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and the spectral properties of a GLM model were derived (Nykamp, 
2007; Toyoizumi et al., 2009) under fairly restrictive conditions, 
while exact parameters for detailed, heterogeneous GLM models 
can only be evaluated numerically (Pillow et al., 2008).

The significance and applications of spike train models with 
closed-form expressions for the output correlation/spectral structure 
have begun to emerge in a number of recent studies. These include: 
(1) the ability to generate synthetic spike trains with a given auto- 
and cross-correlation structure (Brette, 2009; Krumin and Shoham, 
2009; Macke et al., 2009; Gutnisky and Josic, 2010); (2) the ability to 
identify neural input-output encoding models “blindly” by analyz-
ing the spectral and correlation distortions they induce (Krumin 
et al., 2010); (3) the ability to fit compact multivariate auto-regressive 
(MVAR) models to multi-channel neural spike trains (Krumin and 
Shoham, 2010); and (4) the ability to apply the associated powerful 
framework of Granger causality analysis (Granger, 1969; Krumin and 
Shoham, 2010). These early studies relied on the analysis of tractable 
non-linear spiking models such as threshold models (Macke et al., 
2009; Gutnisky and Josic, 2010; Tchumatchenko et al., 2010) or the 
Linear–Non-linear-Poisson (LNP) models (Krumin and Shoham, 
2009) driven by Gaussian input processes.

In this paper we revisit the Hawkes model within this new 
emerging framework for correlation-based, closed-form iden-
tification and analysis of spike trains models. The framework is 

IntroductIon
Linear system models enjoy a fundamental role in the analysis 
of a wide range of natural and engineered signals and processes 
(Kailath et al., 2000). Hawkes (Hawkes, 1971a,b; cf. Johnson, 1996) 
introduced the basic point processes equivalent of the linear auto-
regressive and multi-channel auto-regressive process models, and 
derived expressions for their output correlations and spectral densi-
ties. The Hawkes model was later used as a model for neural activity 
in small networks of neurons (Brillinger, 1975, 1988; Brillinger et al., 
1976; Chornoboy et al., 1988), where maximum likelihood (ML) 
parameter estimation procedures can be used to estimate the syn-
aptic strengths between connected neurons, but where no external 
modulating processes were considered. Interestingly, the recent ren-
aissance of interest in explicit modeling and model-based analysis 
of neural spike trains (e.g., Brown et al., 2004; Paninski et al., 2007; 
Stevenson et al., 2008), has largely disregarded the Hawkes-type 
models, focusing instead on their non-linear generalizations: the 
generalized linear models (GLMs), and related multiplicative models 
(Cardanobile and Rotter, 2010). GLMs are clearly powerful and flex-
ible models of spiking processes, and are also related to the popular 
Linear–Non-linear encoding models (Chichilnisky, 2001; Paninski 
et al., 2004; Shoham et al., 2005). However, they do not enjoy the 
same level of mathematical simplicity as their Hawkes counter-
parts – only approximate analytical expressions for the  correlation 

Correlation-based analysis and generation of multiple spike 
trains using Hawkes models with an exogenous input

Michael Krumin, Inna Reutsky and Shy Shoham*

Faculty of Biomedical Engineering, Technion – Israel Institute of Technology, Haifa, Israel

The correlation structure of neural activity is believed to play a major role in the encoding and 
possibly the decoding of information in neural populations. Recently, several methods were 
developed for exactly controlling the correlation structure of multi-channel synthetic spike 
trains (Brette, 2009; Krumin and Shoham, 2009; Macke et al., 2009; Gutnisky and Josic, 2010; 
Tchumatchenko et al., 2010) and, in a related work, correlation-based analysis of spike trains 
was used for blind identification of single-neuron models (Krumin et al., 2010), for identifying 
compact auto-regressive models for multi-channel spike trains, and for facilitating their causal 
network analysis (Krumin and Shoham, 2010). However, the diversity of correlation structures 
that can be explained by the feed-forward, non-recurrent, generative models used in these 
studies is limited. Hence, methods based on such models occasionally fail when analyzing 
correlation structures that are observed in neural activity. Here, we extend this framework by 
deriving closed-form expressions for the correlation structure of a more powerful multivariate 
self- and mutually exciting Hawkes model class that is driven by exogenous non-negative inputs. 
We demonstrate that the resulting Linear–Non-linear-Hawkes (LNH) framework is capable of 
capturing the dynamics of spike trains with a generally richer and more biologically relevant 
multi-correlation structure, and can be used to accurately estimate the Hawkes kernels or the 
correlation structure of external inputs in both simulated and real spike trains (recorded from 
visually stimulated mouse retinal ganglion cells). We conclude by discussing the method’s 
limitations and the broader significance of strengthening the links between neural spike train 
analysis and classical system identification.

Keywords: spike train analysis, linear system identification, point process, recurrent, multi-channel recordings, correlation 
functions, integral equations, retinal ganglion cells

Edited by:
Jakob H. Macke, University College 
London, UK

Reviewed by:
Taro Toyoizumi, RIKEN Brain Science 
Institute, Japan
Kresimir Josic, University of Houston, 
USA

*Correspondence:
Shy Shoham, Faculty of Biomedical 
Engineering, Technion – Israel Institute 
of Technology, Haifa 32000, Israel. 
e-mail: sshoham@bm.technion.ac.il



Frontiers in Computational Neuroscience www.frontiersin.org November 2010 | Volume 4 | Article 147 | 2

Krumin et al. Correlation-based Hawkes model analysis

thereby extended from the exclusive treatment of feed-forward 
models to treating more general and neuro-realistic (yet ana-
lytically tractable) models that also include feedback terms. In 
Section “Methods” we begin by reviewing some basic results 
for the correlation structure of the classical, homogenous (con-
stant input) single and multivariate Hawkes model, derive new 
integral equations for the correlation structure of a Hawkes 
model driven by a time-varying (inhomogeneous) stationary 
random non-negative process input (see Figure 1), and pro-
pose a numerical method for solving them. In Section “Results,” 
we present the results of applying these methods to real neu-
ral recordings from isolated mouse retina, and the required 
methodological adaptations. We conclude with a discussion 
in Section “Discussion.”

Methods
In this section we begin by defining the Hawkes model, recalling 
its auto-correlation structure and then generalizing to multivari-
ate (mutually exciting) non-homogeneous Hawkes model of point 
processes. Next, we propose a method for the solution of the result-
ing equations, and for the estimation of the different parameters 
of the model. In the final subsection the experimental methods of 
stimulation and data acquisition are presented.

theoretIcal Background
Let us consider the intensity of a self-exciting point process to be 
defined by the following expression:

µ λ( )t g t tk
k

= + −( )∑
 

(1)

Here, the instantaneous firing intensity μ(t) is the exogenous 
input λ summed together with multiple shifted replicas of the self-
excitation kernel g(t). The kernels are causal (g(t) = 0, t < 0), and 
t

k
 represents all the past spike-times. For technical reasons we will 

write the expression using the Stieltjes integral:
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t
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where N(t) is the counting process (number of spikes up to time t). 
The sum term in Eq. 1 is now replaced by a convolution of the spiking 
history with a linear kernel. The mean firing rate (denoted throughout 
the paper by 〈dN〉) of this point process is given by:
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Resulting in:
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The stability (and stationarity) condition for this model 
( ( ) )∫ <∞

0 1g u du  can easily be inferred from this equation. An expres-
sion for the auto-covariance function of such a point process was 
derived in Hawkes (1971a), and we will briefly review here the 
main results (adapted from his auto-covariance notation into 
auto-correlation function notation used here for simplicity). We 
will distinguish between two different auto-correlation functions, 
the first:



R
dN t dN t

dt
dN ( )

( ) ( )
,τ

τ +{ }
2

 
(5)

which has a delta function singularity 〈dN〉·δ(τ) at τ = 0 due to the 
nature of point processes, and the second:

R R dNdN dN( ) ( ) ( ),τ τ δ τ

 − ⋅
 

(6)

from which this singularity was subtracted.
Using these definitions we get the following integral equa-

tion for the auto correlation of the output point process of the 
Hawkes model:

R dN g dN g u R u dudN dN( ) ( ) ( ) ( )τ λ τ τ
τ

= ⋅ + ⋅ + −
−∞
∫

 

(7)

Figure 1 | Linear–Non-linear-Hawkes model diagram. White multivariate 
Gaussian noise w(t) passes through a Linear–Non-linear cascade, resulting in an 
exogenous input, λ(t), to the Hawkes model. By setting the Hawkes self- and 

mutual-excitation feedback filter to equal zero we remain with a multivariate 
Linear–Non-linear-Poisson (LNP) model. By setting λ(t) = λ we get the 
Hawkes model.
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These two equations provide the solution for the output 
auto-correlation function R

dN
(τ) and for the cross-correlation 

R t dN t dtdNλ τ λ τ( ) { ( )( ( )/ )}  +  between the exogenous input λ(t) 
and the point process whose intensity is defined by Eq. 11. Here, the 
input auto-correlation function Rλ(τ) and the self-exciting kernel g(τ) 
serve as given parameters (see also Identification of the LNH Model).

Equations 12 and 13 can be further generalized to a multivari-
ate case (mutually exciting point processes), and be written using 
the matrix notation:
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Note that for constant λ these equations are reduced to Eqs 9 
and 10.

IdentIfIcatIon of the Lnh modeL
The equations for the correlation structure of a single self-exciting 
point process and multivariate mutually exciting point processes 
(Eqs 13 and 14 respectively) can be solved numerically by switch-
ing from continuous time integral notation to discrete time matrix 
notation, and consequently performing matrix calculations. The 
integration operations in the Eqs 13 and 14 are thus converted 
to matrix multiplication operations. This allows a simple and 
straightforward way to solve the equations for the output correla-
tion structure. Here, we only briefly present the main results. All the 
detailed explanations on the notation used, on how the appropriate 
matrices and vectors are built, and how the equations are solved 
in both single- and multi-channel cases can be found in Section 
“Solution of the Integral Equations” of Appendix. Using the new 
notation the output correlation is estimated by:
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where R R R R GN Nd d, , ,  
T T and  are block column vectors that repre-

sent the sampled versions of the correlations R
dN

(τ), Rλ(τ), RλdN
(τ), 

and the feedback kernel G(τ). Block matrices G1 and G2 are built 
from G(τ), and I  is the unity matrix of appropriate dimensions 
(see also Solution of the Integral Equations of Appendix). The gen-
eralized Hawkes model has three different sets of parameters – the 
input correlation structure Rλ(τ), the output correlation structure 
R

dN
(τ), and the Hawkes feedback kernel G(τ). Thus, in addition to 

the forward problem solution presented in Eq. 15, there are three 
other possible basic scenarios for the identification of the different 
parts of the proposed generalized Hawkes model from the correla-
tion structure of the observed spike train(s).

I R G( ) ( ) ( ) ⇒dN τ τ, R̂ τ( )

II R R( ) ( ) ( ) ⇒dN τ τ,  Ĝ τ( )

III R( ) ( ) ⇒dN τ ˆ , ˆG Rτ τ( ) ( )


This equation can be solved numerically (Mayers, 1962) or 
by using Wiener–Hopf related techniques (Noble, 1958; Hawkes, 
1971b).

Similarly, Hawkes (1971a) generalized this solution (Eqs 4 and 7) 
to multivariate mutually exciting point processes by using matrix 
notation. The intensity of mutually exciting process becomes:
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d u duN I G( )= −








 ⋅

∞ −

∫
0

1



 

(9)

and the cross-correlation matrix as a solution of:

R N G( ) N G( )RN Nd dd d( ) ( )τ τ τ
τ

= ⋅ + ⋅ ( ) + −
−∞
∫

T
diag u u du

 
(10)

the LInear–non-LInear-hawkes modeL and Its correLatIons
Let us now consider a more general case of a non-homogeneous 
Hawkes model, where the exogenous input λ(t) can be a time-
varying (stationary) process:

µ λ( ) ( ) ( ) ( )t t g t u dN u
t

= + −
−∞
∫

 
(11)

For example, this class of models includes the important spe-
cial case (Figure 1) where λ(t) is itself a non-negative stationary 
random process generated by a Linear–Non-linear cascade acting 
on a Gaussian process input (possibly a stimulus). Note the dif-
ference between the proposed linear–non-linear-Hawkes (LNH) 
model and the GLM-type models, in which the feedback term is 
summed with the x(t) and not with the λ(t) (according to the 
notation in Figure 1). This effectively changes the locus of the non-
linearity present in the model and affects the model’s properties 
and analytical tractability.

The mean firing rate of this point process can, in general, be 
found in a similar way as in Eqs 3 and 4:
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∫
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Next, the auto-correlation function R
dN

(τ) of this process can 
be derived using a similar procedure to the derivation of Eq. 7 (the 
detailed derivation can be found in Section “Correlation Structure 
of the LNH Model” of Appendix). This time, the auto-correlation 
function is governed by two coupled integral equations:
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feedback kernel g(τ) from the input and the output correlations 
(Rλ(τ) and R

dN
(λ), respectively). The procedure is summarized in 

the following algorithm:

1. Estimate initial g(τ) from Rλ(τ) and R
dN

(λ) by solving Eq. 13 
(in its matrix form of Eq. 17).

2. Simulate a Hawkes point process using the original input 
correlation Rλ(τ) and the estimated kernel g(τ). Use 
μ

eff
(t) = max{μ(t), 0}.

3. Estimate the output correlation RdN
sim( )τ  of the simulated spike 

train. The violation of the μ(t) ≥ 0 assumption will result in 
a difference between the desired (R

dN
(τ)) and the estimated 

( ( ))RdN
sim τ  output correlation structures.

4. Use the estimated RdN
sim( )τ  instead of the input correlation Rλ(τ) 

in the Eq. 13 to estimate the kernel ∆g(τ). The output correla-
tion that should be used is the desired R

dN
(τ) throughout the 

iterative solution, only the input correlation Rλ(τ) changes 
from iteration to iteration.

5. Update g(τ) ← g(τ) + α·∆g(τ). The scalar α ≤ 1 is used for 
controlling the speed and/or smoothness of the convergence. 
In Section “Application to Neural Spike Trains – Single Cells” 
we have used a relatively small α = 0.1 to ensure smooth con-
vergence to the solution.

6. Loop through steps 2–5 until the actual RdN
sim( )τ  of the simula-

ted spike train converges to the desired R
dN

(τ).

The above procedure uses the difference between the model-based 
(simulated) and the desired (data-estimated) correlation structures 
of the output spike trains to systematically update the feedback kernel 
g(τ) until the difference between these two correlation structures 
becomes small enough. The resulting model allows to relax the 
assumption of μ(t) ≥ 0 and to use μ

eff
(t) = max{μ(t), 0} instead.

experIMental Methods
Retina preparation
Animal experiments and procedures were approved by the 
Institutional Animal Care Committee at the Technion – Israel 
Institute of Technology and were in accordance with the NIH Guide 
for the Care and Use of Laboratory Animals. Six-week-old wild type 
mice (C57/BL) were euthanized using CO

2
 and then decapitated. 

Eyes were enucleated and immersed in Ringer’s solution contain-
ing (in mM): NaCl, 124; KCl, 2.5; CaCl

2
, 2; MgCl

2
, 2; NaHCO

3
, 26; 

NaH
2
PO

4
, 1.25; and Glucose, 22 (pH 7.35–7.4 with 95% O

2
 and 5% 

CO
2
 at RT). An incision was made at the ora serrata using a scalpel 

and the anterior chamber of the eye was separated from the poste-
rior chamber cutting along the ora serrata with fine scissors. The 
lens was removed and the retina was gently cleaned of the remain-
ing vitreous. Retinal tissue was isolated from the retinal pigmented 
epithelium. Three radial cuts were made and the isolated retina was 
flattened with the retinal ganglion cells facing the multi electrode 
array (MEA). During the experiment the retina was continuously 
perfused with oxygenated Ringer’s solution.

Electrophysiology
The retina was stimulated by wide-field intensity-modulated light 
flashes using a DLP-based projector. The stimulus intensities were 
normally distributed and updated at the rate of 60 Hz. Resulting 
activity was recorded using 60-channel MEA with 10 μm diameter, 

In the first scenario we are interested in the estimation of the 
input correlation structure, given the output correlation structure 
R

dN
(τ) and the Hawkes kernel G(τ). By using the aforementioned 

matrix notation the solution can be achieved in a straightforward 
manner, akin to the forward problem:

R I G R G N

R I G R

N N

N



 

d d

d

d= −( ) ⋅ − ⋅ ( )
= −( ) ⋅

2

1

diag

T T

 
(16)

After Rλ(τ)is estimated one can proceed, if interested, with the 
estimation of an LN cascade model for this correlation structure 
by applying the correlation pre-distortion procedures developed 
and detailed in (Krumin and Shoham, 2009) and (Krumin and 
Shoham, 2010). Estimation of the Linear–Non-linear cascade 
model, in addition to the connectivity kernels G(τ), can provide 
additional insights about the stimulus-driven neural activity.

The second possible scenario is to estimate the Hawkes kernels 
when the output and the input correlation structures are known 
(see, e.g., Figure 3B). Here, once again, we can use the advantage 
of the same matrix notation (block column vector R Nd  and block 
matrix R Nd  represent the RλdN

(τ) and R
dN

(τ) correlation functions, 
respectively) and solve the following equations in an iterative man-
ner to estimate G(τ):

G N R R R

R I G R

N N N

N

T
d
T

d
T

d
T

d
T T

d= +( ) −( )
= −( ) ⋅

−

−

1

1

1



 
 

(17)

where dN  stands for the block diagonal matrix with diag (〈dN〉) 
as its block elements on the main diagonal.

The iterative solution of this set of equations is explained in 
detail in Section “Solution of the Integral Equations” of Appendix, 
Eq. A23.

The third possible scenario is to estimate both the kernels G(τ) 
and the input correlation structure Rλ(τ), given only the output cor-
relation structure R

dN
(τ). In general, this problem is not well-posed 

and does not have a unique solution, and additional application-
driven constraints on the structure of G(τ) and/or Rλ(τ) should 
be considered. We will leave additional discussion on the unique-
ness of the solution to the results (see Application to Neural Spike 
Trains – Single Cells) and in Sections “Discussion.”

Refractoriness and strong inhibitory connections
In general, the connectivity between the different units (G(τ) feed-
back terms in the Hawkes model) is not limited to non-negative 
values. Hence, the firing intensity μ(t) defined in Eqs 1 or 8 can 
occasionally become negative. However, the analytical derivations 
for the output mean rate and correlation structure are based on 
the assumption that μ(t) is non-negative for all t. The violation of 
this assumption results in a discrepancy between the actual and the 
analytical results. Simulation of the estimated LNH model [while 
using the effective firing intensity μ

eff
(t) = max{μ(t), 0}] yields out-

put spike trains with a correlation structure RdN
sim( )τ  that is differ-

ent from the desired output correlation structure R
dN

(τ) (used for 
the estimation of the model parameters). To address this issue an 
additional procedure was developed for the estimation of the actual 
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In Figures 2A–C the forward model solution by the Eq. 15 is 
 compared to the auto-correlation function estimated from single simu-
lated point processes with different self-excitation kernels, g(τ), under 
two different conditions – constant input λ (pure Hawkes model), or 
time-varying input λ(t) with an exponentially shaped auto-correlation 
function (LNH model). In Figure 2D an example of a bivariate case is 
presented with a more complex correlation structure of the input  λ(t) 
and a set of self- and mutually exciting kernels G(τ).

planar electrodes spaced at 100 μm. The data was acquired with 
custom written data acquisition software using Matlab 7.5.0 data 
acquisition toolbox.

results
sIMulatIon studIes
We performed a number of simulation studies to validate the 
 methods proposed for the solution of the integral Eqs 13 and 14.

Figure 2 | Correlation structure of the homogeneous and inhomogeneous 
Hawkes models can be accurately predicted. Predicted theoretical correlation 
structure is compared to the correlation structure estimated from simulated point 
processes in several cases: (A) Constant λ and a refractory period-like 
self-exciting kernel g(τ). (B) Same as in (A), but with time-varying λ(t) that has an 

exponentially shaped auto-correlation function. (C) Similar to (B), but with a 
different self-excitation kernel g(τ). (D) Bivariate mutually exciting point processes 
driven by time-varying exogenous inputs with complex correlation structure. 
Mean values and standard deviations of the estimators were calculated from 100 
simulations (each 10 min long) of corresponding Hawkes models.
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This LN cascade was then used for generating the input (λ(t) 
in Figure 1) to the Hawkes feedback stage of the LNH model. The 
auto-correlation function of λ(t) is exactly that of the LNP model’s 
output estimated previously and found inconsistent with the real 
recordings. Now, the input auto-correlation function Rλ(τ) was 
used together with the measured output auto-correlation function 
R

dN
(τ) to estimate the Hawkes feedback kernel g(τ) (Figure 4C) from 

Eq. 13 (including the procedure described in the Refractoriness and 
Strong Inhibitory Connections). Interestingly, the output auto-cor-
relation function of the newly estimated LNH model (as measured 
from the simulated spike trains) was in excellent agreement with 
the auto-correlation function of the actual neural data (Figure 4D). 
The addition of the linear Hawkes feedback stage to the classical 
feed-forward LNP model proved beneficial to the model’s capability 
of explaining more complex spike train correlation structures of 
real neural recordings (Figure 4E).

Finally, we validated that the improved fit of the LNH model 
to the data compared with the LNP model, does not result from a 
model overfitting due to the larger number of parameters in the LNH 
model. For each unit, we computed an LN-Hawkes for a different 
data set from the same unit (Gaussian distribution, different mean 
intensity). Next, we simulated an output spike train using a “hybrid” 
LNH model (“original” LN model + “new” feedback kernel g(τ)), and 
estimated its correlation function. This output correlation function 
was compared to the correlation function of the original data by 
calculating the correlation coefficient between the two functions ρ

LNH
. 

This procedure was applied to the nine units in our data set where 
the mean firing rates were >2 Hz. In eight out of these nine units the 
hybrid LNH model provided considerably better fits to the output 

As can be seen in all of these examples, the analytically  predicted 
correlation functions had a near-perfect match with the mean cor-
relation functions of the simulated spike trains (correlation coef-
ficient ≥0.99). Individual correlation functions calculated from 
10-min traces were more noisy, thus the forward analytical pre-
diction vs. simulation correlation coefficients for single traces were 
significantly lower: 0.83 ± 0.06.

Figure 3A shows the result of applying the “scenario I” solution 
(Eq. 16) to spike trains generated by the model presented in Figure 2D; 
the mean identified input correlations have an excellent match with 
the ones used for generating the data (correlation coefficients: 0.99 
and 0.92 respectively for the auto- and cross-correlations).

Figure 3B shows the result of applying the “scenario II” solu-
tion (Eq. 17) to spike trains generated by the model presented 
in Figure 2D; the mean identified kernels greatly match the ones 
used in generating the data (correlation coefficients >0.99 for 
all kernels.

applIcatIon to neural spIke traIns – sIngle cells
Next, we applied the method on the data recorded from the retina 
(see Methods for the experimental protocol). We started by analyz-
ing the spike trains using reverse-correlation techniques (Ringach 
and Shapley, 2004) based on a feed-forward Linear–Non-linear–
Poisson (LNP) model. The LNP-based estimates of the linear filter, 
and the static non-linearity (Figure 4A) were further used for the 
calculation of the expected output auto-correlation function of the 
estimated LNP model. This LNP-based output auto- correlation 
function was found to be noticeably different from the actual auto-
correlation function of the measured spike trains (Figure 4B).

Figure 3 | System identification. Any of the three different parts of the 
system can be identified from the other two. (A) Comparison of the input 
correlation structure estimated from the simulated point processes and the real 
values used in the simulation. (B) Hawkes kernels estimated from the simulated 

point processes and input correlation structure are compared to their real value 
used for the simulation. Mean values and standard deviations of the estimators 
were calculated from 100 simulations (each 10 min long) of the bivariate 
inhomogeneous Hawkes models from Figure 2D.
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framework, which was limited, thus far, to feed-forward models. 
These currently include the synthetic generation of spike trains 
with a pre-defined correlation structure (Brette, 2009; Krumin 
and Shoham, 2009; Macke et al., 2009; Gutnisky and Josic, 2010; 
Tchumatchenko et al., 2010), “blind” correlation-based identifica-
tion of single-neuron encoding models (Krumin et al., 2010), the 
compact representation of multi-channel spike trains in terms 
of multivariate auto- regressive processes and the framework of 
causality (Granger) analysis (Nykamp, 2007; Krumin and Shoham, 
2010). As noted above, the LNH model is related to the commonly 
used GLM model, with the LNH feedback kernels paralleling the 
GLM history terms. Both ways of altering the underlying feed-
forward LNP model lead to more flexible models capable of fit-
ting more complex correlation structures, but the preferred fitting 
procedures for the two models differ: the GLM model is typically 
fit using a maximum likelihood approach, but this does not suit 
the LNH model (due to possible zero firing rates), where a method 
of moments (like the one introduced here) is more appropriate 
for the estimation of the linear kernels. A systematic study on the 
differences between the statistical properties of the two approaches 
falls beyond the scope of the current manuscript.

The model and analysis presented here also provide a new con-
text and results to a significant body of related previous work on 
the second-order statistics of Hawkes models, which we will now 
review very briefly. The basic properties of the output  correlation 

correlation function than the  corresponding LNP model, providing 
in those cases an average improvement of 〈∆ρ〉 = 〈ρ

LNH
 − ρ

LNP
〉 = 0.19 

with 〈∆ρ〉/〈ρ
LNP

〉 = 30%. Note that this procedure is over-conservative, 
since there is no guarantee that kernels calculated for different input 
stimulus ensembles will be the same or conversely, that neural models 
will generalize across different stimulus ensembles.

dIscussIon
In this paper, we extended previous work on the correlation-
based simulation, identification and analysis of multi-channel 
spike train models with a feed-forward Linear–Non-linear (LN) 
stage driven by Gaussian process inputs (Krumin and Shoham, 
2009; Krumin et al., 2010), by allowing the non-negative process 
to drive a feedback stage in the form of a multi-channel Hawkes 
process. The move from doubly stochastic Poisson (Cox) mod-
els in our previous work to doubly stochastic Hawkes models 
employed here vastly expands the range of realizable correlation 
structures, thus relaxing the main limitation of the previous results, 
and allowing for a superior, excellent fit (ρ  0.98) of the auto-
correlation structures of spike trains recorded from real visually 
driven retinal ganglion cells. At the same time, it preserves the 
analytical tractability and closed-form correspondence between 
model parameters and the second-order statistical properties of 
the output spike trains, and thus, essentially, all of the advantages 
and potential applications of the general model-based correlation 

Figure 4 | Linear–non-linear-Hawkes and LNP model fits to single-unit 
retinal neural spike train auto-correlations. Single-unit recordings from mouse 
retinal ganglion cells were analyzed using the LNP and the LNH model-based 
approaches with the LNH model succeeding to explain the spike trains’ correlations 
much better than the LNP model. (A) Linear filter h(τ) and the non-linearity 
estimated using reverse-correlation approach (spike triggered average). (B) The 
expected output auto-correlation function of the LNP model calculated from the 

parameters in (A) does not fit the actual auto-correlation function of the spike train 
well. (C) The self-excitation kernel g(τ) of the LNH model shows strong 
refractoriness that cannot be explained by the LNP model. (D) The LNH model 
output auto-correlation precisely fits the actual spike train auto-correlation 
measured from the data. (e) The correlation coefficients between the model and 
the actual output auto-correlation functions are significantly (p = 0.005) higher for 
the LNH model (with mean ± SE of ρLNP = 0.62 ± 0.11 and ρLNH = 0.98 ± 0.01, n = 9).
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the convergence of this procedure is not proven, in practice, it 
was capable of estimating kernels for real neural spike trains that 
not only dramatically improved the auto-correlation fits relative 
to LNP cascades, but also generalized across different stimulus 
ensembles (a very conservative cross-validation test). Second, we 
have not addressed the important but complex issue of unique-
ness of the different identification problems encountered here. 
Interestingly, in the examples we have examined, an excellent match 
was found, in practice, between the Hawkes kernels and their esti-
mates (Figure 3B), although we are not aware of any guarantees of 
uniqueness here (these may perhaps be related to the nature of point 
processes). In the more general problem where both ˆ , ˆ ( )G( ) Rτ τ  are 
simultaneously estimated, it seems obvious that unique solutions 
can only be obtained by imposing additional constraints on the 
solutions (i.e., degree of smoothness and/or sparseness). In section 
“Application to Neural Spike Trains – Single Cells” we presented an 
example of the “scenario III”-type problem, where only the output 
correlation structure is actually observable. In this example we used 
additional application-driven constraints on the input correlation 
structure R λ(τ) to infer the feedback kernels G(τ). Interestingly, the 
exact same “scenario III”-type framework can be used for generat-
ing synthetic spike trains with a controlled correlation structure. 
This application will benefit from using the LNH feedback model 
by harnessing the capability of generating spike trains with a much 
richer ensemble of possible correlation structures in comparison 
with the feed-forward-only models like LNP. Additionally, once 
ˆ ( )R τ  is determined there is an additional level of non-uniqueness 
in the determination of the underlying LN structure, which can 
also be overcome by imposing constraints (e.g., a minimum phase 
constraint (Krumin et al., 2010)).

When considering the broader relevance of this work, and the 
directions to which it may develop in the future, it is worth noting 
that some of the most fundamental and widely applied tools for the 
identification of systems rely on the use of second-order statistical 
properties (Ljung, 1999) (correlation or spectral). The increasing 
arsenal of tools for identifying spike train models from their cor-
relations, rather than from their full observed realizations could 
form a welcome bridge between “classical” signal processing ideas 
and tools and the field of neural spike train analysis.
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structure and the spectrum of a univariate self-exciting and a 
 multivariate mutually exciting linear point process model without 
an exogenous drive were derived in the original works of Hawkes 
(1971a,b) using the linear representation of this process (Eq. 2). 
Brillinger (1975) also analyzes linear point process models and 
uses spectral estimators for the kernels, which he applies to the 
analysis of synaptic connections (Brillinger et al., 1976). Bremaud 
and Massoulie (2002) and Daley and Vere-Jones (2003) (exercise 
8.3.4) present expressions for the output spectrum of a univariate 
Hawkes model excited by an exogenous correlated point process 
derived using an alternative, cluster process representation of the 
Hawkes process: 

dN
t

g






( )
( ) ( )

( )
,ω

λ λ ω
ω

=
⋅ { } −( ) +

−
Γ Γ 1

1
2

where Γ  ∫∞
0 g u du( )  and dN g



( ), ( ), ( )ω λ ω ω  represent the respective 
spectra of dN(t), λ(t), g(t). Our derivation in the Section “Methods” 
and “Correlation Structure of the LNH Model” of Appendix focused 
on expressions for the correlation structure of exogenously driven 
Hawkes process and was based on the linear representation, similar 
to Hawkes (1971a). Adding the exogenous input introduces a new 
term into the Hawkes integral Eq. 10, and a second integral equation 
for the cross-covariance term between the exogenous input and the 
output spike trains RλdN

(τ). The parameters of these generalized 
models, i.e., the kernels G(τ) and/or the input correlation structure 
Rλ(τ), can be directly estimated from the output process correlation 
structure using an iterative application of this set of equations, 
as illustrated in Section “Results,” or they could, alternatively, be 
estimated from the spectral expressions.

We next turn to discuss certain limitations of the proposed 
framework. First, the analytical equations for the auto- correlation 
structure of the point processes (Eqs 7, 10, 13, and 14) are exactly 
true under the assumption μ(t) ≥ 0 (Eqs 2, 8, and 11) or when 
the stochastic intensity is always non-negative. These exact results 
could also provide an excellent agreement to many practical cases 
wherein the self-exciting Hawkes kernel g(τ) is only weakly negative 
(e.g., Figure 2), leading in such cases to slight systematic devia-
tions at “negative” peaks. In cases of strong refractoriness or other 
inhibitory interactions, g(τ) becomes strongly negative, and the 
rectification of the stochastic intensity around zero leads to strong 
deviations from the assumptions underlying Eqs 7 and 13. For such 
cases we introduced an intuitive iterative procedure for comput-
ing g(τ) (see Refractoriness and Strong Inhibitory Connections), 
and it is likely that related alternatives are also  possible. Although 
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appendIx
correlatIon structure of the lnh Model
Part I – Derivation of the output correlation of the inhomogeneous 
Hawkes point process
We consider the Hawkes point process driven by a time-varying 
exogenous input, with the intensity defined in Eq. 11:

µ λ( ) ( ) ( ) ( )t t g t u dN u
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= + −
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resulting in:
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Next, we expand the expressions for the correlation structure of 
the output spike trains, following a similar formalism to the deriva-
tion found in Hawkes (1971a) for the correlations of homogeneous 
Hawkes processes:
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Now, substituting R R dNdN dN( ) ( ) ( )τ τ δ τ= + ⋅  we get:

R R g dN g u R u dudN dN dN( ) ( ) ( ) ( ) ( )τ τ τ τλ

τ

= + ⋅ + −
−∞
∫

 

(A4)

We have arrived to a solution similar to Eq. 7 with one additional 
term RλdN

(τ) that will be derived in Part II.

Part II – Derivation of the cross-correlation between the exogenous 
input λ (t) and the output point process
The derivation of RλdN

(τ) has much in common with the deriva-
tions in Part I above.
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To summarize, the derivations in Part I and Part II of the current 
Appendix result in two coupled integral equations:
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Part III – Derivation of the output correlation structure for the 
multidimensional LNH model
Let us now consider a multivariate inhomogeneous Hawkes 
process:
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−∞
∫( ) ,t t u d u
t
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(A7)

where m(t), λ(t), and dN(t)are now column vectors, and G(τ) is a 
square matrix. The values in the row #r and column #s of the matrix 
G(τ) correspond to the mutual-excitation kernel that explains the 
effect of the firing history of the process #s on the stochastic inten-
sity of the process #r.

The expression for the mean firing rate 〈dN〉 of the process is 
derived in the following way:

d
d t

dt
t t u d u

t

t

N
N

G N  



( )
( ) ( ) ( )

( )









= + −












= { } +

−∞
∫

 GG
N

N G( )
( )

( ) ( ) ,t u
d t

dt
du t d u du

t

− 







= { } + ⋅
−∞

∞

∫ ∫  
0  

(A8)

resulting in
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We can rewrite these equations in the following manner:
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To solve these equations numerically we use the following dis-
cretized representation:
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where 〈dN〉 – is a block column vector representing the mean firing 
rates of the output spike trains

G R R RN N, , ,d d   – block column vectors of N block elements with 
the first block element representing τ = 0, and the last block element 
representing τ = τ

max
. The choice of the discretization time-step dτ 

depends on the desired time resolution of the solution.
R R N 

T
d

T,  – also block column vectors, but with their block ele-
ments transposed (in the univariate case R RN N   , ,d

T
d= )

G G G G1 2, , ,T H  – square block matrices of size N × N blocks that 
match the dimensions of the block column vectors.

To convert the integration operations into matrix multiplication 
operations we define the matrices G1 and G G G2 = +T H  (dτ – time 
resolution) in the following way:
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is a block Toeplitz matrix with the elements of the block vector G
in the first row, and zeros in the first block column (excluding the 
main diagonal). The block elements of the matrix are;

G Gk k d τ τ= ⋅( )
 

(A16)

G2 is a sum of two other matrices: G G G2 = +T H, where
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The output correlation structure is now defined by:

R R N

N( ) N N
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Similarly to the Eq. A5 we can also derive:

R
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Solution of the integral equationS
Part I – Developing the discrete time matrix notation formalism for the 
integral equations
The following coupled equations govern the relationship between the 
input correlation structure Rl(τ), the output correlation structure R

dN
(τ), 

and the feedback linear kernel G(τ) of the generalized Hawkes model:

R R G N G( )R

R R

N N N

N

d d d

d

diag d u u du( ) ( ) ( ) ( )

( ) (

τ τ τ τ

τ

τ

= + ⋅ ( ) + −

=
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∫

  ττ τ
τ

) ( ) ( )+ −
∞

∫R GNd
Tu u du

 

(A12)
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This equation, written in the matrix form is:

R R N G R GN N Nd
T

d
T T

d
T Td= + ⋅ + ⋅ ,

where the matrix dN  is a block diagonal matrix with blocks 

of diag (〈dN〉) replicated N times (that corresponds to τ
max

) on 

its diagonal to match the dimensions of the matrix R Nd
T . R Nd

T  is a 
block Toeplitz matrix with the block vector R Nd

T  as its first block 
row and block column (note, that transpose is applied within-
the-blocks, so that for the univariate case there is effectively no 
transpose):
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This, together with the matrix form of the second equation of 
Eq. A12 brings us to a couple of equations:

G N R R R

R I G R

N N N

N

T
d
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d
T

d
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d
T T
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∗
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(A23)

These can be solved iteratively:

(i) Start with a random R Nd

(ii) Find G from (*)
(iii) Build matrix G1

(iv) Find R Nd  from (**)
(v) Goto ii)

We can alternatively set the initial condition to R RN d = , which 
corresponds to G = 0.

This iterative solution converges very rapidly and, in practice, a 
single iteration brings us very close to the final solution.

is a block Toeplitz matrix with the elements of the block vector G in 
the first block column, and zeros in the first block row ( excluding 
the main diagonal).
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is a block Henkel matrix with the elements of the block vector G in 
the first block column, and zeros in the last block row (excluding 
the secondary diagonal).

Part II – Solution of the equations for different scenarios
The solution of the Eq. A14 for the output correlation structure 
R Nd  (the forward model) is straightforward:
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  

2

1

( 22
1

1
1

)

( )
,

−

−
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where the second equation is solved in the beginning and then substi-
tuted into the first (after the appropriate rearrangement of R Nd ).

For scenario ( ) ,I R G RNd τ τ τ( ) ( ) ⇒ ( )∧
  the solution is also 

straightforward:
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For scenario ( ) ( ), ( )II R R G( )Nd τ τ τ ⇒
∧

 we will reorganize the 
equations and the matrix notation. Let us rewrite the first equation 
of Eq. A12 in the following way:
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