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Following the works of Ramón-y-Cajal, the main interest in 
 neuroscience was shifted to electrophysiology, which dominated 
much of the research in this area for many decades thereon. The 
relatively few approaches to neuromorphometry developed along 
this period include the Sholl (1953) analysis, fractal dimension char-
acterization (Montague and Friedlander, 1991), influence area analy-
sis (Toris et al., 1995), and dendrogram representation (Poznanski, 
1992). More recently, the scientific community resumed interest 
on neuromorphological research. Improvements in high definition 
visualization (Hosking and Schwartz, 2009), as well as in the meth-
odology used for analysis paved the way for the development of 
computational neuromorphometry (Costa et al., 2002), a research 
field aimed at quantifying the shape of these cells. At the same time, 
the development of new methods and measurements (Costa, 2003; 
Rodrigues et al., 2005) complemented the characterization and mod-
eling of neuronal systems. Neuromorphological analysis comprises 
both characterization (Costa and Velte, 1999; Costa et al., 2007) and 
classification (Bota and Swanson, 2007) of neuronal cells through 
multivariate techniques, which require choosing appropriate meas-
urements (Costa, 1995) and the application of pattern recognition 
methods. A particularly relevant approach involves the grouping of 
neuronal cells into categories according to their morphological simi-
larity. Such an approach is important for understanding the heteroge-
neity of the groups, as well as for unveiling the relationship between 
neuronal structure and function, and can be applied to comparative 
anatomy, developmental neurobiology, and diagnosis.

One of the most promising recent trends in neuroscience has 
been the advent of public data repository such as the NeuroMorpho 
Database1 (Ascoli et al., 2007). Initiated in 2006, this database has 

1 IntroductIon
Despite the continuing scientific and technological advances in 
neuroscience, the understanding of the nervous system of liv-
ing organisms still remains largely incipient. Among the several 
problems which have constrained the advances in this area, one of 
the most prominent issues regards the relationship between shape 
and functioning of neuronal cells (Costa et al., 2002; Schierwagen, 
2008; Wen and Chklovskii, 2008). Remarkably, the nervous sys-
tems of most animals are composed by neuronal cells exhibiting 
a large variety of shapes. This was first realized through the pio-
neering work of Cajal (1989), who went so far as to assign human 
intelligence to the “unaccustomed” variety of neuronal morphol-
ogy. Indeed, neuronal cells vary from relatively simple structures 
such as the bipolar cells of the retina, to the exuberant complexity 
of Purkinje and some pyramidal cells (Masland, 2004; Bota and 
Swanson, 2007). The emerging dynamics in neuronal systems is 
ultimately the consequence of established synaptic connections, 
which are to a large extent defined by the neuronal branching 
pattern (Kreindler, 1965; Elston and Rosa, 2000), relative posi-
tion of the neuronal cells, and the respective history of dynamical 
response to stimuli presentation. For instance, cells which are very 
simple and separated from each other tend to make a smaller 
number of synapses. Therefore, the proper understanding of the 
connectivity patterns in the nervous system demands the analysis 
of neuronal morphology. In addition, the dynamical operation 
of neurons is also intrinsically constrained and even defined by 
their respective shapes (Koch et al., 1982; Fukuda et al., 1984; 
Agmon-Snir et al., 1998; Segev, 1998; Jan and Jan, 2003; Pérez-
Reche et al., 2010). For all such reasons, it becomes exceedingly 
important to investigate neuronal morphology in a systematic 
and comprehensive way.
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radial density function is discussed in detail. Finally, a numeri-
cal model for generating diverse branching tree-like structures is 
developed and used for exploring the morphospace.

2.1 the neuroMorpho database
NeuroMorpho (Ascoli et al., 2007) is an on-line public reposi-
tory of reconstructed neurons, obtained from available WWW 
databases and direct peer-to-peer requests to individual labora-
tories and researchers. The purpose of this repository is to facili-
tate neuronal data access and sharing in the scientific community. 
New data is only uploaded by administrators, who first standard-
ize the data format. The Computational Neuroanatomy Group 
(Krasnow Institute for Advanced Study, George Mason University), 
under the direction of Prof. Giorgio Ascoli, is the developer and 
maintainer of NeuroMorpho. This repository integrates the 
Neuroscience Information Framework (NIF) consortium (Halavi 
et al., 2008), which include several academic institutions, such as 
Cornell, Stanford, and California Universities. The first version of 
NeuroMorpho (Alpha) was released on August 01, 2006, with 932 
neurons. Since then, it has being continuously updated to include 
more neurons and to improve the site functionality (Halavi et al., 
2008; Figure 1). At the present version (4.0), it has 5673 neurons. 
The available data includes 3-D reconstructions and measurements 
(volume, diameter, etc.), as well as general information such as the 
data provider (researcher and laboratory), reference papers and 
URLs related to the data, experiment setup (protocol, staining 
method, etc.), animal type (species, age, etc.), brain region and 
sub-region, neuron class and sub-class, and methods and software 
used in the reconstruction.

Usually, neuronal morphology data acquisition involves the 
sectioning of the neuron and their serial reconstruction. It is 
well known that this process can potentially introduce artifacts 
(Horcholle-Bossavit et al., 2000; Hamam and Kennedy, 2003), such 
as shrinkage and distortion caused by fixation, dehydration, loss of 

grown steadily to become what is the most complete database of 
neuronal morphology, comprising currently 5673 cells of several 
types and species. It includes 3-D reconstructions, measurements, 
softwares, and general information about the cells, such as refer-
ence papers, animal species, brain region, neuron class, amongst 
many others.

The current work explores the availability of such welcomed 
public repositories in order to perform a systematic and compre-
hensive investigation of the morphological characteristics of a large 
and representative set of neurons. More specifically, we use opti-
mal multivariate statistical approaches in order to investigate the 
distribution of neuronal geometry as characterized by the several 
measurements available in the NeuroMorpho database. The mul-
tidimensional measurement space where the cells are mapped is 
henceforth called the neuromorphological space, NS for short.

In this paper, we address the following important questions: 
(i) What are the most populated areas in the NS and where are 
their boundaries? (ii) Out of the set of possible tree-like structures, 
which are actually found in biological neurons? (iii) Do the cells of 
the same type, tissue, or species tend to cluster together? (iv) Are 
there redundancies between the available geometrical features, as 
quantified by their pairwise correlations? (v) What are the features 
contributing more decisively for the variability of the cell mor-
phologies and separation of different types of cells?

Each of the neuronal cells in NeuroMorpho is characterized by 
20 available features quantifying different aspects of the respective 
morphology. In order to allow the visualization of the distribution 
of the cells in the NS, we resort to two optimal projection methods, 
namely, principal component analysis (PCA) and canonical analy-
sis. While the former defines the projection axes so as to maximize 
the variability of the data, the latter performs the projection so as to 
maximize the separation between the several imposed categories. 
We also propose a simple reference model of tree-like structures, 
which is capable of generating the most diverse types of trees. 
This model is used in order to identify, in the projected spaces, 
the overall region of almost every possible tree-like structures 
with unbiased branching. So, we can compare how the biological 
neurons are distributed within this wide region of geometrically 
possible shapes. The application of the projection methods also 
paved the way to identifying the contribution of every considered 
feature for the variability of the original data as well as for the 
separation between the groups of cells (type, tissue, or species). 
We also performed a density analysis in the original 20-D space, 
in order to complement the clustering structures observed in the 
projection approach.

Several relevant results are obtained. The most remarkable find-
ing is that the biological neurons occupy only a rather small portion 
of the larger space of the unbiased branched structures. The article 
starts by presenting the several involved basic concepts, methods 
and models, and follows by presenting and discussing the results.

2 MaterIals and Methods
In this section, we describe the NeuroMorpho database and the 
characteristics (measurements) of neural cells available from this 
repository. Then, the concept of morphospace is introduced and the 
statistical methods of its analysis are briefly described. In particular, 
a new approach to analysis of the morphospace based on use of 

Figure 1 | Version releases and evolution of the number of neurons in 
the NeuroMorpho database: since its release in 2006, data has being 
continuously added and currently it is the largest database of neuronal 
morphology, containing 5673 cells.
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height, width, and depth of a neuron, calculated after its alignment 
along the principal axis obtained by PCA. The number of stems, 
bifurcations, and branches in a neuron correspond to the measure-
ments 4, 5, and 6. The feature 7 is the diameter averaged over all 
compartments. Features from 8 to 10 are length, surface area, and 
volume, respectively, which are summed over all compartments.

The branches have their associated measurements numbered 
from 11 to 15. Measurement 11 is the maximum Euclidean distance 
between a compartment and the soma, while the path distance 
(12) is the maximum of the sums of the lengths of the compart-
ments between two endpoints. Contraction (13) is the average ratio 
between the Euclidean distance and its path distance. Measure 14 is 
the maximum branching order with respect to the soma, which has 
order 0. This measurement corresponds to the topological distance 
of a branch to the soma. Fragmentation (15) is the total sum of 
compartments in a branch. Only compartments between bifurca-
tions or between a bifurcation and a tip are considered.

Measurement 16 is the soma surface area. The soma can be of 
two types: a sphere or a set of compartments. In the latter case, 
the area is calculated as the sum of the area surfaces of the soma 
compartments.

The other measurements are related to bifurcations. Pk_classic 
(17) is the average ratio ( )/ ,d d br r r

1 2+  where r is the Rall’s power 
law value, set in this measure as 1.5, and b, d

1
, and d

2
 are the diam-

eters of the bifurcation compartments (the parent and the two 
daughters, respectively). The partition asymmetry (18) considers 
the average number of tips on the left and on the right daughter 
subtrees of a bifurcation as n1 and n2 in the expression |n1 − n2|/
(n1 + n2 − 2). In Figure 2, the analyzed bifurcation has vertical 
stripes, while the left daughter subtree has horizontal stripes and 
the right one has a pattern of squares. Then, in this example, n1 = 3 
and n2 = 2 gives |3 − 2|/(3 + 2 − 2) = 0.33. Measurement 19 is the 
angle between two daughter compartments in a bifurcation aver-
aged over all bifurcation points, while measurement 20 is the angle 
regarding the endpoints of two daughter branches also averaged 
over all bifurcation points.

2.3 ModelIng the hyperspace of bIologIcal forMs
A theoretical shape-hyperspace, in an analogy with geometrical 
concepts, can be understood as a n-dimensional space, which axes 
are associated respectively with some measurements. In biology, 
particularly for morphological analysis, these measurements refer 
to shape properties, such as length, height, depth, or volume of a 
living organism or structure. Ideally, the morphospace can be con-
structed by modeling biological entities through variations of these 
parameters and considering all possible individuals whose existence 
is deemed possible. So, although continuous, the morphospace is 
ultimately reduced as a consequence of several constraints imposed 
by specific properties of the organisms and their habitat.

By using the morphospace, it becomes possible to define regions 
and boundaries corresponding to allowed geometrical, functional, 
phylogenetically, and developmental properties of the investigated 
biological entities (McGhee, 2006; see Figure 3). An important sub-
set of the shape-hyperspace corresponds to the set of geometrically 
possible forms (GPF), in the sense that the points outside this region 
belong to the set of geometrically impossible forms (GIF). There are 
two exclusive sub-regions within the GPF subspace distinguished 

tissue parts during sectioning, and misalignment of slices during 
reconstruction. Also, the image segmentation and the connection of 
the neuronal parts between sections in the reconstruction are chal-
lenging tasks (Meijering, 2010). Because each of these artifacts will 
imply specific, different bias on the estimation of each of the pos-
sible neuromorphological measurements, a comprehensive study 
would need to be carried out at quantifying and characterizing 
such biases. At any rate, such problems tend to be reduced with the 
advances in experimental procedures and equipment.

2.2 MeasureMents
In order to study the morphology of neurons, it is necessary to 
represent and characterize them in some way suitable for process-
ing and analysis. NeuroMorpho provides the L-Measure (Scorcioni 
et al., 2008), a tool to extract several measurements from the neu-
rons in the database. The measurements used in this work are illus-
trated in Figure 2, numbered from 1 to 20 and named as in the 
software documentation.

The concepts of compartment, branch, and bifurcation are illus-
trated in Figure 2. Compartments are segments represented as cyl-
inders with diameter and extremity points coordinates. Branches 
are formed with one or more compartments between the soma, the 
bifurcations, and the tips. Bifurcations are points where a branch 
splits into two other branches. Measurements 1, 2, and 3 are the 

Figure 2 | NeuroMorpho measurements.
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In addition, there is an empirical morphospace which is defined 
as the space of the experimental measurements extracted from real 
individuals. The investigation of the empirical morphospace can 
help us to make hypotheses such as what factors along both evolu-
tionary and developmental stages affect the subsequent trajectories 
inside the morphospace.

In order to simulate a possible representation of theoretical mor-
phospace, algorithms aimed at producing a set of artificial neurons 
can be implemented. They are based on statistical models which 
select some morphological features and vary the corresponding 
measurements, checking their existence or even fitness. Of course, 
this method is unable to reproduce accurately the natural processes 
of life creation and development. At the same time, we should take 
into account that the adopted set of empirical individuals contains 
only a fraction of the natural neurons. Nevertheless, both these 
subsets will provide insights, as well as an estimate for the density 
and location of the empirical data within the simulated theoretical 
hyperspace. It is important to note that several models for genera-
tion of tree-like neuronal structures have been proposed before, 
which some of them are based on stochastic sampling of real fea-
tures (Ascoli and Krichmar, 2000; van Ooyen and van Pelt, 2002; van 
Pelt and Uylings, 2007), entropy maximization (Wen et al., 2009), 
and diffusion-limited aggregation process (Luczak, 2006).

As proposed in this work, the morphological theoretical approach 
can be applied to neuroscience in order to model the hyperspace 
of neuronal shapes (neuronal morphospace). Considering a set 
of measurements extracted from some real set of neuronal cells 
by using the available measurements in NeuroMorpho database, 
we can model the empirical morphospace and verify the behavior 
(boundaries and overlaps) of each of the above defined regions.

2.4 prIncIpal coMponent analysIs
Principal component analysis (Duda et al., 2001; Härdle and Simar, 
2007) is a powerful statistical method aiming to reduce the dimen-
sion of problems with many measurements. In several applications, 
PCA promotes the elimination of redundancies, transforming a 
system described by a set of possibly correlated variables into a new 
fully uncorrelated system. The technique changes the orientation of 
the axes in the original space, and then project the measurements 
space to the subspace characterized by the first principal axes with 
maximal dispersion.

by the functionality of the forms, namely, between those that are 
functionally viable and allow the biological entity to survive (func-
tional possible forms – FPF) and those that are not functionally 
viable (nonfunctional possible forms – NPF).

These four classifications (GPF, GIF, FPF, and NPF) are based on 
the extrinsic constraints that are imposed by physical or geometrical 
laws, in contrast to the intrinsic constraints which refer to the biology 
of a specific organism. The region defined by the intrinsic proper-
ties can be subdivided further into developmental (developmentally 
possible form – DPF) and phylogenetic (phylogenetically possible 
forms – PPF) constraints for a given species, respectively limited by 
its potential for development and its genetic coding. It is possible to 
have overlaps between the PPF region and the NPF and GIF spaces. 
The set defined by the overlaps of these regions comprises the theo-
retical shape-hyperspace, denoted by morphospace. As an example, 
a set of cells which are related to genetic diseases must belong to the 
phylogenetic possible region, but its respective developmental region 
(DPF) is constrained by the viability of the life of the organism, so 
that a shorter life implies for that individual to be assigned to the 
impossible developmental region (DIF).

Figure 3 | generic representation of the several possible regions in a 
shape-hyperspace.

-3.97 -1.63 0.71 3.06 5.40 0 1 2 3 4 5

A B

Figure 4 | example of radial density function. (A) Distribution of real neurons in the 2-D feature space. (B) Respective radial density function for the central neuron (in red).
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Then, we can calculate the eigenvalues and eigenvectors of the 
matrix S Sintra inter

−1 , where Sintra
−1  is the inverse of S

intra
. After that, the 

eigenvalues must be ordered in descending order. Afterwards, we 
can pick up the eigenvectors corresponding to the highest eigen-
values to build up the new data projections. For example, if we 
choose the three eigenvectors corresponding to the three high-
est eigenvalues, we can reduce the data-space dimensionality to 3, 
allowing us to visualize the data.

2.6 analysIs of the hyperspace densIty
Although, in the present work, we mainly focus on analysis of the 
2-D spaces obtained from the projections of 20-D original spaces, 
we can also investigate the relationship between the several neu-
ronal cells in the original high-dimensional space using a radial 
density approach. This will be done by evaluating a radial density 
function around each neuron in the original space. The radial func-
tion f(R) gives the number of neurons that are located between 
distance R and R + ∆R from a particular neuron (with ∆R = 1 
used below).

Each neuron, represented by a vector with components given by 
the respective morphological measurements, is taken as the centre 
of a n-dimensional sphere, whose radius is progressively increased, 
as showed in Figure 4A. For each step, the number of neurons 
inside the shell of the hypersphere is computed, as a function of 
R. Because each of such functions reflects the surrounding distri-
bution of neighbours Figure 4B,  it is expected that two neurons 
with similar geometrical features and thus mapped nearby in the 
feature space, will yield similar radial density functions. In addition, 
because of the finite size of the space occupied by the neurons in 
the feature space, it is expected that the radial functions will have 
a peak at some value of R′. In particular, neurons near the border 
of the occupied space will tend to have such a peak displaced to 
the larger values of R (corresponding to outliers), while the more 
central neurons will produce peaks at smaller values of R.

2.7 sIMple reference Model
In this section, we describe a simple reference model to represent the 
locus of the possible tree-like shapes. The artificial tree-like struc-
tures were constructed in the following way. We start with a single 
straight branch represented by a vector 



0. The end of this vector is 
a bifurcation point at which two other vectors (branches), 



1 and 


2 , 
are added to the structure. All these three vectors are coplanar and 
bifurcation is symmetric so that vectors 



1 and 


2 form equal angles 
with vector 



0. The bifurcation angle, θ (angle between vectors 


1 
and 



2) is a random variable distributed according to truncated 
normal distribution in the interval θ ∈ [0, π],

ρ θ
πσ

θ θ
σθ

θ

θ θ

( )
( )

,= − −










A

2 22

2

2
exp

 

(8)

where Aθ is the normalization constant and θ and σθ
2 are the param-

eters of the distribution approaching mean value and variance 
in the case of sufficiently narrow distribution. Once created, the 
vectors 



1 and 


2 are then simultaneously rotated about vector 


0 by random angle ϕ ∈ [−ϕ*, 
ϕ*] distributed according to the 

truncated normal distribution given by Equation (8) with theta 
replaced everywhere by ϕ. Such a rotation is redundant for the 

The data can be arranged as a N × M matrix W, where each row 
corresponds to a feature vector 



x x x xM= ( , , , )1 2  associated with 
one of N neuronal cells. Each element of these vectors is related to 
a particular measure. It is important to note that these measures 
can be at different scales and a data standardization is therefore 
required. The next step is to define the covariance matrix V as 
(Härdle and Simar, 2007):

V
W w W w

Nij

ki i kj jk

N

=
− −

−
=∑ ( )( )

,1

1  
(1)

where w N Wi j
N

ji= −
=

1
1Σ  is the mean value of the i-th measure. Now, 

we define the correlation matrix R as follows

R
V

V V
ij

ij

ii jj

= .

 

(2)

Next, we calculate the eigenvalues λ and eigenvectors 


eλ of R. The 
M eigenvalues are sorted in descending order and the first P values 
are chosen (P < M) for PCA. Linear transformation with the use of 
the restricted eigenvector basis,

′ = −
=

∑W
W w

V
e kij

ik k

kkk

P

jλ ( ),
1  

(3)

reduces the size of original data matrix from N × M to N × P. The 
amount of the variance explained by the P chosen eigenvectors can 
be quantified by the following value:

r
ii

p

ii

M= =

=

∑
∑

λ

λ
1

1

.

 

(4)

All these characteristics were used for analysis of the organiza-
tion of neuronal cells in the morphospace.

2.5 canonIcal VarIable analysIs
Canonical Variable Analysis (McLachlan, 2004; Costa et al., 2007) is 
an algebraic method to find the data projection that best separates 
predefined data classes. This can be achieved through the maximiza-
tion of the interclass dispersion, i.e., dispersion between classes, while 
minimizing the intraclass dispersion inside each class. Let us suppose 
that each element can be classified into a class C

i
 containing n

i
 ele-

ments, where i = 1,2,…N
c
 and N

c
 is the maximum number of classes. 

Using these definitions, we can express the interclass scatter matrix 
(Equation 5) and the intraclass scatter matrix (Equation 6) as:

S n x x x xi
i

N

i i
T

c

inter = 〈 〉 − 〈 〉 〈 〉 − 〈 〉
=
∑

1

( )( ) ,
   

S Si
i

Nc

intra =
=
∑

1

,
 

(6)

where 〈 〉x i is the mean feature vector of the elements in class C
i
, 〈 〉x  is 

the mean feature vector of all elements, and S
i
 is the dispersion of the 

measurements inside each class (scatter matrix for each class C
i
):

S x x x xi k i
k C

k i

T

i

= − 〈 〉( ) − 〈 〉( )
∈
∑    

.

 

(7)
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3.1 ModelIng the MorphologIcally possIble space
In order to demonstrate the feasibility of delineating the bounda-
ries for theoretically possible neuronal forms in the morphospace, 
we used the reference model presented in Section 2.7. By using 
this model, we generated 6000 artificial neurons, which then had 
the following seven features extracted: width, height, and depth 
of the neurons, number of bifurcations and branches, branch 
order, and angle between branches. Considering that artificial and 
real neurons have different length scales, the first three measure-
ments were used in order to generate another three dimension-
less measurements, denoted by: L

1
 = Height/Width, L

2
 = Depth/

Width, and L
3
 = Depth/Height. The distributions of these vari-

ables for thus created artificial neurons are presented by red curves 
in Figures 5A–G. For comparison, corresponding distributions 
for real neurons are shown in black. It can be seen that they are 
quite similar in shape and scale. Partly, this was achieved by using 
experimentally available values for some of the free parameters in 
the model, such as the mean number of branches (see Figure 5E) 
and mean bifurcation angle (G).

The 7-D space was projected onto two dimensions by using 
PCA. The results are shown in Figure 6. As we can see, the proposed 
model (gray points) successfully spanned the entire real morpho-
space (black open circles). By analyzing the distribution of the 
real neurons in the morphospace in Figure 6, we can see that the 
neurons tend to become more 3-D as one moves upwards along 
the right-hand border of the distribution (i.e., neuron (B) is more 
3-D than neuron (A), and so on). A similar effect is observed for 
artificial neurons shown in Figure 7, where one can also identify 
the dense globular-type structures typical for the region of mor-
phospace not containing any real neurons.

We verified that the first principal variable covers 38.3% of the 
total variance, while the second adds another 25.4%, which means 
that 63.7% of the total data variation is accounted for by the first 
two principal components in the PCA. Table 1 shows the PCA 
weights given by the respective eigenvector components of the two 
principal main axes. In the first axis, almost all variables have a 
significant contribution. On the other hand, in the second axis, the 
variables L

3
 and L

2
 have a slight dominance while branch order and 

bifurcation angle remote have little influence.

3.2 MeasureMents InterrelatIonshIp and pca analysIs
We now focus on the organization of the DPF space, which con-
tains the real neurons. In order to do so, we used all 20 meas-
urements available in NeuroMorpho database. First, we analyzed 
the interrelationship between these measurements by calculat-
ing the Pearson’s correlation coefficient (Härdle and Simar, 
2007) between them. The results are represented in gray scale in 
Figure 8. Particularly high positive values of correlations can be 
observed between the branch order and the Number of branch 
and Number of Bifurcation. In principle, provided there is a high 
number of branching orders, a larger number of branches and 
bifurcations could be expected. However, this is only true in case 
most of the orders are well-populated by branches, unlike what 
would be observed in more linear chains of branchings. Therefore, 
these two correlations seem to indicate that most of the branching 
orders are well-populated by branches. Other particularly high 
correlations can be noticed between the Euclidean distance and 

first bifurcation point but becomes significant for the subsequent 
branching points because it enables appearance of 3-D rather than 
2-D structures.

The ends of the vectors 


1 and 


2 serve as new bifurcation points. 
For example, the vectors 



11 and 


12 are added to the end of vec-
tor 


1 but now with additional constrain such that both vectors 


11 and 


12 are coplanar with vector 


1 and original vector 


0 (this 
original vector is always coplanar to the new branches added to 
the structure). The other rules are similar to those described for 
the first branching point.

In order to account for existence of not necessarily straight 
branches between bifurcation points, at each bifurcation point, 
one of the new branches is allowed to be randomly removed with 
probability p

r
. The growth process terminates once the predefined 

number of branches, N
b
, both straight and curved, is reached. The 

lengths of the vectors, | |


 i i= , are random discrete variables,  = 0, 
1,…, distributed with the following probabilities,

p p pg g( ) ( ( )) ( ),  





= −
=

−

∏1
0

1

 

(9)

where p() is the probability for length of the vector to be equal to 
 (≥1), p

g
()is the parameter of the model and has the meaning of 

probability of further growth for a branch of length . It was assumed 
that p

g
(0) = 1, p

g
() = p

g
 if 0 <  < 

max
 and p

g
() = 0 if  ≥ 

max
, so that 

the maximum branch length is restricted by parameter 
max

.
By using this procedure, we generated N = 6000 artificial neurons 

considering almost all possible values of free parameters accord-
ing to the real data, i.e., 1 ≤ N

b
 ≤ 8000, 0 ≤ p

g
 ≤ 1, 0 ≤ p

r
 ≤ 1, 0 ≤ 

θ  ≤ π, ϕ
*
 = π, ϕ

*
 = 0, ϕ = 0, 

max
 = 100. For the variables σθ and 

σϕ, we considered the ranges [0, π/6] and [0, π/9], respectively. All 
variables were chosen at random, except for N

b
 and θ, which were 

chosen according to the distribution of the real data. It is relevant 
to note that, because of the generality of our model, we believe it 
covers the GPF in an almost ideal way. Such a generality of our 
model is that each of the morphological parameters are covered 
independently one another in a uniform way. Therefore, provided 
a large enough number of samples are adopted, the shapes pro-
duced by this model can include all cases, even those characterized 
by interdependence of morphological features. For instance, even 
if real neurons were characterized by dendritic segments whose 
length diminished along the branching hierarchy, such a type of 
neurons would also be generated by our model as a consequence 
of the independent choice of lengths.

3 results and dIscussIon
In this section, we present the main findings regarding the morpho-
logical neuronal space and its organization. First, the simple reference 
model is applied for generation of artificial cells used for obtaining 
the boundaries of the theoretical space. Next, we show how the real 
cells are distributed in this space. In this analysis, we consider seven 
measurements and their projections onto 2-D space by using PCA.

Next, we analyze the correlations between all the 20 measure-
ments available in the NeuroMorpho database. These measure-
ments are also analyzed using PCA and canonical projections. 
Finally, we check how the cells are located in the high-dimensional 
and projected spaces.
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of this PCA projection. On the lower right part of the diagram, it 
is possible to distinguish some cells of the Motoneuron (purple 
stars) and some Pyramidal cells (blue open circles) forming two 
separated and scattered subgroups.

In Figure 9B, a larger number of grouped categories can be 
observed, such as Protocerebrum (blue crosses), Cercal Sensory 
System (cyan squares), Retina (red upward-pointing triangles), 
Brainstem (blue squares), Basal Forebrain (green downward-
pointing triangles), and Olfactory Bulb (green solid circles). The 
latter remained well-separated from the others and can be found 
to correspond to the Uniglomerular cell type. The Cerebral Cortex 
cells (black plus signs) correspond mainly to the Pyramidal cells 
and includes some not reported cells. The regions of Spinal Cord 
(red stars) and Brainstem (Blue squares) are mostly composed by 
Motoneuron cell type.

the width, height, and depth measurements, which was inher-
ently expected. The three latter measurements are also strongly 
correlated one another.

Figure 9 presents the PCA results for the cells grouped by cell 
type (A), brain regions (B), and species (C). For the cell type, we 
selected the 15 largest groups from among the original 39 fea-
tures. The neurons in these 15 groups correspond to 95% of the 
total number of cells. As we can observe in Figure 9A, only the 
Uniglomerular Projected Neurons (cyan solid circles) constitute 
a compact cluster.

Neurogliaform (yellow squares), Calretinin (bright blue star), 
and Bitufted (green solid circles) exhibit most part of their cells 
grouped together on the left, while the other categories are not 
grouped in very-well-defined clusters. The Pyramidal cells (open 
blue circles), the most numerous group, can be found in many areas 

A B C

D E

G

F

Figure 5 | Distribution of (A) L1, (B) L2, (C) L3, (D) number of bifurcations, (e) number of branches, (F) branch orders, and (g) bifurcation angle remote. The red 
lines correspond to the distribution for the artificial neurons generated by using the model described in this paper. The insets are magnifications of the interest 
peak regions.
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Analyzing Table 2, it is possible to see that data variance is 
distributed amongst several measurements. In the first principal 
variable, Length and Euclidean Distance have the higher contri-
butions, 0.089 and 0.083, respectively. The largest weights in the 
second principal variable are the Bifurcation Angle Local (0.090) 
and Bifurcation Angle Remote (0.093).

3.3 dIstrIbutIon of categorIes
The canonical variable analysis is a suitable method to visualize 
and investigate the distribution of categories in the NeuroMorpho 
database. Figure 11A shows the results for cell type, Figure 11B 
depicts the results for brain region, and Figure 11C gives the results 
for species classifications. We used the same 15 types of cells as 
described in the previous section.

Figure 9C, which shows the distinction between cell groups 
according to the species in which they are found. We can distin-
guish three well-separated clusters: drosophila (blue right-pointing 
triangles), human (red diamonds), and cat (blue squares). Cricket 
(purple left-pointing triangles), salamander (yellow solid circles), 
and monkey (black plus signs) also have well-defined regions, but 
they overlap with mouse (green squares) and rat (cyan crosses), 
which are the two larger categories.

Figure 10 shows the variance accounted for by each of the principal 
axes. This was calculated using the eigenvalues: higher values contrib-
ute more. In this plot, the eigenvalues were converted into percentages 
and presented in a cumulative sequence of bars, highlighting the cumu-
lative contribution of each variable for the data variability. The first two 
eigenvalues used in the PCA plots explained 46% of the variance.

A

G

F

E D

C

B

Figure 6 | Principal component analysis obtained by considering both real (black open circles) and artificial neurons (grey circles). (A–g) Some real 
neurons are presented around the plot.
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Figure 7 | Principal component analysis considering both real (black open circles) and artificial neurons (gray circles). Some artificial neurons are presented 
around the plot.

Table 1 | Principal component analysis weights considering both real 

and artificial neurons (see projections in Figures 6 and 7): the seven 

considered measurements and their respective percentage weights in 

each principal component axis (PC1 and PC2) are presented. A higher 

value means that the measurement has a larger contribution to the data 

variance on the axis.

Measurements PC1 PC2

L1 0.11 0.04

L2 0.15 0.23

L3 0.11 0.25

Number bifurcations 0.19 0.16

Number branches 0.19 0.16

Branch order 0.14 0.08

Bifurcation angle remote 0.11 0.08

As could be expected, the canonical analysis revealed a better 
separation between the considered groups. In Figure 11A, the 
Uniglomerular Projection Neuron class (cyan circles) remained 
compact in a specific region and some Motoneuron cells (pink 
asterisk) are found in the left-hand (middle and bottom) of the 
graph. In both PCA and canonical analysis, the not reported cells 
(upside down red triangles) overlapped other cell categories, but 
on the latter analysis one can observe a well-defined dense core. 
Also similar as in PCA, the Granule (black crosses), Basket (yellow 
circles), Bitufted (green solid circles), Somatostatin (cyan square), 
and Stellate cells (upside down black triangles) are clustered in 
the same region.

In Figure 11B, we can see a good separation of neuronal cells 
according to their respective brain regions. Cercal Sensory System 
(cyan squares), Olfactory Bulb (green circles), and Brainstem (blue 



Frontiers in Computational Neuroscience www.frontiersin.org December 2010 | Volume 4 | Article 150 | 10

Costa et al. Unveiling the neuromorphological space

20. Bifurcation angle Remote
19. Bifurcation angle Local

18. Rall's Ratio
17. Partition Asymmetry

16. Fragmentation
15. Contraction

14. Branch Order
13. Path Distance

12. Euclidean Distance
11. Volume
10. Surface

9. Length
8. Diameter

7. Depth
6. Height
5. Width

4. Number of Branch
3. Number of Bifurcation

2. Number of Stems
1. Soma Surface

Figure 8 | Pearson’s correlation coefficients between pairs of measurements.
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Figure 9 | Principal component analysis visualization of the categories 
grouped by: (A) cell type, (B) brain region, and (C) animal species. There are 
39 cell types (only 15 shown here), 15 regions, and 11 species.
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Figure 10 | Cumulative explained variance in the PCA, sorted in 
descending order of their contribution.

squares) yielded well-separated groups. Some regions were split 
into two sub-regions, particularly cells from Olfactory Bulb (green 
solid circles), Protocerebrum (blue crosses), and Hippocampus 
(yellow stars). Basal Forebrain (upside down triangles), Retina (red 
triangles), and Hippocampus (yellow circles) overlap one another 
within the greater cluster.

The projection that better allowed the identification of the 
groups of neuronal cells and their respective regions are given with 
respect to animal species in Figure 11C. It is clear from this figure 
that cells from the same animal species tended to group together. 
Again, we observed splitting of groups into two subgroups for both 
drosophilas (blue right-pointing triangles) and rats (cyan crosses). 
Mice (green squares) are scattered between principal cluster and 
other regions.

3.4 radIal functIon
In order to investigate the data directly in the 20-D feature space, 
we used the radial functions as defined in Section 2.6. Figure 12 
demonstrates the radial density functions for four cell types and 
the PCA projections with both real and artificial neurons. Some 
representative types of cells were selected in order to investigate for 
coherence between the densities in the 20-D space and the respec-
tive 2-D projections. Purkinje, stellate, Martinotti cells, and lateral 
horn neuron were selected for this analysis, appearing highlighted 
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Table 2 | Principal component analysis weights regarding the real 

neurons in NeuroMorpho database (see projections in Figure 9): the 

percentage weights of the 20 measurements in each principal 

component axis (PC1 and PC2) are shown. Recall that higher values 

correspond to measurements which most contribute to the data variance on 

the axis.

Measurements PC1 PC2

Soma surface 0.026 0.077

Number of stems 0.023 0.037

Number of bifurcations 0.066 0.047

Number of branches 0.067 0.046

Width 0.073 0.043

Height 0.074 0.029

Depth 0.066 0.051

Diameter 0.022 0.067

Length 0.089 0.026

Surface 0.060 0.062

Volume 0.024 0.043

Euclidean distance 0.083 0.035

Path distance 0.069 0.016

Branch order 0.070 0.061

Contraction 0.028 0.035

Fragmentation 0.052 0.034

Partition asymmetry 0.035 0.058

Rall’s ratio 0.019 0.050

Bifurcation angle local 0.028 0.090

Bifurcation angle remote 0.027 0.093
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Figure 11 | Canonical variable analysis visualization of the categories, 
grouped by (A) cell type, (B) brain region, and (C) animal species. There are 
39 cell types (only 15 shown here), 15 regions, and 11 species.

within the region of the morphospace (Figure 12E). The radial 
density functions of the neurons within each of these groups tend 
to be similar, defining respective clusters in the 20-D space.

It is interesting to observe the presence of outliers curves in 
Figures 12B,C. In the first case, we can easily identify the cor-
responding outlier point in the 2-D projection space. This is not 
the case of the outlier curves observed in 12(C), where we cannot 
identify the correspondent outlier points in the projection space. 
Moreover, stellate neurons are an exception in sense that all of them 
are close in 20-D space, but give rise to separated clusters in 2-D.

4 conclusIons
Several connectivity and functional properties of the nervous system 
are ultimately determined or strongly affected by the morphology 
of the involved individual cells. Given that thousands of neurons 
became recently available in the public NeuroMorpho database, it 
is now possible to investigate general morphological properties of 
neuronal cells. This was the main purpose of the current article. 
More specifically, we have analyzed the whole public repository 
NeuroMorpho, which currently contains 5673 cataloged neurons. 
We resorted to an extension of McGhee’s theoretical framework 
(morphospace) in order to formalize our approach (McGhee, 
2006). Twenty measurements, readily available from NeuroMorpho, 
were used in order to describe the morphological space in which 
the neurons are embedded. For the visualization of the morphos-
pace, we applied PCA and canonical analysis over the original 20-D 
measurement space, yielding the respective 2-D projections. Seven 

of the original measurements were used in order to compare the real 
cells with artificial neurons generated by using the reference model 
proposed in this paper. This allowed us to compare the region of 
geometrically possible neurons with those neurons which actually 
appear in nature.

Our results indicate that there is only one single region in the 
morphological space defined by a density peak. Also, we observed 
a large empty region extending away from the real neuron cluster. 
These regions therefore correspond to the geometrically possible 
neurons, generated by the reference model, which are not found in 
nature. The neurons belonging to these regions are characterized 
by significantly greater number of branches.

Regarding the measurements provided by the NeuroMorpho 
database, we found that some of them are strongly correlated. In 
particular, measurements that involve euclidean measurements, 
such as depth × length and euclidean distance × path distance 
have Pearson correlations above 0.75. All of these correlations 
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 phylogenetic scale,” remain intractable. Our findings indicate a 
trend of morphological similarity among neurons from the same 
species, such as monkey and humans, and rats and mice, but it is not 
enough to predict any general behavior. The database growth also 
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can be considered in future works as well as the improvement of 
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were  eliminated by using the PCA, which was used to decrease the 
dimensionality of our data. Yet, the two principal axes were found 
to depend strongly on almost all the 20 considered measurements. 
Even so, the two principal axes explained almost 50% the total 
variance in the original measurement space.

One particularly interesting result is that, with a few excep-
tions, the neuronal cells tend to cluster together when taken 
by type, region, and species. This clustering was substantially 
increased as a result of applying the canonical analysis. We also 
verified, by using the radial functions, that the clusters in the 
original 20-D space tended to remain separated in the respective 
2-D projections.

The morphology of neurons provides potentially valuable 
insights not only for neuronal function, but for species evolution, 
ecology, and functional differences between brain areas. However, 
the current database size only allows global studies. Important 
questions, such as “how neuronal morphology evolved along spe-
cies” or “have neurons become more or less branched along the 
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