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making under uncertainty based on partially observable Markov 
decision processes (POMDPs), and (3) algorithms for temporal 
difference (TD) learning in reinforcement learning theory.

The new model postulates that decisions are made not based on a 
unitary estimate of “state” but rather the entire posterior probability 
distribution over states (the “belief state”) (see also Dayan and Daw, 
2008; Frazier and Yu, 2008; Shenoy et al., 2009, 2011). This allows 
the model to take actions based on the current degree of uncertainty 
in its estimates. It allows, for example, “information-gathering” 
actions that can be used to reduce the current uncertainty in an 
estimate of a task-relevant quantity before committing to a deci-
sion. We show how a network of neurons can learn to map belief 
states to appropriate actions for maximizing expected reward.

We illustrate the proposed model by applying it to the well-
known random dots motion discrimination task. We show that 
after learning, model neurons representing belief state exhibit 
responses similar to those of LIP neurons in primate cerebral 
cortex. The appropriate threshold for switching from gather-
ing information to making a decision is learned as part of the 
reward maximization process through TD learning. After learn-
ing, the temporal evolution of reward prediction error (TD error) 
in the model shares similarities with the responses of midbrain 

IntroductIon
To survive in a constantly changing and uncertain environment, 
animals must solve the problem of learning to choose actions based 
on noisy sensory information and incomplete knowledge of the 
world. Neurophysiological and psychophysical experiments sug-
gest that the brain relies on probabilistic representations of the 
world and performs Bayesian inference using these representations 
to estimate task-relevant quantities (sometimes called “hidden or 
latent states”) (Knill and Richards, 1996; Rao et al., 2002; Doya 
et al., 2007). A number of computational models have been pro-
posed to demonstrate how Bayesian inference could be performed 
in biologically plausible networks of neurons (Rao, 2004, 2005; Yu 
and Dayan, 2005; Zemel et al., 2005; Ma et al., 2006; Beck et al., 
2008; Deneve, 2008). A question that has received less attention is 
how such probabilistic representations could be utilized to learn 
actions that maximize expected reward.

In this article, we propose a neural model for action selection 
and decision making that combines probabilistic representations of 
the environment with a reinforcement-based learning mechanism 
to select actions that maximize total expected future reward. The 
model leverages recent advances in three different fields: (1) neural 
models of Bayesian inference, (2) the theory of optimal decision 
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 dopaminergic neurons in monkeys performing the random dots 
task. We also show that the model can learn time-dependent deci-
sion making strategies, predicting a collapsing decision threshold 
for tasks with deadlines.

The model ascribes concrete computational roles to the neo-
cortex and the basal ganglia. Cortical circuits are hypothesized to 
compute belief states (posterior distributions over states). These 
belief states are received as inputs by neurons in the striatum in the 
basal ganglia. Striatal neurons are assumed to represent behaviorally 
relevant points in belief space which are learned from experience. 
The model suggests that the striatal/STN-GPe-GPi/SNr network 
selects the appropriate action for a particular belief state while 
the striatal-SNc/VTA network computes the value (total expected 
future reward) for a belief state. The dopaminergic outputs from 
SNc/VTA are assumed to convey the TD reward prediction error 
that modulates learning in the striatum-GP/SN networks. Our 
model thus resembles previous “actor-critic” models of the basal 
ganglia (Barto, 1995; Houk et al., 1995) but differs in the use of 
belief states for action selection and value computation.

Model
We first introduce the theory of partially observable Markov deci-
sion processes. We then describe the three main components of 
the model: (1) neural computation of belief states, (2) learning 
the value of a belief state, and (3) learning the appropriate action 
for a belief state.

PartIally observable Markov decIsIon Processes (PoMdPs)
Partially observable Markov decision processes (POMDPs) provide 
a formal probabilistic framework for solving tasks involving action 
selection and decision making under uncertainty (see Kaelbling 
et al., 1998 for an introduction). In POMDPs, when an animal 
executes an action a, the state of the world (or environment) is 
assumed to change from the current state s’ to a new state s accord-
ing to the transition probability distribution (or Markov “dynam-
ics”) T(s’, a, s) = P(s|s’, a). A measurement or observation o about 
the new state s is then generated by the environment according to 
the probability distribution P(o|s) and the animal receives a real-
valued reward r = R(s’, a) (which can be 0, denoting no reward, 
or some positive or negative value). We focus in this paper on the 
discrete case: a state is assumed to be one of N discrete values {1, 
2, …, N} and an action can be one of K discrete values {1, 2, …, K}. 
The observations can be discrete or continuous, although in the 
simulations, we use discrete observations.

The goal of the agent is to maximize the expected sum of future 
rewards:

E rt
t

t

γ
=

∞

∑









0

 (1)

where t is a discrete representation of time and takes on the values 
0, 1, 2, 3, …, and γ is a “discount factor” between 0 and 1. Equation 
(1) expresses the general “infinite-horizon” case; a similar equation 
holds for the finite-horizon case where the expectation is over finite 
episodes or trials and the discount factor γ can be set to 1. The latter 
applies, for example, in tasks such as the random dots task studied 
in the Results section, where trials are of finite duration.

Since the animal does not know the true state of the world, 
it must choose actions based on the history of observations and 
actions. This information is succinctly captured by the “belief state,” 
which is the posterior probability distribution over states at time t, 
given past observations and actions. When the states are discrete, 
the belief state is a vector b

t
 whose size is the number of states. 
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t
 is the posterior probability of state i: 

b
t
(i) = P(s

t
 = i|o

t
, a

t−1
, o

t−1
,…,a

0
, o

0
).

The belief state can be computed recursively over time from the 
previous belief state using Bayes rule:
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where k is a normalization constant. The simplification of con-
ditional dependencies in the equations above follows from the 
Markov assumption (current state only depends on previous state 
and action, and current observation only depends on current 
state).

The goal then becomes one of maximizing the expected future 
reward in Eq. (1) by finding an optimal “policy” π which maps a 
belief state b

t
 to an appropriate action a

t
: π (b

t
) = a

t
.

Note that in traditional reinforcement learning, states are 
mapped to actions whereas a POMDP policy maps a belief state (a 
probability distribution over states) to an action. This adds consid-
erable computational power because it allows the animal to con-
sider the current uncertainty in its state estimates while choosing 
actions, and if need be, perform “information-gathering” actions 
to reduce uncertainty.

Methods for solving POMDPs typically rely on estimating the 
value of a belief state, which, for a fixed policy π, is defined as the 
expected sum of rewards obtained by starting from the current 
belief state and executing actions according to π:
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This can be rewritten in a recursive form known as Bellman’s 
equation (Bellman, 1957) for the policy π defined over belief 
states:

V E r Vt t t
π

π
πγ( ) ( )|b b b b= + = + +1 1

The recursive form is useful because it enables one to derive an 
online learning rule for value estimation as described below.

Figure 1 summarizes the POMDP model of decision making and 
the computational elements needed to solve a POMDP problem.

a neural Model for learnIng actIons In PoMdPs
We propose here a model for learning POMDP policies that could 
be implemented in neural circuitry. The model leverages recent 
advances in POMDP solvers in the field of artificial intelligence as 
well as ideas from reinforcement learning theory.



Frontiers in Computational Neuroscience www.frontiersin.org November 2010 | Volume 4 | Article 146 | 3

Rao Decision making under uncertainty

where v denotes the vector of output firing rates, o denotes the 
input observation vector, f

1
 is a potentially non-linear function 

describing the feedforward transformation of the input, M is the 
matrix of recurrent synaptic weights, and g

1
 is a dendritic filtering 

function.
The above differential equation can be rewritten in discrete 

form as:

v i f g M i j v jt t t
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where v
t
(i) is the ith component of the vector v, f and g are func-

tions derived from f
1
 and g

1
, and M(i,j) is the synaptic weight value 

in the ith row and jth column of M.
To make the connection between Eq. (4) and Bayesian infer-

ence, note that the belief update Eq. (2) requires a product of two 
sources of information (current observation and feedback) whereas 
Eq. (4) involves a sum of observation- and feedback-related terms. 
This apparent divide can be bridged by performing belief updates 
in the log domain:
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This suggests that Eq. (4) could neurally implement Bayesian 
inference over time as follows: the log likelihood log P(o

t
|s

t 
= i) 

is computed by the feedforward term f(o
t
) while the feedback 

g M i j v j
j

t( ( , ) ( ))Σ −1  conveys the log of the predicted distribution, 
i.e., logΣ

j
T(j, a

t−1,
i)b

t−1
(j), for the current time step. The latter is 

computed from the activities v
t−1

(j) from the previous time step 
and the recurrent weights M(i,j), which is defined for each action 
a. The divisive normalization in Eq. (2) reduces in the equation 
above to the log k term, which is subtractive and could therefore 
be implemented via inhibition.

A neural model as sketched above for approximate Bayesian infer-
ence but using a linear recurrent network was first explored in (Rao, 
2004). Here we have followed the slightly different implementation 
in (Rao, 2005) that uses the non-linear network given by Eq. (3). 
As shown in (Rao, 2005), if one interprets Eq. (3) as the membrane 
potential dynamics in a stochastic integrate-and-fire neuron model, 

Before proceeding to the model, we note that the space of beliefs 
is continuous (each component of the belief state vector is a prob-
ability between 0 and 1) and typically high-dimensional (number of 
dimensions is one less than the number of states). This makes the 
problem of finding optimal policies very difficult. In fact, finding 
exact solutions to general POMDP problems has been proved to 
be a computationally hard problem (e.g., the finite-horizon case is 
“PSPACE-hard”; Papadimitriou and Tsitsiklis, 1987). However, one 
can typically find approximate solutions, many of which work well 
in practice. Our model is most closely related to a popular class of 
approximation algorithms known as point-based POMDP solvers 
(Hauskrecht, 2000; Pineau et al., 2003; Spaan and Vlassis, 2005; 
Kurniawati et al., 2008). The idea is to discretize the belief space 
with a finite set of belief points and compute value for these belief 
points rather than the entire belief space. For learning value, our 
model relies on the temporal-difference (TD) framework (Sutton 
and Barto, 1981; Sutton, 1988; Sutton and Barto, 1998) in rein-
forcement learning theory, a framework that has also proved useful 
in understanding dopaminergic responses in the primate brain 
(Schultz et al., 1997).

Neural computation of belief
A prerequisite for a neural POMDP model is being able to compute 
the belief state b

t
 in neural circuitry. Several models have been pro-

posed for neural implementation of Bayesian inference (see Rao, 
2007 for a review). We focus here on one potential implementation. 
Recall that the belief state is updated at each time step according 
to the following equation:

b i k P o s i T j a i b jt t t t
j
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where b
t
(i) is the ith component of the belief vector b

t
 and repre-

sents the posterior probability of state i.
Equation (2) combines information from the current observa-

tion (P(o
t
|s

t
)) with feedback from the past time step (b

t−1
), suggest-

ing a neural implementation based on a recurrent network, for 
example, a leaky integrator network:
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Figure 1 | The POMDP model. (A) When the animal executes an action a in the 
state s’, the environment (“World”) generates a new state s according to the 
transition probability T(s’,a,s). The animal receives an observation o of the new 
state according to P(o|s) and a reward r = R(s’,a). (B) In order to solve the POMDP 

problem, the animal maintains a belief bt which is a probability distribution over 
states of the world. This belief is computed iteratively using Bayesian inference 
by the belief state estimator SE. An action for the current time step is provided by 
the learned policy π, which maps belief states to actions.
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The belief points bi
* can be regarded as synaptic weights from 

the input layer to hidden neuron i. To see this, note that the 
 output g

i
(b

t
) of each hidden layer neuron i is computed using 

an exponential activation function whose input is given by 
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where c is a constant and l is also a constant if b

t 
and bi

*  are normalized  
to be of constant length in the network. Thus, in effect, each belief point 
bi

* acts multiplicatively on the input b
t
 in the same manner as a tradi-

tional synaptic weight vector. These synaptic weight vectors (“basis belief 
points”) can be learned from input beliefs b

t
 as described below.

The output of the network is given by:
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where v
i 
is the synaptic weight from hidden layer neuron i to the 

output neuron (we assume a single output neuron in the model, 
though this can be generalized to a distributed representation of 
value using multiple output neurons).

The synaptic weights v
i 
and bi

* can be learned by performing 
gradient descent at each time step on the following error function 
based on Eq. (5), after substituting V̂  for Vπ:
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where α
1
 and α

2
 are constants governing the rate of learning, and 

δ
t + 1

 is the TD error r V Vt t t+ ++ ( ) − ( )( )1 1γ ˆ ˆb b . It can be seen that 
both sets of synaptic weights are adapted in proportion to the TD 
error r V Vt t t+ ++ ( ) − ( )( )1 1γ ˆ ˆb b . However, unlike previous models, 
TD learning here is based on belief states.

A more interesting observation is that the learning rule (7) for 
the belief basis vectors bi

* is similar to traditional unsupervised com-
petitive learning rules (e.g., self-organizing maps; Haykin, 2008) 

the vector of instantaneous firing rates in the network at time t can 
be shown to approximate the posterior probability (belief vector 
b

t
) at time t. We assume below that the proposed neural POMDP 

model receives as input such a belief representation.
In general, the hidden state s

t
 may consist of several different ran-

dom variables relevant to a task. For example, in the random dots 
motion discrimination task (see Results section), motion direction 
and coherence (percentage of dots moving in the same direction) 
are hidden random variables that can be independently set by the 
experimenter. In a given task, some of the random variables may 
be conditional independent of others given certain observations. 
There may also be complex dependencies between the observed and 
unobserved (hidden) variables. Thus, in the general case, Bayesian 
inference of hidden states could be performed using the framework 
of probabilistic graphical models (Koller and Friedman, 2009) and a 
message-passing algorithm for inference such as belief propagation 
(Pearl, 1988). We refer the reader to Rao (2005) for one possible 
implementation of belief propagation in neural circuits.

Many other neural models for Bayesian inference have been 
proposed (Yu and Dayan, 2005; Zemel et al., 2005; Ma et al., 2006; 
Beck et al., 2008; Deneve, 2008). Any of these could in principle be 
used instead of the model described above, as long as the appropri-
ate belief state b

t
 is computed at time t.

Neural computation of value
Recall that the value of a belief state, for a fixed policy π, can be 
expressed in recursive form using Bellman’s equation:

V E r Vt t t
π

π
πγ( ) ( )| .b b b b= + = + +1 1

The above recursive form suggests a strategy for learning the 
values of belief states in an online (input-by-input) fashion by 
minimizing the error function:

e V r Vt t t= − +( )+ +
π πγ( ) ( ( ))b b1 1

2

 (5)

This is the squared temporal difference (TD) error (Sutton, 1988) 
computed from estimates of value for the beliefs at the current and 
the next time step.

The model estimates value using a three-layer network as shown 
in Figure 2A. Similar networks for function approximation, some-
times called “radial-basis function” networks (Haykin, 2008), have 
been used to model a number of aspects of brain function (Marr, 
1969; Albus, 1971; Poggio, 1990; Salinas and Abbott, 1995; Pouget 
and Sejnowski, 1997; Deneve and Pouget, 2003).

The input layer receives the belief state b
t
 as input from the belief 

computation network discussed above. The hidden layer represents 
a set of Gaussian “basis” functions whose centers (means) denote 
a set of belief points. Each hidden layer neuron i is activated in 
proportion to how close the current input belief state is to its pre-
ferred belief point bi

*:

g ei t
t i( ) || || /*

b b b= − − 2 2σ

where g
i
(b

t
) denotes the firing rate of the ith hidden layer neuron, 

||x|| denotes the square root of the sum of squared elements of 
vector x, and σ2 is a variance parameter.
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Figure 2 | Neural implementation of belief-based value estimation and 
action selection. (A) Value estimation network. Input to the network is a 
belief state vector bt and the output is an estimate of its value. The bi

* denote 
learned “belief points” which are the “centers” or means of the Gaussian 
basis functions gi. The bi

* can be interpreted as synaptic weights (see text). 
(B) Action selection network.
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An approximate solution to the optimization problem in (9) can 
be obtained by performing gradient ascent on J

t
, resulting in the 

following learning rule for W(i,j) when an action a
j
 was executed 

at time t (α
3
 here is the learning rate):

∆W i j
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W i j
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In other words, after an action a
j 
is chosen and executed, 

the weights W(i,j) for that action are adapted in proportion to 
δ

t + 1
g

i
(b

t
) which is the TD error weighted by the correspond-

ing hidden neuron’s firing rate. This has the desired effect 
of increasing the probability of an action if it resulted in an 
increase in value (positive TD error) and decreasing the prob-
ability if it caused a decrease in value (negative TD error). The 
rule for  learning actions can therefore be seen as implementing 
Thorndike’s  well-known “law of effect” in reinforcement learn-
ing (Thorndike, 1911).

MaPPIng the Model to neuroanatoMy
We postulate that the probabilistic computation of beliefs in Eq. 
(2) is implemented within the recurrent circuits of the neocortex. 
Support for such a hypothesis comes from experimental studies 
suggesting that perception and action involve various forms of 
Bayesian inference, at least some of which may be implemented 
in the neocortex (see, for example, review chapters in Rao et al., 
2002; Doya et al., 2007).

We further postulate that the outputs of cortical circuits (i.e., 
belief states) are conveyed as inputs to the basal ganglia, which 
implements the value and action selection networks in the model. 
In particular, we suggest that the striatum/STN-GPe-GPi/SNr 
network computes actions while the striatum-SNc/VTA network 
computes value (Figure 3). This is similar to “actor-critic” models 
of the basal ganglia (Barto, 1995; Houk et al., 1995), where the critic 
evaluates the value of the current world state and the actor selects 
an appropriate action. In contrast to this traditional model, the 
“critic” in our model evaluates the value of the current belief state 
rather than the world state (which is unavailable), and the “actor” 
selects actions based on the entire belief state.

In Figure 3, the input to the striatum consists of the outputs of 
various cortical areas which are assumed to represent belief states 
computed from sensory, motor, and limbic inputs. The striatum 
implements the hidden layer: the basis belief points bi

* are assumed 
to be learned in the cortico-striatal connections. The striatum-SNc/
VTA network estimates the value V̂ , which is used to compute the 
TD prediction error r V Vt t t+ ++ (( ) − ( ))1 1γ ˆ ˆb b . We postulate that the 
dopaminergic output from SNc/VTA represents this belief-based 
TD prediction error, which modulates the learning of belief points 
bi

* as well as the weights v
i
 and W.

The interpretation of dopaminergic outputs in the basal gan-
glia as representing prediction error is consistent with previous 
TD-based models of dopaminergic responses (Schultz et al., 1997). 
However, the model above further predicts that these responses 
are a function of the animal’s internally computed beliefs about a 
stimulus, rather than the stimulus itself. To test this prediction, one 
could vary the uncertainty associated with a stimulus and exam-
ine whether there are corresponding changes in the  dopaminergic 

where a weight vector (or “prototype vector” in competitive learn-
ing parlance) is changed in proportion to how similar it is to an 
input (“soft competition”; cf. the ( )*b bt i−  term). However, unlike 
traditional unsupervised learning, learning here is also influenced 
by rewards and value due to the presence of the TD error term δ

t + 1
 

in the learning rule. The learned basis vectors therefore do not 
simply capture the statistics of the inputs but do so in a manner 
that minimizes the error in prediction of value.

Neural computation of actions
The network for action selection (Figure 2B) is similar to the 
value estimation network. Although in general the action selec-
tion network could use a separate set of input-to-hidden layer 
basis vectors, we assume for the sake of parsimony that the same 
input-to- hidden layer basis vectors (belief points) are used by the 
value and action selection networks. The output layer of the action 
selection network represents the set of K possible actions, one of 
which is selected probabilistically at a given time step. Making 
action selection probabilistic allows the model to explore the reward 
space during the early phase of learning and to remain sensitive 
to non-stationary elements of the environment such as changes in 
reward contingencies.

In the model, the probability of choosing action a
j 
for an input 

belief b
t 
is given by:

P a
e

Zj t

g W i ji t

i

( | )

( ) ( , )/

b

b

=
∑ λ

 (8)

where W(i,j) represents the synaptic weight from hidden neuron i to 
output neuron j and Z is the normalization constant. The parameter 
λ governs the degree of competition: as λ approaches 0, action selec-
tion approaches a winner-take-all mode; larger values of λ allow 
more diverse selection of actions, permitting exploration. In the 
simulations, we used a fixed value of λ to allow a small amount of 
exploration at any stage in the learning process. The action selec-
tion model described above leads to a relatively simple learning rule 
for W (see below), but we note here that other probabilistic action 
selection methods could potentially be used as well.

We now derive a simple learning rule for the action weights 
W. Suppose that the action a

j
 has just been executed. If the action 

results in an increase in value (i.e., positive TD error δ
t + 1

), we 
would like to maximize the probability P(a

j
|b

t
); if it causes a 

decrease in value (negative TD error δ
t + 1

), we would like to mini-
mize P(a

j
|b

t
). This is equivalent to maximizing P(a

j
|b

t
)when δ

t + 1
 

is positive and maximizing 1/P(a
j
|b

t
) when δ

t + 1
 is negative. The 

desired result can therefore be achieved by maximizing the func-
tion P a j t

t( | ) ,b δ +1  or equivalently, maximizing log ( | )P a j t
tb δ +1, which 

is equal to δ
t + 1 

log P(a
j
|b

t
). Thus, we would like to find a set of 

weights W(i,j)* such that:

W i j P a
W i j

t j t( , )* arg max log ( | )
( , )

= { }+δ 1 b  (9)

Substituting Eq. (8) into Eq. (9) and ignoring the normalization 
constant log Z, we obtain the function:

J g W i jt t i t
i

= ∑+δ λ.1 ( ) ( , )/b
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We model the task using a POMDP as follows: there are two 
underlying hidden states representing the two possible directions of 
coherent motion (leftward or rightward). In each trial, the experi-
menter chooses one of these hidden states (either leftward or right-
ward) and provides the animal with observations of this hidden 
state in the form of an image sequence of random dots at the chosen 
coherence. Note that the hidden state remains the same until the end 
of the trial. Using only the sequence of observed images seen so far, 
the animal must choose one of the following actions: sample one 
more time step (to reduce uncertainty), make a leftward eye move-
ment (indicating choice of leftward motion), or make a rightward 
eye movement (indicating choice of rightward motion).

We use the notation S
L
 to represent the state corresponding 

to leftward motion and S
R
 to represent rightward motion. Thus, 

at any given time t, the state s
t
 can be either S

L
 or S

R
 (although 

within a trial, the state once selected remains unchanged). The 
animal receives noisy measurements or observations o

t
 of the 

hidden state based on P(o
t
|s

t, 
c

t
), where c

t 
is the current coher-

ence value. We assume the coherence value is randomly chosen 
for each trial from a set {C

1
, C

2
,…, C

Q
} of possible coherence 

values, and remains the same within a trial. At each time step 
t, the animal must choose from one of three actions {A

S
, A

L
, 

A
R
} denoting sample, leftward eye movement, and rightward eye 

movement respectively.
The animal receives a reward for choosing the correct action, 

i.e., action A
L
 when the true state is S

L
 and action A

R
 when the 

true state is S
R
. We model this reward as a positive number (e.g., 

between +10 and +30; here, +20). An incorrect choice produces a 
large penalty (e.g., between −100 and −400; here, −400) simulating 
the time-out used for errors in monkey experiments (Roitman and 
Shadlen, 2002). We assume the animal is motivated by hunger or 
thirst to make a decision as quickly as possible. This is modeled 
using a small negative reward (penalty of −1) for each time step 
spent sampling. We have experimented with a range of reward/
punishment values and found that the results remain qualitatively 
the same as long as there is a large penalty for incorrect decisions, a 
moderate positive reward for correct decisions, and a small penalty 
for each time step spent sampling.

The transition probabilities P(s
t
|s

t − 1, 
a

t − 1
) for the task are as 

follows: the state remains unchanged (self-transitions have prob-
ability 1) as long as the sample action A

S
 is executed. Likewise, 

P(c
t
|c

t − 1, 
A

S
) = 1. When the animal chooses A

L
 or A

R
, a new trial 

begins, with a new state (S
L
 or S

R
) and a new coherence C

k
 (from 

{C
1
, C

2
,…, C

Q
}) chosen uniformly at random.

In the first set of experiments, we trained the model on 6000 
trials of leftward or rightward motion. Inputs o

t
 were generated 

according to P(o
t
|s

t, 
c

t
) based on the current coherence value and 

state (direction). For these simulations, o
t
 was one of two values 

O
L
 and O

R
 corresponding to observing leftward and rightward 

motion respectively. The probability P(o = O
L
|s = S

L
, c = C

k
) 

was fixed to a value between 0.5 and 1 based on the coherence 
value C

k
, with 0.5 corresponding to 0% coherence and 1 corre-

sponding to 100%. The probability P(o = O
R
|s = S

R
,
 
c = C

k
) was 

defined similarly.
The belief state b

t
 over the unknown direction of motion 

was computed using a slight variant of Eq. (2) using the current 
input o

t
, the known coherence value c

t
 = C

k
, the known  transition 

responses. Interestingly, results from such an experiment have 
recently been published by Nomoto et al. (2010). We compare their 
results to the model’s predictions in a section below.

results
the randoM dots task
We tested the neural POMDP model derived above in the well-
known random dots motion discrimination task used to study 
decision making in primates (Shadlen and Newsome, 2001). We 
focus specifically on the reaction-time version of the task (Roitman 
and Shadlen, 2002) where the animal can choose to make a decision 
at any time. In this task, the stimulus consists of an image sequence 
showing a group of moving dots, a fixed fraction of which are 
randomly selected at each frame and moved in a fixed direction 
(for example, either left or right). The rest of the dots are moved in 
random directions. The fraction of dots moving in the same direc-
tion is called the motion strength or coherence of the stimulus.

The animal’s task is to decide the direction of motion of the coher-
ently moving dots for a given input sequence. The animal learns the 
task by being rewarded if it makes an eye movement to a target on the 
left side of its fixation point if the motion is to the left, and to a target 
on the right if the motion is to the right. A wealth of data exists on the 
psychophysical performance of humans and monkeys on this task, 
as well as the neural responses observed in brain areas such as MT 
and LIP in monkeys performing this task (see Roitman and Shadlen, 
2002; Shadlen and Newsome, 2001 and references therein).

exaMPle I: randoM dots wIth known coherence
In the first set of experiments, we illustrate the model using a sim-
plified version of the random dots task where the coherence value 
chosen at the beginning of the trial is known. This reduces the 
problem to that of deciding from noisy observations the underlying 
direction of coherent motion, given a fixed known coherence. We 
tackle the case of unknown coherence in a later section.

Cortex

Striatum

GPi/SNr

Thalamus

STN

GPe SNc/
VTA

Belief

Basis belief points    *ib

TD 
error

Action

Value

DA

Figure 3 | Suggested mapping of elements of the model to components 
of the cortex-basal ganglia network. STN, subthalamic nucleus; GPe, globus 
pallidus, external segment; GPi, Globus pallidus, internal segment; SNc, 
substantia nigra pars compacta; SNr, substantia nigra pars reticulata; VTA, 
ventral tegmental area; DA, dopaminergic responses. The model suggests 
that cortical circuits compute belief states, which are provided as input to the 
striatum (and STN). Cortico-striatal synapses are assumed to maintain a 
compact learned representation of cortical belief space (“basis belief points”). 
The dopaminergic responses of SNc/VTA neurons are assumed to represent 
reward prediction (TD) errors based on striatal activations. The GPe-GPi/SNr 
network, in conjunction with the thalamus, is assumed to implement action 
selection based on the compact belief representation in the striatum/STN.
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Before learning, all values are 0 because the weights v
i
 are initial-

ized to 0. After learning, the network predicts a high value for belief 
states that have low uncertainty. This is because at the two extremes of 
belief, the hidden state is highly likely to be either S

L
 (belief(S

R
) near 

0) or S
R
 (belief(S

R
) near 1). In either case, selecting the appropriate 

action (as in Figure 6) results in a large positive reward on average. On 
the other hand, for belief values near 0.5, uncertainty is high – further 
sampling is required to reduce uncertainty (each sample costing −1 
per time step). Choosing A

L
 or A

R
 in these uncertain belief states 

has a high probability of resulting in an incorrect choice and a large 
negative reward. Therefore, belief states near [0.5 0.5] have a much 
lower value compared to belief states near [0 1] or [1 0].

Learning actions
Figure 6 shows the policy learned by the action selection network 
based on the TD prediction error produced by the value estima-
tion network. Starting from uniform probabilities (Figure 6, left 

and observation models T and P(o
t
|s

t
,c

t
), and the previous belief 

state:

b S P s S o a o a o c C

k P o s S c

t R t R t t t t k

t t R t

( ) | , , , , , ,

| ,

= = =( )
= ⋅ = =

− −1 1 0 0

CC a o a o

P s S a o a o c C

k

k t t

t R t t t k

, , , , ,

| , , , , ,

− −

− −

( )
= =( )

= ⋅

1 1 0 0

1 1 0 0





PP o s S c C P s S s a

P s o a

t t R t k t R t t
s

t t t

t

| , | ,

| , ,

= =( ) =( )− −

− − −

−

∑ 1 1

1 1 2

1

,, , ,

| , | ,

a o c C

k P o s S c C P s S s a

t k

t t R t k t R t t
st

0 0

1 1

1

=( )
= ⋅ = =( ) =( )− −

−

∑ bb st t− −1 1( ).

The belief over S
L
 was computed as b

t
(S

L
) = 1−b

t
(S

R
). For the 

simulations described here, we used the above equation directly 
since our focus here is on how the value function and policy 
are learned, given belief states. A more sophisticated implemen-
tation could utilize one of the models for inference cited in the 
section Neural computation of belief, with the likelihood informa-
tion provided by motion processing neurons in MT and recur-
rent connections implementing the feedback from the previous 
time step.

The resulting belief state vector b
t
 was fed as input to the net-

works in Figure 2. The basis belief points bi
* , value weights v

i
, and 

action weights W were learned using the equations above (param-
eters: α

1
 = α

3 
= 0.0005, α

2
 = 2.5 × 10−7, γ = 1, λ = 1, σ2 = 0.05). The 

number of output units was three for the action network and one 
for the value network. A more realistic implementation could utilize 
populations of neurons to represent the two directions of motions 
and estimate posterior probabilities from population activity; for 
simplicity, we assume here that the two posterior probabilities are 
represented directly by two units.

The number of hidden units used in the first set of simulations 
was 11. We found that qualitatively similar results are obtained for 
other values. The number of hidden units determines the preci-
sion with which the belief space can be partitioned and mapped 
to appropriate actions. A complicated task could require a larger 
number of hidden neurons to partition the belief space in an 
intricate manner for mapping portions of the belief space to the 
appropriate value and actions.

The input-to-hidden weights were initialized to evenly span 
the range between [0 1] and [1 0]. Similar results were obtained 
for other choices of initial parameters (e.g., uniformly random 
initialization).

Learning to solve the task
The process of learning is captured in Figure 4, which shows the 
total reward received over the last 500 time steps as a function of 
time. As seen in the plot, learning is rapid over the first 1500 or so 
time steps before the amount of reward received fluctuates around 
an approximately stable value. Although 1500 time steps may seem 
large, it should be remembered that a trial can last between a few 
to several hundred time steps; therefore, 1500 time steps actually 
span a reasonably small number of motion trials.

Figure 5 shows the value function learned by the value estima-
tion network for input belief states before and after learning (left 
and right panels respectively).

To
ta

l R
ew

ar
d

Time steps

Figure 4 | Learning the random dots task. The plot shows the total reward 
received over the last 500 time steps as a function of the number of time 
steps encountered thus far. Note the rapid increase in total reward in the first 
1500 or so times steps as a result of trial-and-error learning, followed by 
slower convergence to an approximately stable value near 0.

0 0.5 1 
Belief(SR)

Before Learning After Learning

0 0.5 1 
Belief(SR)

V
al

ue

Figure 5 | Learning values for beliefs in the value estimation network. 
The plots show the value for belief over the SR (rightward motion) state. The 
full belief state is simply [Belief(SR) 1-Belief(SR)]. Before learning begins, all 
values for belief states are initialized to 0 (left panel). After learning, highly 
uncertain belief states (Belief(SR) near 0.5) have low value while belief states 
near 0 or 1 (high certainty about states SL or SR respectively) have high values.
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We did not attempt to quantitatively fit a particular monkey’s 
data, preferring to focus instead on qualitative matches. It should 
be noted that the model learns to solve the random dots task from 
scratch over the course of several hundred trials, with the only 
guidance provided being the reward/penalty at the end of a trial. 
This makes fitting curves, such as the psychometric function, to a 
particular monkey difficult, compared to previous models of the 
random dots task that are not based on learning and which there-
fore allow easier parameter fitting.

Figure 8 (left panel) shows the mean reaction time for correct 
choices as a function of motion coherence, along with a straight 
line fit from least squares regression. As expected, stimuli with low 
motion coherence require longer reaction times (more sampling 
actions) than high coherence stimuli, the average reaction time rang-
ing from about 680 time steps (2% coherence) to less than 10 time 
steps (37% coherence and above). The reaction time data for the 
same monkey as in Figure 7 is shown in Figure 8 (right panel).

LIP responses as beliefs
The learned policy in Figure 6 predicts that the model should select the 
“Sample” action to decrease uncertainty about the stimulus until the 
posterior probability (belief) for one of the two states S

L
 or S

R
 reaches 

panels), the network selects the “Sample” action A
S
 with high 

probability when there is uncertainty in the belief state about 
the true hidden state (Figure 6, top right panel). The “Sample” 
action thus helps to decrease this uncertainty by allowing more 
evidence to be gathered. The network chooses the Left or Right 
action only when the belief for S

R
 is close to 0 or 1, i.e., the true 

state is highly likely to be S
L
 or S

R
 respectively (Figure 6, lower 

right panels).

Performance of the trained network
The performance of the model on the task depends on the coher-
ence of the stimulus and is quantified by the psychometric function 
in Figure 7 (left panel). For comparison, the psychometric function 
for a monkey performing the same task (Roitman and Shadlen, 
2002) is shown in the right panel. A sigmoid function (cumulative 
Weibull) was used to fit the data points in both plots. Performance 
in the model varies from chance (50% correct) to 100% correct as 
motion strength is increased from 0 to 100%.

Accuracies above 90% are already achieved for coherences 8% 
and above, similar to the monkey data. 100% accuracy in the model 
is consistently achieved only for the 100% coherence case due to the 
probabilistic method used for action selection (see section Neural 
computation of actions); the value of the action selection parameter 
λ could be decreased after learning to obtain a winner-take-all 
scheme with less stochasticity.

The vertical dotted line in each plot in Figure 7 indicates the 
psychophysical threshold: the motion coherence that yields 82% 
accuracy (as given by horizontal dotted line). This threshold was 
approximately 4.3% coherence in the model (in the monkey, this is 
6.8%; Figure 7, right panel). The threshold in the model is a func-
tion of the parameters used for the networks and for learning.

Sample 
one more 
time step

Choose 
Left

Choose 
Right

Action
After LearningBefore Learning

0    Belief(SR)    1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0    Belief(SR)    1

Figure 6 | Mapping beliefs to actions: policy learning in the action 
selection network. The plots depict the probability of choosing the sample, 
left, or right actions (AS, AL, AR) as a function of belief for state SR (rightward 
motion). The “Sample” action is chosen with high probability when the current 
state is uncertain (belief is between 0.2 and 0.8, top right plot). The “Choose 
Left” action has a high probability when the belief for SR is near 0 (i.e., the 
belief for SL is high) and the “Choose Right” action when belief for SR is near 1.

%
 C

or
re

ct

% Coherence

Model Monkey

Figure 7 | Performance of the model: psychometric function. The plots 
show performance accuracy as a function of motion coherence for the model 
(left) and a monkey (data from Roitman and Shadlen, 2002). A sigmoid 
(cumulative Weibull) function was fit to the data in both cases and the 
psychophysical threshold (coherence achieving 82% accuracy) was calculated 
(dotted lines). (Note: only the reaction time, not the fixed duration version of 
the task, is considered in this article).
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Figure 8 | Performance of the model: reaction time. The plots show 
reaction time for correct trials as a function of motion coherence for the model 
(left) and a monkey (data from Roitman and Shadlen, 2002). A least squares 
straight line fit to the data in semilog coordinates is shown in both cases.
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fixed threshold because action selection in the model is stochastic – 
actions are selected probabilistically (see section Neural computation 
of actions): there is a higher probability that a terminating action (A

L
 

or A
R
) will be selected once the belief values are near 0.9 or above.

Learning of belief states: a role for the cortico-striatal pathway
The hidden layer neurons in Figure 2 learn basis functions bi

*  in 
their synaptic weights to represent input beliefs from the belief 
computation network. These neurons thus become selective for 
portions of the belief space that are most frequently encountered 
during decision making and that help maximize reward, as pre-
scribed by the learning rule in Eq. (7).

Since the belief vector is continuous valued and typically high-
dimensional, the transformation from the input layer to hidden layer 
in Figure 2 can be regarded as a form of dimensionality reduction 
of the input data. The hidden layer neurons correspond to striatal 
neurons in the model (Figure 3). Thus, the model suggests a role for 
the cortico-striatal pathway in reducing the dimensionality of cor-
tical belief representations, allowing striatal neurons to efficiently 
represent cortical beliefs in a compressed form. Interestingly, Bar-
Gad et al. (2003) independently proposed a reinforcement-driven 
dimensionality reduction role for the cortico-striatal pathway but 
without reference to belief states. Simultaneously, in the field of 
artificial intelligence, Roy et al. (2005) proposed dimensionality 
reduction of belief states (they called it “belief compression”) as 
an efficient way to solve large-scale POMDP problems.

Figure 10 shows examples of learned hidden layer representations 
of the belief space for two different motion coherences. Figure 10A 
shows samples of input beliefs when motion coherence is fixed to 
30%. These beliefs are received as inputs by the value estimation and 
action selection networks in Figure 2 during learning.

When initialized to random values (Figure 10B, left panel), the 
input-to-hidden layer weights adapt to the input distribution of 
beliefs according to Eq. (7) and converge to the values shown in 
Figure 10B (“Learned”). These learned “belief points” span a wider 
range of the belief space to better approximate the value function 
for the set of possible input beliefs in Figure 10A. When motion 
coherence is fixed to a very high value (95%), the input belief dis-
tribution is sparse and skewed (Figure 10C). Learning in this case 
causes two of the weight values to move to the two extremes of 
the belief space (arrows in Figure 10D) in order to account for 
the input beliefs in this region of belief space in Figure 10C and 
better predict value. The remaining belief points are left relatively 
unchanged near the center of the belief space due to the sparse 
nature of the input belief distribution in this case.

Dopamine and reward prediction error
The anatomical mapping of elements of the model to basal ganglia 
anatomy in Figure 3 suggests that reward prediction error (i.e., the 
TD error) in the model could correspond to dopaminergic (DA) 
signals from SNc and VTA. This makes the proposed model simi-
lar to previously proposed actor-critic models of the basal ganglia 
(Barto, 1995; Houk et al., 1995) and TD models of DA responses 
(Schultz et al., 1997). One important difference however is that 
value in the present model is computed over belief states. This dif-
ference is less important for simple instrumental conditioning tasks 
such as those that have typically been used to study dopaminergic 

a high value, at which point the appropriate action A
L
 or A

R
 is selected. 

With such a policy, if the true state is, for example, S
L
, the belief for 

S
L
 would rise in a random walk-like fashion as “Sample” actions are 

executed and new observations made, until the belief reaches a high 
value near 1 when A

L
 is selected with high probability.

Figure 9 (left panel) shows the responses of a model neuron 
representing the belief for S

L
 over time for stimuli of different 

coherences (solid traces are cases where the underlying state was 
S

L
, dashed traces are cases where the underlying state was S

R
). As 

expected from the reaction time data, the belief responses show 
a direct dependence on stimulus coherence, with a faster rate of 
increase in belief for higher coherence values (solid traces). This 
faster rate of growth arises because each observation provides evi-
dence in proportion to the likelihood P(o

t
|s

t
, c

t
), which is larger 

for higher coherence values. The faster rate of growth in belief, as 
illustrated in Figure 9, manifests itself as faster reaction times for 
high coherence stimuli (Figure 8).

The random walk-like ramping behavior of the belief computing 
neurons in the model is comparable to the responses of cortical 
neurons in area LIP in the monkey (Figure 9, right panel) (Roitman 
and Shadlen, 2002). The model thus posits that LIP responses are 
proportional to or a direct function of belief (posterior probability) 
over a particular task-relevant variable.1

Unlike previous models of LIP responses, the POMDP model sug-
gests an interpretation of the LIP data in terms of maximizing total 
expected future reward within a general framework for probabilistic 
reasoning under uncertainty. Thus, parameters such as the threshold 
for making a decision emerge naturally within the POMDP frame-
work as a result of maximizing reward. As the model responses in 
Figure 9 illustrate, the threshold for the particular implementation 
of the model presented in this section is around 0.9. This is not a 

B
el

ie
f(S

L)

Time steps Time (ms)

Figure 9 | Belief computation in the model compared to LiP responses. 
The plot on the left shows responses of a model neuron representing belief 
(posterior probability) for leftward motion (state SL) for stimuli moving leftward 
(solid) and rightward (dashed) with motion coherences 4, 8, 20, and 40% 
respectively. The model chose the correct action in each case. The panel on 
the right shows average responses of 54 neurons in cortical area LIP in a 
monkey (figure adapted from Roitman and Shadlen, 2002). The solid lines are 
for motion in the direction preferred by the neuron and dashed lines are for 
motion in the opposite direction. Belief responses in the model exhibit a 
random walk-like ramping behavior similar to LIP responses, with faster rates 
of growth for higher coherence values.

1The simulations here assume known coherence; for the unknown coherence case, 
similar responses are obtained when considering the marginal posterior probability 
over direction (see section Example II: Random Dots Task with Unknown Cohe-
rence and Figure 15).
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task (Mirenowicz and Schultz, 1994). The interesting issue of how 
the TD error changes as stimulus uncertainty is varied is addressed 
in a later section.

exaMPle II: randoM dots task wIth unknown coherence
In the previous section, we considered the case where only 
motion direction was unknown and the coherence value was 
given in each trial. This situation is described by the graphical 
model (Koller and Friedman, 2009) in Figure 12A, where d

t
 rep-

resents the direction of motion at time t, c
t
 the coherence, o

t
 the 

observation, and a
t
 the action. The simulations in the previous 

section assumed motion direction d
t
 is the sole hidden random 

variable; the values for the other variables (except a
t
) were given. 

The action a
t
 was obtained from the learned policy based on the 

belief over d
t
.

We now examine the case where both the direction of motion 
and coherence are unknown. The graphical model is shown in 
Figure 12B. The only known variables are the observations up 
to time t and the actions up to time t − 1. This corresponds more 
closely to the problem faced by the animal.

Suppose d
t
 can be one of the values in {1, 2,…, N} (each number 

denotes a direction of motion; the two-alternative case corresponds 
to the values 1 and 2 representing leftward and rightward motion 
respectively). Similarly, c

t
 can be one of {1, 2, …, Q}, each represent-

ing a particular coherence value.
Then, the belief state at time t is given by:

b d i c j P d i c j o a o a ot t t t t t t t( , ) ( , | , , , , , )= = = = = − −1 1 0 0

responses in the SNc/VTA (Mirenowicz and Schultz, 1994). In these 
experiments, monkeys learn to respond to a sound and press a key 
to get a juice reward. The degree of uncertainty about the stimulus 
and reward is small, compared to the random dots task.

We first present a comparison of model TD responses to DA 
responses seen in the simple conditioning task of (Mirenowicz and 
Schultz, 1994). In a subsequent section, we present comparisons 
with DA responses for the random dots task.

To illustrate TD responses in the model for simple condition-
ing, we reduced the uncertainty in the random dots task to 0 and 
tracked the evolution of the TD error. Figure 11A shows the TD 
error in the model during the course of learning with motion 
coherence set to 100%. Before training (t = 1), the TD error at 
the start of the trial is 0 (values initialized to 0) and at the end of 
the trial, this error is equal to the reward (+20) because the value 
predicted is 0. As learning proceeds, the predicted value V̂  (Eq. 
6) becomes increasingly accurate and the TD error at the end 
of the trial decreases (Figure 11A; trials at t = 1000 and 2500) 
until it becomes approximately 0 (t = 6500), indicating success-
ful prediction of the reward. Simultaneously, as a consequence of 
TD learning, the value for the belief state at the start of the trial 
is now equal to the reward (since reward is assured on every trial 
for the 100% coherence case, once the correct actions have been 
learned). Thus, after learning, the TD error at the start of the trial 
is now positive and equal to the amount of expected reward (+20) 
(see Figure 11A, last panel).

This behavior of the TD error in the model (Figure 11A) is simi-
lar to phasic DA responses in SNc/VTA as reported by Schultz and 
colleagues (Figure 11B) for their simple instrumental  conditioning 

Initial

Initial

Learned

Learned

A B

DC

Figure 10 | Learning of belief basis functions in the model. (A) Samples of 
input beliefs for a set of trials where motion coherence was set to 30%. (B) 
(Left) Initial randomly selected basis belief points in the network (input to hidden 
layer weights). (Right) Belief basis points learned by the network for predicting 
value for the belief distribution in (A). Note that learning has caused the belief 
points to spread out so as to sufficiently capture the input belief distribution 

shown in (A) to predict value. (C) Distribution of input beliefs when motion 
coherence is set to 95%. (D) (Left) Initial randomly selected basis belief points 
(same as in B left panel). (Right) Basis belief points after learning. The arrows 
indicate the two belief points that underwent the most change from their initial 
values – these now lie at the two extremes to better approximate the input 
distribution of beliefs in (C) and more accurately predict value.
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Figure 11 | reward prediction (TD) error during learning. (A) Evolution of TD 
error in the model during the course of learning the belief-state-to-action 
mapping for the 100% coherence condition (no stimulus uncertainty). Before 
learning (t = 1), TD error is large at the end of the trial and 0 at the start. After 
learning, the error at the end of the trial is reduced to almost 0 (t = 6500) while 
the error at the start is large. (B) Dopamine response in a SNc/VTA neuron 

hypothesized to represent reward prediction errors (adapted from Mirenowicz 
and Schultz, 1994). Before learning (“early”), the dopamine response is large at 
the end of the trial following reward delivery. After learning (“late”), there is little 
or no response at the end of the trial but a noticeable increase in response at the 
start of the trial after presentation of the stimulus. Compare with t = 1 and 
t = 6500 in (A).
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Figure 12 | Probabilistic graphical models and value estimation network 
for the random dots task. (A) Graphical model used for the case of known 
coherence. The hidden variable is motion direction dt while the coherence ct, 
observation ot, and the previously executed action at-1 are assumed to be known. 
The action at is obtained from the learned policy based on the belief over dt. (B) 

Graphical model used for the case of unknown coherence. The hidden variables 
include motion direction dt and coherence ct. The value function and policy are 
computed based on belief over both dt and ct. (C) Network for value estimation. 
Belief basis points bi

d*, and bi
c*,  are learned separately for the two hidden variables 

dt and ct, but activations of all hidden units are combined to predict the value V̂ .

This belief state can be computed as in Eq. (2) by defining the 
transition probabilities jointly over d

t
 and c

t
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b d i b d i c j

b c j b d i c j

t t t t t
j

t t t t t
i

( ) ,

( ) ,

= = = =( )

= = = =( )

∑

∑

Alternatively, one can estimate these marginals directly by per-
forming Bayesian inference over the graphical model in Figure 12B 
using, for example, a local message-passing algorithm such as belief 
propagation (Pearl, 1988) (see Rao, 2005, for a possible neural 

implementation). This has the advantage that conditional inde-
pendencies between variables (such as d

t 
and c

t
) can be exploited, 

allowing the model to scale to larger scale problems.
Figure 12C shows the value estimation network used to learn 

the POMDP policy. Note that the output value depends on both 
the belief over direction as well as belief over coherence. Separate 
belief basis points are learned for the two types of beliefs. A similar 
network is used for learning the policy, but with hidden-to-output 
connections analogous to Figure 2B. The fact that the two types of 
beliefs are decoupled makes it easier for the network to discover 
over the course of the trials that the reward depends on determining 
the correct direction, irrespective of coherence value.
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The belief trajectory over coherence in Figure 15 (right panel) 
shows that the model can correctly infer coherence type (“Easy” or 
“Hard”) for both directions of motion. Interestingly, for the “Hard” 
trials (8% coherence), the model’s belief that the trial is “Hard” 
converges relatively early (green solid and dashed lines in Figure 15 
(right panel), showing Belief(E) going to 0), but the model commits 
to a Left or Right action only when belief in a direction reaches a 
high enough value.

coMParIson wIth doPaMIne resPonses In the randoM  
dots task
In this section, we compare model predictions regarding reward 
prediction error (TD error) with recently reported results on 
dopamine responses from SNc neurons in monkeys performing 
the random dots task (Nomoto et al., 2010).

We first describe the model’s predictions. Consider an “Easy” 
coherence trial where the direction of motion is leftward (L). The 
model starts with a belief state of [0.5 0.5] over direction (and 
coherence); subsequent updates push Belief(L) higher, which cor-
responds to climbing the ramp in the value function in Figure 13A. 
The TD error tracks the differences in value as we climb this ramp. 
For an “Easy” trial, one might expect large positive TD errors as the 
belief rapidly goes from [0.5 0.5] to higher values (see solid blue 
belief trace in Figure 15) with smaller but positive TD errors (on 
average) as the decision threshold approaches.

Figure 16A (left panel) shows this prediction for the model 
learned in the previous section (for the unknown coherence and 
direction case). The plot shows how reward prediction (TD) error 
in the model evolves over time in “Easy” motion coherence trials 
(coherence = 60%). The TD error shown was averaged over cor-
rect trials in a set of 1000 trials containing a uniformly random 
mixture of “Easy” and “Hard” trials. An arbitrary delay of four time 
steps from motion onset at 0 was used for visualization in the plot, 
with TD error assumed to be 0 for these time steps. As predicted, 
the average TD error is large and positive initially, and gradually 
decreases to 0.

For comparison, Figure 16A (right panel) shows the average 
firing rate of 35 dopamine neurons in SNc in a monkey perform-
ing the random dots task for 50% motion coherence trials (data 
from Nomoto et al., 2010). Nomoto et al. present results from two 
monkeys (K and L) and report an initial dopamine response that 
is independent of trial type (direction and coherence) and a later 

To illustrate this model, we simulated the case where there 
are two directions of motion (N = 2) denoted by L and R, cor-
responding to leftward and rightward motion respectively, and 
two coherence values (Q = 2) denoted by E and H, correspond-
ing to an “Easy” coherence (60%) and a “Hard” coherence (8%) 
respectively.

The model was exposed to 4000 trials, with the motion direc-
tion and coherence selected uniformly at random for each trial. 
The rewards and penalties were the same as in the previous section 
(+20 reward for correct decisions, −400 for errors, and −1 for each 
sampling action). The number of hidden units, shared by the value 
and action networks, was 25 each for belief over direction and 
coherence. The other parameters were set as follows: α

1
 = 3 × 10−4, 

α
2
 = 2.5 × 10−8, α

3 
= 4 × 10−6, γ = 1, λ = 0.5, σ2 = 0.05.

Figure 13A shows the learned value function as a joint func-
tion of belief over coherence (E = “Easy”) and belief over direction 
(L = “Left”). The value function is ‘U’ shaped as a function of belief 
over direction, similar to Figure 5 for the known coherence case, 
signifying again that higher value is attached to highly certain belief 
about direction. More interestingly, the overall value decreases as 
belief in coherence goes from “Easy” (Belief(E) = 1) to “Hard” 
(Belief(E) = 0), signifying a greater expected reward for an “Easy” 
trial compared to a “Hard” trial. This observation is depicted more 
explicitly in Figures 13B,C.

The corresponding learned policy is shown in Figure 14. As in 
Figure 6, the policy advocates sampling when there is uncertainty 
in the two types of beliefs but the choice of Left or Right action 
depends on the belief in a particular direction crossing an approxi-
mate threshold, regardless of whether coherence value is “Hard” 
or “Easy” (Figures 14B,C). The model was thus correctly able to 
discover the dependence of reward on direction and the lack of 
dependence on coherence value (“Hard” or “Easy”).2

Figure 15 (left panel) shows the temporal evolution of beliefs 
for example trials with 60% and 8% coherence (“Easy” and “Hard” 
trials). The belief trajectory over direction (the marginal posterior 
probability) resembles LIP responses in the monkey (compare with 
Figure 9).

2The middle range of values for Belief(E) usually co-occurs with the middle range 
of values for Belief(L) (and not very high or very low Belief(L) values). This ac-
counts for the near 0 probabilities for the Left/Right actions in the figure even for 
very high and very low Belief(L) values, when Belief(E) is in the middle range.
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Figure 13 | The learned value function. (A) The learned value as a joint 
function of beliefs over coherence (E = “Easy”) and direction (L = “Left”). The 
Belief(E) axis represents the belief (posterior probability) that the current trial is 
an “Easy” coherence trial (i.e., coherence = 60%). The Belief(L) axis 
represents the belief that the motion direction is Leftward. Note the overall 

decrease in value as Belief(E) falls to 0, indicating a “Hard” trial 
(coherence = 8%). (B,C) Two slices of the value function in (A) for Belief(E) = 1 
and 0 respectively. There is a drop in overall value for the hard coherence case 
(C). Also note the similarity to the learned value function in Figure 5 for the 
known coherence case.
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Sample Choose Left Choose Right

Figure 14 | The learned policy. (A) The learned policy as a joint  
function of beliefs over coherence (E = “Easy”) and direction  
(L = “Left”). The policy advocates sampling when there is uncertainty  
in beliefs and chooses the appropriate action (Left/Right) when belief in 

a particular direction crosses an approximate threshold. (B,C) The 
policy function in (A) for Belief(E) = 1 and 0 respectively. The policies for 
these two special cases are similar to the one for the known coherence 
case (Figure 6).

response that depends on trial type.3 In the data in Figure 16A 
(right panel), which is from their monkey K, the initial response 
includes the smaller peak occurring before 200 ms; the trial-type 

dependent response is the rest of the response including the larger 
peak. The model suggests an explanation for this trial-type depend-
ent part of the response.

For “Hard” motion coherence trials (coherence = 8%), the aver-
age TD error in the model is shown in Figure 16B (left panel). The 
model predicts an initial positive response followed by a negative 
prediction error on average due to the “Hard” trial. Figure 16B (right 
panel) shows the average firing rate for the same dopamine neurons 
as Figure 16A but for trials with 5% motion coherence. The trial-type 
dependent response is noticeably smaller than for the 50% coherence 
case, as predicted by the model. The negative part of the prediction 
error is not as apparent in the black trace in Figure 16B, although it 
can be seen in the gray trace (small-reward condition).

The model also predicts that upon reward delivery at the end of a 
correct trial, TD error should be larger for the “Hard” (8% coherence) 
case due to its smaller expected value (see Figure 13). This prediction 
is shown in Figure 17A. In the monkey experiments (Nomoto et al., 
2010), after the monkey had made a decision, a feedback tone was 
presented: a high-pitch tone signaled delivery of reward after the 
tone (i.e., a correct trial) and a low-pitch tone signaled no reward 
(error trial). The tone type thus acted as a sure indicator of reward. 
Figure 17B shows the population dopamine response of the same 
SNc neurons as in Figure 16 but at the time of the reward tone for 
correct trials (black trace). As predicted by the model, the dopamine 
response after reward tone is larger for lower coherences.

3The dopamine response for monkey L in (Nomoto et al., 2010) appears to be more 
bimodal than monkey K, with a large part of the trial-type dependent response 
occurring after saccade onset. One would need to extend the POMDP model to in-
clude a post-saccade delay period as in their experiment to more accurately model 
such a result.
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Figure 15 | examples of belief computation. The plots show examples of 
the evolution of belief state over time for 60% coherence (blue) and 8% 
coherence (green). Belief(L) denotes belief that motion direction is Leftward. 
Belief(E) is the belief that the current trial is an “Easy” coherence trial 
(coherence = 60%). The solid lines represent a trial in which motion was in the 
leftward direction while dotted lines represent a rightward motion trial.
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where σi
2is a variance parameter. In the simulations, σi

2 was set 
to progressively larger values for larger ti

∗ loosely inspired by the 
fact that an animal’s uncertainty about time increases with elapsed 
time (Leon and Shadlen, 2003). Specifically, both ti

∗ and σi
2 were set 

arbitrarily to 1.25i for i = 1,…, 65. The number of hidden units for 
direction, coherence, and time was 65. The deadline T was set to 20 
time steps, with a large penalty (−2000) if a left/right decision was 
not reached before the deadline. Other parameters included: +20 
reward for correct decisions, −400 for errors, −1 for each sampling 
action, α

1
 = 2.5 × 10−5, α

2
 = 4 × 10−8, α

3 
= 1 × 10−5, γ = 1, λ = 1.5, 

σ2 = 0.08. The model was trained on 6000 trials, with motion direc-
tion (Left/Right) and coherence (Easy/Hard) selected uniformly at 
random for each trial.

Figures 18B,C show the learned value function for the beginning 
(t = 1) and near the end of a trial (t = 19) before the deadline at 
t = 20. The shape of the value function remains approximately the 
same, but the overall value drops noticeably over time. Figure 18D 
illustrates this progressive drop in value over time for a slice through 
the value function at Belief(E) = 1.

Finally, in the case of an error trial, the model predicts that the 
absence of reward (or presence of a negative reward/penalty as in 
the simulations) should cause a negative reward prediction error and 
this error should be slightly larger for the higher coherence case due 
to its higher expected value (see Figure 13). This prediction is shown 
in Figure 17C, which compares average reward prediction (TD) 
error at the end of error trials for the 60% coherence case (left) and 
the 8% coherence case (right). The population dopamine responses 
for error trials are depicted by red traces in Figure 17B.

exaMPle III: decIsIon MakIng under a deadlIne
Our final set of results illustrates how the model can be extended to 
learn time-varying policies for tasks with a deadline. Suppose a task 
has to be solved by time T (otherwise, a large penalty is incurred). 
We will examine this situation in the context of a random dots task 
where the animal has to make a decision by time T in each trial 
(in contrast, both the experimental data and simulations discussed 
above involved the dots task with no deadline).

Figure 18A shows the network used for learning the value func-
tion. Note the additional input node representing elapsed time t, 
measured from the start of the trial. The network includes basis 
neurons for elapsed time, each neuron preferring a particular time 
t i

*. The activation function is the same as before:
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Figure 16 | reward prediction error and dopamine responses in the 
random dots task. (A) The plot on the left shows the temporal evolution of 
reward prediction (TD) error in the model, averaged over trials with “Easy” 
motion coherence (coherence = 60%). The dotted line shows the average 
reaction time. The plot on the right shows the average firing rate of dopamine 
neurons in SNc in a monkey performing the random dots task at 50% motion 
coherence. The dashed line shows average time of saccade onset. The gray 
trace and line show the case where the amount of reward was reduced (not 
modeled here; see Nomoto et al., 2010). (B) (Left) Reward prediction (TD) error 
in the model averaged over trials with “Hard” motion coherence 
(coherence = 8%). (Right) Average firing rate of the same dopamine neurons 
as in (A) but for trials with 5% motion coherence. (Dopamine plots adapted 
from Nomoto et al., 2010).

A

B

C

A
vg

. T
D

 e
rr

or

Time steps from reward

A
vg

. T
D

 e
rr

or

Time steps from reward

A
vg

. T
D

 e
rr

or

Time steps from error

60% 8%

60% 8%

A
vg

. f
iri

ng
 ra

te
 (s

p/
s)

Time steps from reward tone

A
vg

. T
D

 e
rr

or

Time steps from error

15% 5%50%

Figure 17 | reward prediction error at the end of a trial. (A) Average 
reward prediction (TD) error at the end of correct trials for the 60% 
coherence case (left) and the 8% coherence case (right). The vertical line 
denotes the time of reward delivery. Right after reward delivery, TD error 
is larger for the 8% coherence case due to its smaller expected value 
(see Figure 13). (B) Population dopamine responses of SNc neurons in 
the same monkey as in Figure 16 but after the monkey has made a 
decision and a feedback tone indicating reward or no reward is 
presented. (Plots adapted from Nomoto et al., 2010). The black and red 
traces show dopamine response for correct and error trials respectively. 
The gray traces show the case where the amount of reward was reduced 
(see (Nomoto et al., 2010) for details). (C) Average reward prediction (TD) 
error at the end of error trials for the 60% coherence case (left) and the 
8% coherence case (right). The absence of reward (or negative reward/
penalty in the current model) causes a negative reward prediction error, with a 
slightly larger error for the higher coherence case due to its higher expected 
value (see Figure 13).
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conclusIons
The mechanisms by which animals learn to choose actions in the 
face of uncertainty remains an important open problem in neuro-
science. The model presented in this paper proposes that actions are 
chosen based on the entire posterior distribution over task-relevant 
states (the “belief state”) rather than a single “optimal” estimate of 
the state. This allows an animal to take into account the current 
uncertainty in its state estimates when selecting actions, permitting 
the animal to perform information gathering actions for reducing 
uncertainty and choosing overt actions only when (and if) uncer-
tainty is sufficiently reduced.

We formalized the proposed approach using the framework of 
partially observable Markov decision processes (POMDPs) and pre-
sented a neural model for solving POMDPs. The model relies on TD 
learning for mapping beliefs to values and actions. We illustrated 
the model using the well-known random dots task and presented 
results showing that (a) the temporal evolution of beliefs in the 
model shares similarities with the responses of cortical neurons in 

The learned policy, which is a function of elapsed time, is shown 
in Figure 19. For the purposes of illustration, only the portion of the 
policy for hard coherence (specifically, for Belief(E) = 0) is shown, 
but the policy learned by the model covers all values of Belief(E).

As seen in Figure 19, during the early phase of a trial, the “Sample” 
action is preferred with high probability; the “Choose Left” action 
is chosen only if Belief(L) exceeds a high threshold (conversely for 
“Choose Right”). Such a policy is similar to the ones we encountered 
before in Figures 6 and 14 for the deadline-free case.

More interestingly, as we approach the deadline, the thresh-
old for the “Choose Left” action collapses to a value close to 0.5 
(and likewise for “Choose Right”), suggesting that the model has 
learned it is better to pick one of these two actions (at the risk of 
committing an error) than to reach the deadline and incur a larger 
penalty. Such a “collapsing” bound or decision threshold has also 
been predicted by previous theoretical studies (e.g., Latham et al., 
2007; Frazier and Yu, 2008) and has found some experimental sup-
port (Churchland et al., 2008).
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Figure 18 | Decision making under a deadline. (A) Network used for 
learning value as a function of beliefs and elapsed time. The same input 
and hidden units were used for the action selection network (not 
shown). (B,C) Learned value function for time t = 1 and t = 19 within a trial 

with deadline at t = 20. Axis labels are as in Figure 13A. Note the drop in 
overall value in (C) for t = 19. The progressive drop in value as a function of 
elapsed time is depicted in (D) for a slice through the value function at 
Belief(E) = 1.
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Figure 19 | Collapsing decision threshold in the model. The learned 
policy as a joint function of elapsed time and belief over direction 
(L = “Left”), shown here for Belief(E) = 0. The trial begins at time 0, 
with a deadline at time 20 when the trial is terminated. Compare with 

the learned policies in Figures 6 and 14. Note the gradual decrease in 
threshold over time for choosing a Left/Right action, a phenomenon that has 
been called a “collapsing” bound in the decision making literature (e.g., 
Churchland et al., 2008).
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random dots task based on certain assumptions about the statistics 
of MT neurons and their tuning to direction. Ishii et al. (2002) 
proposed a model for controlling exploration versus exploitation 
in POMDPs. Their model approximates the optimal value function 
using the maximum a posteriori (MAP) state instead of the entire 
belief state (see Chrisman, 1992, for a related model). Such models 
cannot, for example, learn information-gathering actions as part 
of the policy in order to reduce uncertainty, a key requirement for 
tasks such as the random dots task.

The model we have proposed extends naturally to decision mak-
ing with arbitrary numbers of choices (e.g., random dots tasks 
with number of directions greater than 2; Churchland et al., 2008): 
one could add more directions of motion to the hidden state and 
compute the posterior distribution (belief) over this expanded 
state vector. LIP responses are then still interpreted as representing 
belief over a particular direction. Such a model avoids the difficulty 
encountered when trying to extend the likelihood ratio model of 
LIP responses (Gold and Shadlen, 2001) from two choices, where 
a ratio is natural, to a larger number of choices, requiring one to 
decide which two quantities to compute the ratio over.

The interpretation of LIP responses as beliefs predicts that increas-
ing the number of directions of motion to n should cause the initial 
(pre-motion) response to drop from 0.5 in the two-alternative case to 
a value closer to 1/n. Such a drop in the pre-motion response is seen 
in Figure 3 in Churchland et al. (2008), who compared the two-alter-
native case to the four-alternative case. The average drop was not an 
exact halving of the firing rate but a rate slightly higher than half. The 
model also predicts, for a given coherence, the same ramping of the 
firing rate to threshold as in the two-alternative case. However, since 
the response starts lower in the four-alternative case, there is a larger 
firing rate excursion from start to threshold, resulting in a longer reac-
tion time. These observations are consistent with the results reported 
in Churchland et al. (2008, see, for example, their Figure 6).

It has been shown that LIP neurons can be modulated by other 
variables such as value (Platt and Glimcher, 1999; Sugrue et al., 
2004). Such findings are not inconsistent with the model we have 
proposed. Cortical neurons in the model are assumed to represent 
beliefs over a variety of task-relevant variables. Thus, LIP may rep-
resent beliefs not just over direction of motion but also over other 
variables including value. Similarly, although the model focuses on 
the cortico-basal-ganglia network, it does not rule out a parallel 
decision making circuit involving LIP, FEF, and the colliculus. The 
model as proposed suggests a role for the cortico-basal-ganglia 
network in learning a task such as the dots task. Outputs from the 
basal ganglia reach both the colliculus (from SNr) and frontal areas 
such as FEF via the thalamus (VA/VL nuclei), allowing the basal 
ganglia to influence both collicular and cortical representations. 
Thus, it is possible that LIP, FEF, and the colliculus operate as a 
decision network in parallel with the cortex-basal ganglia loop (see 
Lo and Wang, 2006, for related ideas).

The belief computation network required by the current model 
is similar to previously proposed networks for implementing 
Bayesian inference in hidden Markov models (HMMs) (e.g., 
Rao, 2004; Yu and Dayan, 2005; Zemel et al., 2005; Beck et al., 
2008; Deneve, 2008) but with one crucial difference: Bayesian 
inference in the POMDP model involves actions. The model thus 
provides a functional explanation for the feedback connections 

area LIP in the monkey, (b) the threshold for selecting overt actions 
emerges naturally as a consequence of learning to maximize rewards, 
(c) the model exhibits psychometric and chronometric functions 
that are qualitatively similar to those in monkeys, (d) the time course 
of reward prediction error (TD error) in the model when stimulus 
uncertainty is varied resembles the responses of dopaminergic neu-
rons in SNc in monkeys performing the random dots task, and (e) 
the model predicts a time-dependent strategy for decision making 
under a deadline, with a collapsing decision threshold consistent 
with some previous theoretical and experimental studies.

The model proposed here builds on the seminal work of Daw, 
Dayan, and others who have explored the use of POMDP and 
related models for explaining various aspects of decision mak-
ing and suggested systems-level architectures (Daw et al., 2006; 
Dayan and Daw, 2008; Frazier and Yu, 2008). A question that has 
remained unaddressed is how networks of neurons can learn to 
solve POMDP problems from experience. This article proposes 
one possible neural implementation based on TD learning and 
separate but interconnected networks for belief computation, value 
function approximation, and action selection.

We suggest that networks in the cortex implement Bayesian 
inference and convey the resulting beliefs (posterior distributions) 
to value estimation and action selection networks. The massive con-
vergence of cortical outputs onto the striatum (the “input” structure 
of the basal ganglia) and the well-known role of the basal ganglia in 
reward-mediated action make the basal ganglia an attractive can-
didate for implementing the value estimation and action selection 
networks in the model. Such an implementation is consistent with 
previous “actor-critic” models of the basal ganglia (Barto, 1995; 
Houk et al., 1995) but unlike previous models, the actor and critic 
in this case compute their outputs based on posterior distributions 
derived from cortical networks rather than a single state.

The hypothesis that striatal neurons learn a compact repre-
sentation of cortical belief states (Eq. 7) is related to the idea of 
“belief compression” in the POMDP literature (Roy et al., 2005), 
where is the goal is to reduce the dimensionality of the belief 
space for efficient offline value function estimation. Our model 
also exploits the idea that belief space can typically be dramati-
cally compressed but utilizes an online learning algorithm to find 
belief points tuned to the needs of the task at hand. The compact 
representation of belief space in the striatum suggested by the 
model also shares similarities with the dimensionality reduction 
theory of basal ganglia function (Bar-Gad et al., 2003). The model 
we have presented predicts that altering the relationship between 
stimulus uncertainty and optimal actions in a given task should 
alter the striatal representation.

The general idea of optimizing policies for decision making by 
maximizing reward has previously been suggested in the context of 
drift–diffusion and sequential probability ratio test (SPRT) models 
(Gold and Shadlen, 2002; Simen et al., 2006; Bogacz and Gurney, 
2007). The POMDP model shows how the idea of maximizing 
rewards can be unified with the powerful Bayesian approach to 
handling uncertainty by maintaining beliefs over task-related world 
states.

Our formulation of the problem within a reinforcement learn-
ing framework is also closely related to the work of Latham et al. 
(2007), who were among the first to derive an optimal policy for the 
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rithms for POMDPs suggested in the artificial intelligence literature? 
What types of convergence properties can be proved for the model? 
Empirical results from varying model parameters for the random 
dots problem suggest that the model converges to an appropriate 
value function and policy under a variety of conditions but rigor-
ous theoretical guarantees could potentially be derived by leveraging 
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Finally, the mapping of model components to the anatomy of the 
basal ganglia in Figure 3 is decidedly simplistic. Although the model is 
consistent with previously proposed “actor-critic” models of the basal 
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a detailed model consistent with known properties of neurons in 
these networks? How are the actions learned by maximizing reward 
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from motor cortical areas to sensory areas, namely, that these 
feedback connections carry information about executed actions 
to sensory areas, where belief states are updated as suggested by 
Eq. (2). This is a novel prediction not made by traditional HMM 
models of sensory areas. Similarly, the “actor-critic” network in 
the model is not a traditional radial basis function (RBF) network 
because learning of the belief basis vectors is influenced not only 
by the statistics of the inputs but also by reward and estimated 
value (see Eq. 7).

We illustrated the ability of the model to learn a time-dependent 
policy using a network with an input node that represents elapsed 
time (Figure 18A). Neurons that maintain a representation of 
elapsed time have previously been reported in cortical area LIP 
(Leon and Shadlen, 2003). A more realistic implementation of 
the model that we hope to explore in the future is to maintain a 
belief over elapsed time rather than a single point estimate. We also 
hope to apply the time-dependent model to tasks involving “Abort” 
actions (Kiani and Shadlen, 2009): this would involve adding the 
abort action to the set of overt actions and allowing the POMDP 
formulation to titrate the benefits of choosing the abort action 
versus one of the other actions based on the time to the deadline 
and the reward structure of the task.

For a task with a deadline, the model learned a time-dependent 
policy with a “collapsing” decision threshold (Latham et al., 2007; 
Frazier and Yu, 2008). The model predicts a similar collapsing 
threshold for reaction-time tasks. This is because each time step 
spent sampling in the model incurs a penalty, resulting in an overall 
decrease in value with elapsed time similar to that in Figure 18. 
Interestingly, a collapsing decision threshold for the random dots 
reaction-time task was reported in (Churchland et al., 2008). Their 
results suggest an equivalent implementation that keeps the thresh-
old constant but adds a time-dependent “urgency signal” to the 
beliefs. Churchland et al. (2008) estimate such an urgency signal 
from LIP responses to 0% coherence motion. We intend to explore 
the implications of this alternate implementation in future work.

On the computational front, several questions await further study: 
how does the proposed model scale to large-scale POMDP problems 
such as those faced by an animal in non-laboratory settings? How does 
the performance of the model compare with approximation algo-
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