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absorbing node would explore all possible trajectories. This situ-
ation resembles the propagation of cortical activity between two 
regions, which generally flows through multiple paths. Thus, the 
average of the number of steps between two given nodes constitutes 
a functionally interesting parameter, which we call absorption. This 
measure can be computed from a structure that summarizes the 
thalamo-cortical connections: the adjacency matrix K, whose entry 
K(i, j) = 1 indicates a directed link from the element i to the element 
j. In strongly connected networks, i.e., in which there is at least one 
path between any pair of nodes, it is possible to obtain analogs of 
absorption times by enforcing each node as a single absorbing state 
(e.g., Kemeny and Snell, 1976). In related studies, Noh and Rieger 
(2004), considered the mean first passage time between two nodes 
as a subsidy for the analysis of scale free models, while Newman 
(2005) proposed the random walk betweenness measure as a means 
to quantify the influence a node has over the spread of information 
via random walks through the network.

Despite being relatively simple, the random walk model consti-
tutes one of the most important references in dynamics. A straight-
forward physiological interpretation can be offered in the context of 
cortical networks: random walks approximate the signal originating 
at a single node and spreading via structural connections (Figure 1A). 
In addition to mimicking the movement of one or more agents along 
the network, the random walk model is intrinsically related to the 
general phenomenon of diffusion (Simonsen, 2005). More specifi-
cally, as time progresses during a random walk initiated at a given 
node, the frequency of visits to other nodes converges to the values 

1 IntroductIon
Numerous studies have demonstrated that cortical networks, con-
sisting of brain regions and inter-regional pathways, exhibit charac-
teristic topological features, such as high clustering and short path 
lengths that support efficient wiring and complex neural dynam-
ics (Hilgetag et al., 2000; Hilgetag and Kaiser, 2004; Sporns, 2004; 
Sporns and Kotter, 2004; Sporns and Zwi, 2004; Sporns et al., 2004, 
2005). The link between the structural connection topology of the 
cortex and the pattern of information flow between its constituent 
regions is less extensively explored. We adopt a simple approxima-
tion of how localized signals spread across a neuronal network by 
focusing on the dynamics of random walks, and we demonstrate 
in this paper that such a simple model can provide insights into 
local and global patterns of information flow and communication 
in cortical networks. Importantly, our analysis reveals patterns of 
proximity and robustness that are not exclusively determined by 
the lengths of shortest paths.

Complex networks (Albert and Barabasi, 2002; Dorogovtsev 
and Mendes, 2002; Newman, 2003; Costa et al., 2007) are closely 
related to graph theory and Markov chain processes (Kemeny and 
Snell, 1976). Random walks can be understood as the sequence of 
nodes (in our case cortical regions) which are visited as an agent 
moves along the network. At each step, the agent chooses between 
the outgoing edges with equal probability. In one particular type 
of random walk, the moving agent is “absorbed” after arriving at 
specific nodes, naturally called absorbing nodes. A sufficiently large 
number of agents independently moving from an initial node to an 
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which would be obtained by diffusion from that same node. In this 
sense, random walks provide a convenient means for implement-
ing the diffusion equation in irregular structures such as complex 
networks (Figure 1). Because of its direct relationship with diffusion, 
investigations in terms of random walks bear direct implications for 
a wide range of important dynamics. Even most of the non-linear 
dynamics, such as the Gray–Scott equation for pattern formation 
(Pearson, 1993), frequently include an important diffusive term.

Generally, the signal transmission may be assumed to be more 
effective when the traveled distance is shorter. The shortest path length 
has been hypothesized to be an important indicator of functional 
proximity and has been found to be generally short for cortical inter-
regional connections (Sporns et al., 2004). Absorption provides a 
measure of proximity between two neuronal units that is determined 
not only by the shortest path, but by all available paths between these 
nodes, therefore incorporating information about the existence of 
alternative trajectories between pairs of nodes and branching patterns 
within the network. A characterization of the relationship between 
two nodes can be derived by dividing absorption by the shortest path 
length between them. This ratio, which we call driftness, normalizes 
absorption with respect to the shortest path.

In this work, we introduce four related measurements, namely 
in- and out-absorption, and in- and out-driftness, all of which apply 
to any one individual node. In-absorption and out-absorption cor-
respond to the average absorption from all other nodes to the given 
node, and from the given node to all other nodes, respectively. In- and 
out-driftness are analogously defined as the average driftness from all 
other nodes to the given node, and from the given node to all other 
nodes, respectively. Illustrative examples and biological interpreta-
tions are provided for each of the considered measures, which are 
then applied to characterize four configurations of real cortical net-
works. The routines implementing the measurements described in 
this paper were written using SCILAB and can be downloaded from 
http://sourceforge.net/projects/abs-drift. The Appendix provides 
additional information about the calculation of the measurements.

2 AbsorptIon And drIftness: AssumptIons And 
InterpretAtIons
Before applying the absorption and driftness measurements to the 
characterization of the topology of cortical networks (Section 4), it 
is important first to explain why and how this analysis can provide 
valuable biological insights. While the architectural structure of 

cortical networks, i.e., its intrinsic connectivity, can provide a wealth 
of interesting information about the organization of those systems 
(Sporns et al., 2004), it is especially by considering dynamic proc-
esses running on those networks that additional insights about their 
operation can be obtained. Cortical networks underlie the intricate 
brain dynamics, but the complex relationships between structure, 
activity, and function are not well understood. Different types of 
models, including linear (Almendral and Diaz-Guilera, 2007), syn-
chronization (Arenas et al., 2006), Ising interactions (Dorogovtsev 
et al., 2008), and neural networks (Bishop, 2006), can be considered 
to describe specific aspects of brain dynamics. This work considers 
average random walks as the means to induce diffusion of activity 
in the cortical network. In a given random walk, activity from a 
given area progresses with equal probability to any of the connected 
areas. The averaging over a large number of independent random 
walks is equivalent to the parallel propagation of activity through 
all possible paths connecting two areas. Also, from the point of 
view of control theory, Markov process can be seen as the dual of 
synchronizability, which is a key aspect for the understanding of the 
integration of neural activity (Mason and Verwoerd, 2007).

Although it is by no means claimed that such a relatively simple 
model captures all aspects of brain dynamics, it does reflect several 
important features, especially the influence of the adjacent nodes 
for the spread of activity along connections. The random walk 
approach was applied recently (Costa and Sporns, 2006) for the 
analysis of cortical regions. It was found that the activity induced 
by random walks (corresponding to the frequency of visits to each 
node) was correlated with the node degree (number of connections 
of each node). Interestingly, while a relatively low correlation was 
observed when considering only cortical areas, this correlation was 
substantially increased when the thalamus was incorporated into 
the analysis. A subsequent work investigated further the correlation 
between frequency of visits and local features of the network nodes 
(e.g., degree and clustering coefficient), also establishing the condi-
tions necessary for full correlation between topology and induced 
dynamics. The present work also assumes cortical dynamics to 
be modeled by the above described random walk/diffusion proc-
ess. However, instead of considering only the node activity and 
its correlations with degree, we also analyzed the complementary 
information of the proximity between nodes, as conveyed by the 
distinct concept of absorption.

Absorption is fundamentally different from other related net-
work measures based on distances between pairs of vertices (e.g., 
characteristic path length; Costa et al., 2007), and the degree of 
centrality of individual vertices (e.g., betweenness centrality; Costa 
et al., 2007). In order to appreciate the unique information about 
network topology captured by absorption, consider the simple 
example of a directed five-node cyclic network (Figure 2A).

By using the methodology explained in the Section “Appendix,” 
it is possible to calculate the respective absorption matrix A as:

A =





















0 1 2 3 4

4 0 1 2 3

3 4 0 1 2

2 3 4 0 1

1 2 3 4 0

Figure 1 | (A) A simple network with walks performed by three moving 
agents. (B) The frequency of visits by an infinite number of moving agents 
(shown by the gray-levels) corresponds to diffusion dynamics taking node A as 
source.
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AI

T= [ ]2 9 3 2 6 2 7 2 8 8. . . .

Since in- and out-absorption are defined as averages, it is natural 
to compute the respective standard deviations:

AO

Tσ = [ ]2 5 2 1 3 6 3 2 2 9 1 9. . . . . .

AI

Tσ = [ ]1 7 1 9 1 7 1 7 1 7 3 6. . . . . .

Therefore, all nodes display similar out-absorption averages and 
standard deviations, indicating that, after leaving from any node, 
the moving agent will take a similar number of steps (about 4) 
before finding its targets. A different situation arises for the in-
absorption: while nodes 1 to 5 are similarly accessible to moving 
agents after leaving from any node, node 6 will only be accessible, 
on average, after eight steps, a path more than two and a half times 
longer that that for all other nodes. While the variance is largest for 
node 6, it is actually smaller than all other nodes when divided by 
the corresponding average values. This example makes it clear that 
absorption provides a valuable indication about the accessibility of 
nodes to moving agents or spreading signals. For instance, if one 
were to hide a “treasure” (or store a dangerous memory) in the 
network, the in-absorption values suggest that it would be wisest 
to use node 6, which is the most protected node in this example.

Absorption can be interpreted as a kind of “distance,” because it 
counts the number of steps between nodes. However, it is important 
to note that this “distance” is not symmetric, in the sense that the 
absorption from node i to node j is not generally equal to the absorp-
tion from j to i. Therefore, absorption is capable of expressing the 
different possibilities while moving along each direction. This marks 
another important difference between absorption and the traditional 
“shortest path” (which in undirected networks is indeed symmetric). 
Figure 3 illustrates this observation with three additional examples 
of undirected networks involving the existence of two main alterna-
tive paths between a pair of nodes and the corresponding absorption 
values: while the shortest path between the nodes X–Y is equal to 4 in 
the three networks, absorption assumes higher values, since deviations 
and backward steps are possible, and depends on the starting node.

Though in principle distinct from the shortest path, and inform-
ative about the directional accessibility of each node, absorption is 
often correlated with the shortest path between network nodes. This 

The entries A(i, j) correspond to the average number of steps 
an agent takes to be absorbed at node j departing from node i. 
Since this graph is direct, walkers are allowed to move in only one 
direction. This is a direct consequence of the nature of this specific 
network, where no deviations and backward steps are allowed dur-
ing any random walk. In other words, all possible random walks 
are intrinsically deterministic.

Now consider the slightly modified network in Figure 2B, where 
a new node (6) has been added in order to define a bifurcation at 
node 2. The absorption matrix for this modified network is:

A =

0 1 2 5 3 5 4 5 7

4 5 0 1 5 2 5 3 5 6

3 4 0 1 2 10

2 3 4 5 0 1 9

1 2 3 5 4 5 0 8

4 5 1 2 3

. . .

. . . .

.

. .

00

























The effect of the bifurcation on the absorption values is clear. 
While absorption from node 1 to 2 remains unchanged, the value 
from node 1 to 3 is now 2.5, not 2 as before. This is due to the pos-
sibility to deviate through node 6 between nodes 2 and 3.

In addition to pairwise absorption values (i.e., the average 
number of steps from a node i to a node j), it is also interesting to 
consider the average absorption when leaving from i and reaching 
any of the other N − 1 nodes, and starting at any of those nodes and 
arriving at i. These value, which are henceforth called out-absorption 
(A

O
) and in-absorption (A

I
), can be immediately calculated as:

 

A i
N

A i pO
p

N

( ) ( , )=
− =

∑1

1 1

 (1)

and

 

A i
N

A p iI
p

N

( ) ( , )=
− =

∑1

1 1

 (2)

The out- and in-absorption for the example of Figure 2B are:

AO

T= [ ]3 7 3 6 4 3 9 3 8 3. . . .

Figure 2 | example of directed networks. The numbers associated to the 
edges correspond to the transition probabilities. (A) Simple directed network 
defining a cycle with five nodes. (B) The network in (A) modified in order to 
include a new node (6), which defines a single network bifurcation.

Figure 3 | The effect of deviations in a ring network (A). Unlike shortest 
path, absorption is not symmetric, as illustrated is cases (B,C).
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obtain additional insights about the network under analysis. Of 
special interest are the nodes departing substantially from such 
expected correlations.

After discussing how the absorption time analysis can provide 
valuable insight about the dynamic behavior of complex networks, 
we extend such conceptual interpretations to the specific case of 
cortical networks. Three particular aspects of brain dynamics can 
be related to absorption:

(i) Cortical area accessibility: in-absorption allows the identi-
fication of the (on average) most and least accessible cortical 
areas. This notion of accessibility is naturally related to mea-
sures of centrality. However, unlike betweenness centrality 
it does not rely only on shortest paths, but rather also takes 
into account redundancies in the paths. Less accessible brain 
areas, identified by higher in-absorption, may be harder to 
recruit and/or more seldom recruited, in cortical dynamics. 
More accessible areas may be more easily recruited in a grea-
ter variety of cortical processes.

(ii) Activation potential of an area: this concept is related to the 
out-absorption of a node. This measure may quantify the 
number of other areas that may be activated by a signal pro-
pagating from a given node. It is possible that a node with 
particularly high activation potential could play an especially 
important role for cortical control and processing.

(iii) Robustness of incoming and outgoing signals: A driftness 
value close to unity may indicate that the multiple paths con-
necting two areas are almost equivalent, providing a level of 
redundancy. In contrast, high driftness values indicate that, 
while multiple paths may be available, they tend to be much 
longer than the shortest path, possibly stressing the impor-
tance of individual paths.

Although absorption represents a more realistic measure to 
quantify the concepts of centrality/accessibility of nodes and the 
proximity between them, in the sense that it incorporates the rel-
evant information provided by longer paths in the brain dynamics, 
previous studies on complex networks have established metrics that 
are not also based on shortest paths. Traditionally used in social 
and technological networks, the eigenvector centrality (Newman, 
2003) estimates the score of a given node as being proportional to 
the values of its neighbors. In addition (Estrada and Hatano, 2008) 
generalized the concept of communicability between a pair of nodes 
by considering also non-shortest paths with decaying weights. 
Closer with the present study and not limited to the structural 
properties from the adjacency matrix, in (Pons and Latapy, 2006) 
a vertex similarity is proposed based on random walks with a fixed 
length in the context of community detection. Also, the centrality 
index based on random walks, proposed by Newman (2005) as an 
extension of the betweenness centrality, is calculated by counting 
the number of times, on average, a random walker visit that node 
while performing an absorbing walk between pairs of vertices.

3 connectIvIty dAtA sets
In this paper we study the cat cortico-thalamic network, whose 
connectivity was obtained by collating data from various tracing 
studies (Scannell et al., 1999). The matrix of connections used 

correlation can be minimized by dividing the absorption between 
two nodes A(i, j) by the respective shortest path d(i, j), yielding a 
new index W(i, j), which is here called driftness:
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Observe that, except for the case A(i, j) = 0, W(i, j) is always 
larger or equal to 1, achieving unit value in the case of “equivalent 
paths,” when absorption equals the shortest path length, i.e., all the 
paths between the pair of nodes have identical length.

The driftness of the networks in Figures 2A,B are therefore 
respectively given as:
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The out- and in-driftness can be now defined as:
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While all out- and in-driftness are equal to 1 for the network in 
Figure 2A, for the network in Figure 2B we have:

WO

T= [ ]1 6 2 2 1 2 1 3 1 4 1. . . . .

WI

T= [ ]1 0 1 1 2 1 1 1 1 3 3. . . . .

Though normalized with respect to the shortest path length, we 
find that the out- and in-driftness tend to depend on the degree of 
the nodes, in the sense that the higher the out-degree (the number 
of outgoing edges) of a node, the greater its out-driftness tends to 
be. At the same time, higher values of node in-degree (number of 
incoming edges) tend to favor low in-driftness. However, because 
such a dependency may vary depending on the network structure, 
it becomes interesting to consider the correlation between the out- 
and in-driftness with those two types of node degrees in order to 
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to identify specific trends or organization principles of cortical 
architecture. These investigations are respectively covered in the 
following sub-sections.

4.1 AbsorptIon And drIftness In cAt cortex wIthout thAlAmus
Figure 4 shows the in- (Figure 4A) and out-absorptions (Figure 4B) 
and in- (Figure 4C) and out-driftness (Figure 4D) obtained consid-
ering all 53 cat cortical regions without thalamic connections. The 
in-absorptions and in-driftness are plotted against the in-degree, 
while the out-absorption and out-driftness are plotted against the 
out-degree. Interestingly, in-absorptions and in-driftness corre-
lated negatively with the in-degree (Figures 4A,C), indicating a 
significant tendency of those two measures to decrease with the 
in-degree (p < 10−6 for both). This phenomenon can be understood 
as a consequence of the fact that the larger the in-degree of a node, 
the higher the chances that that node receives afferents directly 
from a substantial number of other areas, therefore reducing the 
in-absorption and driftness regarding those nodes and their imme-
diate neighbors. This effect is particularly pronounced for relatively 
small networks such as those derived from cortical connectivity. As 
shown in Figure 4B, the out-absorption is not significantly cor-
related with the out-degree (p > 0.05 after Bonferroni correction 
for four independent tests). The out-driftness (Figure 4D) tends to 
increase with the out-degree (p < 10−6) even more significantly than 
the correlations observed for the in-absorptions and in-driftness. 

here is a binarized version extracted from Scannell et al. (1999) 
containing 42 thalamic nodes and 53 cortical areas clustered into 
four functional groups (see Appendix for abbreviations): visual 
(17, 18, 19, PLLS, PMLS, ALLS, AMLS, VLS, DLS, 21a, 21b, 20a, 20b, 
7, AES, PS), auditory (AI, AII, AAF, P, VPc, EPp, Tem), somatomo-
tor (31, 3b, 1, 2, SII, SIV, 4g, 4, 6l, 6m, 5Am, 5Al, 5Bm, 5Bl, SSAi, 
SSAo), and frontolimbic (PFCMil, PFCMd, PFCL, Ia, Ig, CGa, 
CGp, RS, 35, 36, pSb, Sb, Enr, Hipp). These 95 regions are linked 
with approximately 1500 connections divided in cortico-cortico 
directed edges and cortico-thalamic undirected edges (reciprocal 
connections). In this model data set, no connections exist between 
thalamic nodes.

4 results And dIscussIon
We performed four types of analyses using absorption-related 
measures in the cat thalamo-cortical network. First, we extracted 
the respective absorption and driftness measurements as a function 
of the in- and out-degrees in the cortex alone. Second, we included 
the thalamic connections in the cortex network and investigated 
how those affected absorptions and driftness. Third, we compared 
the measures obtained for the cortical network, with and without 
thalamus, with those obtained from the two types of random con-
trols described above, in order to assess how much the real network 
departed from such random references. Fourth, we analyzed the 
measurements at the individual cortical area level, so as to be able 
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Figure 4 | The four absorption-related measurements plotted against the respective in- and out- degrees considering the cortical network without 
thalamic nodes: in- (A) and out-absorptions (B) and in- (C) and out-driftness (D). Significant correlation was obtained for the cases (A,C and D).
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of the reference network are matched. Because E–R graphs are 
completely unspecific as far as the connectivity is concerned (the 
connections are independent of one another), such a graph pro-
vides an interesting control against which to compare real networks. 
The possibility to obtain equivalent E–R models including non-
connected components is minimized by the relatively high average 
node degree of the cortical networks. To any extent, our current 
approach only considered connected equivalent models. Similarly, 
the configuration model is based on randomization preserving the 
respective degrees. This control graph is constructed starting from 
a given network by extensive random pairwise rewiring without 
altering the in- and out-degrees of each node, and thus represents 
a more constrained reference compared to E–R graphs.

4.3.1 Comparison with Erdös–Rényi random networks
Figure 6 compares the relations of in-absorption and in- 
driftness to in-degree extracted from the cat cortical data without 
(Figures 6A,B) and with (Figures 6C,D) thalamus with the same 
measures calculated for corresponding E–R networks, which have 
the same number of nodes and average in- and out-degrees. In 
all cases, the real cortical networks present a substantially wider 
excursion along both axes than the respective E–R counterparts. 
Aside from this clear difference, E–R networks reproduce the nega-
tive dependency of in-absorption and in-driftness on in-degree 
observed in the car cortical networks. More generally, within the 
range of in-degrees they cover, E–R networks display in-absorption 
and in-driftness values consistent with those measured from the 
real networks both with and without thalamus.

This overall tendency can be explained by the fact that a node with 
high out-degree will potentially correspond to the branching point 
of several outbound paths.

4.2 IncorporAtIon of thAlAmIc connectIons
Figure 5 depicts the absorption-related measurements obtained 
for the cat cortical data including the original thalamic connec-
tions, totaling 95. Overall, the negative correlations between the 
in- absorption/in-driftness and the in-degree, as well as the positive 
correlation between the out-driftness and out-degree, were all pre-
served (p < 10−6 in all cases). However, compared to the observations 
on the cortical network alone (Figure 4), the addition of the thalamus 
creates a substantial non-linearity, and clearly expands the range of 
all measures (note different scales on Y axes). Moreover, a positive 
(not linear) relation is now observed between out-absorption and 
out-degree (p < 10−6). This effect is a consequence of the fact that a 
higher out-degree implies more alternative pathways to the destina-
tions, increasing both the out-absorption and out-driftness.

4.3 compArIson wIth rAndom networks
In this section, the cat cortical networks without and with thala-
mus are compared with synthetic random networks. Two types of 
“equivalent random networks” were created and used as “control” 
throughout the analysis: Erdös–Rényi (E–R) graphs and configu-
ration model (Newman, 2003). Given a reference network, it is 
possible to obtain a random network counterpart with the same 
number of nodes, called a directed E–R graph, by connecting sto-
chastically selected node pairs until the average in- and out-degrees 
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Figure 5 | The absorption-related measurements obtained for the cat cortical matrix incorporating the thalamic connections against the respective 
degrees: in- (A) and out-absorptions (B) and in- (C) and out-driftness (D). Different from the case where cortical nodes are considered alone, a non-linear 
dependency is now obtained.
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nodes. In particular, we created 200 random rewiring configura-
tion counterparts for each of the two cortical networks, with and 
without thalamus.

The comparison between the cortical and random networks 
was performed in terms of each of the four measures (in- and 
out-absorption/driftness) for every individual node using the 
one- dimensional Mahalanobis distance, also called z-score. To do 
so, each node in the cortical network was compared to the cor-
responding nodes in the 200 random counterparts by computing 
the absolute difference between the specific measurement (e.g., 
in-absorption) of that node and the average over the 200 nodes, 
and dividing the resulting value by the standard deviation of that 
measure obtained from the same 200 nodes (Figure 8). Under 
Gaussian approximation, the Mahalanobis distance is statistically 
significant (p < 0.05) above 2, and non-significant below.

Figure 9 presents the histogram distributions of the in- and out-
absorption Mahalanobis distances between the cat cortical networks 
without (Figures 9A,B) or with (Figures 9C,D) thalamus and the 
corresponding random configuration models. Approximately half 
of the nodes deviate significantly from the control in terms of in-
absorption whether the thalamus is disconnected or connected (58 
and 45%, respectively). In contrast, a negligible proportion of nodes 
(8% without thalamus and 0% with) are significantly different from 
the random model in terms of out-absorption.

In the cortical network without thalamus, the in-driftness was 
also much farther from the random control than the out-driftness 
(15 vs. 57% of significantly different nodes). However, both in- and 

Cortical networks with and without thalamus were compared 
next to their respective E–R counterparts in terms of the relation 
of out-absorption and out-driftness to out-degree (Figure 7). 
Similarly to the in-degree, the cortical networks demonstrate a 
much broader range of out-degrees than their corresponding E–R 
graphs. However, a substantial separation is now observed between 
the absorption and driftness measures extracted from cortical and 
E–R networks, even within the range of out-degrees covered by 
the E–R controls. This effect is especially apparent in the case of 
out-absorption (i.e., Figures 7A,C). Incorporation of the thalamic 
connections enlarges the overall distance between the cortical and 
E–R counterparts.

These results indicate that the cat cortical network without or 
with thalamus is markedly distinct from the E–R model with respect 
to out-absorption and out-driftness, but less distinct with respect 
to in-absorptions and in-driftness.

4.3.2 Comparison with the random configuration model
In addition to the comparison with the E–R random control 
reported in the previous section, it is also interesting to compare 
the analyzed networks with random counterparts which preserve 
some of the overall topological properties. Given the substantial dif-
ferences between cortical networks and corresponding E–R graphs 
in terms of the range of in- and out-degrees, it seems especially 
important to employ a network model preserving the distribu-
tion of node degrees. In this section we consider the configura-
tion model (Newman, 2003), which preserves the degrees of all 
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Figure 6 | Scatterplot comparison of in-absorption (A,C) and in-driftness (B,D) against in-degrees between cortical networks with thalamic nodes 
disconnected (A,B) and connected (C,D). In all cases, the cortical networks differ from the E–R counterparts by presenting a wider dispersion along both axes.
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networks are most distinct from the E–R case in terms of out-
absorption and out-driftness, but are most markedly different 
from the random configuration model in terms of in-absorption 
and in-driftness. Conversely, with respect to the four measure-
ments (i.e., in-absorption, in-driftness, out-absorption, and 

out-driftness were poorly described by the random model when 
the thalamus was included (Table 1).

Overall, the results obtained from the comparisons of the 
cat cortical networks with the E–R and random configuration 
models revealed an interesting “double dissociation”: the cortical 
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Figure 8 | illustration of the one-dimensional Mahalanobis distance, or 
z-score. Hypothetical measurements against the degree for the cortical nodes 
and respective configurations nodes are shown in (A). In (B) the distribution of 
the cortical node measurement (filled stem) is shown along with the 

configuration measurements (empty stems) with their fitted normal distribution. 
The Mahalanobis distance is obtained by subtracting the measurement value 
from the average m of the normal distribution and dividing this difference L by 
the corresponding standard deviation s.
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each individual node and related to the functional groups to 
which each node belongs (i.e., visual, auditory, somatomotor, 
and frontolimbic).

Figure 10 presents the scatterplot obtained by principal 
component analysis (PCA; Duda et al., 2000) considering the 
four measurements defined for the nodes (in-absorption, out-
absorption, in-driftness, and out-driftness) of the cat cortical 
network without (Figure 10A) and with (Figure 10B) thalamus. 
In the first case, as shown in Figure 10A, significant clustering 
has been obtained with respect to the four functional groups, 
except for the frontolimbic case, which tended to split into two 
groups (left- and right-hand sides). The case of the cat cor-
tical network with thalamus did not lead marked clustering 
(Figure 10B).

In Figure 11, we also considered PCA projection of the one-
dimensional Mahalanobis distances (Section 4.3.2) with respect 
to all four measurements (i.e., in-absorption, out-absorption, 
in-driftness, and out-driftness) for the cat cortical network with-
out (Figure 11A) and with (Figure 11B) thalamus. Although in 
the case without thalamus less separated clusters were obtained 
(Figure 11A), the incorporation of thalamus provide a cluster-
ing structure (Figure 11B), which is even more well-defined than 

out-driftness) investigated in the present work, the cat cortical 
network has in-absorptions and in-driftness similar to the E–R 
counterparts and out-absorptions and out-driftness similar to 
the random configuration counterparts. In other words, as far as 
absorption and driftness are concerned, the cat cortical network 
can be understood as incorporating hybrid random features of 
the two models.

4.4 IndIvIduAl cortIcAl AreAs
Further insights about the organization of the cat cortical net-
work can be obtained by analyzing the absorption and driftness 
of individual cortical regions. In particular, in-absorption, out-
absorption, in-driftness, and out-driftness can be measured for 

0 2 4 6
0.000

0.038

0.075

0.113

0.151

A B

C D

N
>2

 = 0%N
>2

 = 45%

N
>2

 = 8%N
>2

 = 58%

Mahalanobis (AI)
0 1 2 3 4 5

0.000

0.080

0.160

0.240

0.320

Mahalanobis (AO)

Mahalanobis (AO)

0 2 4 6 8
0.000

0.053

0.105

0.158

 

Mahalanobis (AI)

0.0 0.2 0.4 0.6 0.8 1.0
0.000

0.100

0.200

0.300

0.400

 

Figure 9 | Histograms of the one-dimensional Mahalanobis distances obtained for the in- and out-absorptions with respect to the cat cortical network 
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Table 1 | The percentage of nodes with statistically significant 

Mahalanobis distance between cortical networks and random 

configuration models.

 AI (%) WI  (%) AO (%) WO (%)

Without thalamus 58 57 8 15

With thalamus 45 45 0 43
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the level of clustering. For a set of N samples, each one character-
ized by a vector of measurements 

�
X , and divided into n classes, the 

matrices are given by

 

ΣW i i

T

X ci

n

X X X X
i

= − 〈 〉( ) − 〈 〉( )∑∑
=

� � � �
�

ε1
 (7)

and

 
ΣB i i i

T

i

n

N X X X X= 〈 〉 − 〈 〉( ) 〈 〉 − 〈 〉( )
=
∑

� � � �

1

 (8)

where N
i
 is number of samples in each class c

i
, 〈 〉
�
X i is the 

mean vector for the samples in the class c
i
, and 〈 〉

�
X  is the total 

mean vector.

that obtained for the four topological measurements considered 
in Figure 10. Now, when the thalamic areas are included, all the 
four functional groups are mostly separated.

The clustering observed by a visual inspection of the PCA 
projections in the Figures 10 and 11 can be verified quantita-
tively by calculating the so-called Rayleigh coefficient k (Li et al., 
2006), which characterizes the overall separation between the 
classes (i.e., the functional groups). The explicit value of k can 
be obtained by

 

κ =
Σ
Σ

B

W

 (6)

where Σ
W

 is the intra-class-scatter matrix and Σ
B
 is the inter-class-

scatter matrix, which provide the dispersion inside each class and 
between the classes, respectively. Thus, the value of k increases with 
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Denoting by k53 and k95 the values of the Rayleigh coefficients for 
the cat cortical network without and with thalamus, respectively, 
we can verify the effect of the inclusion of the thalamic nodes to 
discriminate the cortical areas. For the case considering the four 
measurements defined for the nodes (in-absorption, out-absorp-
tion, in-driftness, and out-driftness) we have k53 = 9.915 × 10−2 and 
k95 = 1.586 × 10−3 (ratio k95/k53 = 0.016) with p-values equal to 
0.006 and 0.540, respectively. In the second case, considering the 
one-dimensional Mahalanobis distances with respect to all four 
measurements, we found k53 = 0.2985 and k95 = 3.4581 (ratio k95/
k53 = 11.584) with p < 0.001 to the both cases. p-Values were esti-
mated from 20000 bootstrap replications (Auffermann et al., 2002). 
Results are in agreement with the previous visual inspection.

5 conclusIon
Understanding brain information processing in terms of the under-
lying network structure is one of the ultimate goals in neuroscience 
(Sporns et al., 2005; Kasthuri and Lichtman, 2007). Many projects 
are rising to the challenge, and soon complete connectivity data 
could be expected at various scales, from non-invasive brain imag-
ing (Biswal et al., 2010), to rodent tractography (Bohland et al., 
2009), to the complete synaptic circuit blueprint (Kasthuri and 
Lichtman, 2010). This revolutionary prospect raises the acute 
need of methods to characterize these graphs quantitatively while 
fostering intuition about their emergent function (Bullmore and 
Sporns, 2009).

The two new measures introduced in this work, absorption and 
driftness, have simple analytical expressions and are easy to com-
pute, yet provide information not produced by other established 
metrics (Hilgetag et al., 2000; Hilgetag and Kaiser, 2004; Sporns, 
2004; Sporns and Kotter, 2004; Sporns and Zwi, 2004; Sporns et al., 
2004, 2005). At the same time, by relating network dynamics to 
random walk diffusion, these measures offer a unique opportunity 
to capture a basic aspect of network topology related to information 
transmission, as illustrated in the examples.

Focusing on the obtained results, we have analyzed the intrinsic 
dependency between the defined measures applied to the nodes 
with their degrees. Interestingly, this relationship is enhanced in 
a power-law form when the thalamic nodes were included. It was 
also verified how random features are incorporated in the cortical 
networks, establishing the closeness with random models: cortical 
networks (both with and without thalamus) are most markedly dis-
tinct from the E–R with respect to out-absorption and out-driftness 
while they are most different from the configuration model in terms 
of in-absorption and in-driftness. Extending our analysis, we also 
have shown, based on the absorption and driftness measurements, 
suggestive evidence that the nodes are clustered in this phase space 
coinciding with the functional division of the cortical areas.

The application of absorption and driftness to an available con-
nectivity data set of the cat cortex demonstrates that they can be 
useful additions in the modern neuroinformatics toolbox. Most 
importantly, being applicable across scales, they can help shed light 
on detailed circuit diagrams based on neuron class connections 
(Ascoli, 2010) and, in the not-so-distant future, complete synaptic 
connectomes. Further related investigations could consider the role 
of some other topological features, besides the degree, exploring 
the dependency between structure and dynamics. Additionally, 
the absorption and driftness matrices can be used to develop 
new macroscopic measurements describing entire networks. As a 
consequence, one can verify the microscopic influence of specific 
vertices and edges. Other applications can extend the analysis to 
the available connectivity datasets of other species using different 
kind of walks.
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AppendIx
A lIst of symbols used In the pAper

Table A1 | List of symbols used in the text.

Symbol Concept

K Adjacency matrix

K(i, j) Element of the adjacency matrix

T Transition matrix

F Fundamental matrix

A Absorption matrix

A(i, j) Element of the absorption matrix

AO(i) Average out-absorption of vertex i

AI(i) Average in-absorption of vertex i

W Driftness matrix

W(i, j) Element of the driftness matrix

WO(i) Average out-driftness of vertex i

WI(i) Average in-driftness of vertex i

in_deg(i) In-degree of vertex i

out_deg(i) Out-degree of vertex i

〈deg〉 Average node degree

d(i, j) Shortest path from node i to j

b lIst of All cortIcAl AreAs

Abbreviation Name

17 Area 17

18 Area 18

19 Area 19

PLLS Posterolateral lateral suprasylvian area

PMLS Posteromedial lateral suprasylvian area

AMLS Anteromedial lateral suprasylvian area

ALLS Anterolateral lateral suprasylvian area

VLS Ventrolateral suprasylvian area

DLS Dorsolateral suprasylvian area

21a Area 21a

21b Area 21b

20a Area 20a

20b Area 20b

7 Area 7

AES Anterior ectosylvian sulcus

PS Posterior suprasylvian area

AI Primary auditory field

AII Secondary auditory field

AAF Anterior auditory field

P Posterior auditory field

VPc Ventroposterior auditory field

EPp Posterior part of posterior ectosylvian gyrus

Tem Temporal auditory field

3a Area 3a

3b Area 3b

1 Area 1

2 Area 2

Abbreviation Name

SII Second somatosensory area

SIV Fourth somatosensory area

4g Area 4g

4 Areas 4f, 4sf, and 4d

61 Lateral area 6

6m Medial area 6

5Am Medial area 5A

5Al Lateral area 5A

5Bm Medial area 5B

5Bl Lateral area 5B

SSAi Inner suprasylvian sulcal region of area 5

SSAo Outer suprasylvian sulcal region of area 5

PFCMil Infralimbic medial prefrontal cortex

PFCMd Dorsal medial prefrontal cortex

PFCI Lateral prefrontal cortex

Ia Agranular insula

Ig Granular insula

CGa Anterior cingulate cortex

CGp Posterior cingulate cortex

RS Retrosplenial area

35 Area 35

36 Area 36

pSb Presubiculum, parasubiculum, and 

 postsubicular cortex

Sb Subiculum

Enr Entorhinal cortex

Hipp Hippocampus proper

Table A2 | List of abbreviations and their corresponding names for all cortical areas. Adapted from Scannell et al. (1999).
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c AbsorptIon vAlue cAlculAtIon

We now present the mathematical formalization of the above con-
cepts. We start with the adjacency matrix K, from which the transi-
tion matrix T can be obtained as:

 

T i j
K i p

K i j

p

N( , )
( , )

( , ).=
=∑

1

1

 (C.1)

The element T(i, j) represents the transition probabil-
ity from node i to node j in one step. Moreover, T(i, j) > 0 and 
∑ = ==i

N T i j i N1 1 1( , ) , , ,∀ …  since the probabilities are non-negatives 
and assuming that a transition must occur in each time step.

To obtain the average time for a walker to be absorbed at a spe-
cific node q, we need to make q an absorbing state. This can be done 
by removing all the edges emanating from node q and adding a loop 
connecting q to itself, which define an absorbing transition matrix 
P equal to T except that P(q, q) = 1 and P(q, j) = 0 ∀j≠q.

Now, we define the fundamental matrix F as being the inverse 
of the following matrix difference:

 
F = I Q−( )−1

,  (C.2)

where Q is a reduced matrix constituted only by transient states 
and obtained by removing the line and column q. It is possible 
to show (Kemeny and Snell, 1976) that the element F(i, j) can be 
interpreted as the expected number of times a walker, departing 
from i, is in the node j, on average, before being absorbed. Thus, 
the average time, t(i), for absorbing a moving agent after it departs 
from node i, can be obtained by adding all the entries of the ith 
row of F. In matrix notation:

 τ = Fj  (C.3)

where j is a N × 1 vector filled with ones.
In order to illustrate these concepts and formulation, we apply 

them to simple connected networks. The network in Figure A1 
consists of a star, where the central node (5) concentrates the con-
nections with all the other nodes. Therefore, there is a strong asym-
metry in the connectivity of node 5 and the remainder nodes, which 

are identical to one another as far as connectivity is concerned. In 
case the random walk is performed without enforcement of absorb-
ing states, we have the following transition matrix.

T =













0 0 0 0 1 0

0 0 0 0 1 0

0 0 0 0 1 0

0 0 0 0 1 0

1 5 1 5 1 5 1 5 0 1 5

0 0 0 0 1 0

/ / / / /











First, consider the central node (node 5) as the absorbing node 
(Figure A2). We therefore have:

P5 =

























0 0 0 0 1 0

0 0 0 0 1 0

0 0 0 0 1 0

0 0 0 0 1 0

0 0 0 0 1 0

0 0 0 0 1 0

Q5 =





















0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

and, therefore

F I Q5 5= ( ) =





















−− 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

and

τ5 5=





















=





















F

1

1

1

1

1

1

1

1

1

1

Figure A1 | illustration of the nature of the absorption measurement 
with respect to a simple star network. In case the moving agent performing 
the random walk is left at the central node (i.e., node 5), it will take, on 
average, a relatively long path to reach a specific neighboring node. However, 
in case the moving agent is left at any of the surrounding nodes, it will reach 
the central node at the very first move. Therefore, the average absorption 
value reflects the branching structure of the network. Note also that this 
measurement is not symmetric, i.e., the absorption for moving from a node i 
to a node j is not necessarily equal to the respective measurement 
considering a walk from j to i.

Figure A2 | The simple network in Figure A1 modified by eliminating all 
the connections departing from the absorbing node 5.
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F I Q1 1= ( ) =





















−− 1

2 1 1 5 1

1 2 1 5 1

1 1 2 5 1

1 1 1 5 1

1 1 1 5 2

so, we have that

τ1 1=





















=





















F

1

1

1

1

1

10

10

10

9

10

The absorption values vectors t obtained by considering all the 
nodes in the original network can be stacked into the lines of single 
matrix A. Therefore, the absorption matrix for the above example 
is obtained as:

A =

0 10 10 10 1 10

10 0 10 10 1 10

10 10 0 10 1 10

10 10 10 0 1 10

9 9 9 9 0 9

10 10 10 10 1 0

























Observe that, in spite of fact that the adjacency matrix of the 
initial network was symmetric, the absorption matrix above is not 
symmetric, reflecting the fact that the average absorption value 
from i to j is not necessarily equal to the value from j to i.

Although the above example considered is an undirected net-
work, it is also possible to immediately apply the same methodology 
in order to calculate the absorption for strong connected directed 
networks, i.e., networks where the edges have directions and there 
is a path between every pair of nodes.

We immediately have that the walk initiating at any node i = 1, 
2, 3, 4, or 6 will have only one step before being absorbed by node 
5. Now, considering the node 1 as the absorbing node (Figure A3) 
we have

P1 =













1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 1 0

0 0 0 0 1 0

1 5 1 5 1 5 1 5 0 1 5

0 0 0 0 1 0

/ / / / /













Q1 =





















0 0 0 1 5 0

0 0 0 1 5 0

0 0 0 1 5 0

1 1 1 0 1

0 0 0 1 5 0

/

/

/

/

and, therefore

Figure A3 | The simple network in Figure A1 modified by eliminating all 
the connections departing from the absorbing node 1.
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