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parameters. Recently, Luczak (2006) generates neuronal mor-
phologies using a diffusion limited aggregation (DLA) approach. 
The simulator CX3D (Zubler and Douglas, 2009) aims at simulat-
ing cortical development in 3D space, including the morphology 
of single neurons. Cuntz et al. (2010) apply a minimal spanning 
tree principle in generating neuronal morphologies. Costa and 
Coelho (2005, 2008) generate 2D neuronal morphologies by sta-
tistically sampling a probabilistic model of neuronal geometry 
based on branch probabilities per branch level using a Monte 
Carlo approach, and form connections when neuronal trees 
overlap in 2D. The simulator NETMORPH (Koene et al., 2009) 
is based on biological growth principles of neurons by stochasti-
cally modeling the elongation and branching of growth cones in 
developmental time.

Spatial closeness between axonal and dendritic branches, typi-
cally determined by the dimensions of dendritic spines and axonal 
boutons, is considered as a prerequisite for synapse formation. 
Hellwig (2000) used reconstructed neurons for estimating connec-
tivity between overlapping dendritic and axonal arborizations. To 
this end reconstructed neurons were transformed into voxel fields 
(with voxels of 1 μm side length) followed by counting the number of 
voxels containing both axonal and dendritic elements and obtaining a 
number of potential synaptic sites, thus adopting a distance criterion 
of 1 μm. Kalisman et al. (2003) used sets of 3D reconstructions of 
biocytin-stained cells to obtain axonal and dendritic statistical repre-
sentations in order to calculate the probabilities of close appositions. 
Stepanyants et al. (2002) and Stepanyants and Chklovskii (2005) 
estimated the number of potential synaptic sites in terms of axonal 
and dendritic length densities per unit volume, typical dendritic spine 

IntroductIon
Activity dynamics underlying cognition depends crucially on 
the patterns and strengths of synaptic connections between neu-
rons. During development neurons grow out by elongation and 
branching of dendritic and axonal arbors. Synaptic connections 
can form when axonal and dendritic branches of neurons come 
sufficiently close to each other (Peters, 1979). The geometry of 
neuronal arborizations is therefore an important determinant of 
synaptic connectivity. How neuronal morphology shapes neuro-
nal network connectivity is, however, still poorly understood. New 
developments in experimental and computational approaches 
make it now possible to shed light on this question. With multi-
patch techniques experimentalists are now measuring connectivi-
ties between the patched neurons using electrophysiological and 
anatomical criteria (e.g., Feldmeyer et al., 1999, 2002, 2006; Le Bé 
et al., 2007; Frick et al., 2008). Computational approaches make 
it possible to assemble a number of neurons (reconstructed or 
algorithmically generated) in a 3D geometrical arrangement and 
to study the emerging synaptic connectivity by searching the sites 
where potential synapses may occur. For instance, neuroConstruct 
(Gleeson et al., 2007) is a modeling tool for creating neuronal 
networks in 3D space using imported neuronal morphologies. The 
simulator L-Neuron creates virtual neurons using an L-systems 
approach by iteratively sampling experimental distributions of 
neuronal shape parameters (Senft and Ascoli, 1999; Ascoli and 
Krichmar, 2000; Samsonovich and Ascoli, 2007). Similarly, the 
simulator tool NeuGen (Eberhard et al., 2006) generates neu-
ronal networks in 3D with morphologically realistic neurons by 
sampling experimental distributions of  morphological shape 
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small-world properties (e.g., Watts and Strogatz, 1998; Stepanyants 
et al., 2002; Hilgetag and Kaiser, 2004; Stepanyants and Chklovskii, 
2005). Other studies emphasize the hierarchy in neural network 
connectivity (e.g., Kaiser et al., 2010) or different spatial scales (e.g., 
Passingham et al., 2002; Sporns et al., 2005; Stam and Reijneveld, 
2007). An interesting aspect during development of network con-
nectivity is the critical phenomenon of percolation when the largest 
cluster of connected neurons makes an abrupt transition in size 
toward a giant cluster as studied by Costa and Manoel (2002) and 
Costa and Coelho (2005, 2008), who also showed the dependence 
of this phenomenon on the morphology of the developing neurons. 
Many of these studies rely on methods for estimating synaptic con-
nectivity between axonal and dendritic arborizations, underscoring 
the need for algorithms that estimate the connectivity as realistic 
as possible.

The paper describes an algorithm for testing the proximity 
between chains of line pieces on the basis of crossing properties 
of line piece pairs. The paper includes a Section “Materials and 
Methods” with the derivation of geometrical conditions for crossing 
line pieces using a classical geometry approach (applying a series of 
3D transformations). In the Section “Results” the outcomes of the 
synapse detection model are shown without and with the crossing 
requirement. A study of the multiplicity of the connections (the 
number of synapses between two connected neurons) is included. 
The paper includes an “Rotations in 3D” of Appendix summariz-
ing the 3D rotation matrices, “Relative Position of Point D of the 
Perpendicular From Point C to Opposite Side AB in a Triangle ABC” 
of Appendix with some basic triangular geometry, “Expressing 
the Crossing Conditions in Terms of the Original Coordinates” 
of Appendix formulating the crossing conditions in the Section 
“Crossing Line Pieces” in terms of the original coordinates, and 
“Summary of Calculations and Crossing Conditions” of Appendix 
summarizing the calculations and the crossing conditions. For rea-
son of completeness, “Analytical Approach” of Appendix includes 
a different approach using analytical geometry and based on an 
algorithm taken from literature (Dan Sunday, http://softsurfer.
com/Archive/algorithm_0106/algorithm_0106.htm), which also 
includes the shortest distance between non-crossing line pieces.

MaterIals and Methods
ProxIMIty-based search of candIdate synaPtIc locatIons
The search in a 3D network of neurons with complex axonal and 
dendritic arborizations for locations where axonal and dendritic 
branches are sufficiently close can proceed by searching the shortest 
distance between any two branches from the axonal and dendritic 
arborizations. The shortest distance between two straight infinite 
lines is at the site where they are crossing and determined by the 
length of the orthogonal connection line (Figure 1A). Axonal and 
dendritic branches in neuronal reconstructions, however, are not 
infinite straight lines, but composed of many line pieces in sequence 
with varying orientations and lengths. Then the distance between 
any line piece pair from the axonal and dendritic branch must be 
determined and tested against the criterion value. As illustrated 
in Figure 1B several pairs of nearby line pieces may meet the dis-
tance criterion resulting in a cluster of potential synaptic sites. In 
addition the number of “nearby” line pieces is dependent on the 
length scale of the line pieces which may influence the outcome for 

length and average angle between axonal and dendritic branches. 
Amirikian (2005) used the concept of synaptic clouds (density fields) 
as representation of the complex structure of axonal/dendritic arbors 
for studying connectivity between different cell classes.

With the recently developed simulator NETMORPH, assemblies 
of neurons can be generated with realistic 3D morphologies and 
realistic morphological variability in any arbitrary 3D arrangement 
(Koene et al., 2009). The emerging connectivity in these networks 
can be determined by searching the locations where axons and den-
drites are sufficient close to each other for synapse formation, thus 
identifying the sites of candidate synapses. Both in experimentally 
reconstructed neurons and in algorithmically generated neurons 
(such as by NETMORPH) axons and dendrites are approximated 
by piecewise-linear structures, i.e., represented by chains of line 
pieces or cylinders. Testing the proximity of axonal and dendritic 
branches then implies the search for pairs of individual dendritic and 
axonal line pieces that are closer to each other than a given criterion 
distance. When an axonal and dendritic branch are sufficiently close 
in space, the application of just a distance criterion, however, may 
result in several pairs of nearby line pieces obeying the proximity 
criterion and thus may fall into a cluster of candidate synaptic sites 
(see Figure 1B). In addition, the number of sufficiently close line 
piece pairs appears to depend on the typical length scale of the line 
pieces in the dendritic and axonal representation. As the clustering 
and the length scale dependency were considered to be artifacts of 
this approach a method was needed to identify uniquely the location 
where an axonal and dendritic branch are closest in space. To this 
end an additional requirement was introduced by searching for that 
line piece pair from an axonal and dendritic chain of line pieces that 
cross in space and taking the shortest (orthogonal) distance for that 
pair as the shortest distance between the axonal and dendritic branch 
(see Figure 1C). This shortest distance is subsequently subjected to 
the distance criterion for candidate synapses. Note that in the case of 
cylinders the distance is taken between their axial center lines.

The characterization of network connectivity has also become 
an important area of research. Graph-theoretical studies of brain 
connectivity focus amongst others on the presence of hubs and 

Figure 1 | (A) Two straight lines A and B and their projections on a plane V 
orthogonally connected at their shortest distance at the site of crossing, (B) 
Two chains of line pieces A and D and their projections on a plane V. Green 
lines connect those line pieces that are within a given criterion proximity. The 
picture illustrates the cluster C of candidate synaptic sites as well as the 
sensitivity to the length scale of the line pieces. (C) Two chains of lines pieces 
A and B with their shortest distance determined by the orthogonal distance of 
a single pair of crossing line pieces.
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Transformation I – translation of P, Q, R, and S according to  
P(x, y, z) → O(0, 0, 0)
The translations proceed via p = P − P = O, q = Q − P, r = R − P, 
and s = S − P, see Figure 3, thus with
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Transformation II – first rotation of q, r, and s around Z-axis toward 1q, 1r, 
and 1s, respectively, such that 1q is in the XZ-plane
The rotation around the Z-axis, see Figure 4, proceeds via 
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If δ equals the angle of the projection of Oq with the x-axis then 
the rotation angle γ is equal to −δ, thus
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the number of potential sites (see Figure 1B). This length scale in 
the piecewise-linear approximation of the neuronal morphologi-
cal representation relates to morphological reconstruction proce-
dures in experimental approaches, and to the time step parameter 
in computer simulation approaches.

To avoid clustering of candidate synaptic sites and length scale 
dependencies, a synapse allocation criterion was needed to identify 
uniquely locations where axon and dendrite chains of line pieces are 
closest to each other and where this shortest distance is smaller than 
the given criterion value. Extending the idea of the unique cross-
ing point of infinite lines, it is proposed to search for the crossing 
point between an axon and dendrite chain of lines pieces. Such a 
crossing point can be searched for by testing the crossing condition 
for any pair of line pieces from the axon and the dendrite chain of 
line pieces and taking the orthogonal distance for this line piece 
pair to evaluate the distance condition (Figure 1C).

crossIng lIne PIeces
Line pieces do cross when they are in a certain geometrical posi-
tion to each other, i.e., when the projection of line piece (1) onto 
the plane through line piece (2) and parallel to (1) intersects line 
piece (2), as is illustrated in Figure 2B. Only then can an orthogo-
nal connection line be drawn whose length is the shortest distance 
between both line pieces. Figure 2A illustrates an arrangement of 
nearby, but non-crossing line pieces.

In the following an algorithm is introduced for testing whether 
or not two line pieces do cross. If they do, the algorithm provides 
the length of the orthogonal connection and the coordinates where 
this connection line intersects the two line pieces. Applying this 
algorithm to all pairs of line pieces of an axonal and dendritic 
branch will test the existence of a crossing pair, and whether the 
shortest distance in this pair meets the distance criterion.

algorIthM for deterMInIng whether two lIne PIeces are 
crossIng
Given are two line pieces PQ and RS and the coordinates of the 
points P(x, y, z), Q(x, y, z), R(x, y, z) and S(x, y, z). A “classical” 
geometry approach is used in which a series of 3D transforma-
tions is applied on the two line pieces in order to bring them in 
such a geometric arrangement that the condition for crossing 
can easily be applied. These transformations include one transla-
tion and three rotations around the three axes of the orthogonal 
 coordinate system.

Figure 2 | (A) Example of two line pieces A and D that do not cross. Although 
the projection dV of D onto the plane V intersects with A, the projection dW of D 
onto the plane W through A and parallel to D does not. (B) Two line pieces A and 
D that do cross, because the projection dW of line piece D onto the plane W 
through A and parallel to D intersects line piece A. The distance between A and D 
is given by the length of the orthogonal connection line C.

Figure 3 | Translation of the line pieces PQ and RS toward line pieces pq 
and rs, respectively such that point p coincides with the origin O.

Figure 4 | rotation of line pieces pq and rs around Z-axis into p1q and 

1r1s, respectively, and such that 1q rotates into ZX-plane.
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By this rotation, point Q is rotated onto the X-axis, thus giving 
point 

2
q zero y- and z-coordinates and making the x-coordinate 

equal to the length of line piece PQ.
The rotations of 

1
r and 

1
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2
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2
s proceed similarly 

via
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using the expressions for 
1
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 and 
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using the expressions for 
1
r

x
 and 

1
r

z, 
followed by further elaboration. 

In a similar way we obtain for 
2
s

Here, l denotes the length of the projection of Oq onto the 
XY-plane with
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with PQ q q qx y z= + +2 2 2  denoting the length of line piece PQ

For the rotation equations we obtain
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By this rotation, point q is rotated into the ZX-plane making its 
y-coordinate equal to zero, and its x-coordinate equal to the length 
of the projection of Oq onto the XY-plane. Of course, the lengths 
of line pieces O

1
q and Oq are equal to the length of the original 

line piece PQ (O
1
q = Oq = PQ). The rotations of r and s toward 
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1
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Transformation III – Second rotation of 1q, 1r, and 1s around Y-axis into 

2q, 2r, and 2s, respectively, such that 2q is on the X-axis, thus making 
the line piece O2q to coincide with the X-axis
The rotation around the Y-axis, see Figure 5, proceeds via 
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If ε equals the angle of O
1
q with the x-axis then the rotation 

angle β is equal to -ε, thus
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Figure 5 | rotation of line pieces p1q and 1r1s around Y-axis into p2q and 

2r2s, respectively, with 2q on the X- axis.
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Because also the expression for 
2
s

x
 will occur frequently in fol-

lowing expressions we have assigned it the special symbol C
S
 = 

2
s

x

Transformation IV – third rotation of 2q, 2r, and 2s around X-axis into 3q, 

3r, and 3s such that the rotated line piece 3r3s runs parallel to the 
ZX-plane, thus with 3r and 3s having equal y-coordinates
With the original line piece PQ transformed to coincide with 
the X-axis, the final rotation will be around the X-axis in order 
to position the original line piece RS parallel to the ZX-plane 
(Figure 6).

The rotation around the X-axis proceeds via 
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metrical considerations. Let 
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the squared length of the projections of the respective line pieces 
in the YZ-plane. With the fraction f

v
 the y- and z-coordinates of 

point V can be calculated as
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When both line pieces PQ and RS are in one plane and are 
running parallel, then line piece 
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2
s′ coincide and the length l r s2 2′ ′  is 

zero. Then the coordinates V
y
 and V

z 
coincide with those of 

2
r′ 

and 
2
s′

V r s V r sy y y z zz
= ′ = ′ = ′ = ′2 2 2 2,

 
(20)

With the length of the line piece OV l V VOV y z( ),= +2 2  the ori-
entation angle δ of line piece OV is obtained as

sin , cosδ δ=
+

= =
+

=V

V V

V

l

V

V V

V

l
z

y z

z
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y

y z

y
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Concerning the rotation angle α, vector OV needs to be rotated 
toward the positive Y-axis implicating a rotation over −δ, thus

sin sin sin

cos cos cos

α δ δ

α δ δ

= − = − = −

= − = =

V

l

V

l

z

OV

y

OV  

(22)

The rotations in Eq. 17 
3
r = Rot

X
 (α). 

2
r and 

3
s = Rot

X
 (α). 

2
s can 

now be made explicit as

Figure 6 | (A) Shows the rotation of line pieces p2q and 2r2s around X-axis 
into p3q and 3r3s, respectively, such that 3r3s, runs parallel to ZX-plane. (B) 
Illustrates the rotation of the projections of the line pieces onto the YZ-plane. 
(C) Illustrates the rotation when both line pieces are in one plane but not 
parallel. Then line piece 2r2s crosses the X-axis and its projection intersects the 
origin.
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Thus for non-parallel line pieces in one plane, the rotations in 
Eq. 17 

3
r = Rot

X
 (α). 

2
r and 

3
s = Rot

X
 (α). 

2
s become
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and similarly
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Applying the conditions for crossing line pieces
After the series of transformations the line pieces O

3
q and

 3
r

3
s are 

in the geometrical positions of O
3
q coinciding with the X-axis, and

 

3
r

3
s running parallel to the ZX-plane (Figure 7).
Now it can easily be determined whether they are crossing. 

With 
3
r

3
s running parallel to the ZX-plane, its projection 

3
r′

3
s′ 

onto the XY-plane runs parallel to the X-axis. If (A) 
3
r

3
s inter-

sects the XY-plane, and (B) if this intersection point u of 
3
r

3
s 

with the XY-plane has an x-coordinate within the length of 
3
p

3
q 

(
3
p

x
 ≤ u

x
 ≤ 

3
q

x
) then O

3
q and 

3
r

3
s are crossing line pieces and the 

perpendicular line of u onto X-axis ut is the orthogonal shortest 
distance between the line pieces.

Condition A: Line piece 
3
r

3
s crosses the XY-plane if the product 

of the z-coordinates of 
3
r and 

3
s is negative or if one or both of 

them equals zero, thus if

3 3 0r sz z⋅ ≤  
(29)
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and similarly
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By the rotation the points 
3
r and 

3
s have obtained equal 

y-coordinates.

Line pieces PQ and RS in one plane. When both line pieces PQ 
and RS are in one plane but not parallel they (or their elongations) 
have an intersection point, the line piece 

2
r′

2
s′ has an orientation 

through the origin (i.e., the line piece 
2
r′

2
s′ or its elongation inter-

sects the X-axis), and the length of line piece OV is equal to zero. 
Then the projections of both points have equal ratios for their 
Z- and Y-coordinates
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The orientation of the perpendicular to line piece 
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given by
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such that
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Figure 7 | Determination of whether line pieces O3q and 3r3s are 
crossing. Then, line piece 3r3s (running parallel to ZX-plane) should intersect 
the XY-plane and the intersection point should have an x-coordinate 
overlapping line piece O3q.
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on the line piece PQ and the crossing point U on RS to be at a 
fraction of

f U RS
u r

s r
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C C
x x

x x
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S R

( | ) = −
−

= −
−

3

3 3  
(36)

of the line piece RS. The orthogonal distance between two crossing 
line pieces thus is between the point T(x, y, z) on PQ
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and the point U(x, y, z) on RS
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and is equal to

TU T U T U T Ux x y y z z= − + − + −( ) ( ) ( )2 2 2

 
(39)

In the final step the orthogonal distance TU is tested against a 
given proximity criterion value.

alternatIve aPProach for testIng crossIng  
of lIne PIeces
The approach followed in this paper was first to test the crossing 
property of line pieces, followed by the calculation of the orthogonal 
distance. An alternative approach was introduced by Dan Sunday in 
his algorithm on the softsurfer.com website (http://softsurfer.com/
Archive/algorithm_0106/algorithm_0106.htm). This algorithm 
first determines the crossing point of the infinite lines through 
the line pieces, followed by a test of whether or not the orthogo-
nal connection line intersects the line pieces themselves and if so, 
followed by the distance calculation. The procedure of Sunday is 
described in “Analytical Approach” of Appendix and includes an 
algorithm for calculating the shortest distance between two non-
crossing line pieces, i.e., when the line piece extensions appear to 
cross outside the range of the line pieces.

results
The “old” synapse formation model based on distance only and 
the “new” one based on crossing and distance have been applied 
to a network of 25 Layer 2/3 pyramidal neurons, with their cell 
bodies generated within a sphere of radius 43 μm with minimum 
neuron separation of 20 μm. The neurons were generated using 
the NETMORPH simulator (Koene et al., 2009) based on growth 
parameter values optimized on a data set of reconstructed rat cer-
ebral cortex L2/3 pyramidal neurons made available by Svoboda 
through the www.neuromorpho.org website (Ascoli et al., 2007). 
Examples are illustrated in Figure 8.

Outcomes of the “old” and “new” synapse formation model are 
illustrated in Figures 9A–D. The figures show the axons (green), 
dendrites (red) and the synapse locations (small blue spheres). 
Figures 9A,B show the locations of candidate synapses when the 
crossing condition was not applied and only the shortest distance 

If both coordinates are zero, line piece 
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s runs parallel to O
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q 

and is in the XY-plane. If one of the coordinates is zero, line piece 

3
r

3
s has one point in the XY-plane.
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q originates from the transformed line piece PQ its length 
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If both conditions (A) and (B1) are fulfilled the perpendicular 
distance from intersection point u of 

3
r

3
s with the XY-plane to the 

point t on the line piece O
3
q can be determined as
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If 
3
r

3
s runs parallel to O

3
q in the XY-plane, thus with both 

3
r

z
 = 0 

and 
3
s

z
 = 0, a choice is made for the position of the orthogonal 

connection line with
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The final condition (B2) requires that the intersection point is 
within the length of O

3
q, thus
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The fractions of the line pieces where the orthogonal connection 
intersects the line pieces is independent of the transformations 
applied and therefore we can derive the crossing point T on PQ 
to be at a fraction
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in Figure 9A, 111104 in Figure 9B, 1188 in Figure 9C, and 1555 in 
Figure 9D, respectively. Comparing these numbers as well as the 
pictures in the top and bottom row makes clear how the distance-
based approach (top row) results in a strong clustering of synapses 
and how this is prevented by applying the crossing condition (bottom 
row). Comparing the synapse numbers as well as the pictures for 
“long” (left column) and “short” line pieces (right column) illustrates 
that the synapse formation model based on distance only is highly 

between line pieces was tested, using the algorithm based on Sunday’s 
approach (Shortest Distance Between Two Non-Crossing Line 
Pieces). Figures 9C,D show the locations of candidate synapses when 
the crossing condition was applied and the orthogonal connection 
was subjected to the distance criterion. In all four panels the distance 
criterion was 4 μm. The results in Figures 9A,C were obtained with 
a time step parameter of 20000 s, and those in Figures 9B,D with a 
time step parameter of 20 s. The number of synapses formed is 32799 

Figure 9 | illustrations of spatial distributions of synaptic contacts in 
NeTMOrPH generated networks. The figures show the cell bodies (white 
spheres), axons (green), dendrites (red), and the synaptic contacts (small blue 
spheres). A distance criterion of 4 μm was used for finding synaptic contacts. 
Top row panels (A) and (B) show the result of the synapse formation model 
based on distance only. The bottom row panels (C) and (D) show the results of 
the new synapse formation model based on crossing and distance. The left 
column panels (A) and (C) are obtained with a time step parameter 

dt = 20000 s. The right column panels (B) and (D) are obtained with a time step 
parameter dt = 20 s. The number of synapses formed is 32799 in (A), 111104 in 
(B), 1188 in (C), and 1555 in (D), respectively. The figure illustrates the clustering 
of synaptic contacts in the distance-based model (top row) and the lack of 
clustering in the new model by the additional crossing condition (bottom row). 
The synapse numbers also illustrates the sensitivity of the distance-based 
model for the length scale of the line pieces and the strongly reduced 
dependency of the crossing-based model.

Figure 8 | Visualization of experimental reconstructed and computer generated neurons. Axons are in green and dendrites are in red. (A) Four L2/3 rat cortical 
pyramidal neurons by Svoboda from the www.neuromorpho.org database. (B) Six neurons generated by NETMORPH using growth parameters optimized on the 
dataset of Svoboda (Koene et al., 2009).
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(i.e., synapses were formed when an axon and a dendrite came within 
2 μm of each other, a distance criterion also used by Stepanyants and 
Chklovskii, 2005). The new synapse formation model has been applied 
with distance criteria of 2, 4, and 6 μm, respectively. The results of these 
simulations are shown in Figure 10, summarizing the distributions 
of the number of synaptic contacts per connection.

The left column of Figure 10 shows the distribution of number 
of contacts/connection versus frequency for a synapse formation 
model based only on distance (see Shortest Distance Between Two 
Non-Crossing Line Pieces). The distributions illustrate the large 
number of contacts per connection as a result of the clustering 
effect when only a distance criterion is used. The distributions in the 
second, third, and fourth column are obtained with the new synapse 

 sensitive to the length scale (with synapse numbers 32799 versus 
111104, respectively) while the synapse formation model based on 
crossing and distance grossly reduced this dependency (with synapse 
numbers 1188 versus 1555, respectively).

With the new synapse formation model, a first series of simulations 
have been performed on the number of synaptic contacts per con-
nection between neuron pairs. To this end networks were generated 
with the NETMORPH simulator of 250 layer 2/3 pyramidal neurons 
arranged in a sphere with a radius of 93 μm with realistic density 
of 75,000 mm−3 (Hellwig, 2000). The minimum separation between 
somata was 20 μm. Both the old synapse formation model based on 
distance only, as well as the new one based on crossing and distance, 
were used. For the old model a distance criterion of 2 μm was used 

Figure 10 | Distributions of the number of contacts per connection. 
Synaptic connectivity in a simulated NETMORPH network of 250 layer 2/3 
pyramidal neurons with their cell bodies arranged in a sphere with realistic 
density of 75,000 mm−3 (Hellwig, 2000). The radius of the sphere is 93 μm. The 
minimum separation between somata is 20 μm. Column 1, distributions 
obtained with a synapse formation model based only on distance (see “Shortest 
Distance Between Two Non-Crossing Line Pieces”), with a distance criterion of 
2 μm. Columns 2–4, distributions obtained with the new synapse formation 

model based on crossing and distance, with distance criteria of 2 μm (second 
column), 4 μm (third column) and 6 μm (fourth column). Results are shown for 
different values of the time step parameter (rows) from dt = 20 s (top row) to 
dt = 20000 s (bottom row). The time step parameter relates to the length scale 
of the individual line pieces in the branching structures of axons and dendrites. 
The distance-based synapse formation model (first column) makes the number 
of contacts highly sensitive to this length scale. The new synapse formation 
model (columns 2–4) strongly reduces this dependency.
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evaluating proximity of all pairs of line pieces that constitute both 
neuronal structures. Note that proximity is here taken between the 
axial center lines and that a criterion of proximity should consider 
both the branch diameters and the distance between the branch 
exteriors (such as spine and bouton lengths).

The disadvantage of a straightforward distance criterion is that 
it may be met by several combinations of nearby line pieces, result-
ing in clusters of candidate synaptic sites. Additionally, this number 
appeared to be sensitive to the length scale of the individual line 
pieces. The procedure introduced in this study aimed at representing 
the places where axonal and dendritic branches are sufficiently close 
by a single candidate synaptic site. To this end the line piece cross-
ing criterion was introduced in addition to the distance criterion. 
This was based on the notion that the shortest distance between two 
infinite lines in 3D is determined by the length of the orthogonal 
connection line at the unique site of crossing of the infinite lines. Also 
two chains of line pieces will generally contain only one unique pair 
of mutual line pieces that fulfills the geometrical condition of cross-
ing and identifies the unique location of shortest distance between 
the two chains of line pieces. For this reason, the crossing condition 
was introduced in addition to the distance criterion to eliminate the 
clustering artifact and to reduce the length scale dependency.

The paper describes the derivation of the crossing conditions by 
applying a series of 3D transformations to the line piece pair to bring 
them in such a 3D position that crossing can easily be determined. The 
conditions for crossing are finally summarized in a series of tests to be 
applied to all dendritic and axonal line piece pairs of two neuronal rep-
resentations. The performance of the “new” synapse detection method 
has been illustrated visually in tests of the “old” and the “new” method, 
and quantitatively in terms of distributions of the number of con-
tacts between connected neuron pairs. The obtained mean number 
of contacts per connection appeared to be in excellent agreement 
with the available experimental data. The frequency distributions for 
the number of contacts per connection had a monotone decreasing 
shape. Because of the small number of observations in experimental 
data this prediction is still waiting validation. The present outcomes 
clearly demonstrated that the new synapse detection model based on 
crossing and distance eliminated the clustering effect of the old model 
based on distance only, and reduced significantly the dependence on 
the length scale of the line pieces.

Although two chains of line pieces will generally contain only 
one unique pair of crossing line pieces, more than one crossing 
pair may occur under certain geometrical conditions. For instance, 
when a certain line piece A1 of chain A is orthogonal and inter-
sects the plane formed by two subsequent line pieces B1 and B2 of 
another chain B, then both B1 and B2 may cross the A1 line piece. 
If so, and if the orthogonal connection in both pairs is meeting the 
distance criterion, then they result in two nearby candidate sites. 
Another case is when two line piece chains are running more or 
less in parallel. Then, crossing line piece pairs may occur at vary-
ing distances along both chains and, when they meet the distance 
criterion, result in as many candidate synaptic sites.

Axonal and dendritic branches may follow straight courses but 
may also meander strongly. Deviations from a straight line influence 
the way axons and dendrites are filling space. The probability of sites 
of near proximity is therefore expected to depend on the tortuos-
ity of axonal and dendritic branches. It is an interesting question 

formation model based on distance and crossing. The 2nd column 
was obtained with the same distance criterion of 2 μm as the 1st 
column and comparing these columns shows how the additional 
crossing criterion reduces the number of contacts per connections 
to realistic values by eliminating the clustering effect. The third and 
fourth column are obtained for larger values of the distance criterion. 
As expected the number of contacts per connection increases with 
this criterion as the likelihood for sufficient proximity also increases, 
with mn(sd) values of 2.0(1.8), 3.4(3.9), and 5.1(6.5) contacts per 
connection for distance criteria of 2, 4, and 6 μm, respectively, and 
for using a time step of dt = 20 s (top row).

Experimental data for the number of synaptic contacts per con-
nection show an average value of mn(sd) 2.8(0.7) (n = 8 pairs) 
between L2/3 pyramidal neurons in the barrel cortex of juvenile 
rats (Feldmeyer et al., 2006), an average value of 4.5(0.5) (n = 13 
pairs) between juvenile rat barrel cortex L4 spiny neurons and L2/3 
pyramidal cells (Feldmeyer et al., 2002), an average of 3.4(1.0) 
(n = 11 pairs) between spiny rat somatosensory cortex L4 neu-
rons (Feldmeyer et al., 1999), and an average number of 3.5 ± 1.8 
putative contacts per connection between juvenile rat somatosen-
sory cortex L5A pyramidal cells (Frick et al., 2008). Hellwig (2000) 
estimated the number of synapses per connection from the overlap 
of voxelized images for nearby neurons to be about 2.5 for L2–L2 
connections and about 1.2 for L3–L2 connections. The voxel size 
used of 1 × 1 × 1 μm3, effectively implemented a distance criterion 
of 1 μm. Although the experimental data originate from a vari-
ety of cell types and cortical areas, experimental numbers are in 
a rather restricted range of 2.5–4.5 contacts per connection. The 
values obtained with our new synapse formation model are in the 
range of 2.0–5.1 contacts per connection (for dt = 20 s) when using 
distance criteria of 2, 4, and 6 μm. It is a remarkable result that the 
simulation outcomes overlap so nicely the range of experimental 
data. Stepanyants and Chklovskii (2005) estimated the number of 
potential synapses from a presynaptic neuron onto a postsynaptic 
neuron on the basis of reconstructed neurons (lower layer-4 spiny 
stellate neurons or layer 3 pyramidal neurons from cat visual cortex) 
as a function of the relative positions of their cell bodies and found 
numbers in the range of 0–6 potential synapses. Our findings are 
also in good agreement with these estimated numbers.

An additional outcome of our present simulations is that the 
frequency distributions are monotone decreasing with the number 
of contacts per connection, a property that is not yet experimentally 
observed due to the low numbers in the published distributions. The 
monotone decreasing distribution may not be surprising as the prob-
ability of having two contacts per connection is expected to be the 
square of the probability of having one contact per neuron pair.

dIscussIon
Axons and dendrites can make synaptic connections at those loca-
tions where they come sufficiently close to each other, typically 
within a distance determined by the length of dendritic spines 
and axonal boutons. The present study aimed at defining a pro-
cedure for finding such locations in networks of neurons whose 
3D geometry is represented by piecewise-linear structures (line 
pieces or cylinders) as is the case in experimental reconstructions 
and in computer generated morphologies from neural simula-
tors. Proximity of axonal and dendritic branches is then tested by 
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whether in real nervous tissue strongly meandering axons and den-
drites make relative more synapses in comparison with straight ones. 
In our computer generated networks this is certainly expected when 
the meandering of the branches is approximated by line pieces with 
varying orientations. In a given area in space one may expect more 
nearby line piece pairs to cross and meeting the distance criterion 
at small length scales then at large length scales of the line pieces. It 
is thus not surprising that a remaining length scale dependency was 
also found with the new synapse formation model.

The algorithm for testing crossing line pieces derived in this 
paper differs from the one of Dan Sunday (Analytical Approach) 
by first testing whether or not two line pieces are crossing, and if 
so, followed by the distance calculation. The algorithm of Sunday, 
in contrast, first calculates the site where the infinite lines through 
the line pieces cross, followed by a test of whether or not this site of 
crossing coincides with the line pieces and if so, also followed by the 
distance calculation. This difference makes the present algorithm 
about 20% faster than Sunday’s algorithm, when implemented in 
FORTRAN code on a Linux system.

The procedure described in this paper identifies the location 
where an axonal and a dendritic branch are sufficiently close by a 
single candidate synaptic site, and is purely based on geometrical 
considerations. Whether or not in the biological tissue at these 
sites synapses will actually form and in which number is a question 
not addressed in this paper. Dendrites may be covered by spines in 
high density suggesting that a nearby axon may form more than 
one synapse close in space. Such a clustering of synapses between 
a single axon and dendrite then has a biological origin and is thus 
principally different from the artifactual clustering caused by the 
search procedure that gave rise to this study. Nearby spines may of 
course also be contacted by axonal branches from different neurons. 
When they all meet the crossing and distance criteria, a clustering 
of candidate synaptic locations between a single dendritic branch 
and these different axons will then still occur.
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aPPendIx
rotatIons In 3d
Figure A1.1 illustrates the used symbols and the clockwise direc-
tions of the rotations around the axes. For the derivation of the 
rotation matrix with, for instance, rotation over angle alpha around 
the X-axis (see Figure A1.2) we obtain:

A AO

A AO

y

z

=

=

cos

sin

δ

δ
 

(A1-1)

′ =
′ = + = ⋅ −[ ]

= −

A A
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y z
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y z
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In matrix notation
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Thus the rotation matrix for a rotation around the X-axis becomes

Rot X ( ) cos sin

sin cos

α α α
α α

= −

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



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
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1 0 0

0

0
 

(A1-4)

Similarly for rotations around the Y-axis and Z-axis we obtain

RotY ( )

cos sin

sin cos
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β β

β β
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Rot Z ( )
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relatIve PosItIon of PoInt D of the PerPendIcular froM PoInt C 
to oPPosIte sIde AB In a trIangle abc
We have

c b c a1 2= ⋅ = ⋅cos , cosα β (A2-1)

and

cos / , cos /α β= + − = + −b c a bc a c b ac2 2 2 2 2 22 2  (A2-2)

thus

c b c a c c a c b c1
2 2 2

2
2 2 22 2= + − = + −/ , /  (A2-3)

For the relative position of D on AB we obtain

f D AB
c

c

b a c

c

f D BA
c
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a b c

c

( | )

( | )

= = − +

= = − +

1
2 2 2
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2 2 2

2

2
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(A2-4)

The 3D coordinates of point D can now directly be obtained 
from the coordinates of A and B as

D A f D AB B A

D A f D AB B A

D A f D AB B

x x x x

y y y y

z z

= + ⋅ −
= + ⋅ −

= + ⋅

( | ) ( )

( | ) ( )

( | ) ( zz zA− )
 

(A2-5)

or

D B f D BA A B

D B f D BA A B

D B f D BA A

x x x x

y y y y

z z

= + ⋅ −
= + ⋅ −

= + ⋅

( | ) ( )
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( | ) ( zz zB− )
 

(A2-6)

If points A and B coincide then point D adopts their coordinates 
and thus

D A B D A B D A Bx x x y y y z z z= = = = = =, ,
 

(A2-7)

In the case of skewed triangles (lowest two triangles in Figure A2), 
the orthogonal lines CD on AB do not end any more on the line piece 
AB itself and the relative positions f(D | AB) and f(D | BA) can get val-
ues outside the range of [0, 1]. The relative position of the perpendicu-
lar ending in a triangle was used in Figure 6B to obtain the position 
of point V (see also Eq. 18). In a skewed triangle this point V would 
not be within the line piece 

2
r

s
s in Figure 6B, implicating that after 

rotation line piece 
3
r

3
s does not intersect the XY-plane. Thus a skewed 

triangle already indicates that the line pieces are not crossing.

exPressIng the crossIng condItIons In terMs of the orIgInal 
coordInates
Some crossing conditions as described in the previous section still 
need to be expressed in terms of the coordinates of the original 
points P, Q, R, and S, or their relative coordinates, p, q, r, and s 

Figure A1.1 | Directions of rotations around the three axes in an 
orthogonal coordinate system.

Figure A1.2 | rotation of line piece AO around X-axis into A′O.
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and for the ratio V
y
/V

z
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Next, the quantities 
3
r

x
, 

3
s

x
, 

3
r

z
, and 

3
s

z
 can be expressed in terms of 

the coordinates of the original points P, Q, R, and S, with the subse-
quent calculation of u

x
. Equations 23 and 24 give us the expressions 

for these quantities as
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For the numerator in the expression for u
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 (Eq. 31) we obtain
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and for the denominator in the expression for u
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 (Eq. 31)
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Now we obtain for the expression of u
x
 (Eq. 31)

after their translations. In particular the quantities f
v
, V

y
,
 
and V

z
 

need further elaboration.
Equations 18 and 19 give us the expressions for f

v
, V
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, and V
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such that we obtain for f
v
, V

y
, and V

z

f
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Figure A2 | Triangles and perpendiculars from point C to opposite side AB.
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As this B1 test does not require a square root floating point 
 operation (for PQ) it generates faster computer code, which is 
relevant if most comparisons in actual circumstances do not meet 
condition B1. If condition B1 is not fulfilled then no crossing and 
stop, else calculate PQ. If condition B1 is fulfilled then proceed.

4. More constants:
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5. Calculate coordinates 
3
r

z
 and 

3
s

z

First test if PQ and RS are parallel line pieces
  5a. If running parallel, i.e., when both 
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, then 
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z
are equal to zero
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 are given by
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with (see Expressing the Crossing Conditions in Terms of the 
Original Coordinates)
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5c. If PQ and RS not in one plane then coordinates 
3
r

z
 and 

3
s

z
 

are obtained as follows
  5c1. Ratio f

v
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  5c2. Coordinates and length of V
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  5c3. Coordinates 
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 and 
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:
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6. Test on crossing condition A that after the rotations line piece 

3
r

3
s intersects the XY-plane:
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with (Eqs. 13 and 16)
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and via Eq. 4 PQ q q qx y z= + +2 2 2

suMMary of calculatIons and crossIng condItIons
Given: the coordinates of the points P(x, y, z), Q(x, y, z), R(x, y, z) 
and S(x, y, z)

1. Translation of P to origin:
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2. Constants:
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⋅ = ⋅ + ⋅ + ⋅

⋅ = ⋅ + ⋅ + ⋅

⋅ = ⋅ + ⋅ + ss qz z⋅
 

(A4-2)

3. Test on crossing condition B1 that after the rotations the line 
pieces should have at least overlapping x-coordinates:

  
PQ q q C

r q

PQ
C

s q

PQR S= ⋅ = ⋅ = ⋅
, ,

  If then andC C C C PQR S R s> > <( )0  
(A4-3)

 or

If C CS R>  then (C S > 0 and C PQR < )
If condition B1 is not fulfilled then no crossing and stop.
Note: because the length PQ is a positive number one may also 
compare the quantities

  
′ = = ⋅

⋅
′ = = ⋅

⋅
C

C

PQ

r q

q q
C

C

PQ

s q

q q
R

R
S

S,

  making condition B1 equivalent to:

  If then and′ > ′ ′ > ′ <C C C CR S R S( )0 1  (A4-4)

  or
If ′ > ′C CS R

’  then ( ′ >CS 0  and ′ <CR 1 )
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A s P s u u Q P

Q P

Q P

Q P

x x

y y

z z

( ) ( )= + ⋅ = − =
−
−
−















 

with vector

 

(A5-1)

and the infinite line B through the points R and S as

B t R t v v S R

S R

S R

S R

x x

y y

z z

( ) ( )= + ⋅ = − =
−
−
−















 

with vector

 

(A5-2)

Note that for s ∈ [0, 1], the point A(s) is positioned on the line 
piece PQ, and that for t ∈ [0, 1], the point B(t) is positioned on 
the line piece RS. Let vector 



w s t( , ) connects a point A(s) on line A 
with a point B(t) on line B as

     

w s t A s B t P R su tv w su tv( , ) ( ) ( )= − = − + − = + −0  (A5-3)

with



w P R0 = −  
(A5-4)

Lines A and B cross each other where the distance between points 
on both lines is the shortest, say at A(s

c
) and B(t

c
). The vector 



wc  
between these points then is orthogonal to line A and line B, and 
we obtain

   

u w v wc c⋅ = ⋅ =0 0, and  
(A5-5)

such that

     

u w s u u t u vc c⋅ + ⋅ − ⋅ =0 0( ) ( )  
(A5-6)

and

     

v w s v u t v vc c⋅ + ⋅ − ⋅ =0 0( ) ( )  (A5-7)

Let us define:

a u u Q P Q P Q P

b u v Q P S R

x x y y z z

x x x x

= ⋅ = − + − + −

= ⋅ = − ⋅ −
+

 

 

( ) ( ) ( )

( ) ( )

2 2 2

(( ) ( ) ( ) ( )

( ) ( )

Q P S R Q P S R

c v v S R S R

y y y y z z z z

x x y y

− ⋅ − + − ⋅ −

= ⋅ = − + − +  2 2 (( )

( ) ( )

( ) ( ) ( )

S R

d u w Q P P R

Q P P R Q P

z z

x x x x

y y y y z z

−

= ⋅ = − ⋅ −
+ − ⋅ − + − ⋅

2

0




(( )

( ) ( )

( ) ( ) ( ) (

P R

e v w S R P R

S R P R S R

z z

x x x x

y y y y z z

−

= ⋅ = − ⋅ −
+ − ⋅ − + − ⋅

 

0

PP Rz z− )
 

(A5-8)

then we obtain

d as bt e bs ctc c c c+ − = + − =0 0and  
(A5-9)

and their solutions as

s
be cd

ac b
t

ae bd

ac bc c= −
−

= −
−2 2

and
 

(A5-10)

With the solutions for s
c
 and t

c
, the points A(s

c
) and B(t

c
) are 

defined and their distance can be calculated as

If condition A is fulfilled (and condition B1 was already fulfilled 
– see step 3) then proceed with calculation of x-coordinate of 
the intersection point.

7. Coordinate u
x
:

  7a. If both line pieces are running parallel, thus both 
3
r

z
 = 0 

and 
3
s

z
 = 0, a choice is made for the position u

x
 as

  

u
C PQ C

C C

u
C PQ

x
R R

R S

x
S

=
−( ) >

=
−

min( , ) max( , )
,

min( , ) max( ,

0

2

0

when or

CC
C CR

S R

)
,

( ) >
2

when
 (A4-13)

  7b. If both line pieces are not running parallel then

  
u

C r C s

r sx
S z R z

z z

= ⋅ − ⋅
−

3 3

3 3  
(A4-14)

8. Test on condition B2 that the intersection point is within the 
length of PQ

  0 ≤ ≤u PQx  
(A4-15)

If finally condition B2 is also fulfilled, then the line pieces are 
crossing and therefore proceed

9. Ratios f
T
 and f

U
:

  
f

u

PQ
f

u C

C CT
x

U
x R

S R

= = −
−

, and
 

(A4-16)

10.Coordinates of the endpoints T and U of the  orthogonal 
distance TU between crossing line pieces PQ and RS, 
respectively:

  

T P f Q P

T P f Q P

T P f Q P

x x T x x

y y T y y

z z T z z

= + ⋅ −
= + ⋅ −

= + ⋅ −

( )

( )

( )

  

U R f S R

U R f S R

U R f S R

x x U x x

y y U y y

z z U z z

= + ⋅ −
= + ⋅ −

= + ⋅ −

( )

( )

( )
 

(A4-17)

  
TU T U T U T Ux x y y z z= − + − + −( ) ( ) ( )2 2 2

AnAlyticAl ApproAch
An alternative approach uses an algorithm taken from the site 
http://softsurfer.com/Archive/algorithm_0106/algorithm_0106.
htm by Dan Sunday.

Shortest distance between two infinite lines
In this analytical geometry approach the shortest distance between 
the two infinite lines through the line pieces PQ and RS is first been 
determined, followed by the test whether the orthogonal connec-
tion line intersects the line pieces PQ and RS, respectively.

The infinite line A through the points P and Q can be 
described as
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This set of equations (for x, y, and z-coordinates) has a solution 
for s and t when

P R Q P S R

P R Q P S R

P R Q P S R

x x x x x x

y y y y y y

z z z z z z

− − −
− − −
− − −

= 0

resulting in

s
b c b c

a b a b
t

a c a c

a b a b
x y y x

x y y x

x y y x

y x x y

=
−
−

=
−
−

and

For the corresponding points A s P s u( ) = + ⋅   and B t R t v( ) = + ⋅ , 
it has subsequently to be determined if they are located on the line 
segments PQ and RS, respectively.

Shortest distance between two non-crossing line pieces
The procedure for calculating the shortest distance between two 
line pieces PQ and RS is based on an algorithm of Dan Sunday 
(http://softsurfer.com/Archive/algorithm_0106/algorithm_0106.
htm) and is taken as the shortest distance between any two points 
on these line pieces, respectively.

A line piece PQ is given by the points on the line A 
(Figure A5.2):

A s P s Q P P su s( ) ( ) .= + − = + ≤ ≤

with 0 1

A line piece RS is given by the points on the line B 
(Figure A5.2):

B t R t S R R tv t( ) ( ) .= + − = + ≤ ≤

with 0 1

If the points A(s
c
) and B(t

c
) at the crossing of infinite lines A 

and B are located on the line segments PQ and RS respectively, 
then they define the orthogonal connection and the line pieces PQ 
and RS themselves do cross. If A(s

c
) and B(t

c
) are located outside 

of the ranges of either one or both of the two line pieces, then we 

dist A s B t w s u t v

w s u t v

w s

c c c c

x c x c x

y

= − = + ⋅ − ⋅ =

=

+ ⋅ − ⋅( )
+ +

( ) ( )
  

0

0

2

0 cc y c y

z c z c z

x x c x x c x

u t v

w s u t v

P R s Q P t S

⋅ − ⋅( )
+ + ⋅ − ⋅( )

=

− + ⋅ − − ⋅ −

2

0

2

( ) ( RR

P R s Q P t S R

P R s Q P t

x

y y c y y c y y

z z c z z c

)

( ) ( )

( )

( )
+ − + ⋅ − − ⋅ −( )
+ − + ⋅ − −

2

2

⋅⋅ −( )( )S Rz z

2

 
(A5-11)

The requirement that the lines pieces PQ and RS themselves need 
to cross (Figure A5.1B) rather than their extensions (Figure  A5.1A) 
can be tested by the values of the parameters s

c
 and t

c
. When they 

are both in the domain [0, 1], thus when

s tc c∈ ∈[ , ] [ , ]0 1 0 1and  
(A5-12)

then the points A(s
c
) and B(t

c
) are on the line pieces PQ and RS, 

respectively.
Two particular cases need further attention.

Line pieces are running parallel. When the two line pieces (and their 
infinite extensions) are running parallel the two equations in (Eq. 
A5-9) are dependent with the denominator (Eq. A5-10) being zero. 
The distance between the parallel lines can be determined by taking 
for instance an arbitrary value for s

c
, say s

c
 = 0, and then solving (Eq. 

A5-9) resulting in t
c
 = d/b = e/c, followed by the calculation of the 

distance using (Eq. A5-11). By running parallel, an infinite number of 
orthogonal connections can be drawn between both lines. Additional 
tests are now needed to determine whether both line pieces share a 
range where they intersect both these orthogonal connection lines. 
If not, then both line pieces are not crossing. If yes, then a choice 
need to be made for a particular orthogonal connection line and the 
intersection points at both line pieces (in order to locate a synaptic 
connection); see the choice made in Eqs. 32 and 33.

Line pieces are not parallel but in one plane. When the two line 
pieces are not parallel but still in one plane then they intersect and 
a solution exists for the equality A(s) = B(t). Then, using Eqs. A5-1 
and A5-2 we obtain

P s u R t v+ ⋅ = + ⋅ 

 or P R s Q P t S R− + ⋅ − − ⋅ − =( ) ( ) 0

Figure A5.1 | (A,B) Two line pieces PQ and RS and the infinite lines A and B 
through these line pieces. The infinite lines A and B cross each other at the 
location where the orthogonal connection line w is drawn intersecting the lines 
at A(sc) and B(tc). The line pieces PQ and RS in (A) are not crossing as they are 
not intersected by the orthogonal connection line, while in (B) they do cross.

Figure A5.2 | Three spatial configurations of non-crossing line pieces PQ 
(red) and RS (blue). The infinite lines A and B through PQ and RS, 
respectively, cross at the orthogonal connection line A(sc)B(tc)(green). The 
shortest distance between the line pieces depends on their spatial 
configuration and is depicted by the pink lines SQ in (A), SP in (C) and from S 
to some point on PQ in (B).
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w t w su v w su v2
0 01( , ) ( ) ( ).= + − ⋅ + −     

Taking the derivative with respect to s we obtain

0 2
2

0= = − ⋅ + −
d w

ds
u w su v
   

( ) such that

s
u v u w

u u0
0= ⋅ − ⋅

⋅

   

 

Therefore the shortest distance occurs between the points S and 
A(s

0
). A similar procedure applies for other configurations, with 

for instance B(t
c
) on line piece RS and a search for the closest point 

on PQ.

need to find the values of s and t which define the shortest con-
nection 

   

w s t A s B t w su tv( , ) ( ) ( )= − = + −0  between the line pieces. 
Minimizing the length of 



w s t( , ) is equivalent to minimizing |w(s, t)|2, 
thus minimizing 

     

w su tv w su tv0 0+ −( )⋅ + −( ) . For the infinite lines 
this function has its true, global minimum at their crossing site (s

c
, 

t
c
). With the restrictions of 0 ≤ s ≤ 1 and 0 ≤ t ≤ 1, different configura-

tions need to be distinguished. When the points A(s
c
) and B(t

c
) are 

outside both line pieces, the shortest distance is between the points 
of both line pieces closest to s

c
 and t

c
, i.e., SQ in Figure A5.2A, and 

SP in Figure A5.2C. If only one of the points A(s
c
) and B(t

c
) is on its 

respective line piece the shortest distance is between some point on 
this line piece and the closest point on the other line piece. Suppose 
that A(s

c
) is on line piece PQ and the nearest point on line piece RS 

is S (i.e., t = 1) (see Figure A5.2B) then we need to minimize




