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local clusters with a high prevalence of intra-cluster connections. 
In turn, these clusters had a defined membership size distribution 
and were connected via relatively rare inter-cluster links. Given 
that this brain region is known to exhibit synchronized bursting, 
despite heterogeneity in intrinsic neuronal properties, it is quite 
plausible that this distinctive, highly non-random topology plays 
a significant role in facilitating network bursting. The main goal 
of this paper is to computationally explore particular aspects of 
this hypothesis.

To achieve this goal, we computationally generated a large 
collection of networks with various topologies, namely the 
topology detailed by Hartelt et al. (2008) and a range of other 
commonly utilized coupling architectures. These networks are 
populated with biophysically accurate models of pre-BötC neu-
rons with a representative distribution of intrinsic firing patterns. 
To understand the impact of a particular coupling configuration 
on burst synchrony in such networks, we contrast the activity of 
specific heterogeneous sets of pre-BötC neurons coupled under 
that topology vs. the activity of the same collections of model 
neurons connected by the same total number of links, but in a 

IntroductIon
Synchronized activity in the pre-Bötzinger complex (pre-BötC) in 
the mammalian respiratory brainstem occurs during the inspira-
tory phase of respiration and drives motoneurons responsible for 
inspiratory muscle movements (Feldman and Del Negro, 2006). 
The pre-BötC generates synchronized bursting oscillations when 
isolated from other elements of the respiratory network in slice 
(Smith et al., 1991), en bloc spinal cord (Feldman and Smith, 1989; 
Brockhaus and Ballanyi, 1998), or in situ perfused rat brainstem–
spinal cord preparations (Rybak et al., 2007; Smith et al., 2007). 
Individual neurons within the pre-BötC exhibit varied intrinsic 
activity patterns and multiple burst-supporting currents, but the 
question of how synchronized activity emerges from this hetero-
geneous population remains unsolved (Butera et al., 1999b; Rubin 
and Terman, 2002; Feldman and Del Negro, 2006; Rubin, 2006; 
Purvis et al., 2007; Dunmyre and Rubin, 2010). Recently, using 
a combination of neuron-specific staining and calcium imaging, 
Hartelt et al. (2008) identified a highly structured topology of syn-
aptic connections among cells in slice preparations derived from 
the pre-BötC. In this network, cells were spatially grouped into 
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variety of other topologies. For each fixed network topology and 
set of neurons, we also determine how “cell-type hierarchies” – 
the relative positions of specific cell types in the network – can 
influence synchrony. That is, it is possible that the heterogeneity 
in intrinsic dynamics across pre-BötC neurons allows neurons 
with particular dynamic properties to play specific roles in shap-
ing network activity and that these roles depend on the nature of 
these neurons’ links to the rest of the network. To investigate this 
idea, we compare burst synchrony across networks with random 
neuron placement and a variety of networks in which the place-
ment of intrinsically quiescent, bursting, and tonically spiking 
neurons is linked with a measure of centrality of the nodes in the 
network. We additionally consider how these two major variables, 
network topology and cell-type hierarchy, interact – if a particular 
network topology or cell-type placement can universally dictate 
synchrony or if these factors are mutually dependent, such that 
synchrony is sensitive to specific combinations of topological and 
dynamic factors.

Random networks and regular lattice networks represent two 
extremes of interaction ranges that are, respectively, extensive and 
restricted. These networks are frequently selected for network 
simulations based on practical, ease-of-use considerations, and 
therefore we include them in our comparison of synchronization 
properties. We also include small-world (SW) architectures, as 
they are a prevalent topology for neuronal networks, thought to 
promote a balance of modularity and integration/feature-binding 
(Watts and Strogatz, 1998; Bullmore and Sporns, 2009). SW archi-
tectures combine the local connectivity of lattice networks with a 
small number of connections that span the network, as may arise 
in random networks, and greatly reduce the path-lengths between 
nodes. Besides the common occurrence of this topology in brain 
networks, there are indications that it serves a functional role in 
information processing (Bassett et al., 2006). When this topol-
ogy breaks down, affected brain systems may exhibit pathological 
function, shown by selective disease targeting of long-range syn-
chronization in Alzheimer’s disease (Stam et al., 2007), decreased 
clustering coefficients after excitotoxicity in the hippocampus in 
a model of epilepsy (Srinivas et al., 2007) and the progressive 
breakdown in cortical and subcortical resting state networks in 
schizophrenia (Liu et al., 2008).

In addition to lattice, SW, and random networks, we consider 
scale-free networks to ensure that we achieve a thorough assessment 
of how topological features interact with the dynamics of network 
elements to determine the emergent behavior of these networks. In 
scale-free networks, as in SW networks, a small number of nodes are 
important in directing and controlling information flow. Scale-free 
networks, however, achieve low path-length through degree het-
erogeneity; they contain a small number of “hub” nodes that have 
many connections to the more common “provincial” nodes, which 
have far fewer connections (an example is shown in Figure 1B). 
The exact degree distribution for these networks follows a power-
law distribution (or truncated power-law due to finite network 
size). While it is debated if individual neurons have SW, scale-free, 
or both types of connectivity (Srinivas et al., 2007; Bonifazi et al., 
2009), large-scale brain networks tend to show both scale-free and 
SW characteristics (Achard et al., 2006; van den Heuvel et al., 2008; 
Wang et al., 2009a).

Both the SW and scale-free topologies in biological systems are 
especially sensitive to alterations and manipulations of nodes that 
form shortcuts across the network (SW) or hub nodes (scale-free 
networks; Jeong et al., 2001; Morgan and Soltesz, 2008; Wang et al., 
2009b). The Hartelt topology of the pre-BötC naturally highlights 
the strategic position of certain select nodes as well, namely those 
nodes located on paths between local clusters (Hartelt et al., 2008). 
Since the pre-BötC has cell types with distinct activity patterns 
(quiescent, bursting, or tonically active cells), we investigated if 
it was possible to control the level of synchrony in a network by 
controlling which dynamical cell types were located at these stra-
tegic nodes. As noted above, we refer to each one of the possible 
arrangements of cell types at central network nodes as a cell-type 
hierarchy, since in each case different cell types are placed at distinct 
levels of centrality in the network (Figure 1A shows a hierarchy 
with intrinsically quiescent cells placed at high centrality nodes and 
tonically active cells placed at low centrality nodes).

Thus, for each connection topology, we can test the extent to 
which synchronous bursting emerges within a network populated 
by a realistically heterogeneous distribution of cell types and also 
how the propensity for synchrony varies depending on how the 
exact same distribution of cell types is arranged in specific cell-type 
hierarchies. Based on these experiments, we observe that network 
topology does strongly affect the emergence of burst synchroni-
zation. Cell-type hierarchy also contributes to synchrony char-
acteristics, yet the extent of its influence depends on the choice 
of topology, with the strongest dependence arising in scale-free 
networks. Surprisingly, the Hartelt network yields the weakest 
network burst synchronization, favoring instead synchronization 
within clusters without coordination across clusters.

MaterIals and Methods
sIMulatIon overvIew
We simulated network activity across distinct network topologies 
(n = 8), cell-type hierarchies (n = 7), and synaptic weights (n = 3). 
For each network, the total number of links between cells was set 
by generating a corresponding network with a pre-BötC topology 
(Hartelt et al., 2008) and setting the number of links equal to the 
number present in the pre-BötC network. The process of iterating 
through all combinations of these features to set up a simulation 
is illustrated in Figure 2A. To facilitate comparisons between-
networks, we computed replicate simulations (n = 20 networks) 
for each possible combination of these three features (Figure 2A 
illustrates the specification of a single simulation). Within each set 
of replicate simulations, all network characteristics were identical 
except that different values of a particular model parameter (E

leak
, 

see below) were drawn for each neuron, in a way that preserved the 
cell-type hierarchy, and the particular set of connections between 
neurons was regenerated, in a way that preserved topology. We 
performed direct comparisons of activity, accumulated over the 20 
replicate simulations, between each pair of networks that differed 
in one feature (network topology, cell-type hierarchy, or synap-
tic weight), and shared the same other features. Each simulation 
ran for 1,000,000 time steps of size 0.1 ms, using a fourth order 
Runga–Kutta method in MATLAB (for the equivalent of 100 s of 
real neuronal time per simulation). The first 10 real-time seconds 
were discarded as transient.
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Figure 1 | Schematic of integrating dynamics into topology using 
cell-type heterogeneity. (A) Example network with “Hartelt” topology found in 
the pre-BötC (Hartelt et al., 2008), consisting of densely connected clusters 
(color-coded) with rare inter-cluster links. In our simulations, we place cells with 
different intrinsic dynamics at select nodes in the topology based on each node’s 
betweenness centrality (magnitude indicated by node size). The specific 
ordering of cell types in the hierarchy of betweenness centrality can be 
manipulated to generate potentially different network behaviors. In the example 
shown here, cells with quiescent dynamics are located most centrally, 
intrinsically bursting cells are located at the middle tier of centrality, and 
intrinsically tonic cells are located at the lowest centrality nodes. The cells 

interact with each other via excitatory synapses, sometimes taking on new 
activity characteristics when so linked (indicated by the node shape). (B) Other 
network structures may produce different combined output while using the 
same distribution of cellular heterogeneity, as a pure function of their topology. 
For comparative purposes we test the synchrony properties of seven additional 
topologies (examples shown here) commonly employed in network studies or 
found in brain networks. The total number of connections, number of cells, and 
cell-type heterogeneity in these networks were exactly matched to those of the 
pre-BötC networks. However, graph properties differ substantially between 
topologies as shown by histogram of betweenness scores for three tested 
networks (far right).
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quiescent, one-third bursting, and one-third tonically active, in the 
absence of synaptic input, and, given a neuron’s designation, we 
selected its E

leak
 value randomly from a uniform distribution over 

the range corresponding to that form of dynamics (Butera et al., 
1999a). Neurons’ E

leak
 values were refreshed for each new simula-

tion, while all other model parameters were held constant across 
all simulations. Our only modification to the basic model was that 
the maximal conductance of each synaptic input to each cell was 
scaled by the total number of inputs the cell received, such that the 
maximum possible input to all cells was identical.

Mechanisms behind the full range of possible spiking behaviors 
in individual model cells and networks of these cells are com-
plex and have been the topic of past dynamical systems analysis 

neuron Model
Our neurons are modeled using the “Butera model 1,” a well-
 established, single-compartment biophysical model of pre-BötC 
cells that is capable of reproducing quiescent, square-wave bursting, 
and tonic activity observed in these cells experimentally (Butera 
et al., 1999a). Model output may be shifted between activity pat-
terns by altering parameters such as the conductance of tonic 
synaptic input, the persistent sodium current conductance, or the 
leak current reversal potential, E

leak
. We considered networks of 100 

coupled neurons and we used E
leak

 to set the intrinsic dynamics of 
each cell. Specifically, since the distribution of intrinsic dynamics 
within the pre-BötC has not been fully characterized, we speci-
fied that approximately one-third of the model neurons would be 
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Figure 2 | Schematic of key simulation variables, network output patterns 
and synchrony measures. (A) Each network simulation is specified by the 
selection of a topology, a cell-type hierarchy and a synaptic weight. In the 
example shown (indicated by dashed red borders), a small-world network would 
be simulated with intrinsically bursting cells at the highest centrality nodes, 
using a low synaptic weight. Replicate simulations vary in the particular leak 
reversal potential values selected to generate the intrinsic dynamics and the 
particular network architecture used. (B) A series of filters detects active burst 
phases in the spiking output of cells in the network. These filtered time series 
are the basis of all synchrony measures. (C) For each simulation, several 
synchrony measures are computed and, to facilitate comparisons between 

topologies and cell-type hierarchies, combined into a single “network burst 
index” value. Each synchrony measure assesses a different aspect of concerted 
bursting activity. The output of each cell is classified as quiescent, bursting or 
tonic using the combination of mean and variance in activity (lower left), and the 
number of bursting cells in the network is counted. “Network variance” 
increases with large temporal fluctuations in the combined output of all bursting 
cells in the network, generated by time-coherent bursting (lower right). “Onset 
latency” uses estimates of network bursts to assess the jitter in the burst onset 
times of participating cells, relative to the time of a network burst (right). “Mean 
correlation” is a more stringent measure of synchrony between pairs of bursting 
cells that depends on the onset and offset times of activity bursts (right).
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normalize the input to each cell based on the number of inputs, in 
our simulations, topologies differ mainly in their organizational 
structure, and this step creates a fair comparative basis on which 
to evaluate activity in the Hartelt topology.

cell-type hIerarchIes
Once a connection network and a set of model cells were gener-
ated, we placed the cells at nodes within the network. We followed 
certain rules for how particular forms of intrinsic dynamics were 
matched with particular nodes. In the random case, we placed 
model cells randomly. In all other cases, we computed the central-
ity of each node in the network. We then specified an ordering of 
cells, choosing one type of intrinsic dynamics to be assigned to the 
most central one-third of the nodes, another type of be placed at 
the one-third of the nodes of intermediate centrality, and a final 
type to occupy the least central one-third of the nodes. We call the 
resulting configurations “cell-type hierarchies” because each cell 
type is located at a specific point in the hierarchy (ranked list) of 
centrality in a given network.

We employed two methods of determining node centrality in 
the network. Because of the importance of rewired nodes in SW 
architectures (hereafter called “hubs,” as this usage is standard in the 
literature), we used rewiring as a representation of centrality; that 
is, nodes connected to rewired links were considered as central. For 
non-SW networks, we used betweenness centrality to quantify the 
centrality of nodes. The betweenness centrality of a given node is 
defined as the number of times that a node participates in a shortest 
path between two other nodes, normalized by the number of nodes 
in the network (Freeman, 1977). This measure was selected to guide 
cell-type placement because high centrality nodes are analogous 
to rewired nodes in SW topologies in the sense that nodes that 
participate in rewiring in the formation of SW networks also rank 
highly in betweenness centrality, but the betweenness criterion 
may be applied to the entire range of network topologies that we 
considered (Figure 1B far right shows contrasting betweenness 
distributions for different topologies).

classIfIcatIon of spIkIng actIvIty as quIescent, burstIng,  
or tonIc
We used a moving average filter to transform spiking/non-spiking 
voltage time courses of individual cells into blocks of activity/non-
activity (see spike trains in Figure 2B, transformed into block activ-
ity signals at bottom). We defined a burst active phase as a time 
interval in which spikes occurred with ISIs not greater than 20 ms 
between successive spikes, occurring between two silent phases of 
at least 200 ms each. Each such active phase was represented as an 
activity block. This definition avoided misclassification of irregular 
spike trains, although cell outputs were generally stationary, with 
few observed instances of abrupt changes such as a cell transition-
ing from bursting to tonic activity midway through a simulation, 
after the initial transient period that was discarded.

Transforming spiking activity into step-like filtered output 
enables automatic classification of individual time series as qui-
escent, bursting, or tonic (Figure 2C, bottom left), based on the 
mean and variance of the entire time course of a given cell’s 
filtered signal. Cells with small variance in their filtered output, 
but either high mean activity or low mean activity, are classified 

(Best et al., 2005; Butera et al., 2005; Rubin, 2006). Our focus here 
is the collective behavior of large groups of these neurons, rather 
than the biophysical model details. Within a coupled network, 
synaptic input may shift a cell’s behavior into a pattern that dif-
fers from its intrinsic activity (Figure 1A). While it is possible to 
ramp up a cell’s activity from quiescence, to bursting, to a tonically 
firing regime with increasing synaptic input, there are many other 
less straightforward transitions that have been elucidated in small 
networks of synaptically coupled model cells. For instance, it is not 
necessary to have intrinsically bursting cells present for network 
bursting to occur (Butera et al., 1999b; Best et al., 2005; Rubin, 
2006; Purvis et al., 2007; Dunmyre and Rubin, 2010). Also, with 
certain levels of tonic input, it is possible to switch cell output 
from tonic to bursting via synaptic input, and then back to tonic 
again with further input (Butera et al., 1999b; Best et al., 2005). 
In the present simulations, in contrast to most previous studies, 
we only control the global network topology, so each simulated 
network contains many different coupling patterns involving vari-
ous combinations of cell types. Based on the diverse transitions 
between activity patterns found in small networks, it is not clear 
how coherent network activity can emerge from such disparate 
interactions. Furthermore, given the complexity of activity-type 
transitions, we expect that the influence of neurons at central nodes 
on network dynamics will depend on the global network topology 
and associated local microcircuitry.

topologIes
All links between cells provide directed excitatory input. Simulations 
were performed using eight different network topologies: (1) near-
est neighbor (NN), in which neurons were arranged in a ring (i.e., 
a one-dimensional chain with ends linked) and were coupled to 
their n nearest neighbors; (2) classic SW, in which the targets of a 
randomly selected set of 5% of the connections in an NN topology 
were altered, with a new target for each selected at random from all 
other cells in the network except, the cell from which the connection 
originated; (3) hub SW, in which all connections of 5% of nodes in 
the NN topology were rewired at random; (4) random, in which the 
source and target of each connection were selected at random with 
equal probabilities assigned to all nodes, which produces a Poisson 
degree distribution; (5) Hartelt, consisting of linked clusters of 
cells, with the numbers of cells within each cluster, the number 
of connections between cells within each cluster, and number of 
connections between clusters matching the experimentally derived 
distributions shown in Figure 5 of Hartelt et al. (2008); (6) lattice, 
in which cells were placed on a cylinder (i.e., a two-dimensional, 
10 × 10 square lattice with two opposite sides linked) and were 
coupled to n of their immediate neighbors; (7) lattice SW, in which 
the targets of a randomly selected set of 5% of the connections in 
a lattice topology were altered, with a new target for each selected 
at random from all other cells in the network except the cell from 
which the connection originated; (8) scale-free, in which the net-
works were generated through preferential attachment and the 
degree distribution follows a power-law.

For comparative purposes, for each simulation in each non-
Hartelt topology, a Hartelt network was generated and the total 
number of links in the non-Hartelt topology was set to match the 
total number of links in that particular Hartelt network. Since we 
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a combination of all three synchrony measures and the number 
of bursting nodes, normalized on a scale of 0 to 100, with 100 
representing perfect synchrony in all cells, with every cell bursting. 
The NBI increases with mean correlation, network variance, and 
number of bursting cells and decreases as onset latency increases, 
with all four factors weighted equally. The NBI is useful as a com-
prehensive, compact estimate of the prevalence of network burst 
synchrony in a given simulation.

perMutatIon testIng for local synchrony In hartelt 
topology
In addition to network-level measures of burst synchrony, we com-
pute “local synchrony” as a measure of burst synchrony within 
isolated cell communities, such as clusters in the Hartelt network. To 
assess if synchrony is higher than expected in these local communi-
ties, we measure mean time series correlation within each cluster. 
For each cluster of size n, we repeatedly select groups of n cells in 
the network at random and compute their mean time series cor-
relations. We then find where the actual level of synchrony within 
the n cell cluster falls in the distribution of synchrony scores that 
was generated by the randomly selected groups of cells. Repeated 
comparisons to non-clustered groups of cells produces a p-value 
on the likelihood that synchrony within a local cluster is greater 
than that expected at random in groups of cells drawn from the 
network at large.

hIerarchal clusterIng of synchrony results to fInd faMIlIes 
of networks
Because we examine the behavior of multiple topologies, as well 
as multiple cell-type hierarchies, via several complementary syn-
chrony measures, there are hundreds of possible pairwise com-
parisons between simulations. While we highlight many of these 
with bar graphs, to efficiently identify possible families of topolo-
gies or cell-type hierarchies with generally similar behavior, we use 
complete linkage hierarchical clustering to generate a dendrogram 
that groups similar topologies/cell-type hierarchies. This technique 
computes the distance between all topologies (or all cell-type hier-
archies) over all of the synchrony measures and then groups the 
topologies/cell-type hierarchies into clusters of minimal distance. 
The lengths of arms in the dendrogram correspond to the dis-
tances between pairs of objects; short arms between two objects 
or groups indicate similarity and longer arms signify dissimilar-
ity. The purpose of using this technique was to identify collective 
large-scale similarities between topologies or cell-type hierarchies, 
as exact p-values for differences in specific synchrony measures are 
explored elsewhere.

results
Our overarching goal was to determine how network topology 
and intrinsic cell dynamics affect a network’s capacity to generate 
synchronized bursting activity. To address this broad question, we 
present results based on which topologies, cell-type hierarchies, and 
synaptic coupling levels generated network bursts most success-
fully and how these three main factors interact. When possible, we 
comment on mechanisms underlying observed outcomes and on 
unifying characteristics related to network propensity for bursting 
and synchrony.

as tonic or quiescent, respectively. Cells in the middle ground, 
exhibiting a non-zero level of mean activity and also an elevated 
variance, which corresponds to the switching between silence 
and activity characteristic of bursting, were classified as burst-
ing. This method quickly and robustly detects different patterns 
of cell output.

synchrony Measures: relevance and calculatIon
We used multiple measures of synchrony to form a comprehensive 
estimate of network bursting in different networks and cell-type 
hierarchies. Each measure focuses on a particular aspect of burst 
synchrony. The most general measure for identifying synchronous 
burst onset and offset we use is “mean correlation.” Since each 
network simulation generates 100 spiking time series, we use the 
mean of the Pearson correlation between all pairs of time series 
as a general marker for agreement in activity periods (Figure 2C, 
right). Because burst synchrony, rather than spike synchrony, is of 
interest here, we assess these correlations using the filtered (burst/
non-burst) time series (Figure 2C, center).

We define the temporal dispersion of the onset times of indi-
vidual cell bursts, relative to the onset time of a network burst, 
as “onset latency.” Low onset latency indicates the generation 
of a robust network burst with little lag in recruitment of cells. 
To accurately estimate burst latency in noisy networks, we first 
smooth the summated spike trains with a moving average fil-
ter. Next, we find the local minima of the smoothed signal, and 
for each pair of minima, we define a corresponding “network 
fluctuation” as the largest value of the smoothed signal on the 
time interval between them. We subsequently select the n larg-
est magnitude network fluctuations in the combined network 
output as estimated times of putative network bursts, since 
these represent relatively large depolarizations across all cells 
(Figure 2C center column on the bottom shows the summated 
network activity and the peaks of “network fluctuations”). The 
number n of fluctuations was chosen to equal the median number 
of bursts across all cells (Figure 2C, center column). Values for 
onset latencies are calculated as the standard deviation in the 
nearest individual cell burst onset times, relative to the time 
of the network burst. This process ensures that the majority of 
estimated onset latencies (across all cells) are indeed related to 
the current network burst.

“Network variance” is the least stringent measure of network 
bursting that we use, as it does not rely on the precise timing of 
burst onset and offset, but rather on the peak coherence between 
bursting cells (Figure 2C bottom). Multiple synchronously burst-
ing cells will generate greater voltage fluctuations in the summed 
network output than will asynchronously bursting cells. Thus, wide 
swings in the cumulative signal produce high network variance 
scores, indicative of roughly synchronized bursts.

These synchrony measures are only calculated between bursting 
cells and do not reflect the number of participating cells. However, 
while a network may have a small number of highly synchronous 
bursting cells and achieve a high mean correlation score, a larger 
number of slightly less synchronous bursting cells in a compara-
ble network may be more biologically relevant. Therefore, we also 
consider the number of bursting cells in tandem with all synchrony 
measures. Finally, we compute the “network burst index” (NBI) as 
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The “NBI” is a composite score of the three synchrony meas-
ures and the total number of bursting cells. The results of this 
combined synchrony assay reflect the general agreement between 
the individual measures other than onset latency, with the Hartelt 
topology and NN topologies yielding less synchronous bursting 
than all other networks (Figure 3E).

We had expected the level of synchrony and the number of 
bursting cells to covary, reasoning that a group of synchronous 
bursting cells within a network would achieve effective recruit-
ment of quiescent cells due to concerted activation. Comparing 
the number of bursting cells to network burst synchrony in each 
topology (Figures 3C,D), however, illustrates that these properties 
may vary independently. For instance, the NN topology had the 
second-lowest overall mean synchrony yet the greatest number of 
bursting cells (Figure 3D), corresponding to a high number of 
asynchronously bursting cells (Figure 3F).

The average burst frequency among all simulations was 
0.3–0.4 Hz, but a subset of time series yielded mean burst fre-
quencies of approximately 0.1 Hz (Figure 3G). The long, very 
low frequency bursts that characterized these simulations were 
exclusively a product of scale-free networks, arising specifically 
when cells with quiescent dynamics (in isolation) were placed 
at hub nodes. Thus, dramatic variations in burst frequency are 
linked to a specific topology, in conjunction with cell dynamics. 
This finding agrees with previous analysis, which highlighted 
the role of intrinsically quiescent cells in expanding the range 
of possible burst frequencies in small networks (Dunmyre and 
Rubin, 2010).

As noted above, evaluating the burst characteristics across eight 
topologies, with six output measures computed for each, gener-
ated hundreds of individual comparisons. To extract a compact and 
coherent representation of the propensity for synchronized network 
bursts from all of these comparisons, we clustered the topologies, 
using (inverse) p-values for differences in burst synchrony as a proxy 
for distance (Figure 3H). The structure emerging from this cluster-
ing takes into account similarity between networks across multiple 
measures and also the consistency of their similarity. The adjacency 
of lattice networks and lattice SW networks found with this clus-
tering affirms that these topological organizations have consistent 
synchrony characteristics. Also, the scale-free and NN topologies 
feature burst synchronization profiles that differ from those of other 
topologies. While Hartelt and random topologies are adjacent in the 
dendrogram, the vertical height of their connection indicates that 
they share relatively little in common; the association is simply the 
closest match between Hartelt and any other topology.

cell-type placeMent In MIcrocIrcuIts affects network 
burstIng
As noted above, in certain special cases, the placement of select cell 
types within a network can affect network dynamics. More generally, 
just as topology can modulate network synchrony without regard 
to cell-type hierarchies, cell-type hierarchies can also modulate net-
work synchrony in a consistent fashion across different topologies. 
For instance, we found that locating intrinsically tonic and bursting 
neurons at central neuron locations was sufficient to increase cor-
relation regardless of the specific topology, although there is a high 
degree of variability across simulations within each cell-type hierarchy 

Because we assessed six measures of bursting activity while 
varying network architecture, cell-type hierarchy, and maximal 
synaptic conductance, we performed a MANOVA test to deter-
mine if these independent variables had a significant interaction 
with our dependent collection of synchrony measures. Significant 
effects were found for topology, cell-type arrangement, and syn-
aptic coupling strength on the bursting measures (Wilks’ lambda, 
p < 0.001), and we also found significant interactions among all 
pairwise combinations of the independent variables (p < 0.001). 
Because Levene’s test indicated the variance of many burst meas-
ures was non-normally distributed (p < 0.05), we followed up the 
global analysis with separate ANOVA’s as an extra step to confirm 
the significant main effects found for topology, cell-type hierarchy, 
and synaptic coupling, even through MANOVA’s are theoretically 
robust to non-normality. ANOVA results uniformly indicate that 
each of these three independent variables had a significant effect 
on the bursting and synchrony measures (p < 0.001). There were 
hundreds of pairwise comparisons between all pairs of topologies 
and all pairs of cell-type hierarchies spread over multiple measures 
of synchrony. The majority of these were also significant (at level 
of p < 0.05, corrected for multiple testing with the conservative 
Tamhane’s test). Further analysis and description of trends in how 
these synchrony measures differ across various topologies, cell-type 
hierarchies, and synaptic strengths are found below.

effects of network topology on burstIng
Different networks implemented with an identical number of links, 
number of nodes, strength of synapses, and degree of cellular het-
erogeneity showed widely varying levels of synchronized bursting 
as a direct function of their global topologies. Our measures of 
bursting activity can be divided into structural measures (burst 
length and frequency) and correlation measures (such as latency in 
burst onset across many cells). Both categories of bursting activity 
showed significant modulation by topology (Wilks’ lambda and 
Kruskal–Wallis, p < 0.001).

Our most general measure of synchrony, “mean correlation,” 
showed significant modulation by topology, with many distinc-
tions in pairwise topology comparisons (post hoc Tamhane’s test, 
p < 0.001). NN and Hartelt topologies yielded significantly lower 
mean correlations than all other topologies (p < 0.001; Figure 3A). 
Scale-free networks showed much higher variability in mean cor-
relation than all other networks (p < 0.001), due to a dynamics–
topology interaction (see next section).

Burst onset latency showed a weaker dependence on topology 
that was not correlated with other synchrony measures (Figure 3B). 
In particular, the Hartelt network exhibited the lowest burst onset 
latency (low onset latency is associated with high synchrony) despite 
showing the least synchrony according to our other measures and the 
lowest number of bursting cells (Figures 3A–E; see also below).

Approximately synchronous bursts may not have exactly match-
ing onset times but still have overlapping active burst phases that 
generate a strong population signal. “Network variance” quantifies 
the peak fluctuations in population signals, and NN and Hartelt 
topologies performed worse than all other topologies in this meas-
ure of synchronous bursting (p < 0.001; Figure 3C). In fact, this 
measure yielded results that were very similar to those from mean 
correlation (Figure 3A).
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intrinsically tonic cells cannot sustain their firing and also fall silent, 
but their relatively high excitability allows them to recover and resume 
spiking, yielding an overall network bursting pattern. Nonetheless, 
compared to the influence of topology on bursting, cell-type hier-
archies produced smaller distinctions in burst synchrony measures 

(Figures 4A,B). As noted previously in small networks (Rubin, 2006; 
Dunmyre and Rubin, 2010), tonically active cells can recruit other 
cells. Once other cells are recruited, the resulting inputs to the intrin-
sically tonic cells can drive up their firing rates and inactivate their 
inward currents. When the cells responsible for these inputs pause, the 
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Figure 3 | Network connection topology influences burst synchronization. 
(A) Mean correlation, a stringent measure of burst synchrony, varies significantly 
as a function of network structure. All results shown were produced with 
synaptic conductance gsyn = 5, the highest synaptic weight examined. All error 
bars represent ±1 SD. (B) Onset latency uses the temporal jitter in burst 
initiation around a network burst to assess synchrony. Lower variability in burst 
onset is associated with higher synchrony. In contrast to other synchrony 
measures it is relatively constant across topologies. (C) Network variance is the 
least specific measure of synchrony, corresponding to peak network activation, 
but not the precise burst onset and offset times. It depends on topology 
similarly to mean correlation. (D) The number of bursting neurons in most 
networks is similar, despite the distinctions in synchrony between-networks. 
(e) The network burst index (NBI) normalizes all of the above measures of 

synchrony into a single estimate of the quality of network bursting. (F) The 
number of asynchronous cells was calculated as the number of bursting cells 
that were not actively bursting during a putative network burst, averaged over all 
bursts. Networks with scant synchrony may still contain a large number of 
bursting cells. (g) Topological structure contributes to burst frequency and active 
phase duration. While each topology exhibits a range of burst frequencies and 
active phase durations, the most extreme values are all generated by the 
scale-free topology. (H) The vertical heights of bars in the dendrogram 
correspond to the magnitudes of distinctions between-networks and groups of 
networks as determined by MANOVA. For instance, based on the dendrogram, 
it can be seen that nearest neighbor and scale-free networks have distinct 
synchrony behavior compared to all other networks. Conversely, classic and hub 
small-world networks exhibit similar burst synchronization properties.
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Figure 4 | Cell-type hierarchies influence burst synchronization, but effects 
depend on topology. (A) Example of the dependence of mean synchronization on 
cell-type hierarchies, incorporating results collected across all topologies and 
cell-type hierarchies. Bar labels refer to ordering of cells in the hierarchy of 
betweenness centrality, for instance “QBT” has quiescent cells at the most central 
positions and tonic cells at the least central position (Figure 1). (B) Cell-type 
hierarchy affects each measure of burst synchrony, but the overall variability in 
estimates of network synchrony from the combination of all topologies is less than 
that observed when comparing topologies (Figure 3). (C) Vertical heights of bars in 
the dendrogram correspond to differences between cell-type hierarchies and groups 
of hierarchies as determined by MANOVA. Topologies with the same cell type at 

central positions are most similar in their synchrony measures. (D) Large SD in NBI 
between different cell-type hierarchies identifies network types in which the effects 
of cell-type hierarchies on synchrony are particularly strong. (e) Within random 
networks, magnitude of NBI it is greatest when cells with intrinsically bursting 
dynamics are located at nodes with the moderate or large betweenness. (F) Within 
scale-free networks, NBI is greatest when cells with intrinsically tonic activity are 
located at nodes with greatest betweenness. (g) Changes in NBI represent tangible 
changes in network synchrony. Example scale-free networks and simulation 
outputs, tracking the number of actively bursting cells, only rearranging the locations 
of cells to locate specific cell types at hub nodes. Note that in this figure, node 
shapes only represent intrinsic dynamics, not final dynamics in the network.
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weights changed the network activity and resulted in a significant 
increase in synchrony (p < 0.001, Figure 5A). This was accompanied 
by a significant increase in the number of bursting cells from the 
baseline 33 cells to an average of 75 cells among all topologies at 
the highest synapse weights.

The general increase in synchrony was not evenly distributed 
over all topologies. However, NN and Hartelt topologies did 
not show statistically significant graded increases in synchrony 
with increasing synaptic weight, as occurred in other topologies 
(Figure 5B). Variance in NBI values for each synaptic weight was 
greatest when all topologies and cell-type hierarchies were com-
bined, compared to the variance in NBI calculated using only a 
specific topology or cell-type hierarchy. This indicates that cell-
type hierarchy contributes to the effects of synaptic weight on the 
NBI within certain fixed topologies and vice versa. Collectively, 
these effects suggest that there is a three-way interaction of synaptic 
weight with topology and cell-type hierarchies in determining 
network synchrony as quantified by NBI levels. For example, the 
variance in NBI across repeated simulations of a particular net-
work type for the random cell-type hierarchy, which produced 
the most variable results of any hierarchy, was still lower than the 
variance found when combining results from all cell-type hier-
archies (comparing height of error bars in Figure 5C vs. 5B) and 
specifically decreased in random and scale-free topologies at high 
synaptic coupling.

Within the general finding that burst synchrony increases with 
synaptic weight, we further examined the question of whether 
topology or cell-type hierarchies were stronger determinants 
of which simulations show extremes of synchrony, at each syn-
aptic weight. To quantify these influences categorically over all 
synchrony measures at each synaptic weight, we compared the 
number of pairwise differences between topologies against the 
number of pairwise differences between cell-type hierarchies. 
As expected, we found that while dynamics and topology fre-
quently interacted to influence synchrony, the relative contribu-
tions of these factors shifted depending on the synaptic weights. 
When a network was coupled with low synaptic weights, cell-
type hierarchies were more influential in determining which 
networks would be synchronous, as evidenced by the percent of 
significant pairwise comparisons between cell-type hierarchies 
(Figure 5D). In contrast, the relative and absolute contributions 
of topology on synchrony increased with increasing synaptic 
weight, reflecting the increased impact of stronger connections 
on network dynamics.

dIscussIon
prIncIples of network burstIng
The brain may harness interactions between the topology of con-
nections within neuronal networks and the dynamics of individual 
network elements to tune local and global activity patterns and 
synchrony. Important questions arise about the relative importance 
of particular features of neuronal networks in sculpting network 
outputs and about how networks may synchronize despite cell-type 
heterogeneities. Through a sequence of comparisons across net-
work topologies, several key factors emerge as minimal principles 
of burst synchronization.

(variability in Figure 4B compared to Figure 3E), indicating that cell 
hierarchies have a generally smaller effect on synchrony than does 
topology (at this level of synaptic coupling). Contrasting the effects 
of cell-type hierarchies by using all possible post hoc pairwise results 
for all synchrony measures to perform clustering showed that cell-
type hierarchies with the same cell type at key positions for the most 
part yielded similar behaviors regardless of the subsequent ordering 
of cells in the hierarchy of centrality (Figure 4C).

However, the effects of cell-type hierarchies are more salient 
within select network types. Random and especially scale-free net-
works showed large variations in burst synchrony as a function of 
cell-type hierarchy (Figures 4D–F). It may seem contradictory that 
cell-type arrangement could matter in random networks; however, 
for every random network, we evaluated the betweenness centrality 
and arranged cell types accordingly, just as in all other networks. 
Random topology networks generated greatest global synchrony 
when bursting cells were located at central network positions 
(Figure 4E) while placement of nominally tonic firing cells at the 
most central locations was most effective in promoting network 
bursts in scale-free networks (Figures 4F,G). In both cases, locating 
quiescent nodes (which can be induced to burst in a network) at high 
centrality locations resulted in low NBI values. In the case of scale-
free networks, the topology/cell-type interaction was so strong that 
its synchrony could be either the highest or lowest of any topology, 
based on the specific cell-type hierarchy used (Figure 4G).

local synchrony, but not global synchrony, In the hartelt 
topology
Since SW networks have produced strong synchronization results in 
related systems (Netoff et al., 2004; Olfati-Saber, 2005; Shao et al., 
2006), and the Hartelt topology shares the SW characteristics of 
relatively dense local connections complemented by occasional glo-
bal links, it might be expected that the Hartelt topology would lead 
to robust network bursting. However, Figures 3E and 4B indicate 
that burst synchrony within networks with the Hartelt topology 
was consistently low relative to other architectures, regardless of 
cell-type arrangement. We tested the hypothesis that Hartelt net-
works might in fact generate high degrees of synchrony, but only 
within local clusters. Using a permutation test (see Materials and 
Methods), we quantified mean correlation across cells in the same 
cluster, compared to randomly chosen groups of equal numbers of 
cells. For every simulation of the Hartelt topology, across different 
levels of synaptic coupling and different cell-type hierarchies, this 
test indicated that within clusters, there was a significantly higher 
level of synchrony than would be expected at random (p < 0.001). 
Thus, a likely explanation for the low network synchrony of the 
Hartelt networks is that the high within cluster connectivity gener-
ated robust localized rhythms, with tightly controlled burst onsets 
(Figure 3C), which so entrained the cluster members that they 
became immune to signals from other clusters.

relatIve Influence of topology and dynaMIcs on burstIng 
shIfts wIth synaptIc couplIng
With no synaptic coupling, each topology consists of a collection 
of cells in which approximately one-third are quiescent, one-third 
are bursting, and one-third are tonically active. Increasing synapse 
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recurrence within the network. Specifically, we define recurrent 
connections as length-2 paths from a given source node, out to 
a target node, and back to the source node. As we have checked 
numerically in our networks and is clear intuitively, NN networks 
have high recurrence, while the breaking and global rewiring of 
local links yields lower recurrence in SW networks and still lower 
recurrence in random networks. This progressive loss of recur-
rence is linked with a decrease in asynchronous bursting cells and 
an increase in NBI in our simulations, although clearly recurrence 
is not the only factor determining network burst synchronization 
(e.g., Hartelt networks are less recurrent than NN). Furthermore, 
recall that we standardize each of our network topologies to share 
the same total number of links present within a randomly selected 
Hartelt network. Coupling in our lattice networks is less recurrent 
than in NN networks because in lattice networks, each node has 
a larger number of neighbors that are candidate targets for con-
nections, only a subset of which are realized under the Hartelt 
standardization. Correspondingly, our lattice networks exhibit 
fewer asynchronous cells and achieve a higher NBI than seen in 

Nearest neighbor ring vs. small-world
The only distinction between these topologies is that 5% of links in the 
NN topology are randomly rewired to different nodes in the network to 
form a SW topology. This decrease in average path-length produces a 
substantial increase in synchrony. However, this increase is not accom-
panied by an increase in the number of cells engaging in bursting in the 
coupled networks. A similar, but less dramatic, shift toward increased 
synchrony with decreased incidence of bursting arises with the shift 
from lattice to lattice SW networks. Therefore, decreasing path-length 
within a specific topology appears to be associated with an increase 
in the synchrony of bursting cells, but not in the overall prevalence of 
bursting. In other words, a small number of long-range connections 
can enhance the synchrony of bursting cells but are not more effective 
than local connections at recruiting additional cells to burst.

Spatial constraints on coupling: NN vs. lattice vs. random topologies
The classic transition from ring networks to SW networks to ran-
dom networks (Watts and Strogatz, 1998) features changes not only 
in path-lengths and clustering coefficients, but also in the level of 
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Figure 5 | interactions of synaptic coupling strength with topology and 
cell-type hierarchies. (A) Network synchrony (NBI) increases with increasing 
synaptic weight across topologies and cell-type hierarchies. (B) Increases in 
synchrony for different topologies under increasing synaptic weight. Each group 
of bars shows the NBI of different topologies for a sequence of increasing 
synaptic weights. (C) Demonstration that variability in NBI (indicated by error 
bars) is driven by cell hierarchies and not random fluctuations. Calculating the 
NBI for different networks based solely on simulations that used a random 
placement of cell types shows significantly smaller variation in network 

bursting than seen across all cell-type hierarchies in (B). (D) Within the broad 
increase in synchrony with increasing coupling, topology, and dynamics play 
divergent rolls. Green bars represent the number of significant differences 
between cell-type hierarchies for increasing levels of synaptic coupling. The 
trend in cell-type hierarchies shows the importance of cell-type placement on 
network activity declines with increasing synaptic weight. Conversely, the trend 
for distinctions between topologies (blue bars) shows that network architecture 
is responsible for a larger portion of variance in network synchrony at higher 
synaptic weights.
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our NN networks, and further decreasing the recurrence by moving 
from a lattice to a lattice SW topology enhances these differences. A 
potential mechanism behind these results is that the dominance of 
local feedback loops in recurrent networks promotes local activity 
patterns that are insulated from global feedback signals. Cells in 
more diffuse networks receive a broad signal including input from 
many areas of the network, which can unify activity across regions 
and could potentially allow a local hotspot of bursting to spread 
effectively though the network.

Network characteristics associated with topology–dynamics 
interaction
What accounts for the increased interaction of topology and 
cell dynamics in random and especially scale-free networks 
(Figures 4D,E)? The structure of a scale-free network is self-
 similar, so if a cell-type hierarchy can establish a set dynamic pat-
tern locally, then it is theoretically possible that that pattern may 
be repeated across different spatial scales. Furthermore, certain 
nodes in scale-free networks have very high betweenness central-
ity, higher than that found in any other network (Figure 1B, far 
right). The dynamics of these nodes will affect the shortest paths 
between many points on the network, such that these nodes mediate 
the interactions of many cells in the network. Consistent with this 
idea, the highest burst synchrony was achieved when intrinsically 
tonic cells were placed at high betweenness nodes. Conversely, the 
Hartelt network, which has the lowest maximum betweenness of 
all topologies, shows the least sensitivity to cell-type hierarchies. 
The absence of nodes of high betweenness thus is likely to constrain 
global network synchrony.

Topologies as constraints on synchrony, not guarantees
Based on the results observed across all networks, it appears that 
certain topology characteristics may promote network bursting, yet 
these features do not ensure particular outcomes. For instance, in 
our simulations, no networks with high path-length show high burst 
synchrony, suggesting that low path-length may be necessary for 
bursting; however, low path-length does not guarantee synchrony 
(as the Hartelt topology has low path-length). As another example, 
a large number of bursting cells within the coupled network may 
be associated with high synchrony, due to a unification of network 
dynamics, but may also arise without strong global synchrony (as 
in NN networks), perhaps due to dominance of local interactions. 
Similarly, direct local feedback in topologies encourages bursting, 
but it will likely be asynchronous when measured across the whole 
network unless the local feedback is balanced or even dominated 
by more diffuse connections as in random networks. Network 
topology does appear to constrain synchrony, as the overall level 
of burst synchronization in certain architectures remains relatively 
low regardless of cell-type hierarchy (Figure 5B, column heights 
and error bars). For other topologies where strong synchronization 
may occur, it is not guaranteed, but instead depends on cell-type 
hierarchies, as is particularly evident in scale-free networks. Thus, 
certain graph characteristics, such as low path-length and a suf-
ficient diffusivity of connections, within a network can be consid-
ered as a minimal set of conditions conducive to strong network 
burst synchrony, but these factors do not guarantee synchrony, and 
should be considered in tandem with cell-type heterogeneity.

ImplIcatIons and InterpretatIons of low synchronIzatIon In 
the hartelt topology
Variations in synchrony across the suite of topologies that 
we have considered are useful in understanding the origin of 
the low synchrony that we observe in the Hartelt topology. 
Despite the low average path-length of the Hartelt topology, 
it is visually clear that groups of nodes form spatially isolated 
clusters within the network graph. This local isolation may 
also be found in NN networks. Both Hartelt and NN topolo-
gies show large numbers of asynchronous cells as well as simi-
larly small increases in synchrony with increases in synaptic 
weight. Indeed, we conjecture that the burst synchronization 
characteristics of the Hartelt topology resemble those of the 
NN topology because, like NN networks, Hartelt networks fea-
ture strong recurrent local linkages and lack global signaling, 
such that local connections and cell types largely determine 
cells’ dynamics. Concordantly, our permutation tests did show 
greater than expected local synchrony within the clusters in the 
Hartelt topology. This local synchrony could actually impede 
the establishment of global synchrony, as the input that each 
neuron receives from within its cluster is so concerted that 
between-cluster links are ineffective in resetting the burst phase 
to match a global frequency.

Examining the interactions between two or three linked 
Hartelt clusters in future work would aid in understanding the 
mechanisms that maintain desynchronization across clusters 
despite local synchronization and in exploring how synchrony 
changes over a range of within-cluster to between-cluster link 
ratios. One future experiment that could shed light on precisely 
how certain network structures facilitate bursting would be to 
initiate bursting in a single cell in an uncoupled network and 
then turn on connections between neurons in a certain pattern, 
to see how such activity spreads or is suppressed by particular 
topological features.

How can we resolve the disparity between the robust network 
bursts seen in the pre-BötC network in intact experimental 
preparations (Smith et al., 2007) and the poor network burst 
performance of the Hartelt topology in our simulations? One 
possibility is that putative synchronized bursting in the pre-BötC 
in actuality consists of phases of tonic spiking, interrupted by the 
arrival of strong synaptic inhibition (Rybak et al., 2007; Smith 
et al., 2007; Rubin et al., 2009b). While this possibility may indeed 
arise in vivo under normal conditions, however, burst synchrony 
is also observed in pre-BötC slice preparations under a blockade 
of inhibition (Smith et al., 1991). Alternatively, it is possible that 
the inclusion of other channels known to contribute to burst-
ing in at least a subset of pre-BötC neurons (Pace et al., 2007; 
Rubin et al., 2009a; Toporikova and Butera, 2010; Dunmyre et al., 
2011) may significantly alter network burst synchronization, and 
this possibility will be considered in future work. Similarly, a 
dramatically different balance of intrinsically quiescent, burst-
ing, and tonic cells might also increase network burst synchrony, 
as might the inclusion of additional heterogeneities in synaptic 
conductances. Finally, another possibility to consider is that the 
slice preparation on which our connectivity estimates are based 
underestimated the number of between-network links, which 
seems plausible given that only a portion of the pre-BötC was 
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Constraints on the applicability of our results to other systems
The number of links in each topology is set to exactly match that 
of a corresponding Hartelt network, and the resulting low number 
of links leads to clustering coefficients in our SW networks that are 
lower than those typically expected. Therefore, our SW networks 
do not meet the full specification of SW as highly clustered that is 
usually presented in the literature (although they do have low path-
length and mainly local connections), and this issue could affect 
development of synchrony in those networks. To check for this 
effect, we generated a new set of SW networks with a 50% greater 
number of links and repeated all synchrony tests. Results for all net-
works in all synchrony measures were very similar to what we have 
reported for our original networks, despite increased connectivity 
and higher clustering coefficients. More generally, our networks 
can be thought of as discrete points in a high-dimensional network 
space, in which properties, such as averages and higher moments of 
path-lengths, clustering coefficients, in- and out-degrees, and many 
others, can vary systematically. Future work is needed to explore 
effects of systematic variations in these network parameters, but 
our results hint that analysis will be complicated by the interac-
tions of properties.

Our characterization of the burst synchrony properties of differ-
ent topologies is based on using very specific cell dynamics. Results 
from square-wave bursting cells may not extend to spike synchrony 
in more general cortical models. Indeed, our results highlight the 
interaction of topology and dynamics, and thus any alternative 
system of cells featuring different forms of dynamics may show dif-
ferent behavior than that reported in our study. However, although 
specific activity patterns may differ, the broadly distinct synchroni-
zation properties that we found across NN, SW, Hartelt (or other 
architectures featuring dense local clusters and sparse inter-cluster 
connections), and scale-free topologies (in short the families shown 
in Figure 3H) will likely persist.

conclusIon
Results from numerous brain systems illustrate that the topological 
organization of interacting neurons is important in generating or 
directing ongoing dynamics. The SW concept of low path-length 
and high clustering, for example, has repeatedly been linked to 
efficient information transfer and swift network synchronization. 
But how these results relate to the performance of other topologies 
in networks with realistic cellular dynamics and heterogeneities 
is rarely explored. In contrast to the general emphasis on topol-
ogy directing network dynamics, we show that burst synchrony 
is a function of both network topology and the dynamics of cells 
located at central locations within the topology. These two features 
interact to control network burst synchrony, and the balance of 
this interaction depends on the nature of each topology and on 
the strengths of synaptic connections within the network. Thus, 
while particular features of connection topologies can be linked 
to certain trends in burst synchronization, specific topologies can-
not be considered to have a single characteristic effect on network 
outputs when implemented in realistic neuronal systems.
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extracted. Correspondingly, a realistic increase in inter-cluster 
links might increase synchrony toward experimentally observed 
levels, and a systematic increase in the prevalence of these links 
will also be investigated in the future.

addItIonal relevance and lIMItatIons
Applicability to biological systems
Our purpose in categorically placing certain cell types at distinct 
levels of the centrality hierarchy was to explore whether it is pos-
sible to tune the burst synchrony of various topologies through this 
manipulation. The likelihood that a specific cell type is uniformly 
located at a particular centrality level is debatable. However, areas 
such as the cerebellum do exhibit dramatic degree heterogene-
ity among a large collection of electrophysiologically distinct cell 
types, each of which occupies stereotypical positions within a local 
microcircuitry (Ohyama et al., 2003). Therefore, the brain does 
contain microcircuits that are relevant analogs for our cell-type 
hierarchies and topology comparisons. Also, alterations to biologi-
cal hubs are associated with disease, so it is important to under-
stand how network dynamics may be influenced through changes 
in cell properties at critical nodes (Stam et al., 2007; Morgan and 
Soltesz, 2008).

Limitations of biological detail in simulations of the pre-BötC
We recreate the connectivity statistics shown in Figure 5 of Hartelt 
et al. (2008) as precisely as possible, but there is some ambiguity 
in how to interpret the results of that paper, in light of disparities 
between distributions of connection numbers shown by histo-
grams and SD stated to be associated with these data. As with any 
simulation, the discovery and inclusion of additional biological 
details that further characterize the pre-BötC connection archi-
tecture, or homeostatic feedback mechanisms that alter cellular 
conductances to promote synchronized bursting, could poten-
tially affect our results. As discussed above, our simulations do 
not include the CAN current, which is critical for bursting in at 
least a subset of pre-BötC neurons (Pace et al., 2007). Incomplete 
information is available on the proportion of cell types, defined 
by intrinsic dynamics in the absence of coupling, present within 
the pre-BötC, so we tested an even split of cell types; additional 
investigation of changes in network burst synchronization within 
each case due to alterations in these proportions is beyond the 
scope of our analysis, given the large number of variations we 
have already considered.

We did not incorporate synaptic delays in our simulations; 
however, delays within clusters would be expected to be smaller 
than those between clusters, and thus we expect that realistic 
delays would only worsen the already poor inter-cluster syn-
chrony we found in the Hartelt network. We choose to normal-
ize the maximal input a cell could receive to a constant value, 
regardless of the number of inputs, in order to facilitate more 
direct comparisons between topologies. It is possible that this 
normalization is biologically justified, based on homeostatic 
mechanisms or limitations of the molecular resources needed 
to support synaptic channels, but it is also possible that a 
weaker form of normalization or an absence of normalization 
is more appropriate for pre-BötC circuits and other particular 
neuronal networks.
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