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conjectured that all cortical computation is carried out by the action 
and interaction of such structures. It has since been shown that 
co-ordinated activity between synfire chains can realize the phe-
nomenon of compositionality (Hayon et al., 2004).

Given the great degree of interest in feed-forward structures, the 
experimentally confirmed existence of a plasticity rule that is appar-
ently predestined to generate them, and the growing availability of 
both tools suitable for large-scale neuronal network simulations (e.g., 
Morrison et al., 2005; Migliore et al., 2006; Gewaltig and Diesmann, 
2007; Pecevski et al., 2009) and the high-performance computers on 
which to run them, it seems curious that there have been no truly 
convincing studies demonstrating their development.

It is in the nature of numerical studies that they use simplified 
models and therefore run the risk of generating artifacts, i.e., behav-
ior that does not occur if a simplified model is replaced with a more 
realistic one. When investigating STDP in recurrent networks, there 
are at least two commonly chosen model simplifications that run 
a high risk of yielding such non-generalizable behavior. So far, all 
reports of structure development in a recurrent network have been 
based on network models which represent only a small fraction of 
the number of synaptic inputs a neuron typically receives (Hertz 
and Prügel-Bennet, 1996; Levy et al., 2001; Izhikevich et al., 2004; 
Iglesias et al., 2005; Doursat and Bienenstock, 2006; Jun and Jin, 2007; 
Masuda and Kori, 2007; Hosaka et al., 2008; Liu and Buonomano, 
2009; Fiete et al., 2010). This is a serious issue, as STDP is driven by 
correlation between pre- and post-synaptic neurons. Scaling down 

1 IntroductIon
For several decades now it has been commonly assumed that func-
tional structures in the brain develop by strengthening synapses 
between neurons that fire in a correlated fashion (Hebb, 1949). 
In particular, feed-forward structures in which neural activity is 
propagated as a wave from one pool to the next (Abeles, 1991) 
would seem to be favored by a synaptic plasticity dynamics which 
strengthens causally correlated connections and weakens acausally 
correlated connections. This key property of spike-timing depend-
ent plasticity (STDP) was postulated theoretically (Gerstner et al., 
1993) before it was observed experimentally on the timescale of 
10 ms (Markram and Sakmann, 1995; Markram et al., 1997; Bi 
and Poo, 1998), although strengthening of causal correlations 
on the timescale of 100 ms had already been found (Gustafsson 
et al., 1987).

Such feed-forward structures, also known as synfire chains or 
braids, have been postulated to underlie experimentally observed 
precise spike-timing, for example in mammalian cortex (Eckhorn 
et al., 1988; Gray and Singer, 1989; Abeles et al., 1993; Prut et al., 
1998; Ikegaya et al., 2004; Pulvermüller and Shtyrov, 2009) or song-
bird HVC (Hahnloser et al., 2002; Kozhevnikov and Fee, 2007). 
The propagation of waves of activity along synfire chains has been 
shown to be stable under quite general conditions (Diesmann et al., 
1999; Gewaltig et al., 2001). Apart from being a natural candidate 
for the representation of serial activities, such as the sequential 
activation of muscles to generate a movement, Bienenstock (1995) 
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the network size and increasing the strength of individual synapses 
increases the correlation between pre- and post-synaptic neurons. 
This leads to a strong competition effect between the inputs which 
can result in a very small number of inputs driving the post-synaptic 
neuron in a non-biological winner-takes-all manner. This is par-
ticularly so if, as for the majority of previous studies, an additive 
model for STDP is assumed, which has a strong symmetry breaking 
tendency leading to a bimodal distribution of synaptic strengths 
(Song et al., 2000). However, even very early experimental findings 
on STDP revealed that the strength of potentiation and depression 
is dependent on the initial strength of the synapse (Bi and Poo, 
1998, but see also Debanne et al., 1996, 1999; Montgomery et al., 
2001; Wang et al., 2005). Theoretical studies have revealed that even 
quite a small dependence on the weight leads to a qualitatively dif-
ferent behavior and a unimodal distribution of synaptic strengths 
(van Rossum et al., 2000; Rubin et al., 2001; Gütig et al., 2003; see 
also Morrison et al., 2008) which is more similar to the distribu-
tions observed experimentally (Turrigiano et al., 1998; Sjöström 
et al., 2001; Song et al., 2005). Moreover, weight-dependent “soft-
bounded” rules can be more plausibly generated with a kinetic 
modeling approach than an additive “hard-bounded” rule (Zou 
and Destexhe, 2007). It is therefore not clear, and should not be 
assumed, that behavior observed in networks with low numbers of 
synapses per neuron and/or additive STDP are representative for 
networks with biologically realistic numbers of synapses and weight-
dependent STDP. Indeed, a network exhibiting cortical connectivity 
levels and using a model for STDP with weight dependence fitted 
to experimental findings did not develop structure either spontane-
ously or as a result of repeated synchronous stimuli to a subset of 
neurons (Morrison et al., 2007).

One reason for this may have been that a critical additional 
mechanism is required. Many of the above mentioned studies 
include homeostatic regulating mechanisms such as normalization 
of weights on the axon and dendrite (Doursat and Bienenstock, 2006; 
Fiete et al., 2010), pre-synaptic activity dependent weight dynamics 
to maintain a given post-synaptic rate (Liu and Buonomano, 2009) 
or axonal pruning of weak synapses once a certain number of very 
strong synapses have been created (Jun and Jin, 2007). Additionally, 
STDP has been supplemented with plasticity dynamics on other 
time scales: Izhikevich et al. (2004) employ both short-term plastic-
ity and slow long-term potentiation, whereas Jun and Jin (2007) 
implement slow long-term depression and a reversible activation 
and silencing of synapses. Clearly, some of these mechanisms are 
more biologically plausible than others and it may well turn out that 
one or more of them is necessary for the development of structure 
in networks with realistic connectivity.

In this article, we develop a theory for the recruitment into a 
structure of neurons in a recurrent network in response to repeated 
external synchronous input. We show that recruitment is character-
ized by an unstable fixed point that cannot be stabilized by simply 
introducing pre- or post-synaptic homeostatic mechanisms such 
as those proposed in previous studies (Doursat and Bienenstock, 
2006; Fiete et al., 2010). We demonstrate that the key predictions 
of the theory can be reproduced by a large-scale neuronal network 
model. Finally, we consider what biologically plausible adaptations 
to the network model could allow the stable propagation of feed-
forward structure.

2 MaterIals and Methods
2.1 network Model
Our network model is based on the balanced random network model 
of Brunel (2000), see Figure 1A. The neurons are 80% excitatory 
and 20% inhibitory and randomly connected; excitatory–excitatory 
connections are subject to weight-dependent STDP, all other con-
nections are static. The network activity is presumed to be in the 
asynchronous irregular regime with an average firing rate of n

r
.

A subset E
stim

 of the excitatory population receives feed-forward 
input from each element of an external group of size N

SIP
; these 

connections are also subject to STDP. Each neuron in the external 
group spikes independently as a Poisson process of rate n

a
 and 

synchronously with the rest of the group as a Poisson process of 
rate n

s
, thus implementing a single interaction process (SIP, see 

Kuhn et al., 2003). The total rate of a neuron in the external group 
is the same as the network firing rate, i.e., n

a
 + n

s
 = n

r
. All neurons 

in the network receive additional excitatory independent Poisson 
spike trains; the neurons in the externally stimulated group receive 
Poisson spike trains at a slightly reduced rate to compensate for 
their additional external stimulus.

Due to the random connectivity, the number of connections 
neurons receive from E

stim
 is binomially distributed. For a given 

connectivity threshold C
hc

, a high-connectivity group E
hc

 can be 
located within the excitatory population (not including E

stim
). Each 

neuron in E
hc

 receives at least C
hc

 connections from E
stim

, whereas all 
other excitatory neurons receive fewer than C

hc
 connections from 

E
stim

. This is illustrated in Figure 1B. In general, N
SIP

, N
stim

, and C
hc

 
can all be chosen independently. For a given binomial distribution 
of connections from E

stim
, the choice of N

stim
 and C

hc
 completely 

determines N
hc

, the number of neurons in the high-connectivity 
group E

hc
. As we are investigating the development of feed-forward 

structures in this article, we are interested in the case that successive 
groups have similar sizes. We therefore link the independent vari-
ables such that C

hc
 = N

SIP
 and require N

hc
 ≈ N

stim
. In other words, for 

a given value of N
SIP

, we select the size of the externally stimulated 
population N

stim
 such that the binomial distribution of connections 

results in N
hc

 ≈ N
stim

 neurons that receive at least N
SIP

 connections 
from E

stim
 and all other excitatory neurons in the network receive 

fewer than N
SIP

 connections from E
stim

.

2.2 FIxed poInt analysIs oF structural developMent
If pre- and post-synaptic spike trains are stochastic, the weight 
updates of a synapse can be described as a random walk. Using 
Fokker–Planck mean field theory, the drift of the random walk 
corresponds to the average rate of change of synaptic strength. 
The drift can be calculated as a function of the correlation of 
the pre- and post-synaptic spike trains. Assuming stationarity, 
the raw cross-correlation function of the pre-synaptic spike train 
r dj t j

f= ∑ ( )t t j
f−  and the post-synaptic spike train r di ti

f= ∑ ( )t ti
f−  

with mean firing rates of n
i/j

 = 〈r
i/j
〉 is given by:

Γ
ji
 (∆t) = 〈r

j
 (t)r

i
 (t + ∆t)〉

t

This results in the following expression for the mean synaptic 
drift:

 

w F w d tK t t F w d tK t tji ji= − ( ) ( ) ( ) + ( ) ( ) ( )− +
−∞

+

∞

∫ ∫∆ ∆ Γ ∆ ∆ ∆ Γ ∆−

0

0  

(1)
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where F± (w) describe the weight-dependent potentiation/ depression 
of a synapse due to a single spike pair and K± (∆t) = exp (−|∆t|/t±) 
is the window function of STDP. A more thorough derivation 
of (1) can be found in Kempter et al. (1999) and Kistler and van 
Hemmen (2000; but see also Kempter et al., 2001; Rubin et al., 2001; 
Gütig et al., 2003; Morrison et al., 2008; Gilson et al., 2009a).

To investigate the fixed point behavior of STDP in the context 
of a large recurrent network in which structure development is 
being induced by synchronous stimulation of a subset of neurons, 
we make the following assumptions, abstracted from the network 
model displayed in Figure 1A. Each neuron i receives Ci

s excitatory 
connections from neurons selected from the subset of neurons 
E

stim
 receiving synchronous stimulation and Ci

r connections from 
neurons selected from the rest of the network. Synchronous spikes 
from the stimulated subset occur irregularly and are governed by 
a Poisson process with a rate of n

s
. Each neuron in the stimulated 

subset also fires independently as a Poisson process with rate n
a
; 

the composite activity for a neuron from the stimulated subset 
is therefore a Poisson process with rate n

a
 + n

s
. The activity of a 

neuron in the rest of the network can be described as a Poisson 
process with rate n

r
. The input structure of an excitatory neuron 

in the recurrent network is illustrated in Figure 1C. We further 
assume that the post-synaptic spike rate is generated by an inho-
mogeneous Poisson process n g ni i iu u( ) [ ]= − +0  with scaling factor 
g, threshold n

0
 and membrane potential u

i
, where [·]+ denotes a 

piecewise linear function that is defined as 0 for negative values, 
i.e., [x]+ = (x + |x|)/2. In the following, we will assume the function 
is positive and omit the square brackets. The membrane potential 
is given by u t w t ti j ij j

f( ) ( )= ∑ −  where w
ij
 is the weight of the syn-

apse between neuron j and neuron i, and (t) describes the time 
course of the response of the membrane potential to the arrival 
of an excitatory event, i.e., w

ij
(t) is the post-synaptic potential. 

Finally, we assume that the dynamics of the system is sufficiently 
well captured by considering the changes to the mean values of 
the synapses between the two input populations and the output 
neuron, w w Cj

C
ij

ir

r r= ∑( )/
i

 and w w Cj
C

ij
i

s s
s= ∑( )/ .
i

 The expected rate 
of the output neuron is therefore:

 
n n gn g n ni

i iC w C w= − + + +( )0 r r r a s s s 
 

(2)

where w w s dsx  = x ∫∞
0 ( )  is the total area under the respective post-

synaptic potential. The conditional firing rate after a spike at t j
f  from 

a neuron in the unstimulated input population is:

 
n n gn g n n gi

i i
j
ft C w C w w t t( ) = − + + +( ) + ( )0 r r r a s s s r   −

 
(3)

Similarly, the conditional firing rate after a spike at t j
f  from a 

neuron in the population receiving synchronous stimulus is:

 

n n n n n

n n

n n

i

j
f

w w

t t

t C C

C
w

i i

i

( ) = + + +( )

+ +
+ (

− γ γ

γ −

0 r r r a s s s

a s s

a s
s

 

 ))
 

(4)

Inserting these pre- and post-synaptic spike trains into the 
expression for the synaptic drift given in (1) results in a coupled 
system of differential equations for the evolution of the mean 
weights:

Figure 1 | Network and single neuron model. (A) Balanced recurrent 
network model based on Brunel (2000). A subset of the excitatory population 
(Estim, pink disks) receives feed-forward input from each member of an external 
group of size NSIP (black disks). The external group fires synchronously with rate 
ns and asynchronously with rate na. The externally stimulated population Estim 
makes recurrent connections to the rest of the excitatory population. Nhc 
neurons receive a number of connections from Estim above a given threshold Chc 
(high-connectivity group, purple disks) whereas all other neurons receive fewer 
connections from Estim (blue disks). All neurons also receive external excitatory 
Poisson input (not shown). (B) Determination of the high-connectivity group 
from the connectivity matrix (shown here in diluted form). The subdivisions of 
the connectivity matrix indicate the source and target populations, e.g., EI 
contains the connections from the inhibitory population I to the excitatory 
population E. The entries in row i of the connectivity matrix indicate the sources 
of the synaptic inputs of neuron i according to the color scheme in (A). The 
histogram gives the number of connections Ci

s each neuron receives from Estim. 
If neuron i receives a number of connections from Estim greater than or equal to 
the arbitrary threshold Chc (vertical dashed line) it is considered a member of the 
high-connectivity group Ehc. (C) Simplified input structure of a neuron in a 
recurrent network: the post-synaptic neuron i (gray disk) receives input from Ci

s 
neurons from Estim (pink disks) that fire asynchronously with rate na and 
synchronously with rate ns and from Ci

r neurons selected from the rest of the 
network (blue disks) that fire asynchronously with rate nr. The mean synaptic 
weights from these populations are ws and wr, respectively.

Frontiers in Computational Neuroscience www.frontiersin.org February 2011 | Volume 4 | Article 160 | 3

Kunkel et al. Structure development in large networks



Each neuron except the externally stimulated group E
stim

 
receives an additional independent Poisson spike train equivalent 
to 1200 excitatory inputs each spiking at n

x
. When no external syn-

chronous stimulation is provided (N
stim

 = 0), a choice for the rate 
of the independent Poisson input to each neuron of n

x
 = 14 Hz 

results in network activity in the asynchronous irregular regime 
(Brunel, 2000) with an average firing rate of n

r
 and a unimodal 

distribution of the plastic recurrent weights with mean 38.6 pA 
and SD 3 pA (data not shown). In the absence of homeostasis, 
n

r
 = 9.6 Hz; in the presence of weight normalizing pre-synaptic 

homeostasis applied every 3 s, n
r
 = 9.5 Hz; in the presence of 

pre- and post-synaptic homeostasis applied alternately every 1.5 s, 
n

r
 = 9.2 Hz.

When external synchronous stimulation is provided (N
stim

 > 0), 
each neuron in E

stim
 receives additional external stimulus at a total 

rate of n
r
 from each of the N

SIP
 neurons in the external group E

SIP
. 

Consequently, the total rate of the independent Poisson spike trains 
received by neurons in E

stim
 is reduced to 1200·n

x
 − N

SIP
 n

r
 to com-

pensate for the additional external stimulus. We draw the initial 
weights of the recurrent plastic synapses in the stimulated network 
from a normal distribution with the same mean and SD as the 
equilibrium weight distribution of the unstimulated network. The 
initial weights of the connections from the external group E

SIP
 to 

the stimulated group E
stim

 are set to the mean of the equilibrium 
weight distribution of the unstimulated network.

During an initial equilibration period of 100 s the external 
group E

SIP
 generates independent Poisson spike trains at rate n

a
 = n

r
 

with no synchronous events, i.e., n
s
 = 0 Hz. After this period, the 

external group E
SIP

 provides partially synchronous stimulus to the 
stimulated group E

stim
 with a synchronous rate of n

s
 = 3 Hz and an 

asynchronous rate of n
a
 = n

r
 − n

s
.

We perform simulations with different values for the size N
SIP

 
of the external group. The threshold C

hc
 for membership of the 

high-connectivity group E
hc

 is set equal to N
SIP

. For each value of 
N

SIP
, we examine the connectivity of the network to determine 

empirically the value of N
stim

 that results in a high-connectivity 
group of approximately equal size, i.e., N

hc
 ≈ N

stim
.

Following the standards suggested by Nordlie et al. (2009), the 
network model details are provided in tabular form in Table 1. 
Table 2 contains the values for the parameters used in the network 
simulations.

The network simulations were carried out with a computation 
time step of 0.1 ms on the Stallo Linux cluster (Notur, UiT) and the 
JUGENE BlueGene/P supercomputer using the simulation software 
NEST (Gewaltig and Diesmann, 2007) at revision 8611. Simulation 
scripts are available from the authors on request.

2.4 data analysIs
Spike times are recorded from the stimulated group, the high-con-
nectivity group, and from 500 neurons randomly chosen from the 
excitatory population (random group). The times of the synchro-
nous spikes of the external group are also recorded. Weights of all 
outgoing connections were recorded in intervals of 3 s from the 
external group, the stimulated group, the high-connectivity group 
and the random group.

The development of the mean weights shown in Figure 5 is 
determined from the outgoing weights of the external group and 
the weights of the connections from the stimulated group to the 

 

w F w F w C w

C w

i

i

r r r r r r r

a s s s

= − ( ) + ( )  − +(
+ +( ) )

− − + +n t t n n

n n

0 γ

γ



 ++ ( )+F w w Kr rnrγ  
(5)

 

w F w F w C w

C

s
i= +( ) − ( ) + ( )  − +(

+ +( )
− − + +n n t t n n

n n

a s s s 0 r r r

a s s

γ

γ



ii iw F w C w K s s a s s s) + ( ) +( )+ n n γ
 

(6)

where K K s s ds= ∫ +( ) ( ) .  The nullclines for w
r
 and w

s
 can be found 

by setting the left hand side of these equations to zero and solving 
for w

r
 and w

s
 respectively. The crossing points of the nullclines (if 

any) represent the fixed points of the system and can be found 
numerically.

To do this, appropriate values must be determined for the 
model parameters. For the numerical simulations in this study 
(see Section 2.3) we use a current-based integrate-and-fire neuron 
model with a-shaped post-synaptic currents, i.e., the dynamics of 
the membrane potential is given by:

 

V
V I

C
= +−
tm  

(7)

where t
m

 is the time constant of the membrane potential, C is the 
membrane capacitance and I is the input current. The time course 
of a post-synaptic current with peak amplitude w is given by:

 
I t w

e
te t( ) = ⋅ −

ta

ta/

 
(8)

We can therefore calculate the time course of the post-synaptic 
potential as:

 

 t
e

C

e e tet t t

( ) = −
−( )

−
−( )








− − −

t t t t ta

t t

a

t

a

a a/ / /

/ / / /

m

m m1 1 1 12 
 

(9)

and determine the model parameters.

 
 = ( )∞

∫ s ds
e= t tam

C0  
(10)

and

 

K K s s ds
e= ( ) ( )
+( ) +( )+∫   m

m +

= +

+

t t t

t t t t

a

a

3

C
2

 
(11)

in terms of the parameters of the integrate-and-fire neuron model 
and the STDP update rule.

2.3 nuMerIcal sIMulatIons
We perform numerical simulations of the network model 
described in Section 2.1. Our realization of the abstract model 
consists of 80,000 leaky integrate-and-fire neurons with a-shaped 
post-synaptic currents. The neurons are 80% excitatory and 
20% inhibitory, each receiving 3840 excitatory and 960 inhibi-
tory recurrent connections. Excitatory–excitatory connections 
are drawn from an initial normal distribution and are subject 
to weight-dependent power-law STDP (Morrison et al., 2007; 
Standage et al., 2007).
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To create the histograms in Figures 6A,C,E,G we record the 
number of spikes in each group in each 1 ms time bin within the 
10 ms directly after a synchronous event over a period of 10 s and 

high-connectivity group. The weight distributions in Figures 6D,H 
are histograms (bin size 1 pA) of the weights of the connections 
between the specific neuronal groups recorded at 25 min.

Table 1 | Tabular description of network model after Nordlie et al. (2009).

A: Model suMMAry

Populations Three: excitatory, inhibitory, SIP external input

Connectivity Random convergent connections and feed-forward connections from the SIP external input to the stimulated group

Neuron model Leaky integrate-and-fire, fixed voltage threshold, fixed absolute refractory time (voltage clamp), a-currents

Synaptic plasticity Spike-timing dependent plasticity at the EE recurrent connections and feed-forward connections

Input Independent fixed-rate Poisson spike trains to all neurons

Measurements Spike activity, synaptic weights

B: PoPulATioNs

Name elements size

E Iaf neuron NE = 4NI

I Iaf neuron NI

Estim Iaf neuron first Nstim taken from E

E
sip

 Parrot neuron N
sip

C: CoNNeCTiviTy

Name source Target Pattern

EE E E Random convergent, C
e
 → 1, weight variable, delay d

IE E I Random convergent, C
e
 → 1, weight J, delay d

EI I E Random convergent, CI → 1, weight − gJ, delay d

II I I Random convergent, CI → 1, weight − gJ, delay d

FF ESIP Estim Convergent, NSIP → 1, weight variable, delay d

d: NeuroN Models

Name Iaf neuron

Type Leaky integrate-and-fire, a-current input

Subthreshold dynamics

 

if else reset( ) ( )

( )

( )

/

t t V V t V

I t w t e

V I t
C

e t

> ∗

−

+ = − + =

=

tref m



t

t

t

m

α α

αα

Spiking If V(t−) < Θ and V(t+) ≥ Θ
  1. Set t* = t

  2. Emit spike with time stamp t*

Name Parrot neuron

Type Repeater for creating a superposition of spike trains from multiple sources

Spiking Spikes whenever it receives a spike

e: syNAPse Model

Name Power-law STDP (Morrison et al., 2007)

Type Weight-dependent STDP with a power-law update rule for potentiation and a 

 multiplicative update rule for depression

Spike pairing scheme All-to-all (for nomenclature see Morrison et al., 2008)

Pair-based update rule ∆ ∆w F w e tt
+ +

−= +( ) | |∆ t if > 0

 ∆ ∆w F w e t
− −

−= −( ) | | t
 else

 ∆t : temporal difference between post- and pre-synaptic spikes, synaptic delay considered to be 50% axonal

Weight dependence F w w w F w w+
−

−= =( ) , ( )l lam m

0
1

F: iNPuT

Type Target description

Poisson generator I and E except Estim Independent for each neuron, rate nx·Cx, weight J

Poisson generator Estim Independent for each neuron, rate nx·Cx – N
sip

·nr, weight J

Poisson generator E
sip

 Identical for each neuron, rate ns, weight 1

Poisson generator E
sip

 Independent for each neuron, rate na, weight 1

g: MeAsureMeNTs

Spikes and outgoing synaptic weights (recorded every 3 s) from ESIP, Estim, high-connectivity group Ehc, and 500 randomly selected excitatory neurons
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The scatter plots in Figure 7E are generated by recording the 
time-to-first-spike following each synchronous event in a 1 min 
period for all excitatory neurons in the network. Each marker in 
the plot shows the mean and SD of the response times for a specific 
neuron; the color of the markers indicates the likelihood of the 
neuron to respond to a synchronous stimulus within 10 ms.

3 results
3.1 FIxed poInt analysIs oF weIght dynaMIcs
To investigate the dynamics of STDP in a recurrent network under-
going synchronous stimulation, we select the update rule proposed 
by van Rossum et al. (2000), which is additive for potentiation 
(F+(w) = l) and multiplicative for depression (F−(w) = alw). This 
rule is a good fit to the experimental data on the dependence of 
the magnitude of synaptic strength change on the initial synaptic 
strength (Bi and Poo, 1998). Furthermore, this choice has the advan-
tage that the rule exhibits the same qualitative behavior as other 
weight-dependent rules (see Morrison et al., 2008), yet is more trac-
table than many other weight-dependent rules such as the partially 
multiplicative model proposed by Gütig et al. (2003) or the power-
law formulation (Morrison et al., 2007; Standage et al., 2007).

Inserting F±(w) into the equation system for the synaptic drifts 
given in (5) and (6) and setting the left hand sides to zero results in 
the following quadratic expressions for the nullclines of w

r
 and w

s
:
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The nullclines can be determined analytically; the crossing of 
the nullclines can be found numerically. To this end we assume 
input to the neuron analogous to that received by a neuron in 
the recurrent network simulation described in Section 2.3. The 
rate of the asynchronous background population is n

r
 = 9.6 Hz, 

and the asynchronous and synchronous rates of the SIP input are 
n

a
 = 6.6 Hz and n

s
 = 3 Hz. The total number of incoming recurrent 

excitatory synapses is C C Ci i= + =r s 3840. We set STDP parameters 
a = 0.0132 pA−1, l = 0.03 pA, t+ = 15 ms and t− = 30 ms and neu-
ronal parameters g = 3.66 × 103(Vs)−1 and n

0
 = 176.1 Hz. In the 

absence of synchronous stimulation ( ),Ci
s = 0  this choice of synaptic 

and neuronal parameters results in a self-consistent output rate 
n

i
 = n

r
 and a stable fixed point wr pA∗ = 38 6. , thus reproducing the 

corresponding values of the unstimulated network simulation. The 
parameters   and K  are calculated from the neuronal and STDP 
parameters as described in Section 2.2. The nullclines for Ci

s = 80 

Table 2 | simulation parameters.

Name value description

PoPulATioNs

Ne 64,000 Size of excitatory population E

NI 16,000 Size of inhibitory population I

Nstim Varied Size of externally stimulated excitatory 

  sub-population Estim

NSIP Varied Size of external group ESIP

CoNNeCTiviTy

CE 3840 Number of incoming connections from E

CI 960 Number of incoming connections from I

g 5 Scales weight of inhibitory connections 

  with respect to J

J 38.5 pA Weight of static excitatory connections

d 1.5 ms Synaptic transmission delay

NeuroN Model

tm 10 ms Membrane time constant

Cm 250 pF Membrane capacitance

Θ 20 mV Fixed firing threshold

V0 0 mV Resting potential

Vreset V0 Reset potential

tref 0.5 ms Absolute refractory period

t
a
 0.3258 ms Rise time of PSC

μV 5.7 mV Mean value of initial normal distribution 

  of membrane potentials

sV 7.2 mV SD of initial normal distribution of 

  membrane potentials

syNAPse Model

t+ 15 ms Time constant of potentiation window

t− 30 ms Time constant of depression window

l 0.1 Learning rate

μ 0.4 Weight-dependence parameter of potentiation

a 0.057 Asymmetry parameter

w0 1 pA Normalization parameter

μw 38.58 pA Mean value of initial normal distribution 

  of synaptic weights

sw 3 pA SD of initial normal distribution of 

  synaptic weights

iNPuT

Cx 1200 Number of external inputs

nx 14 Hz External rate

nr 9.6 Hz Total firing rate of ESIP

ns 3 Hz Rate of synchronous spike trains from ESIP

na nr−ns Rate of asynchronous spike trains from ESIP

normalize by the number of neurons and the number of synchro-
nous input events. Figures 6B,F and 7A–D show the development 
of the peri-stimulus spiking activity of the specific neuronal groups, 
which is the number of spikes within the 10 ms before (control) 
and within the 10 ms after each synchronous input event. Data 
is normalized with respect to the number of neurons in a group 
and the number of synchronous input events within successive 
periods of 10 s.
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the equilibrium average strength of the synapses from the stimu-
lated neurons ws

∗ as a function of the size of the stimulated group 
N

stim
 and the connectivity rank of the post-synaptic neuron in the 

idealized network. Only the neurons with the highest connectivity 
are displayed (Ri ≤ 1000), as these are the neurons that will most 

are illustrated in Figure 2A. Note that as C Cs
i

r
i

 , the nullcline for 
w

s
 is much more sensitive to the value of w

r
 than vice versa. The 

value of ws is negative for values of w
s
 above the w

s
-nullcline and 

positive for values of w
s
 below it. Similarly, wr is positive for values of 

w
r
 to the left of the w

r
-nullcline and negative for values to the right 

of it. Consequently, the fixed point indicated by the intersection of 
the nullclines is a stable attractor. Figure 2B shows the location of 
the fixed point as a function of the number of synchronous inputs 
Ci

s. Again, w
s
 is the more sensitive variable.

We can now exploit our knowledge of the network connectivity 
to determine the distribution of Ci

s and thus the distribution of 
fixed points. Each neuron receives C

E
 connections drawn randomly 

from the N
E
 excitatory neurons in the network, so the number of 

connections drawn from the E
stim

 population  receiving synchronous 
stimulus is distributed binomially; the number of trials is C

E
 and 

the probability of success in an individual trial is p =N
stim

/N
E
, where 

N
stim

 is the number of neurons in E
stim

. Multiplying the probability 
of drawing C

s
 connections P

P
 (C

s
, C

E
) with the number of excitatory 

neurons N
E
 gives the expected number of neurons in the network 

that have C
s
 connections from E

stim
. Let us now consider an idealized 

network model in which the number of neurons with C
s
  connections 

from E
stim

 is indeed N
E
 · P

p
 (C

s
, C

E
) and assign each neuron a 

 connectivity rank Ri, where Rj < Rk entails C Cj k
s s≥ . Figure 3A shows 

Figure 2 | Fixed point of the synaptic drift equations. (A) Nullcline for ws 
as a function of wr (red curve) and for wr as a function of ws (blue curve) for 
Ci

s = 80. The crossing point of the nullclines determines the fixed point ( , )w wr s
∗ ∗  

of the coupled equations. Arrows show the sign of the derivatives of wr and 
ws; arrows pointing up (down) indicate  w ws s> 0 0( ),<  arrows pointing right 
(left) indicate  w wr > <0 0( ),r  for the values of wr and ws at the base of the 
arrows. (B) Location of fixed point (w r

∗; blue, ws
∗; red) as a function of the 

number of synchronous inputs Ci
s.

Figure 3 | distribution of fixed points and likelihood of responding to 
synchronous stimulus. (A) Average strength of synapse from the stimulated 
group ws

∗ as a function of the size of the stimulated group (horizontal axis) and 
the connectivity rank of the post-synaptic neuron (vertical axis). The black line 
indicates the group of highest connectivity equal in size to the stimulated group 
(R = Nstim). (B) Expected number of spikes emitted by the post-synaptic neuron 
in the 15 ms following a synchronous spike in the stimulated group; axes and 
black line as in (A); the black curve indicates the number of neurons which 
respond to a synchronous event with a spike with probability greater than or 
equal to the recruitment threshold Θr = 0.5. The black line and curve represent a 
return map for the development of feed-forward structure in a network with an 
unstable fixed point at Nstim = 701. The blue arrows show two iterations of the 
return map for an initial stimulated population of size Nstim = 697; the pink arrows 
show one iteration for Nstim = 706. (C) Location and nature of the fixed point as 
functions of the recruitment threshold Θr. Dashed curve: fixed point Nr

∗, solid 
curve: slope of the tangent to the Nr (Nstim) curve at Nr

∗.
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number of neurons recruited is smaller than N
stim

. These neurons 
will in turn recruit even fewer neurons, and so the structure will 
decay to nothing within a few iterations. Conversely, if the number 
of stimulated neurons is larger than the crossing point, the number 
of neurons recruited will be greater than N

stim
. These neurons will 

in turn recruit an even greater number of neurons, until the entire 
network is recruited within a few iterations. This is illustrated by the 
map iterations shown as arrows in Figure 3B. Note that the iterations 
are approximative, as the composition of pre- and post-synaptic 
rates is in general not constant over iterations.

Figure 3C shows the dependence of the fixed point on the choice 
of the recruitment threshold Θ

r
. As the requirement on the reli-

ability of spiking following a synchronous event increases, the fixed 
point shifts to greater values of N

stim
. The slope of the tangent of 

the N
r
 (N

stim
) curve is positive across the whole range of Θ

r
, dem-

onstrating that the fixed point is always unstable.
The main factors influencing the shape of Figure 3 are the ran-

dom wiring of the network and the smooth change of the fixed 
point of the weight distribution ( , )w wr s

∗ ∗  with increasing number of 
synchronous connections (Figure 2B). The number of connections 
a neuron receives from a given group is binomially distributed. This 
causes a “fan-out” structure – if we can find a group of neurons 
which receives at least k inputs from a synchronously active group, 
we can also find an even larger group which receives slightly fewer 
than k connections. Due to the smooth change of the fixed point 
of the weight distribution with k, the equilibrium weight distribu-
tion and thus the equilibrium response to a synchronous event of 
a neuron receiving k − 1 or k − 2 synchronous connections is very 
similar to the equilibrium distribution and response of a neuron 
receiving k connections.

It is therefore worthwhile to determine to what extent the 
smooth shift of the weight distribution shown in Figure 2B is robust 
to parameter changes. Figure 4A shows the development of fixed 
points as a function of the number of synchronous connections 
for four different scenarios. In the top left panel we consider the 
case of lower input rates: n

r
 = 5 Hz, n

a
 = 3.5 Hz and n

s
 = 1.5 Hz, 

corresponding to a lower recurrent network rate and a lower syn-
chronous stimulus rate. We set n

0
 = 190 Hz and g = 7.02 × 103 (Vs)−1, 

which corresponds to a reduced external Poisson rate and results in 
a self-consistent rate n

i
 = n

r
 when there is no synchronous stimulus 

( )Ci
s = 0 . The top right panel reproduces the standard input scenario 

(n
r
 = 9.6 Hz, n

0
 = 175 Hz) except the rate of synchronous events is 

a greater proportion of the total rate of the synchronous popula-
tion: n

a
 = 2.6 Hz and n

s
 = 7 Hz. The bottom left panel reproduces 

the standard input scenario (n
r
 = 9.6 Hz, n

a
 = 6.6 Hz, n

s
 = 3 Hz, 

n
0
 = 175 Hz) for the multiplicative STDP model introduced by 

Rubin et al. (2001): F+ (w) = l (W
max

 − w) and F− (w) = alw. The 
synaptic parameters are chosen as for the additive/multiplica-
tive model of van Rossum et al. (2000) investigated above, but 
with a = 2.13 and W

max
 = 200 pA. Finally, the bottom right panel 

shows the results for the standard input scenario in combination 
with the power-law STDP developed in Morrison et al. (2007) and 
investigated numerically in Section 3.2: F w w w+

−=( ) l m m

0
1  and F− 

(w) = law. Synaptic parameters are set as above, but with a = 0.057, 
w

0
 = 1 pA and m = 0.4. In this example, the nullclines cannot be 

calculated analytically. For both the alternative STDP models inves-
tigated, the deviating parameters are chosen to give the same results 

easily be recruited into a structure. However, Figure 3A suggests 
that this is unlikely to occur, as ws

∗ increases slowly with decreas-
ing R, i.e., neurons which receive similar numbers of connections 
from the stimulated group will tend to develop similar synaptic 
strengths. Consequently, there will be no development of clearly 
defined groups that respond in a qualitatively different fashion to 
a synchronous event in the stimulated group. The increase of ws

∗ 
with increasing N

stim
 is more rapid; small variations in the size of a 

synchronously firing group can have a large effect on the outgoing 
weight distribution.

This insight can be further clarified by calculating the number of 
spikes a post-synaptic neuron is expected to produce within a given 
time t after a synchronous event in the stimulated input group. This 
can be found by integrating the conditional firing rate:

 

n t dt t C w t dt

C w

t
t

i
t

i

sp s s

0 r r r

0
0 0

= n n g

n gn g n

i i′( ) ′ = + ′( ) ′

= − + +

∫ ∫ 

 a ++( ) 

+ −
−( )

− ′− ′ − ′

n

g
t t ta

t t

a

a

s s s

s s

m

C w t

C w
e

C

e e t

i

i
t t



/ /

/ /1 1
2

m

ee t
dt

C w C w

t

i i

− ′
−

′

= − + +( ) 

∫ /

( / / )

t

t t

n gn g n n

a

a1 1
0 m

r0 + r r a s s s  tt

C w
e

C

e e

t

i

t t

+
−( ) − −( )

−( )






+

− −

g
t

t t

t t

t

a

a

t t

a

a

a

s s

m

m

m

1/

/ /

/

1 1

1
2

++( ) −
−( )







−t t

t t

a

t

a

a

a2 2e t /

/ /1 1 m  

(14)

Figure 3B shows the number of spikes expected within 15 ms 
after a synchronous event for every fixed point calculated in 
Figure 3A. To determine the development of functional structure, 
we introduce a recruitment threshold Θ

r
. All neurons that have 

a probability of responding to a synchronous event in E
stim 

of at 
least Θ

r
 are considered to have been recruited into the structure, 

neurons for which P
15

 (spike) < Θ
r
 are considered to be outside 

the structure. The black curve indicates the number of neurons 
recruited N

r
 as a function of the size of the stimulated group N

stim
 

for an arbitrary choice of recruitment threshold Θ
r
 = 0.5, i.e., for 

a choice of N
stim

, the height of the black curve gives the number of 
neurons that are recruited by this stimulus such that each neuron 
has at least a 50% probability of firing immediately after a syn-
chronous event in E

stim
.

The black diagonal line indicates a connectivity rank equal to the 
size of the stimulated group, i.e., the N

stim
 neurons in the network that 

receive the most input from the synchronously stimulated group. 
The two lines represent an approximation of a return map for groups 
of synchronously firing neurons: the curve indicates N

r
 (N

stim
) and 

the diagonal indicates N
stim

, therefore their intersection reveals the 
fixed point at which the number of neurons recruited is equal to the 
number of neurons stimulated, N Nr stim

∗ = . If the fixed point were 
stable, the N r

∗ recruited neurons would recruit another group of N r
∗
 

neurons, which would in turn recruit another such group, thus sta-
bly propagating structure through the network. However, the fixed 
point is unstable, since the slope of the N

r
 (N

stim
) curve is positive 

at the intersection. If N
stim

 is initially below the crossing point, the 
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(6) can easily be extended to incorporate post-synaptic homeo-
static mechanisms. A term −l

n
 (n

i
 − n

h
) acts to increase the syn-

aptic weights if the rate of the post-synaptic neuron is less than 
a desired rate n

h
 and to decrease them if the post-synaptic rate 

exceeds n
h
. A natural choice for n

h
 is the self-consistent rate of the 

unstimulated network, n
r
. Similarly, a homeostatic mechanism to 

conserve the sum of a neuron’s incoming synaptic weights can be 
modeled by an additional term − + −lw

i iw C C w C C w( / / ),r r s s h  where 
C C Ci i= +r s is the total number of incoming synapses and w

h
 is a 

desired mean synaptic weight. A natural choice for w
h
 is the fixed 

point of the one-dimensional system in the case that the neuron 
receives no synchronous input ( )Ci

s = 0 . For both models of post-
synaptic homeostasis, the expressions for the nullclines of w

r
 and 

w
s
 given in (12) and (13) acquire additional contributions to the 

linear and constant coefficients but maintain their quadratic form. 
In Figure 4A, the development of the fixed point assuming post-
synaptic rate homeostasis is shown for the low rate scenario with 
l
n
 = 3 × 10−4 pA. Similarly, the fixed point development assuming 

post-synaptic weight homeostasis is shown for the high synchro-
nous rate scenario with l

w
 = 5 × 10−6 s−1. In both cases, the presence 

of post-synaptic homeostasis causes a greater separation to develop 
between the mean weights of the unsynchronized inputs and the 
synchronized inputs.

In all scenarios, a smooth shift of the fixed point of the weight 
distribution ( , )w wr s

∗ ∗  with increasing number of synchronous con-
nections can be observed. When combined with the assumption of 
random connectivity, all scenarios result in a qualitatively similar 
return map to that shown in Figure 3 with an unstable fixed point. 
This is demonstrated in Figures 4B,C with a recruitment threshold 
of Θ

r
 = 0.5 for the low rate scenario (without homeostasis) and the 

power-law STDP scenario, respectively. As the theoretical model is 
developed from the point of view of the post-synaptic neuron, it is 
not easily extensible to account for pre-synaptic homeostatic mech-
anisms such as the normalization of outgoing weights. However, 
due to the similarity in behavior between neurons with similar 
numbers of synchronous inputs, implementing a pre-synaptic 
mechanism to regulate the total strength of outgoing synapses will 
not result in symmetry breaking for some specific value of Ci

s. These 
results lead us to conclude that stable development of structure as 
a response to synchronous stimulation cannot occur in randomly 
connected networks incorporating weight-dependent STDP with-
out additional network, cellular or sub-cellular assumptions.

3.2 Simulation reSultS
To check the predictions of the theoretical model we simulate a 
large-scale neuronal network with biologically realistic numbers 
of incoming synapses per neuron and weight-dependent STDP, 
see Section 2.3 for details. An excitatory sub-population of the 
network E

stim
 of size N

stim
 is stimulated by an external group E

SIP
 of 

size N
SIP

 in which the neurons fire mostly independently but with 
synchronous events at 3 Hz. Figure 5 shows the development of the 
mean synaptic weight between the external synchronous group and 
the stimulated group (top panel) and between the stimulated group 
and the high-connectivity group (bottom panel) for different sizes 
of the external group N

SIP
. The size of the stimulated group N

stim
 

is chosen such that a high-connectivity group E
hc

 can be found of 
similar size (N

hc
 ≈ N

stim
) where each neuron in the high-connectivity 

for the standard input scenario with no synchronous input ( )Ci
s = 0  

as the additive/multiplicative model of van Rossum et al. (2000) 
investigated above: a self-consistent rate ( )n ni = r  and a stable fixed 
point wr pA∗ = 38 6. .

It has previously been suggested that homeostatic regulatory 
mechanisms are crucial for the development of structure (Doursat 
and Bienenstock, 2006; Liu and Buonomano, 2009; Fiete et al., 
2010). The equation system for the synaptic drifts given in (5) and 

Figure 4 | robustness of results with respect to input rate, STDP model 
and post-synaptic homeostasis. (A) Location of fixed point (w r

∗; blue, ws
∗; 

red) as a function of the number of synchronous inputs Ci
s for different 

scenarios, see text for details. Top left: low recurrent and external rates (solid 
curves) with additional homeostatic regulation of the post-synaptic rate 
(dashed curves). Top right: high synchronous rate (solid curves) with additional 
homeostatic regulation of the incoming synaptic weights of the post-synaptic 
neuron. Bottom left: standard input rates and multiplicative STDP model. 
Bottom right: standard input rates and power-law STDP model. (B) Expected 
number of spikes emitted by the post-synaptic neuron in the 15 ms following a 
synchronous spike in the stimulated group in the low rate scenario; axes and 
black curves as in Figure 3. (C) As in (B) for the standard input rate scenario 
with the power-law STDP model.
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determined by the network firing rate of ≈10 Hz) throughout 
the simulation. The weight distributions between all groups are 
very similar (see Figure 6D).

In the lower panel, N
SIP

 = 25, N
stim

 = 228 and N
hc

 = 228. Each 
neuron in E

hc
 receives 25 or more synaptic inputs from E

stim
, whereas 

all other excitatory neurons in the network receive 24 or fewer 
inputs from E

stim
 and on average 14. The probability that neurons 

in E
stim

 fire in response to a synchronous stimulation event increases 
steadily over the course of the simulation until almost all neurons 
are firing in response to every synchronous event. The probability 
that neurons in E

hc
 fire in response to a synchronous stimulation 

event, mediated by E
stim

, remains at approximately base level for the 
first 20 min. Between 20 and 25 min, the probability of response 
increases sharply. However, the probability that neurons randomly 
selected from the rest of the network fire in response to a synchro-
nous stimulation event also increases sharply during this period. 
This is reflected in the weight distributions. The middle panel of 
Figure 6H shows the distribution of incoming synaptic weights 
to the high-connectivity group E

hc
. The mean of the distribution 

of weights between E
stim

 and E
hc

 shifts to a higher value than that 
between randomly selected neurons and E

hc
, as seen in Figure 2B. 

However, the same is true to a lesser extent for the distributions 
of the incoming weights to the random group (bottom panel of 
Figure 6H). Note that the mean of the distribution of the incom-
ing synaptic weights to the stimulated group from the rest of the 
network has shifted to a lower value (top panel of Figure 6H) due to 
the acausal correlation between activity in the network and activity 
in the stimulated group. If the synapses from E

SIP
 to E

stim
 are clipped 

to an upper bound, this drift eventually leads to a decoupling of 
the stimulated group, as was reported in Morrison et al. (2007). 
However, the insight that STDP reduces the strength of recurrent 
connections was originally described by Abbott and Nelson (2000), 
and more recently proved for polysynaptic loops of arbitrary length 
by Kozloski and Cecchi (2010).

Between 27 and 28 min the increasing response of the network to 
synchronous events causes it to enter a pathological state in which 
some neurons are firing very rapidly all the time and some are 
almost silent. The theoretical model developed in Section 3.1 does 
not predict the occurrence or the characteristics of the pathological 
state, as it does not take into account the interactions between neu-
rons in the network, only the interactions between a synchronously 
firing group and its post-synaptic targets.

To test the conclusion that the introduction of homeostatic 
mechanisms do not alter the nature of the fixed point, we repeat 
the above experiments with pre-synaptic homeostasis. Every 3 s 
the outgoing synapses of every excitatory neuron in the recurrent 
network are adjusted by a multiplicative factor such that the total 
sum of its plastic synapses is reset. Similarly to the results obtained 
without homeostasis, synchronous stimulation from a group of 
N

SIP
 = 20 external neurons is neither enough to produce a reliable 

response of the stimulated group (N
stim

 = 164) nor any substan-
tial changes in the high-connectivity group (N

hc
 = 158), whereas 

a slightly stronger stimulus (N
SIP

 = 25, N
stim

 = 228, N
hc

 = 228) 
causes a network to enter a pathological state (see Figures 7A,B). 
The transition occurs much later, at around 90 min rather than 
28 min in the absence of homeostasis, demonstrating the stabiliz-
ing effect of the weight normalization. Unlike the results shown in 

group receives at least N
SIP

 connections from the stimulated group 
whereas all other excitatory neurons in the network receive fewer 
than N

SIP
 connections from the stimulated group. For low values 

of N
SIP

, the mean synaptic weight between E
SIP

 and E
stim

 saturates 
within 10 min. As predicted by the theoretical model derived above, 
the downstream effect is much weaker; little change can be seen in 
the mean synaptic weight between E

stim
 and E

hc
, even though each 

neuron in the E
hc

 receives at least as many inputs from E
stim

 as each 
neuron in E

stim
 receives from E

SIP
. For higher values of N

SIP
, the net-

work is still evolving at 10 min, but the substantially greater effect 
on the mean synaptic weights between E

SIP
 and E

stim
, and between 

E
stim

 and E
hc

 can be clearly seen.
The rapid change in network behavior as the number of syn-

chronous inputs increases can be seen in Figure 6, see Section 
2.4 for the data analysis details. In the upper panel, N

SIP
 = 20 and 

N
stim

 = 164. Each neuron in the stimulated group E
stim

 receives 
input from each of the 20 neurons in the external stimulating 
group E

SIP
. Each neuron in the corresponding high-connectivity 

group E
hc

 of a similar size (N
hc

 = 158) receives at least 20 synaptic 
inputs from E

stim
. All other excitatory neurons in the network 

receive 19 or fewer synaptic inputs from E
stim

 and on average 
10. The probability that neurons in the stimulated group fire 
in response (i.e., within 10 ms) to a synchronous stimulation 
event increases slightly in the first 10 min and then saturates. The 
probability that neurons in E

hc
 fire in response to a synchronous 

stimulation event mediated by E
stim

 remains at base level (i.e., 

Figure 5 | evolution of the mean synaptic weights as a function of the 
size of the external group NsiP. Light to dark curves correspond to NSIP = 10, 
20, 30 resulting in a size for the stimulated group Nstim = 46, 164, 295 
respectively. (A) Mean weight of synapses between the external group ESIP 
and the stimulated group Estim as a function of time. (B) Mean weight of 
synapses between the stimulated group and the high-connectivity group 
receiving at least NSIP connections from it (Nhc = 44, 158, 291).
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 alternately every 1.5 s. The network behavior is much more stable. 
The network remains in a stable asynchronous irregular activity 
regime even when an external group of size N

SIP
 = 50 stimulates a 

group of N
stim

 = 584 excitatory neurons (Figure 7C). However, the 
response probability of the high-connectivity group (N

hc
 = 576) 

saturates at a lower level than the maximum response likelihood 
reached in Figure 7B with purely pre-synaptic homeostasis. Although 
 increasing N

SIP
 increases the number of neurons in E

stim
 available to 

drive a potential high-connectivity group E
hc

, it also increases the 
size of E

hc
. In the presence of pre-synaptic homeostasis, this reduces 

the mean strength of the connections between E
stim

 and E
hc

.
Synchronous stimulation from an external group of size N

SIP
 = 75 

drives the network into a pathological state despite the homeostasis 
as can be seen in Figure 7D. The interaction between the home-
ostasis and the strong stimulus sets up an oscillatory behavior in 
which the network repeatedly enters a pathological state but is reset 
by the application of homeostasis. Between pathological interludes, 
all neurons have a high probability of responding to a synchronous 
stimulus. The absence of clearly defined neuronal groups can be 
seen in Figure 7E. In the left panel, the network with STDP, pre- 
and post-synaptic homeostasis shows little response to synchronous 

Figure 6F for pure STDP, as soon as the stimulated group reflects 
the stimulus with sufficient reliability, a clear difference between 
the response likelihood of the high-connectivity group and the 
network as a whole can be observed. The high response likelihood 
of the high-connectivity group breaks down rapidly when the net-
work starts responding more strongly to the synchronous stimula-
tion at around 60 min. This is another example of the decoupling 
of a synchronously active group from its embedding network as 
described above and in Morrison et al. (2007). As the response to 
the synchronous stimulus of the network generally lags behind 
the response in the high-connectivity group, acausal correlations 
are generated in the incoming synapses of the high-connectivity 
group. As the synaptic weights decrease, so does the mean mem-
brane potential, thus diminishing the response of the neurons to 
the synchronous stimulus events. The stimulated group E

stim
 does 

not decouple in this fashion because the increasing strength of the 
connections from the external input can compensate for the loss 
of input from the recurrent network.

Figures 7C,D show the development of the response likelihood 
when post-synaptic homeostasis is also applied, such that the 
total strength of incoming and outgoing synapses are normalized 

Figure 6 | evolution of network response to synchronous stimulus. 
(A) Probability of emitting a spike after a synchronous event in the first 10 s of 
stimulation for the stimulated group (top), the high-connectivity group 
(middle) and the random group (bottom) for NSIP = 20 and Nstim = 164. (B) 
Evolution of the probability of emitting a spike in the 10 ms immediately 
before (dashed lines) or immediately after a synchronous event (solid lines) in 
successive 10 s periods. Colors as in (A). (C) As in (A) but for the 10 s period 
following 25 min of simulation. (d) Distribution of incoming synaptic weights 

at 25 min for the stimulated group (top) from the random group (blue), the 
synaptic weight distribution from the external group (mean 56.9 pA) is not 
shown; for the high-connectivity group (middle) from the random group (blue) 
and the stimulated group (pink); for the random group (bottom) from the 
random group (blue) and the stimulated group (pink). (e–H): As for (A–d) but 
for NSIP = 25 and Nstim = 228. The synaptic weight distribution from the 
external group to the stimulated group (mean 161.4 pA) is not shown in the 
top panel of (H).
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Figure 7 | spike-timing dependent plasticity and homeostasis. 
(A,B) Evolution of network response to synchronous stimulus where STDP 
synapses in the recurrent network are subject to weight normalizing 
pre-synaptic homeostasis for NSIP = 20, Nstim = 164, Nhc = 158 and NSIP = 25, 
Nstim = 228, Nhc = 228, respectively. Probability of emitting a spike in the 10 ms 
immediately before (dashed lines) or immediately after a synchronous event 
(solid lines) in successive 10 s periods for the stimulated group (pink), the 
high-connectivity group (purple) and the random group (blue). (C,d) As in 

(A,B) but for pre- and post-synaptic homeostasis; NSIP = 50, Nstim = 584, 
Nhc = 576 and NSIP = 75, Nstim = 961, Nhc = 963, respectively. (e) Response 
latency and reliability for a network with STDP, pre- and post-synaptic 
homeostasis. Mean and SD of the response interval for each excitatory neuron 
to each synchronous event in the 26th minute (left, middle) or 21st minute 
(right). Marker color indicates the likelihood of the neuron to fire within 10 ms 
of a synchronous event. From left to right the panels correspond to NSIP = 20, 
50, 75 and Nstim = 164, 584, 961.

stimulation by a small group of N
SIP

 = 20 external neurons: the 
average latency is approximately the inter-spike interval of the net-
work background rate. The middle and the left panel correspond to 
Figures 7C,D, i.e., synchronous stimulation by much larger external 
groups of N

SIP
 = 50 and N

SIP
 = 75 neurons, respectively. The neurons 

of the stimulated group (N
stim

 = 584 and N
stim

 = 961) can be seen to 
have separated themselves and respond quickly and reliably to the 
synchronous stimulus. The mean response latency shifts to an earlier 

value and the mean SD of the latency is reduced, demonstrating 
that the network as a whole responds earlier and more reliably to 
the stronger stimulus. Those neurons that respond earliest also have 
the lowest SD and are thus most likely to respond within 10 ms of a 
synchronous stimulus. However, there is no separation of a second 
group from the mass. We therefore conclude that no development of 
feed-forward structure can be observed, even in the presence of pre- 
and post-synaptic homeostasis and strong synchronous stimulus.
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4 dIscussIon
We have developed a simple model using a mean field approach 
and a linear neuron model to investigate the propagation of feed-
forward structure in plastic recurrent networks. The key prediction 
of the model is that the number of neurons recruited by a repeated 
synchronous stimulus protocol is subject to an unstable fixed point. 
A synchronously firing group of neurons of a size below that of 
the fixed point recruits a smaller group, leading to a failure of the 
structure to propagate, whereas a synchronously firing group of a 
size above that of the fixed point recruits a larger group, causing 
the whole network to be recruited. In other words, a repeated syn-
chronous stimulus is always either not enough or too much. We 
demonstrated by simulation that a large-scale network behaves as 
predicted by the mean field theory.

The existence of the unstable fixed point is robust. Employing a 
different weight-dependent STDP model, altering the input rates 
or introducing homeostatic mechanisms, e.g., regulating incoming 
synapses so as to maintain the total synaptic strength or post-syn-
aptic rate, only influences the dynamics quantitatively. The unstable 
fixed point can be shifted to a larger or smaller group size, but it 
cannot be turned into a stable fixed point. The instability arises 
through the combination of a binomial distribution of connections 
from a given synchronously active group with the smooth change of 
the stable fixed point in the synaptic weight distribution as a func-
tion of the number of synchronous connections. Thus, any change 
to the model assumptions which does not produce a qualitative 
change in at least one of these factors will produce similar results, 
e.g., distributing the conduction delays or defining the conduction 
delay to be largely axonal, although such adaptations of the network 
model may well suppress or alter the pathological state the network 
enters when the amount of stimulation is too high (see Lubenov 
and Siapas, 2008). As an example, we demonstrated that the intro-
duction of pre- and post-synaptic homeostatic mechanisms that 
maintain the total strength of outgoing and incoming recurrent 
synapses makes the network more stable, but does not enable the 
development of feed-forward structures.

Stable propagation of feed-forward structure is only possible 
if one or more of our assumptions are false. Other simulation 
studies have previously reported structure development (Hertz 
and Prügel-Bennet, 1996; Levy et al., 2001; Izhikevich et al., 2004; 
Doursat and Bienenstock, 2006; Jun and Jin, 2007; Masuda and 
Kori, 2007; Hosaka et al., 2008; Liu and Buonomano, 2009; Fiete 
et al., 2010). However, it is our contention that the risk of non-
generalizable results is high when studying networks that are small, 
have few incoming synapses per neuron, or assume STDP rules 
that are independent of the synaptic weight. Each neuron in our 
network model receives a biologically realistic number of inputs 
(6000) and the network exhibits a biologically realistic degree of 
sparseness (connection probability of 0.06), while our model of 
STDP reproduces the experimentally found weight dependence of 
the amount of potentiation and depression a synapse undergoes 
(Bi and Poo, 1998; Morrison et al., 2007). We therefore suggest that 
the previously reported development of structure be considered 
artifactual until a greater degree of validation can be obtained. In 
our view, a weak proof of principle would be the demonstration 
of bounded structural growth in a network model with at least as 
great a degree of biological realism as in our study with respect to 

connectivity and plasticity, with additional assumptions that at least 
do not contradict experimental findings. A stronger, more convinc-
ing, proof would be provided by such a network model in which 
the additional assumptions are experimentally motivated.

Given that the brain does develop stable signal pathways, there is 
every reason to expect that a network model can be developed that 
fulfills these criteria for a strong proof of principle. One indication 
that the model we have investigated is overly simplified is that the 
combination of network structure, neuronal dynamics and plastic-
ity leads to a symmetrical distribution of synaptic weights, rather 
than the skewed distribution observed experimentally (Sjöström 
et al., 2001). Therefore, a promising candidate adaptation that 
might result in a stable fixed point and thus stable propagation of 
feed-forward structure is the initial connectivity of the network. 
Here, we assume a random graph; however, the cortical network 
consists of several layers with layer-specific connectivity and exhib-
its long range patchy connections (Lewis et al., 2002; Schüz and 
Braitenberg, 2002; Thomson and Bannister, 2003; Binzegger et al., 
2004). A more realistic graph structure might eliminate the “fan-
out” tendency that underlies the instability of the fixed point. Such 
adaptations may also entail the use of a more complex neuron 
model than assumed here. Kumar et al. (2008) demonstrated that 
the regime enabling stable propagation activity in a feed-forward 
sub-network embedded in a locally connected random network 
is much greater for a conductance-based neuron model than pre-
viously found for a current-based model (Mehring et al., 2003). 
Moreover, a more sophisticated neuron model, particularly with 
respect to the dendritic integration of inputs, might exhibit greater 
symmetry breaking properties.

Another candidate is the formulation of the STDP rule. Although 
we have shown that our results are robust to the choice of update 
rule, we have only considered extremely simplified models of STDP 
exclusively at excitatory–excitatory synapses; the role of plasticity 
at inhibitory synapses is neglected. We addressed models in which 
the STDP window is fitted by two exponential functions, which is 
easy to analyze but may be too simplistic. Further, we have so far 
only considered rules based on pairs of spikes. Pfister and Gerstner 
(2006) introduced a rule based on triplets of spikes which accounts 
for experimental findings on the dependence of the weight change 
on the frequency of the pairing protocols (Sjöström et al., 2001). The 
triplet model has been shown to map to the BCM rule (Bienenstock 
et al., 1982) and to give near-optimal information transmission 
when combined with spike-frequency adaptation in the post-syn-
aptic neuron (Hennequin et al., 2010). The triplet interaction could 
well also prove to be important for the development of structure. 
Moreover, recent experimental findings reveal that neuromodula-
tion can influence STDP. Seol et al. (2007) showed that the polar-
ity of the STDP window depends on the activation of receptors 
sensitive to cholinergic and adrenergic activity. A recent study by 
Kozloski and Cecchi (2010) demonstrated that polysynaptic loops 
eliminated by standard STDP can be restored by such a reversed rule. 
This finding suggests that the interaction of causal and anti-causal 
windows may indeed result in the kind of symmetry breaking that 
would enable groups of neurons to develop a qualitatively different 
response to a given synchronous stimulus. Neuromodulation can 
also be essential either for inducing STDP or for altering the thresh-
old for induction, see Pawlak et al. (2010) in this special issue for a 
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review. Finally, our theoretical approach does not take into account 
interactions of STDP with other forms of plasticity except post-
synaptic homeostasis. Although no development of feed-forward 
structure occurs in our homeostatically regulated network models, 
the presence of homeostasis certainly has a strong stabilizing effect 
on the network dynamics. Therefore, homeostasis may be a crucial 
element that enables network dynamics to be maintained during 
stimulus-driven development of structure. Short-term plasticity is 
another feature overlooked in the current study. The interaction 
of STDP with depression and facilitation could result in different 
network dynamics that would be more favorable to symmetry break-
ing, as could the incorporation of tagging processes to stabilize the 
developed structures (Frey and Morris, 1997; Reymann and Frey, 
2007; Clopath et al., 2008). We therefore conclude that the develop-
ment and investigation of more sophisticated models of STDP that 
interact with other forms of plasticity on different time scales would 
be a useful future extension of this research.

A third area in which the model presented here could be adapted 
is the stimulus protocol. Here, we investigated whether structure 
can develop from the seed of a single correlated group. Several 
forms of synaptic pathway organization have been identified and 
mathematically analyzed for recurrent networks under the assump-
tion that they receive input from more than one pool of correlated 
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