is the case, for example, when assessing the differential roles of spike 
timing and spike count: It is not possible to build a representation 
preserving the timing of the spikes without preserving the spike 
count (see Section 3.3). It is instead possible to only preserve the 
spike count. Since the spike-count representation is a function of 
the spike-timing representation, one may argue that there is an 
intrinsic hierarchy between the two aspects. The same situation 

On the other hand, the second way to define the standard view 
rigorously is to assume that the what (the when) is completely 
encoded by the category (time) representation. Testing this sec-
ond assumption involves the comparison between the informa-
tion about the what (the when), conveyed by the category (time) 
representation (solid lines in Figure 9C) and by the pattern rep-
resentation of the neural response (dashed lines in Figure 9C). 
Formally, it involves assessing whether I(S

C
; B) = I(S

C
; C) (whether 

I(S
T
; B) = I(S

T
; T)). In this sense, we say that all the information 

about the what (the when) in the stimulus is encoded in the category 
(time) representation of the neural response. A system for which 
these equalities hold is called a canonical feature interpreter. It is 
analogous to the canonical feature extractor, with the role of the 
stimulus and the response interchanged (see Appendix H).

The two formalizations of the standard view are complementary. 
The first one assesses how different aspects of the stimulus are 
encoded in each aspect on the neural response. The second one 
focuses on how each aspect of the stimulus is encoded in differ-
ent aspects of the neural response. Thus, the second approach is 
a symmetric version of the first one. However, a canonical feature 
extractor might or might not be a canonical feature interpreter, 
and vice versa. A perfect correspondence between the what and 
the when on one side, and pattern timing and categories, on the 
other, is found for systems that are canonical feature extractors and 
canonical feature interpreters, simultaneously.

A B

C

Figure 9 | Analysis of the role of spike patterns: relationship with the 
what and the when in the stimulus. (A) Categorical and temporal aspects in 
the neural response. Definitions of time I(S; T) and category I(S; C) information. 
(B) Categorical and temporal aspects in the stimulus. Information about the 

what I(SC; B) and the when I(ST; B) conveyed by the neural response B. 
(C) Analysis of the role of patterns in the neural response. Mutual information 
between different aspects of the stimulus and different aspects of the 
neural response.
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et al., 2000) and by patterns of length >104, >10, and >56 ms, using 
time windows up to 64, 3.2, and 16 ms, respectively (Reinagel and 
Reid, 2000; Eyherabide et al., 2008; Gaudry and Reinagel, 2008). 
Unlike the first approach, in this case the data processing inequality 
does not apply, since Bτ is not a function of Rτ. Therefore, I(S; Bτ) 
can be larger or smaller than I(S; Rτ). However, when τ → ∞, Bτ = Bτ, 
so asymptotically, both approaches coincide.

4.4 the role of synergy and redundancy In the search for 
relevant resPonse asPects
One of the main goals of the analysis of the neural code is to identify 
the response aspects that are relevant to information transmis-
sion. In this context, two important questions arise: how relevant 
the chosen aspects are, and how autonomously they stand. Their 
relevance to information transmission is assessed with informa-
tion-theoretical measures, as exemplified here with the category 
and time information (see Section 4.2). Their autonomy refers to 
whether each aspect transmits information by itself or not, and 
whether the transmitted information is shared by other aspects or 
not. The degree of autonomy is assessed by quantifying the synergy/
redundancy term (∆

SR
) between the different aspects.

The concept of synergy/redundancy entails the comparison 
between the effect of the whole and the sum of the individual effects 
of the constituent parts. The concept requires the constituent parts 
to be univocally determined by the whole, as well as the whole to be 
completely determined given its constituent parts. In other words, 
the whole and the constituent parts must be related through a bijec-
tive function. In neuroscience, the synergy/redundancy between 
groups of neurons has been addressed by comparing the informa-
tion carried by the group of neurons (the whole) and the sum of 
the information of each and every neuron from the group (the 
constituent parts) (Brenner et al., 2000; Schneidman et al., 2003). 
As a result, ∆

SR
 can be interpreted as a trade-off between synergy 

and redundancy (Schneidman et al., 2003).
Intuitively, the presence of synergy (∆

SR
 > 0) between two aspects 

indicates that, for many responses, the aspects must be read out 
simultaneously in order to obtain information about the stimulus. 
For some specific responses, however, one of the aspects may be 
enough to identify the stimulus. But on average, aspects cooperate. 
On the other hand, the presence of redundancy (∆

SR
 < 0) indicates 

that, for many responses, the information conveyed by both aspects 
overlaps. Therefore, some of the information that can be extracted 
from one aspect taken alone can also be extracted from the other 
aspect taken alone. There might still be a few individual responses 
for which it is necessary to read both aspects simultaneously to 
obtain information about the stimulus. But on average, messages 
tend to be replicated in the different aspects.

In the absence of synergy/redundancy (∆
SR

 = 0), the aspects 
might or might not be independent and conditionally independ-
ent given the stimulus (Nirenberg and Latham, 2003; Schneidman 
et al., 2003). If they are, then both aspects are fully autonomous. 
However, if they are not, then synergy and redundancy coexist. 
Some responses might require the simultaneous read out of both 
aspects. However, for other responses, at least one of the individual 
aspects might be enough to obtain information about the stimulus. 
In this case, by considering both aspects separately, one cannot 
recover the entire encoded information.

is encountered when evaluating the information encoded by the 
pattern representation, as compared to the spike representation (see 
Section 3.1). There, it was not possible to construct a representation 
only containing those aspects that had been discarded in the pattern 
representation. However, this is not the case when evaluating the 
differential role between pattern timing and pattern categories, or 
the relevance of a specific pattern category.

In the present study, we take advantage of both approaches. 
Firstly, we notice that pattern timing and pattern categories are 
complementary response aspects, and quantify the information 
preserved by each aspect (see Section 3.4). Then, we determine 
whether there is synergy or redundancy between the time and cat-
egory information, which is formally equivalent to comparing the 
information preserved by (criterion I) and lost due to ignoring 
(criterion II) each of the two aspects. As a result, we gain insight 
on the relevance of each aspect as well as how the aspects interact 
to transmit information (see Section 4.4). These procedures can 
be extended to encompass any two different aspects of the neural 
response (see Section 4.5).

Notice that the role of correlations, both in time and/or across 
neurons, has been evaluated using criterion II (Brenner et al., 2000; 
Dayan and Abbott, 2001; Nirenberg et al., 2001; Petersen et al., 2002; 
Schneidman et al., 2003; Montemurro et al., 2007). However, these 
authors did not build two complementary representations of the 
neural response ignoring and preserving the correlations, as pro-
posed here. Instead, they ignored correlations by constructing arti-
ficial neural responses (or artificial response probabilities) where 
different neurons were independent or conditionally independ-
ent. Thus, their analysis involves a comparison between the real 
and the artificial neural code. Our analysis, instead, is completely 
based on complementary reductions of the real neural response. 
Moreover, in previous studies, the artificial neural responses are not 
a transformed version of the real response in a well defined time 
window. Thus, in some cases, the difference between the informa-
tion with and without preserving correlations is not guaranteed 
to be non-negative by the data processing inequality (Cover and 
Thomas, 1991).

4.3 rePresentatIons of the neural resPonse and the data 
ProcessIng InequalIty
In some previous studies, the information encoded by different 
response aspects was assessed, as here, by transforming each neural 
response window (Rτ) of size τ through functions, into the pattern 
representation (Bτ) (Furukawa and Middlebrooks, 2002; Petersen 
et al., 2002; Nelken et al., 2005; Gollisch and Meister, 2008). Examples 
of those response aspects are the first spike latencies, spike counts, 
spike-timing variabilities and first (second, third, etc.) spikes in 
a pattern. As a result, the information carried by the individual 
response aspects cannot be greater than that provided by the neural 
response in the same window (I(S; Bτ) ≤ I(S; Rτ)), irrespective of 
the length τ (see Section 2.2). In other studies, however, the pattern 
representation B was obtained by transforming the spike repre-
sentation inside a sliding window of variable length: the length of 
the window depended on the category of the actual pattern. Then, 
B was read out with time windows of size τ. That is the case, for 
example, when addressing the information conveyed by inter-spike 
intervals of length >38 ms using words of length τ = 14.8 ms (Reich 
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4.5 aPPlIcatIons
The main ideas in this paper can also be extended to encompass any 
neuron response aspects, different from pattern timing and pattern 
category. In particular, they allow us to analyze the information 
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between them, extending the formalism derived in Eyherabide et al. 
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about different stimulus aspects (Gawne et al., 1996; Denning and 
Reinagel, 2005; Eyherabide et al., 2008). To that aim, different neu-
rons (and different neural response aspects) have been interpreted 
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Appendix
A. CAtegoriCAl noise
The categorical noise is characterized by the probability P

b
(b|s) 

that a stimulus feature s elicits a pattern response of category b. 
This probability is related to P

r
(r|s), the probability of inducing 

the response r due to the feature s, according to

P b s P sb r
r

r( | ) ( | ),= ∑
 

(A-1)

where the sum runs through all patterns of spikes r whose category 
is b.

B. event Counts trAnsmit informAtion At A vAnishing rAte
Previous studies have shown that the information per unit time 
carried by the spike count decreases with the size of the response 
time window (Petersen et al., 2002; Montemurro et al., 2007). In 
this appendix, we formally prove this result and also that the infor-
mation per unit time vanishes in the limit of long windows. We 
extend its validity not only for spikes, but for any response patterns, 
as defined in Section 2.1, irrespective of the number of pattern cat-
egories. To that aim, consider a representation η that only preserves 
the number of patterns in each response segment Rτ of length τ 
(Figure 5A). In this representation, two responses stretches R τ

1 and 
R τ

2 are different if and only if they contain a different number of 
patterns ( ( ) ( )),η ητ τR R1 2≠  otherwise they are equal.

In a real experiment, patterns (and spikes) are not instantaneous 
(Mackay and McCulloc, 1952). Thus, without loss of generality, 
consider the time divided into time bins of size ∆t shorter than 
the shortest pattern. The number of events present in any response 
stretch R

w
 of length w bins is bounded by 0 ≤ η

w
 ≤ w, and therefore 

H(η
w
) ≤ log(w + 1). Hence, the entropy rate H(η) becomes zero, 

since

H
H

w

w

ww

w

w
( ) lim lim

log( )
.η

η
= ( ) ≤ + =

→∞ →∞

1
0

 
(B-1)

As a result, the information rate carried by η about any other 
random variable vanishes. In particular, I(S;η) ≤ H(η) = 0. The 
result is valid for response patterns of any nature (see Section 2.1 
for the definition and examples of patterns).

C. the response set of event CAtegories trAnsmits 
informAtion At A vAnishing rAte
In this appendix, we prove that the information per unit time trans-
mitted by the response set of pattern categories decreases with the 
length of the response time window, and it vanishes in the limit 
of long time windows. To this aim, we consider a representation 
Θ in which two response segments are indistinguishable if and 
only if they have the same pattern categories, irrespective of their 
temporal ordering (see Figure 5B). Hence, two neural responses 
can be different in the category representation and equal in the Θ 
representation. Analogously to Appendix B, we only assume that 
the response events are not instantaneous.

We first prove the result for the case where the number |Σ
b
| of 

possible different pattern categories is finite; a neural response B 
may be composed of several response patterns. This is indeed the 
most frequent situation in the real neural system (Mackay and 

McCulloc, 1952), valid for all the examples of pattern-based codes 
mentioned in Section 2.1 and throughout this paper. Consider that 
the neural response is read with words of length w bins, smaller 
than the shortest pattern. The number of patterns is bounded by 
0 ≤ η

w
 ≤ w (see Appendix B). In addition, each response pattern 

may belong to one out of |Σ
b
| pattern categories. Thus, the number 

of possible different responses Θ
w
 in the representation Θ is upper-

bounded by | | | |Θ Σ
w w≤ +( )1 b (Cover and Thomas, 1991). As a result, 

its entropy is upper-bounded by H(Θ
w
) ≤ log |Θ

w
|, and its entropy 

rate is

H
H

w

w

ww

w

w
( ) lim

( )
lim

log( )
.Θ Θ ΣΘ= ≤ + =

→∞ →∞
| | 1

0
 

(C-1)

Therefore, there is no mutual information rate between the 
response set of pattern categories and any other random variable. 
Particularly, I(S; Θ) = 0.

We now generalize the result for infinite codes, under the only 
condition that patterns belonging to different categories have dif-
ferent durations. These codes can be regarded as academic examples 
since, in any real condition, they would be impractical due to the 
long time periods required to read out the codewords. Examples 
of such infinite codes are bursts codes with no restriction in their 
duration, inter-spike intervals or latencies divided into an infinite 
number of finite ranges and the number of spikes in arbitrarily long 
time response windows. In a neural response of size w bins, only 
patterns up to a length w can be read (see Section 4.3 for examples). 
In addition, a neural response may contain several patterns. Thus, 
the sum of the length of the patterns cannot be greater than the 
length of the response containing them. Under these conditions, 
the number of response sets of pattern categories |Θ

w
| is upper-

bounded by

| |Θw
k

w

p k≤
=

∑ ( );
0  

(C-2)

where p(k) represents the number of partitions of the integer 
number k. By using the Hardy-Ramanujan–Uspensky asymptotic 
approximation (Apostol, 1990)

| |Θw
k

w A k A w

k k

w

p k C
Bk B

≤ ≈ + ≤
= =

∑ ∑( ) ;
0 0

e e

 
(C-3)

where A and B are positive constants, k
0
 represents an integer for 

which the approximation is valid, C p kk
k k= ∑ =

= −
0

10 ( ) and the right-
most inequality is valid for long enough words. Therefore, the 
entropy rate H(Θ) results

H
ww

w( ) lim
log( )Θ Θ=

→∞

| |

 
(C-4a)

≈ −
→∞ →∞

lim
log( )

lim
log( )

w w

A

w

B

w

e

 
(C-4b)

= 0.  (C-4c)

Thus, the entropy rate H(Θ) tends to zero, and consequently the 
mutual information rate that the response set of pattern categories 
can carry about any other random variable vanishes.
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d. decoMPosItIon of the Pattern InforMatIon
As mentioned previously, the pattern sequence B and the pair 
(T, C) carry the same information about the stimulus, since they 
are related through a bijective transformation. Therefore

I I( ; ) ( ; , )S B S T C=  (D-1a)

= + + −I I I I( ; ) ( ; | ) ( ; ) ( ; )S T S C T S C S C  
(D-1b)

= + − −I I I I( ; ) ( ; ) ( ( ; ) ( ; | ))S T S C S C S C T  (D-1c)

= + −I I I( ; ) ( ; ) ( ; ; )S T S C S T C (D-1d)

= + +I I SR( ; ) ( ; ) ;S T S C ∆ 
(D-1e)

where Eq. D-1e is obtained from Eq. D-1d by replacing 
∆SR I= − ( ; ; ).S T C  Here, I(X; Y; Z) = I(X; Y) − I(X; Y|Z) represents 
the triple mutual information (Cover and Thomas, 1991; Tsujishita, 
1995).

e. relatIon between the uPPer- and lower-bounds of ∆sr

The synergy/redundancy term (∆
SR

), defined in Eq. 9, can be writ-
ten as

∆SR I I= −( ; | ) ( ; )S T C S T  
(E-2a)

= −I I( ; | ) ( ; )S C T S C  
(E-2b)

= −I I( ; | ) ( ; ).T C S T C (E-2c)

Hence, the upper- and lower-bounds of ∆
SR

 are

−











≤ ≤min
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( ; )

( ; )

min

( ; | )

( ; | )

(
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I

I
SR

T C

S T

S C

T C S

S T C∆
SS C T; | )

.











  
(E-3)

In addition, these upper- and lower-bounds are related through 
Eqs. E-2, in such a way that

min

( ; )

( ; )

( ; )

( , ) min

( ; | )

( ; | )
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I
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I X Y
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


=

 

(E-4)

where X, Y, and Z represent the variables S, T, and C in any order. 
This proves the upper- and lower-bounds for the synergy/redun-
dancy term ∆

SR
 of Eq. 10.

f. InforMatIon decoMPosItIon In rePresentatIons of the 
neural resPonse
The information that a representation X of the neural response 
conveys about the stimulus can be decomposed as

I I I SR
X( ; ) ( ; ) ( ; ) ;S X S X S XT C= + + ∆  

(F-1)

where I(S
T
; X) is the information conveyed by X about the when in 

the stimulus, and I(S
C
; X) is the information conveyed by X the what. 

Here, ∆SR
X  represents the synergy/redundancy between the informa-

tion conveyed about the when and the what, and it is given by

∆SR
X I= − ( ; ; );S S XT C  (F-2)

which is lower-bounded by the redundancy in the stimulus

∆SR
X I≥ − ( ; ).S ST C  (F-3)

Tighter upper- and lower-bounds for ∆SR
X  can be derived analo-

gously to the ones derived for ∆
SR

 (see Eq. 10), as well as analogous 
conditions for the absence of either synergy or redundancy between 
I(S

T
; X) and I(S

C
; X).

Notice that when ∆SR
X > 0, the information provided about the 

stimulus is greater than the sum of the information about when 
and what stimulus features happen, i.e.,

I I I( ; ) ( ; ) ( ; ).S X S X S XT C> +  
(F-4)

This may occur, for example, if the latency in the response depends 
on the feature category. In this case, the information that the time 
representation T carries about the time positions of stimulus features 
S

T
 might be increased due to the knowledge of the feature categories 

S
C
. In conclusion, there is an information component that is not 

uniquely related to either when or what: it refers to both.
In the case that I(S

C
; X|S

T
) = 0, the synergy/redundancy ∆SR

X  
becomes

∆SR
X I= − ( ; ).S XC  

(F-5)

Thus, I(S
C
; X) is completely redundant with and lower than 

I(S
T
; X). That is,

I I I SR
X( ; ) ( ; ) ( ; )S X S X S XT C= + + ∆  (F-6a)

I I I( ; ) ( ; | ) ( ; )S X S X S S XC T C T+ =  (F-6b)

I I( ; ) ( ; ).S X S XC T≤  
(F-6c)

Notice that this is the case of the time representation in a canoni-
cal feature extractor. Indeed, the definition of a canonical feature 
extractor states that I(S

C
; T|S

T
) = 0, and consequently

∆SR
T I= − ( ; ).S TC  

(F-7)

The implications of condition 17a mentioned in Section 3.7 
follow directly from this equation. By interchanging S

T
 and S

C
 in 

Eqs. F-5 and F-6, analogous conclusions can be derived for the 
category representation.

g. redundancy bounds for the canonIcal feature extractor
To prove Eq. 20, we expand

I( ; )T,S C,ST C =

= ( ) + ( ) + ( )I I IS S T S S S C ST C C T T C; ; | ; |

=0 =0 ( .17a) ( .17b)Eq Eq
     

+ ( )I T C S ST C; | ,

 

(G-1a)

= ( ) + ( ) + ( ) + ( )
≥ ≥ ≥

I I I IT C S C T T S C S S T CT C T C; ; | ; | ; | ,

0 0 0
        

.

 

(G-1b)

Applying both conditions 17a and 17b, the second and third term 
of Eq. G-1a vanish respectively, and the synergy/redundancy between 
the time and category information (∆

SR
) is lower-bounded by

− ≤I SR( ; ) .S ST C ∆  
(G-2)

This is the bound that we wanted to prove.
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I I HB S T S ST T T; ;( ) = ( ) ≤ ( )
 

(H-4a)

I I HB S C S SC C C; ; .( ) = ( ) ≤ ( )
 

(H-4b)

Consequently, the what (the when) in the stimulus is completely 
represented in the category (time) representation. In other words, 
I(S

C
; T) (I(S

T
; C)) is completely redundant with I(S

C
; C) (I(S

T
; T), 

and I(S
C
; T) ≤ I(S

C
; C) (I(S

T
; C) ≤ I(S

T
; T)). The canonical feature 

interpreter is analogous to the canonical feature extractor. In fact, 
it can be obtained by interchanging the role of the stimulus and 
the response in Section 3.7.

h. the canonIcal feature InterPreter
We define a canonical feature interpreter as a neuron model in 
which

I( ; | )C S TT = 0  
(H-3a)

I( ; | ) .T S CC = 0  
(H-3b)

Under each of these conditions, the information conveyed by 
the neural response B about the what (I(B; S

C
)) and about the when 

(I(B; S
T
)) becomes




