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position. Surprisingly, two force fields superimpose linearly when 
stimulated together. Furthermore, if an internal model is assumed, 
human reaching movements can be separated into primitives show-
ing Gaussian (Thoroughman and Shadmehr, 2000) or log-Gaussian 
(Plamondon, 1995) speed profiles. Likewise, random scribbling 
from monkeys can be broken into unit segments (Soechting and 
Terzuolo, 1987) and appears to be composed from a small number 
of parabolas (Polyakov et al., 2009a,b). The presence of motor prim-
itives is especially prominent during learning of new movements 
(Sosnik et al., 2004) or recovery from stroke (Rohrer et al., 2002).

The above studies reveal two aspects to the compositionality 
of complex behavior. The first aspect is that primitives provide 
a basic set of behaviors whose simultaneous combination yield 
the final action. We refer to this aspect as simultaneity. Secondly, 
primitives can be arranged in a series. We will refer to this as sequen-
tiality. Whereas some compositional systems only require one of 
these computational features, others, most notably motor control, 
require both.

The question of how such compositional systems are real-
ized in the neural substrate is an unresolved issue. Undoubtedly, 
aspects of movement can be inferred on the basis of firing rates 
(e.g., Georgopoulos et al., 1982). An alternative proposition is that 
information is encoded in the precise time of occurrence of an 

1 IntroductIon
How is a complex object perceived when it is encountered for 
the first time? Although it is possible that the brain develops new 
categories for each new object, it is more likely that it breaks the 
complex object down into simpler objects and their component 
features such as shape and color. Thus, when a new object is encoun-
tered, it is analyzed according to its primitives and the collection 
of active primitives forms the complex object (e.g., Tanaka, 2003). 
The concept of creating complex objects out of the sum of their 
parts is known as compositionality.

The principle of compositionality as stated above is not 
restricted to reactive computations such as the comprehension of 
perceptions, it can also be applied to proactive computations, for 
example planning and executing complex motor programs on the 
basis of an underlying hierarchy of motion primitives. Evidence 
for the existence of movement primitives has been found in several 
studies, either on the actuator/kinematic/dynamic or on the neural 
level. Direction specificity of neural coding has been demonstrated 
by Georgopoulos et al. (1982) and can be regarded as the most 
elementary neural realization of primitives. Mussa-Ivaldi et al. 
(1994) showed that spinal stimulation of a frog did not produce 
uniform leg movement. Instead, the stimulated area represented 
a static “force field” acting on the leg, dragging the foot to a fixed 
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action potential. A number of studies have revealed the occurrence 
of precise spike timing (Eckhorn et al., 1988; Gray and Singer, 1989; 
Abeles et al., 1993; Prut et al., 1998; Pulvermüller and Shtyrov, 
2009) with respect to critical features of experimental protocols, 
which strongly suggests temporal coding. These strategies are not 
mutually exclusive; Masuda (2006) demonstrated how the two 
formulations can coexist.

The mechanism behind the formation of such fine temporal 
structure is still unknown. A single post-synaptic potential (PSP) 
is relatively small compared to the range of membrane potential 
fluctuations and therefore not very likely to elicit a spike (Abeles, 
1982; Matsumura et al., 1996; Hasenstaub et al., 2005). However, 
reliable post-synaptic action potential generation can be trig-
gered by a near-synchronous pulse of a pre-synaptic population 
(“just-enough, just-in-time”; Douglas and Martin, 2007; Anderson 
and Martin, 2009). If applied inductively, this insight leads to the 
concept of a volley of synchronous activity propagating along a 
structure known as a synfire chain (Abeles, 1991). In its simplest 
formulation, a synfire chain is a feed-forward subnetwork consist-
ing of a row of neuron groups in which each neuron in a group 
projects to the neurons in the following group (see Figure 1). The 
propagation of pulse packets in synfire chains has been shown to 
be stable under quite general conditions (Diesmann et al., 1999; 
Gewaltig et al., 2001).

Although the synfire concept was originally developed to 
account for precise firing patterns in the brain, there is as yet no 
unequivocal proof that they exist. The main evidence in favor of 
the hypothesis is that the repeating spatiotemporal firing patterns 
that a synfire chain would generate can be measured during experi-
ments (Abeles et al., 1993; Prut et al., 1998; Baker et al., 2001; Kohn 
and Smith, 2005; Shmiel et al., 2005, 2006; Long et al., 2010), and 
have even been shown to re-occur after several minutes (Ikegaya 
et al., 2004). In awake animals precise firing patterns are related 
to behavior, but are usually not tightly time locked to any known 
external event. Other studies have used surrogate or shuffled spike 
data to challenge these results, suggesting that such patterns occur 
by chance rather than as a result of an underlying feed-forward 
structure (Oram et al., 1999; Baker and Lemon, 2000; Mokeichev 
et al., 2007). These studies have in turn been criticized on the basis 

of the underlying null hypothesis (Date et al., 1999; Abeles and 
Gat, 2001) or the nature of the surrogate data. Abeles and Gat 
(2001) and Gerstein (2004) argue that the surrogates used to chal-
lenge the synfire hypothesis introduced excess structure into the 
artificial spike trains, whereas Ikegaya et al. (2008) contends that 
the detection algorithm used in the respective earlier studies was 
not sufficiently sensitive. Contributing to the ongoing debate on 
the existence of precise firing or feed-forward networks is outside 
the scope of the current manuscript. In the following, we therefore 
assume their existence as a useful working hypothesis.

Bienenstock (1995) conjectured that perception or recall of 
entities and actions or relations between them are based on the 
co-operative action of many synfire chains. In this hypothesis, 
each primitive is realized by a synfire chain, and a specific object 
can be represented by a particular composition of the underlying 
primitive chains. This requires some degree of interaction between 
synfire chains in order to determine which primitives are involved 
in the composition. Bienenstock (1995) speculated that this inter-
action is mediated by weak inter-connections between the chains, 
as illustrated in Figures 2A,B. Thus, if stimulated at approximately 
the same time, chains can aggregate their traveling waves to form 
one front (see Figure 2C). This mechanism is referred to as syn-
fire binding. It has been demonstrated that synfire binding can 
indeed occur (Arnoldi and Brauer, 1996) and that it is a feasible 
mechanism to compose complex objects out of multiple percep-
tual primitives (Abeles et al., 2004). Those networks can reliably 
discriminate between different triple-pulses. Unlike attractor net-
works, the resultant network states are transiently active followed 
by a return to steady low-rate background activity.

The sequential aspect of compositionality has also been attrib-
uted to activity in an appropriate architecture of synfire chains. The 
concatenation of syllables in birdsong has been proposed to result 
from the consecutive activation of synfire chains, each represent-
ing one syllable (Hahnloser et al., 2002; Li and Greenside, 2006; 
Kozhevnikov and Fee, 2007; Jin et al., 2007; Jin, 2009; Hanuschkin 
et al., 2010a). Thus, a bird song is realized by a particular sequence 
of primitives. A song syntax can be realized by the connectivity 
between the chains representing individual syllables: if syllable A 
can be followed by a repetition of A or by syllable B, the final group 

A B

Figure 1 | A simple synfire chain. (A) Wiring diagram of a synfire chain. 
Excitatory neurons in each group (gray discs) have feed-forward connections to 
all neurons in the next group (gray arrows); in this version of the synfire chain 
model, inhibitory neurons in each group (red discs) project to random neurons in 

the entire network to create a global inhibition. (B) Synfire activity. If the first 
group is sufficiently stimulated, a volley of activity propagates through the chain. 
Each dot represents the spike time of a neuron; horizontal lines separate the 
spikes of consecutive neuron groups.
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the models described above that exhibit simultaneity or sequential-
ity rely on entirely different mechanisms: simultaneity is realized 
by synfire chain binding, whereas sequentiality is realized by the 
propagation of activity from the end of one chain to the beginning 
of the other. It is therefore not obvious that the computational 
features are compatible either in terms of network architecture or 
in terms of parameters. Here, we demonstrate that both types of 
computation can indeed be carried out in a single network model. 
The resulting behavior exhibits both simultaneous and sequential 
combination of primitives and is considerably richer than that gen-
erated by previous models based on synfire chains. The discovery 
that the two types of computation are complementary provides 
support for the hypothesis that synfire chains constitute a key ele-
ment of neural computation.

In Sec. 3.1 we develop a two-layer network of synfire chains. 
To illustrate the computational features of our model, we map the 
feed-forward activity in each of the upper level chains to simple 
drawing strokes in four different directions. We first show that 
synfire chain binding allows simultaneous execution of primi-
tives, resulting in composite drawing strokes. Secondly, in Sec. 3.2 
we demonstrate that if the lower level chains are constructed in a 
closed-loop manner, the motion is no longer bounded by synfire 
chain termination. In this case, the model generates an ongoing 
sequence of individual and composite drawing strokes. The patterns 
generated by the network can be either random or deterministic, 
depending on the connectivity at the seam of the lower level loops. 
In Sec. 3.3 we investigate the behavior of the network as a function 
of the inhibition in the upper and lover levels and determine a range 
of parameters for which the criteria of simultaneity and sequential-
ity are satisfactorily fulfilled. Finally, in Sec. 3.4 we investigate the 
spiking activity of our model during the generation of complex 
behavior and propose candidate signatures for synfire chain activity 
in massively parallel recordings of spike trains and mass signals.

Preliminary results have been published in abstract form 
(Schrader et al., 2007).

2 MaterIals and Methods
2.1 synfIre bIndIng and coMpetItIon
As demonstrated by Arnoldi and Brauer (1996), synfire binding 
occurs when two or more cross-connected synfire chains synchro-
nize their traveling pulses after a near-synchronous stimulation 
(see Figure 2). If the two chains are stimulated within a sufficiently 
short interval, the chain which is stimulated later (the lagging chain) 
speeds up its propagation of pulses until the activity is synchronized 
in corresponding groups of the chains. The binding mechanism 
can be fully described by a wave theoretical approach (Hayon et al., 
2005). The detection of the binding state can be realized by a third 
synfire chain, as is demonstrated in Figure 3A. The upper level 
chain can only be activated if the activity of the lower level chains 
is sufficiently synchronized. Figure 3B shows the activity in the 
chains associated with the detection of binding states. At 100 ms 
the inter-stimulus interval is only 10 ms, so the two lower level 
chains bind and activate the upper level chain. The inter-stimulus 
interval of 30 ms at 400 ms is too great; no binding takes place and 
the increase in global inhibition due to both lower level chains being 
active even causes one of the chains to fail in this example. Abeles 
et al. (2004) showed that this basic hierarchy of chains is sufficient to 

of the synfire chain representing A is connected in a feed-forward 
fashion to the initial groups of chains A and B. Similarly, a network 
of interconnected synfire chains can account for key experimental 
findings in free monkey scribbling with respect to cortical activ-
ity and the statistics of the generated trajectories (Hanuschkin 
et al., 2010b).

So far, modeling studies have investigated the simultaneous and 
sequential aspects of compositionality in isolation. However, it has 
yet to be shown that synfire chains can provide the substrate for 
compositional systems requiring both computational features, such 
as motor control. It is not clear that the aspects can be combined, as 

A

C

B

(     )

Figure 2 | interacting synfire chains. (A) Wiring diagram of two 
cross-connected chains. Each chain has internal connections as illustrated in 
Figure 1A; the two chains are connected via a few excitatory synapses (black 
arrows) which connect a given group of one chain to the next group in the parallel 
chain. (B) Schematic view of the synfire network in (A). Gray bars denote synfire 
groups, gray arrows the feed forward connections and black arrows the 
interconnections. (C) Interacting activity: if the first groups of the chain are 
stimulated nearly synchronously, the wave front of the second chain (blue) 
catches up with that of the first chain (orange) to form a unified wave front.
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however the shorter inter-stimulus interval of 5 ms between chains 
2 and 3 allows those two to bind instead. The synchronous inhibi-
tion in chains 2 and 3 prevents chain 1 from joining the binding 
state. Consequently, only the upper level chain 5 is activated. This 
dynamics is equivalent to a competition between possible bindings 
which is biased toward those subsets of features that occur with a 
higher degree of synchrony; a bias toward binding subsets of fea-
tures that are detected earlier has also previously been demonstrated 
(Abeles et al., 2004).

In the current paper, we assume homogeneous layer-specific 
inhibition, with synaptic strength empirically adjusted such that 
at most two upper level chains can be simultaneously active (see 
Table 2). For more complex networks, the specificity and hetero-
geneity of inhibitory projections are likely to be crucial factors 
affecting the network’s computational properties.

2.2 MappIng actIvIty to actIons
Abeles et al. (2004) demonstrated that a hierarchical network of 
synfire chains can detect near-synchronous stimuli and discriminate 
between different subsets, i.e., that it can compute compositional-
ity of perception. Therefore the purpose of the upper level chains 
was simply to act as binary indicators of lower level binding states. 

model compositionality: the lower level chains represent  primitive 
features and the upper level chain represents the composite object. 
The representation of the composite object is only active if the 
component features are detected near-synchronously.

In addition to binding primitive features, a second property 
necessary for the computation of compositionality is competition. 
To prevent the representation of one nonsensical “mega object,” 
which corresponds in the network model to too many chains bind-
ing together, only the most relevant detected features should be 
bound. In a network of chains, this can be easily realized by the 
presence of inhibitory neurons. In the small networks studied here, 
it is sufficient to include inhibitory neurons in the feed-forward 
structures that project non-specifically to other neurons in the same 
layer of the hierarchical network (see Figure 1A). When chains 
bind together, the resultant synchronous inhibition prevents fur-
ther chains from joining the binding state. The activity in a five-
chain network (Figure 3C) associated with competition between 
binding states is shown in Figure 3D. At around 100 ms the lower 
level chains 1 and 2 are stimulated with an inter-stimulus interval of 
15 ms, which is short enough to allow the chains to bind and thus 
activate the upper level chain 4. At around 400 ms chains 1 and 2 
are once again stimulated with an inter-stimulus interval of 15 ms, 

A B

C D

Figure 3 | Detection and discrimination of binding states in networks of 
synfire chains. (A) Simple three-chain network. Each pair of chains (1,2), (1,3), 
and (2,3) are interconnected as shown in Figure 2A. The upper level chain (3, 
black) serves as a readout chain to detect the binding of the lower level chains 
(1, blue; 2, orange). (B) Detection of binding in the three-chain network in 
(A), coloring of spike time markers in the lower panel indicates chain 
membership of neuron. The two lower level chains are stimulated at t1 = 100 and 
t2 = 110 ms. The chains bind and activate the third chain. The lower level chains 
are stimulated again at t1 = 400 and t2 = 430 ms. In this case, the chains do not 

bind as the stimulus interval of 30 ms is too large. (C) Five-chain network. Here, 
three chains (1, blue; 2, orange; 3, green) constitute the lower level chains and 
two upper level chains (4–5, black) serve as readout chains. Interconnections are 
indicated by gray arrows. (D) As in (B), but for the five-chain network shown in 
(C). Chains 1 and 2 are stimulated at t1 = 100 and t2 = 115 ms. They bind together 
and activate the upper level chain 4. All three lower level chains are stimulated 
again at t1 = 400, t2 = 415, and t3 = 420 ms. In this case chains 2 and 3 bind, as 
they have the smallest inter-stimulus interval. Their binding causes the activation 
of upper level chain 5.
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2.4 nuMerIcal sIMulatIons
We performed numerical simulations of networks of synfire chains. 
Simulations were performed with NEST revision 8733 (see www.
nest-initiative.org and Gewaltig and Diesmann, 2007) using a com-
putational step size of 0.1 ms. This software is capable of simulating 
large-scale networks by means of distributed computing (Morrison 
et al., 2005). All simulations were performed on an AMD Opteron 
Dual Core SMP machine with four processors running Linux. To 
allow other researchers to perform their own experiments, at the 
time of publication we are making a module available for download 
at the NEST Initiative website containing all relevant scripts.

2.4.1 Neuron model
The model used in this study is a current-based leaky integrate-and-
fire (IAF) point neuron (Tuckwell, 1988). Its membrane potential 
V is described by a linear differential equation

 

dV

dt
V

C
I t= − +1 1

τm m

syn ( )
 

(3)

where τ
m

 is the membrane time constant, C
m

 is the membrane 
capacitance and I

syn
 the synaptic current. If the membrane potential 

exceeds a fixed threshold θ, a spike is emitted and the potential 
is immediately set to its reset value V

reset
. During the subsequent 

refractory period τ
ref

 the membrane potential is clamped at V
reset

. 
A single post-synaptic current (PSC) is modeled as an α-function 
(Jack et al., 1983):
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where τα is the rise time. The total synaptic current I
syn

 is then
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where i runs over all pre-synaptic neurons and s over the set of all 
spike times S

i
 of a pre-synaptic neuron i. J is the peak value of the 

PSC and d the synaptic delay. As the passive membrane potential of 
the integrate-and-fire neuron is a linear system, Eq. 3 can be solved 
numerically without approximation (Rotter and Diesmann, 1999; 
Plesser and Diesmann, 2009). The neuronal parameters used in 
this study are given in Table 2.

3 results
3.1 sIMultaneous coMposItIon of prIMItIves
In this section we show that the binding and competition properties 
exhibited by hierarchic networks of synfire chains (Sec. 2.1) are suf-
ficient to enable the composition of actions from simpler actions. We 
construct a two layer network of synfire chains, illustrated in Figure 
4A. Each synfire chain is internally connected according to the feed-
forward connectivity described in Abeles et al. (2004) and illustrated 
in Figure 2A, i.e., containing both excitatory neurons (100) which 
constitute the feed-forward connections and globally projecting 
inhibitory neurons (25) to introduce a competition between pos-
sible bindings. Unlike the five chain network shown in Figure 3C, in 
our model the strength of the inhibition is adjusted to allow as many 
as three lower level chains to simultaneously enter a binding state. 
Each upper level chain is activated by the binding of the two specific 

The feed-forward dynamics of the response to lower level binding 
was not further considered. Here, we focus on the ability of such 
networks to generate actions. In particular, we want to illustrate the 
capabilities of a synfire chain network to generate both the sequential 
and simultaneous aspects of compositionality. To this end, we choose 
a task that is on the one hand as simple as possible (in terms of the 
number of primitives) and on the other hand easy to visualize. We 
map the activity of four upper level chains to simple drawing strokes. 
The mapping of activity to drawing actions facilitates particularly 
easy visualization of the computational features of the network, i.e., 
it is immediately apparent to the eye when two strokes have been 
superimposed or when one follows another. However, the choice of 
drawing strokes is not intended to suggest an account of movement 
generation, which would require a much more sophisticated model. 
Indeed, any set of combinable actions could have been chosen.

To generate the drawing strokes, we consider the neurons in a 
given upper level chain j to have a preferred direction, character-
ized by its unit velocity p

j
 (see Georgopoulos et al., 1982). The net 

drawing velocity generated by a network is determined by summing 
over the activity of all the upper level chains:

 

x p( ) ( )t w a tk j
k

j
kj

= ∑∑
 

(1)

where a tj
k ( ) is the activity of the kth group in the jth chain as 

expressed by a population histogram with a bin size of h = 5 ms 
and w

k
 is the weight of the contribution of the kth group in a chain. 

This bin size is the finest sampling interval possible without resolv-
ing the individual contributions of the synfire groups. For this study, 
we consider only a uniform velocity profile, w

k 
= w. The movement 

trajectory is then obtained by integrating the population vector x( )t  
using the initial condition x(0) = (0,0) for each trial. No further 
smoothing of the neuronal activity or trajectory is carried out.

2.3 Measures for sIMultaneIty and sequentIalIty
We define two measures to quantify the extent to which the net-
work model realizes the simultaneous and sequential aspects of 
compositionality. In the full model, activation occurs in rounds 
due to the cyclical architecture of the lower level chains. In each 
round of activation either 0, one, or more than one upper level 
chain is active.

First, we consider the activity a
j,i
 of a single upper level chain 

j, where i indicates the round of activation. We set a
j,i
 to 0 if the 

chain is not actively propagating a volley of action potentials (i.e., 
it responds with fewer than 2 spikes per synfire group). We define 
the relative contribution a a aj i j i x x i, , ,/′ = Σ  of a chain j to the overall 
chain activity during round i. Note that, due to variable propaga-
tion times, i does not correspond to absolute time. The measure 
of simultaneity for network activity is then defined as the average 
maximal activities over all rounds,

 
p

N
a j i

i

N

sim = ( )
=
∑1

1

max ,,
′

 
(2)

where N is the total number of rounds in which at least one upper 
level chain was active, i.e., a

j,i 
> 0 for at least one j. We further define 

the measure of sequentiality p
seq

 to be the proportion of rounds of 
activation in which at least one upper level chain is active.
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chains to join the binding state. This can be seen at around 500 ms, 
where although all lower level chains are stimulated (chain 1 at 500, 
chain 2 at 506, chain 3 at 502, chain 4 at 503 ms), only chains 1, 3, 
and 4 enter a binding state, so only the upper level chains “left” and 
“down” are activated. Although the relative stimulation times for 
the first three chains are the same as before, the earlier stimulation 
of the fourth generates sufficient mutual inhibition such that chain 
2 cannot join the binding state. The eight different drawing strokes 
that can be generated by the network through near-synchronous 
stimulation of two or three lower level chains (cf. Figure 4B at 100 
and 300 ms) are illustrated in Figure 4C.

3.2 sequentIal coMposItIon of prIMItIves
In the previous section we showed that by means of binding and 
competition, a hierarchic architecture of synfire chains can realize 
compositionality of behavior in terms of superimposing primitives. 
Here, we show that such an architecture is also capable of realizing 
sequential compositionality. In our example, this consists of generat-
ing a sequence of primitive and composed drawing strokes. We modify 
the model architecture illustrated in Figure 4A and summarized in 
Table 1 by connecting the lower level chains in a loop. In the modified 
architecture, the final group of each lower level chain projects to 40 
neurons in the first groups of all the lower level chains. This can be 
visualized as a cylinder of interconnected synfire “rings” as shown in 
Figure 5A. All other aspects of the architecture, including the inter-
connections with the upper level chains, remain the same. Due to the 
cyclical structure, the activity in the network is self-sustained after a 
single initial stimulus (here, to chains 1 and 2 to activate the direction 
“up”). Each “round” of activity results in a  different binding among the 
lower level chains and thus to a random sequence of primitives and 
combinations of primitives. Figure 5B shows a resulting motion tra-
jectory from five seconds of network activity. The individual  primitive 

lower level chains with which it is interconnected. The lower level 
chains have all-to-all cross-connections to allow all combinations of 
binding, but not all pairs of lower level chains can activate an upper 
level chain. Interconnections are realized such that each excitatory 
neuron in group i of one chain has a small number of synapses to 
neurons in group i + 1 of the other chain (Figure 2, black arrows). 
Additionally, each neuron in the network receives an independent 
Poisson spike train that yields a mean membrane potential of 15 mV 
(Campbell’s theorem, see Papoulis, 1991). To activate a lower level 
chain, a stimulus of a Gaussian distributed spike volley with the 
same parameters as a natural pulse propagating through the chain 
is applied to the initial group. The spike volley is characterized by 
the number of spikes contained a and their temporal precision σ 
(Diesmann et al., 1999). The model is summarized in Table 1. Unless 
otherwise stated, the model parameters are as given in Table 2.

The activity in each upper level chain is mapped to a uniform 
velocity in one of the four directions “up,” “down,” “left,” and “right,” 
as described in Sec. 2.2. Note that this differs from the approach taken 
in Abeles et al. (2004), in which the lower level chains are considered 
as primitives and the upper level chains as composite objects. In this 
study the binding of lower level chains with an upper level chain 
constitutes a primitive, whereas concurrent activity in upper level 
chains represents a composite object. Figure 4B demonstrates the 
binding of lower level chains to activate specific upper level chains. At 
100 ms, lower level chains 1 and 2 are stimulated near-synchronously 
(chain 1 at 100 ms, chain 2 at 106 ms). This causes them to bind 
and activate the upper level chain representing the direction “up.” At 
around 300 ms, chains 1, 2, and 3 are stimulated near-synchronously 
(chain 1 at 300, chain 2 at 306, chain 3 at 302 ms). All three chains 
bind, thus activating the upper level chains representing the direc-
tions “up” and “right.” As the number of bound chains increases, so 
does the level of inhibition, making it progressively harder for further 

A

C

B

Figure 4 | A composition machine for simple drawing strokes. (A) Synfire 
chain connectivity. Lower level chains (1–4) are connected all-to-all to allow any 
possible binding. Cross-connections are as described in Figure 2A. Upper level 
chains (named “left,” “up,” “down,” and “right”) are interconnected with specific 
lower level chains as indicated by the gray arrows. (B) Neuronal activity during 
binding. Depending on the inter-stimulus interval of the lower level chains, 

specific upper level chains or combinations of upper level chains are activated 
(see text for details). (C) The eight different drawing strokes generated by the 
synfire network shown in (A). The directions up, left, down and right are reached 
by appropriate pairwise binding of lower level chains (as in B, at 100 ms). 
Diagonal directions involve the binding of three lower level chains (as in B at 
300 ms). The gray markers sample the trajectories at 25-ms intervals.



Frontiers in Computational Neuroscience www.frontiersin.org January 2011 | Volume 4 | Article 154 | 7

Schrader et al. A synfire-based compositionality machine

the assumption that asymmetric connections between  specific 
final and initial groups could develop, Figure 6 demonstrates that 
 stereotypical or deterministic sequences can also be generated. For 
example, if chain 1 projects onto itself and chains 2 and 4 project 
onto each other, a sequence consisting of alternating “up” and 
“left” strokes is produced (Figure 6G). These results show that a 
hierarchic architecture of synfire chains is in principle capable of 
realizing at least a rudimentary syntax, as previously suggested 
(Bienenstock, 1991b).

and composed drawing strokes can be clearly seen, as can occasional 
sections where temporarily no meaningful binding state exists, result-
ing in somewhat more “dithery” drawing behavior.

The sequence of primitive and composed drawing strokes 
shown in Figure 5 is generated by a network with connections 
that close the lower level chains at the seam of the loop: the final 
group of each chain makes feed-forward connections to the initial 
groups of every chain. Due to this symmetry, any binding state is 
equally likely and a random sequence is produced. However, under 

Table 1 | Tabular description of network model after Nordlie et al. (2009).

A: MoDel suMMAry

Populations Two levels of synfire chains, four chains in each level

Connectivity Feed-forward connections within one chain, cross connections between chains, random inhibition within one level

Neuron model Leaky integrate-and-fire, fixed voltage threshold, fixed absolute refractory time (voltage clamp), α-current synapses

Input Independent fixed-rate Poisson spike trains to all neurons, pulse stimuli to first groups of lower level chains.

Measurements Spike activity

B: PoPulATioNs

Name elements size

Network Synfire chain Chj 8

Chj Synfire groups Gi,j 50

Gi,j Neuron populations Ei,j, Ii,j One excitatory population Ei per group Gi

  One inhibitory population Ii per group Gi 

Ei,j Iaf neuron 100

Ii,j Iaf neuron 25

C: CoNNeCTiviTy

Name source Target Pattern

FF Ei,j Ei + 1,j + Ii + 1,j Random divergent, 1 → CEx, weight JE, delay d

INHl Ii,j for j ∈ {1 … 4} Chj for j ∈ {1 … 4} Random divergent, 1 → CInl, weight JI, delay d

INHu Ii,j for j ∈ {5 … 8} Chj for j ∈ {5 … 8} Random divergent, 1 → CInu, weight JI, delay d

Xll Ei,j for j ∈ {1 … 4} Ei + 1,k for k ∈ {1 … 4}, j ≠ k Random divergent, 1 → Cll, weight JE, delay d

Xul Ei,j for j ∈ {1 … 4} Ei + 1,k for k ∈ {5 … 8} Random divergent, 1 → Cul, weight JE, delay d.  

   According to Figure 4.

Xlu Ei,j for j ∈ {5 … 8} Ei + 1,k for k ∈ {1 … 4} Random divergent, 1 → Clu, weight JE,  

   delay d. According to Figure 4.

FFloop E50,j for j ∈ {1 … 4} E1,j for j ∈ {1 … 4} If present, random divergent, 1 → CEx,  

   weight JE, delay d

D: NeuroN MoDels

Name laf neuron

Type Leaky integrate-and fire, α-current input

Subthreshold dynamics if (t > t* + τref): dV dt V I t C/ / ( ) /= − +τm msyn  

 else: V(t) = Vreset 

 I J I t s di
s Si i

syn = − −
∈
∑∑ α ( )           I t

e
te t

α
α

τ

τ
α( ) /= −

Spiking If V(t−) < Θ AND V (t + ) ≥ Θ
 1. set t* = t 

 2. emit spike with time stamp t*

e: iNPuT

Type Target Description

Poisson generator All Ei, Ii Independent for each neuron, rate vx, weight Jx

Pulse packet E1,j + I1,j for j ∈ {1 … 4} Spike volleys with Gaussian distribution containing a 

  spikes with temporal precision σ, weight Jpp

F: MeAsureMeNTs

Spikes from all upper and lower level chains
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3.3 lIMIts to sIMultaneIty and sequentIalIty
Having demonstrated in the previous sections that an architec-
ture of synfire chains can realize both simultaneous and sequential 
compositionality, we now investigate the robustness of this finding 
using the measures p

sim
 and p

seq
 defined in Sec. 2.3. The simultaneity 

measure p
sim

 is the inverse of the average number of chains active in 
the upper level. Figure 7A shows p

sim
 as a function the number of 

outgoing connections made by each upper and lower level inhibi-
tory neuron. For strong upper level inhibition and weak lower level 
inhibition, p

sim 
= 1, indicating that only one chain is active at a time 

and thus that the criterion of simultaneity is not fulfilled. This is 
due to the stiff competition in the upper level preventing multiple 

Table 2 | simulation parameters.

Name value Description

A: CoNNeCTiviTy

CEx 40 Number of outgoing feed-forward 

  connections from each excitatory neuron

CInl 5 Number of outgoing connections from 

  each lower level inhibitory neuron

CInu 25 Number of outgoing connections from each 

  upper level inhibitory neuron

Cll 3 Number of outgoing lower level  

  cross-connections from each lower 

  level excitatory neuron

Cul 8 Number of outgoing upper level  

  cross-connections from each lower 

  level excitatory neuron

Clu 8 Number of outgoing lower level  

  cross-connections from each upper 

  level excitatory neuron

JE 17.92 pA Amplitude of excitatory connection, ⇒0.2 mV 

  EPSP amplitude

Jl −71.70 pA Amplitude of inhibitory connection, ⇒−0.8 mV 

  EPSP amplitude

d 1 ms Synaptic transmission delay

B: NeuroN MoDel

τm 20 ms Membrane time constant

Cm 200 pF Membrane capacitance

Θ 20 mV Fixed firing threshold

V0 0 mV Resting potential

Vreset V0 Reset potential

τref 2 ms Absolute refractory period

τα 1 ms Rise time of post-synaptic current

C: iNPuT

νx 6157 Hz External Poisson rate

Jx 8.96 pA Amplitude of external excitatory 

  connection ⇒0.1 mV EPSP amplitude

Jpp 17.92 pA Amplitude of pulse packet 

  connection ⇒0.2 mV EPSP amplitude

a 100 Number of spikes in a volley

σ 1 ms Standard deviation of a Gaussian spike volley

A B

Figure 5 | generation of random sequences. (A) Modified design of the lower 
level chains (1–4 of Figure 4). The system is looped by connecting the final groups 
of all the chains to all the first groups. The upper level system remains unchanged. 
(B) Trajectory generated by 5 s of network activity after an initial stimulus to chains 
1 and 2, leading to an initial up movement. The black dot marks the starting point. 
The red section of the trajectory is investigated further in Figure 8.

A

C

E

G

B

D

F

H

Figure 6 | generation of non-random sequences. (A–H) Example 
trajectories generated by 5 s of network activity for networks with different 
connectivities between the final and initial groups of the lower level chains. 
Insets show the connectivity matrices: a 1 in row i, column j, indicates that the 
final group of chain j is connected to the initial group of chain i, 0 indicates that 
there is no connection.
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sequentiality are fulfilled. The sequences are long and contain both 
individual primitives and compatible combinations. Since previous 
investigation have revealed fairly general conditions for the robust 
propagation of activity in synfire chains (Herrmann et al., 1995; 
Diesmann et al., 1999, 2001), we conclude that the competition 
between primitives is determined by the balance of inhibition in 
the upper and lower levels, and that the criteria of simultaneity and 
sequentiality can be met for a wide range of parameters.

3.4 actIvIty sIgnatures of synfIre chaIn coMputatIon
So far we have studied the complex behavior that can be generated 
out of superpositions and sequences of simple primitives, focus-
ing on the behavioral output of our model. In this section, we will 
examine what features of the dynamics could be detectable by an 
experimenter investigating the nature of neural activity generating 
complex behavior. A researcher may measure mass signals of neural 
activity, such as the local field potential (LFP), the electroencepha-
logram (EEG), or the electrocorticogram (EcoG). Alternatively, 
the single unit activity of a limited number of neurons can be 
recorded. In the latter case, current techniques do not allow mas-
sively parallel recordings; through multiple electrodes or optical 
imaging methods, measurements would be unlikely to record the 
spike trains of more than 200 neurons. Of those neurons, it cannot 
be expected that all of them are involved with the generation of 
the behavior under investigation. Moreover, it cannot be assumed 
that the ordering of the spike trains in the recording reflects the 
ordering of connectivity in any underlying feed-forward structure. 

upper level chains from entering a binding state. For weak upper 
level inhibition and strong lower level inhibition, p

sim
 is reduced to 

0.4, indicating that on average more than two upper level chains 
are active. Such low values of p

sim
 also violate simultaneity, as they 

can only occur in our simple model if incompatible primitives are 
being executed at the same time. We therefore define 0.5 < p

sim
 < 0.9 

as the range in which simultaneity is fulfilled.
The sequentiality measure p

seq
 is the proportion of rounds of 

activity in the lower level for which at least one upper level chain 
was significantly active. For weak upper level inhibition, p

seq 
= 1, 

indicating that there is always at least one upper level chain active 
and thus that the sequence of primitives is unbroken. For stronger 
upper level inhibition p

seq
 drops to 0.67. This means that the activity 

in the lower level chains fails to ignite activity in the upper level for 
one third of the rounds of activity. We define a successful sequential 
execution of primitives to have taken place when at least one upper 
level chain is active in at least 90% of all rounds, i.e., p

seq
 ≥ 0.9.

We apply our criteria for simultaneity, 0.5 < p
sim 

< 0.9, and sequen-
tiality, p

seq
 ≥ 0.9, in Figure 7C, which shows example sequences of 

drawing strokes generated by the model for different configurations 
of upper level and lower level inhibition. The white background 
demarcates the range of parameters for which our criteria for simul-
taneity and sequentiality are both met. In the top left section p

seq
 

is too low and p
sim

 is too high, resulting in short sequences con-
sisting only of individual primitives. In the bottom right section 
p

sim
 is too low. The selection of incompatible primitives generates 

dithery trajectories. In the middle section both simultaneity and 

A C

B

Figure 7 | limits to simultaneity and sequentiality. (A) The simultaneity 
measure psim applied to 20 s of network activity as a function of the number of 
outgoing connections made by each inhibitory neuron on the lower (horizontal axis) 
and upper (vertical axis) levels. (B) As in (A) but for the sequentiality measure pseq. 
(C) Trajectories generated by 5 s of network activity. Each trajectory is initialized from 

the point marked with the dot by an initial stimulus to chains 1 and 2 to activate the 
direction “up.” Trajectories are scaled for visual clarity; to indicate the scaling, the 
gray bar in each cell shows the size of an arbitrary length unit. A white background 
color indicates that the network activity generating the trajectory meets both the 
criteria for simultaneity (0.5 < psim < 0.9) and sequentiality (pseq ≥ 0.9).
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hallmark of synfire activity is no longer visible. However, some 
signatures of synfire activity are still visible. The spike trains from 
the lower level chains (Figure 5C) exhibit a high degree of repeti-
tion, as the synfire activity repeats in every chain every 125 ms. 
Repeating spike patterns have previously been identified as possible 
indications of synfire activity (e.g., Abeles et al., 1993). The spike 
trains from the upper level (Figure 5D) do not show such strong 
repetition, but a decrease in rate is clearly visible at the beginning 
of each trajectory segment. Even though the model dynamics con-
sists solely of near-synchronous activity volleys, vertical stripes in 
the spike activity plots indicating strong synchrony only become 
evident when considering a much larger amount of neurons than 
could reasonably be recorded using currently available techniques 
(Figures 8B,D). We therefore conclude that signatures of synfire 
activity are unlikely to be found by searching for synchrony in 
spike trains.

As an alternative to massive parallel recordings of single unit 
activity, mass signals can be recorded to examine global effects. We 
have modeled such a signal as a histogram of the shuffled spiking 
data in Figures 8C–F. A particularly good impression of the global 
dynamics is gained when a large number of neurons contribute 
to the mass signal (Figures 5E,F). The large variance of the signal 
indicates a strong global synchronization, exhibiting fast ripples 

Spike activity recorded from our model therefore constitutes by far 
the best case in terms of analysis, as all neurons are only involved 
with the generation of the trajectory and the underlying structure 
is known.

Figure 8 shows the spike activity recorded for a short section 
of the drawing displayed in Figure 5. When the activity is dis-
played taking the architecture of the underlying synfire chains into 
consideration (Figure 5B), the relationship of the spiking activity 
to the generated behavior is clear. Due to the connectivity of all 
the final groups to all the initial groups of the lower level chains, 
the synfire activity in all the lower level groups is approximately 
synchronous. As the activities of the individual lower level chains 
are plotted over one another (cf. Figure 4), the collective activity 
appears similar to the activity in just one chain. Each time the activ-
ity volley reaches the end of the lower level chains, a new binding 
state is possible. The result is a different selection of upper level 
chains and thus a different drawing stroke or combination of draw-
ing strokes (Figure 5A).

If the underlying structure of the network is not taken into con-
sideration, an attribution of the generated behavior to the spiking 
activity becomes much harder. Figures 5C,D show the shuffled 
activity of 200 neurons from the upper and lower levels, respectively. 
The highly ordered spike activity of Figure 5A that is the typical 

A

B

C

D

E

F

Figure 8 | Activity signatures during action execution. (A) Enlargement of 
the section of the trajectory marked in red in Figure 5B. The section contains 
three combinations of primitives. First, an “up/right” stroke (blue), then “up/left” 
(red), followed by a stroke which is initially “down” but turns into “left/down” 
midway through execution (green). Arrowheads mark the direction of stroke 
execution. (B) The underlying synfire chain activity. Each spike time marker is 

colored according to the drawing stroke in (A) that is being generated at that 
time. (C) Upper panel: shuffled spiking activity of 200 neurons from the upper 
level chains, spike time markers colored as in (B). Lower panel: histogram of 
spiking activity with a bin size of 1 ms and normalized by the number of neurons. 
(D) As in (C), but for the lower level chains. (e,F) As in (C,D), but for 8000 
neurons. Gray lines indicate the range of neurons shown in (C) and (D).
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Using quantitative  measures of sequentiality and simultaneity 
during synfire chain activity, we conclude that sequential and simul-
taneous compositionality is achievable over a wide range of bal-
anced inhibition in the upper and lower levels. For simple models 
like the one investigated here, including inhibitory neurons in the 
synfire chains that make random connections to other neurons in 
the same level is sufficient; for more complicated models structured 
inhibition between specific groups of primitives might be neces-
sary. Recently, first steps have been made toward the construction 
of large-scale compositional systems (Trengove, 2007).

The compatibility of the two types of synfire chain computa-
tion and the diversity of the behavior produced lend support to 
the hypothesis that synfire chains provide the substrate for some 
cortical functions. Specifically, our results support the theory 
that synfire chains are a possible substrate for the recognition 
and production of sequences, for example in processing language 
(Bienenstock, 1991a,b; Pulvermüller, 1999, 2002) or planning and 
executing motor programs (Jin, 2009; Hanuschkin et al., 2010b). 

However, the two-dimensional drawing strokes we selected 
as primitives are merely an easy visualization of complex behav-
ior, rather than attempting to account for the generation of 
movement. Although there is evidence for motor primitives and 
compositionality (Soechting and Terzuolo, 1987; Thoroughman 
and Shadmehr, 2000; Polyakov et al., 2009a,b), there are many 
features of motor behavior which cannot be captured by such a 
simple model as studied here. For example, a movement can be 
performed quickly or slowly, whereas a synfire chain is active for 
a fixed duration, in our model in the order of 100 ms. This dura-
tion is in line with the generation of birdsong syllable sequences 
(Woolley and Rubel, 1997; Hahnloser et al., 2002; Sakata and 
Brainard, 2008), but appears too short to model elongated move-
ments such as reaching, which are executed within about 500 ms. 
Generally, longer or shorter activity durations can be generated 
by adjusting the chain length chains or the propagation speed 
through appropriately chosen synaptic delays or PSP rise-times 
(Wennekers and Palm, 1996). On the other hand, a single primi-
tive does not necessarily need to represent a complete action. In 
the terminology of Rohrer et al. (2002), primitives represent the 
“atoms” of behavior. Any desired duration can be reached by 
appropriate concatenation.

Moreover, motor behavior is typically more complex than 
the straight lines at constant velocity used in this study for the 
purposes of illustration. To extend this model to movement com-
positionality would therefore require the identification of more 
realistic primitives. Candidates include dynamic motion primi-
tives as force fields (Mussa-Ivaldi and Bizzi, 2000) and kinematic 
primitives such as parabolas (Flash and Handzel, 2007; Polyakov 
et al., 2009b). However, the use of more complex primitives 
immediately raises the question of how an appropriate coordi-
nate system can be defined. The activity of prefrontal neurons in 
reaching tasks has been shown to represent coordinate systems 
centered around the hand, target, eye fixation point, and even the 
shoulder (Pesaran et al., 2006). When a complex movement is 
performed, like handwriting or grasping an object, basic motion 
features can be observed which repeat elsewhere in an altered 
fashion. For example, we can almost immediately write using 
our foot in the sand, without having to practice it. This suggests 

at around 400 Hz. The highly synchronous activity periods are 
interspersed with periods of silence (Figure 8E) or less synchronous 
activity (Figure 8F). These results enable us to make specific pre-
dictions about the relationship of an experimental protocol to the 
activity patterns observed in collective signals. First, execution of a 
primitive or a set of primitives is accompanied by high-frequency 
fluctuations in collective signals. Second, this high-frequency com-
ponent is suppressed at decision points in the experimental proto-
col where a set of primitives is about to be activated.

4 dIscussIon
In this study we demonstrate that a simple hierarchic architecture 
of synfire chains is able to generate composed behavior. To visual-
ize the computational features of such a network, we associated 
primitive activity with drawing strokes in different directions. The 
network can combine orthogonal primitive drawing strokes into a 
composed diagonal stroke. In our model, the lower level chains have 
all-to-all cross-connections, so all specific combinations of chains 
can bind together. However, not all combinations of lower level 
chains activate upper level chains. This implements a semantics 
in the sense of assigning meaning to the binding states of lower 
level chains.

When the lower level chains are connected in a loop, the self-
sustained activity in the network produces sequences of primi-
tive and composed strokes. The characteristics of the sequences 
depend on the structure of the feed-forward connections between 
the final and initial groups of the lower level synfire chains. If these 
connections are symmetric, any sequence of primitives can occur, 
thus generating an random trajectory. By breaking the symmetry 
(see also Wennekers et al., 2006; Wennekers, 2007), it is possible to 
prescribe the transition probabilities between one primitive and 
the next, i.e., a basic syntax can also be implemented.

We have demonstrated that a single network model can generate 
actions that exhibit both simultaneity and sequentiality, resulting 
in much richer behavior than previous synfire chain based mod-
els which studied these aspects in isolation. Models accounting 
for sequentiality in the production of birdsong syntax (Okanoya, 
2004; Jin, 2009) have not considered the superposition of primi-
tives, as this does not occur in the target system. Similarly, studies 
demonstrating superposition (Abeles et al., 2004) did not provide 
an explanation for series of actions. 

The two aspects of compositionality are realized by two differ-
ent dynamical properties of synfire chains. Simultaneity is brought 
about by the synchronization of synfire chains, whereas sequential-
ity relies on feed-forward connections between the final group of 
one chain and the initial groups of potential successor chains. Hence 
we can derive the key architectural principles of a network model 
capable of combining both aspects of compositionality. Sequences 
of actions can be carried out if the final group of the synfire chain 
of one primitives makes feed-forward connections to the initial 
groups of all possible successor primitives, such that the activity 
volley can propagate from one chain to the next. The strength of the 
feed-forward connections determines the transition probabilities. 
Primitives that can be carried out simultaneously must be capable 
of mutual excitation to synchronize, whereas primitives that cannot 
be carried out simultaneously need mutual inhibition. The strength 
of the inhibition regulates the stiffness of the competition. 
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of  desynchronized  activity at the transition between primitives, 
thus potentially accounting for event-related desynchronization 
(Pfurtscheller and Lopes da Silva, 1999; Miller et al., 2010).

Our model thus provides us with a theoretical basis to inves-
tigate the correlation between composed behavior and neuronal 
activity. For example, the activity of the network is interpreted in 
terms of a rate code of directionally tuned neuronal populations. 
However, as each neuron is only briefly active during the propa-
gation of activity through a synfire chain, it only contributes to 
a particular phase of a drawing stroke, rather than to the entire 
duration. Additionally, as the lower level chains are constantly 
active in the looped network, they can be active during a draw-
ing stroke in any direction. Hence, although the entire system 
produces reliable output, many of the neurons exhibit weak or 
negligible direction tuning. This insight may well be relevant for 
experimental studies of the neural correlates of motor control, 
which classically assume that neurons involved with movement 
exhibit directional tuning.

To execute specific non-ongoing sequences, a correct sequence 
of synchronous pulse stimuli would need to be delivered to the 
first groups of the relevant lower level chains whilst other activ-
ity is inhibited. Up to now, no attempt has been made to explain 
where the precise instruction pulse sequences arriving at the lower 
level system should originate. Due to the relatively small binding 
window (<20 ms), stimuli must be generated very precisely and 
reliably. Though sensory systems might be too slow to reach such 
a precision (Thorpe et al., 1996), higher areas such as the cerebel-
lum or the basal ganglia are able to produce this kind of time lock-
ing (Dreher and Grafman, 2002). In this work, our focus lies on 
the generation of the sequences; learning the correct sequence of 
stimuli to produce a useful sequence of primitives is outside the 
current scope. However, other studies have already made significant 
progress in developing learning agents that would be able to learn 
such sequences (e.g., Baras and Meir, 2007; Farries and Fairhall, 
2007; Izhikevich, 2007; Potjans et al., 2009a,b; Vasilaki et al., 2009). 
Therefore, an interesting future extension of our work is to inves-
tigate to what extent our model can fulfill the role of an action 
selector in network models of learning agents. 

Due to the mutual inhibition between chains (unbound chains 
are less likely to join a synchronized state), our system implements 
a winner-take-all functionality of action selection. Competing syn-
fire chains provide a neural solution to the selection problem, and 
exhibit many features of an ideal selection mechanism (for a review 
see Redgrave et al., 1999). An effective action selector has to choose 
from a large pool of behaviors depending on their importance or 
feasibility. Selection must be carried out quickly and also under 
close-run conditions (clean switching), a criterion which is met in 
our model. During execution, competing “votes” may not interfere 
with the current behavior (distortion), a property also inherent in 
the running of synfire chains. Once a primitive has been activated, 
it is executed completely, i.e., actions have persistence. Conversely, 
in any trajectory involving a sequence of primitives, there is an 
opportunity to choose a more important action at the switch-over 
point between primitives, i.e., the system exhibits interruptibility. 
In future work we will investigate the relationship between the 
structure and dynamics of the hierarchic model and its expression 
of these features.

that the writing trajectories of letters have not been trained to be 
restricted to our hand but as a sequence of accelerations in general. 
The representation of trajectories may even be independent of a 
particular task (such as writing or catching a ball), but rather an 
abstract instance to be used in a variety of contexts. This leads 
to the conclusion that complex movements may be assembled 
from simpler, context-free building blocks. Hierarchical organiza-
tions of synfire chains might therefore realize a movement syntax 
within one coordinate system or across multiple systems. This 
could enable a form of binding-based coordinate transformation 
(Salinas and Abbott, 1995).

The existence of synfire chains and the capacity of the brain 
to develop them are aspects which have been presupposed in this 
work. Synfire chains have been postulated to underlie experimen-
tally observed precise spike timing, for example in mammalian 
cortex (Eckhorn et al., 1988; Abeles et al., 1993; Prut et al., 1998; 
Ikegaya et al., 2004; Pulvermüller and Shtyrov, 2009) or avian area 
HVC (Hahnloser et al., 2002; Jin et al., 2007; Kozhevnikov and Fee, 
2007) and methods are being developed to detect them in parallel 
spike train recordings (Schrader et al., 2008). Though it might be 
possible that such feed-forward structures are hardwired in the 
cortical or basal ganglia structure, it appears more plausible that 
they are imprinted by some Hebbian-like mechanism. For this, 
neuron groups must be repeatedly activated, possibly by means of 
sensory input or from other areas such as the hippocampus (Ji and 
Wilson, 2007), leading to stronger synapses between groups. Studies 
on this issue report conflicting results. While feed-forward structure 
has been shown to develop in some network models (Izhikevich 
et al., 2004; Buonomano, 2005; Doursat and Bienenstock, 2006; Jun 
and Jin, 2007; Fiete et al., 2010), these results do not scale up to 
large-scale networks with biologically realistic numbers of synapses 
per neuron (Morrison et al., 2007; Kunkel et al., 2010). Further 
studies are needed to determine the conditions under which the 
divergent–convergent connectivity of synfire chains can develop 
in cortical networks.

Despite these issues, the indirect evidence for synfire chains is 
great enough that one can legitimately be interested in investigating 
their capabilities. Indeed, although our model consists exclusively 
of synfire chains, standard measurement techniques applied to 
the spiking data can also only produce indirect evidence for syn-
fire activity. Only the activity of the lower level neurons exhibited 
strong patterns; upper level activity indicated the transition from 
one primitive or group of primitives to the next with a decrease in 
spiking activity. By construction, our model predicts a synchro-
nized activity between neurons that code for a particular primitive, 
as well as synchronization between the upper and lower levels. 
In principle, those levels may be located in different brain areas. 
Experimental studies have reported coherent oscillations between 
different motor areas during action execution, such as M1 and 
premotor areas (Brovelli et al., 2004).

The exact frequency of the oscillations visible in the mass sig-
nal during execution of a complex action is largely determined 
by the choice of synaptic delay; however, any selection within a 
reasonable range for this delay would result in oscillatory activity 
in the order of 100 Hz. Induced gamma activity (as opposed to 
evoked gamma) lies well in this order (Ball et al., 2008) and may 
reflect such activity. In addition, our model predicts the presence 
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