
COMPUTATIONAL NEUROSCIENCE

It is widely believed that neocortical circuits are arranged in col-
umns and that these columns may be elemental information process-
ing units (Mountcastle, 1997; Petersen and Sakmann, 2001). Although 
the columnar hypothesis remains controversial and lacks anatomi-
cal verification (Buxhoeveden and Casanova, 2002; Rockland and 
Ichinohe, 2004; Costa and Martin, 2010), it is at worst a convenient 
approximation. We therefore used a columnar organization in these 
studies. The columnar hypothesis suggests that individual columns 
can process and store information internally, and then send and 
receive information amongst themselves. Both intercolumnar and 
interlaminar connectivity provide a complex of circuitry with mul-
tiple levels of embedded and interlaced recurrent connections that 
may play complementary roles in information processing (Douglas 
et al., 1989; Nelson, 2002; Hill and Tononi, 2005; Sporns et al., 2005; 
Izhikevich and Edelman, 2008). These many levels of recurrence 
add to the difficulty in unraveling the dynamical contributions of 
layering and of cortical and regional organization.

The genesis of the electroencephalographic signal, first demon-
strated over 80 years ago, remains little understood. We performed 
simulations of a group of nine neocortical columns from sensory 

IntroductIon
Coordination of neocortical oscillations has been hypothesized to 
underlie the “binding” essential to cognitive function (Treisman, 
1996; Engel and Singer, 2001; Singer, 2001; Wu et al., 2007; Fenton 
et al., 2010; Kelemen and Fenton, 2010). There is also evidence that 
neocortical oscillations contribute to working memory, and that 
alterations of brain oscillations are associated with diseases produc-
ing psychiatric disease (Spencer et al., 2003, 2004; Raghavachari 
et al., 2006; Uhlhaas and Singer, 2006; Uhlhaas et al., 2006; Düzel 
et al., 2010; Lisman, 2010). Recent experimental evidence suggests 
that human neocortex can generate theta locally (Raghavachari 
et al., 2006; Tsujimoto et al., 2006). At present, the mechanisms that 
generate neocortical oscillations in physiological frequency bands 
remain unknown, likely involving both intrinsic cortical proper-
ties and projections from other centers (Bazhenov et al., 2002). 
Understanding is complicated by the fact that neocortex is an area of 
great circuit complexity, which receives projections from multiple 
subcortical areas, including hippocampus, a potent generator of 
theta activity (Stewart and Fox, 1990; Hasselmo, 2006; Sirota et al., 
2008; Cutsuridis and Hasselmo, 2010).
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cortex in order to determine the cellular, laminar and columnar 
relations that produce these characteristic oscillations. Our central 
hypothesis was that the characteristic spectral pattern would emerge 
from interrelations of the elements at multiple scales: cell types with 
differing intrinsic dynamics, connections via certain delays, com-
plex topology involving interactions both within and between mul-
tiple layers, local intracolumnar and more remote intercolumnar 
connections. Due to the multiple nested and interlocking feedback 
loops, straightforward definition of a single oscillatory origin is 
impossible. In order to assess dynamical credit-assignment, we used 
minimal dynamical perturbation as a methodology for selectively 
altering individual ingredients in the dynamical system without 
pushing the system into a substantially different dynamical pattern. 
We minimally altered the neocortical topology by incrementally 
adding one hub (a cell with many more inputs/outputs than aver-
age) at a time to selected layers. This allowed us to demonstrate 
that layer 2/3 was critical for producing the specific spectral pat-
tern characteristic of neocortex. Spectral power from our model’s 
population activity was found to be similar to spectral power from 
local field potential recordings from rat medial prefrontal cortex, 
both in profile and cross-frequency coupling.

MaterIals and Methods
sIMulatIons
Simulations were run using NEURON (Hines and Carnevale, 2001; 
Carnevale and Hines, 2006). The cell model was an extension of 
an integrate-and-fire unit and was simulated in an event-driven 
fashion, since cell state variables were only calculated at input 
events. Complexity was added using rules with various dynamical 
features found in real neurons: adaptation, bursting, depolariza-
tion blockade, and voltage-sensitive NMDA conductance (Lytton 
and Stewart, 2005, 2006; Lytton and Omurtag, 2007; Lytton et al., 
2008b). Briefly, each cell had a membrane voltage level state vari-
able (V

m
) and a resting membrane potential (V

RMP
), which was 

the baseline value for V
m
 in the absence of external inputs. After 

synaptic input events, if V
m
 crossed spiking threshold (V

TH
), the 

cell would emit an action potential and enter an absolute refractory 
period, lasting t

refrac
 ms, during which it could not fire. Refractory 

periods were set to prevent a maximum firing frequency from being 
exceeded. After an action potential, an after-hyperpolarization 
voltage state variable was set (V

ahp
) and then subtracted from V

m
. 

Then V
ahp

 decayed exponentially with time-constant (t
ahp

) to 0. To 
simulate voltage blockade a cell could not fire if V

m
 surpassed V

block
. 

Relative-refractory period was simulated after an action potential 
by increasing the threshold, V

TH
, by W

RR
. (V

block
 − V

TH
) (to scale the 

increase in V
TH

 by a fraction of the voltage range where the cell 
could fire), where W

RR
 was a unitless weight parameter. V

TH
 then 

decayed exponentially to its baseline value with time-constant t
RR

.
Baseline wiring and number of cells per layer were based on pub-

lished models and anatomical studies, which necessarily come from 
different species and different areas and are sometimes inferred 
rather than explicitly stated. We used data from cat visual cortex 
(Thomson et al., 2002; Binzegger et al., 2004), rat visual cortex 
(Song et al., 2005), and rat barrel cortex (Lefort et al., 2009) for 
intracolumnar connectivity information. We used mouse somato-
sensory cortex data for intercolumnar projections, which showed 
lateral inhibition as well as excitation between layers 2/3 and 5 

of neighboring columns (Adesnik and Scanziani, 2010). In addi-
tion, we used data from previously published neocortical column 
models to ensure that our model was consistent with data used by 
others (Traub et al., 2005; Heinzle et al., 2007). Unfortunately, exact 
numbers are not available for all connections. Instead estimates are 
available from a number of techniques including light and elec-
tron microscopy, dual to quadruple intracellular recordings, laser 
scanning photostimulation, and others. Often these methods do 
not entirely agree, partially due to the difference in techniques but 
also due to the studies being done in different species and in dif-
ferent neocortical areas. Due to incomplete and conflicting infor-
mation, a number of choices had to be made based on judgment. 
This approach of integrating multiple data sources and using best 
approximations to real parameters has generally been used in other 
large-scale neocortical models (Traub et al., 2005; Izhikevich and 
Edelman, 2008).

In our model, there were 13 cell types, arranged in 4 layers: 2/3, 
4, 5, and 6. Interneurons were parameterized as fast-spiking (FS) or 
low-threshold spiking (LTS) interneurons. FS and LTS interneurons 
utilized somatic and dendritic GABA

A
 synapses, respectively. The 

following cell types were included: E2, I2, I2L, E4, I4, I4L, E5a, E5b, 
I5, I5L, E6, I6, and I6L. E (I) represent excitatory (inhibitory) cells, 
and the number following the cell type represents the layer, i.e., E2 
represents pyramidal cells in layers 2/3. I6 represents FS interneu-
rons in layer 6, and I6L represents LTS interneurons in layer 6. E5a 
and E5b are two subtypes of pyramidal neurons present in layer 
5, with different connectivity patterns (Steriade, 2004; Brown and 
Hestrin, 2009; Groh et al., 2010). Parameters and counts for the 
cell types are listed in Table 1.

Intracolumnar synapses utilized our previously developed just-
in-time synapses, optimized for large networks supporting high-
frequency synaptic events (Lytton et al., 2008a). Intercolumnar 
synapses used NEURON’s NetCon synapses (Lytton, 1996), 
included to permit future parallelization of single columns per 
node via the message passing interface (MPI). Each cell had a 
voltage state variable associated with a synapse type, V

syn
, one for 

Table 1 | Cell parameters and counts (within column).

Type Count VRMP VTH Vblock trefrac WRR tRR Vahp tahp

      (unitless)

E2 150 −65 −40 −25 50 0.75 8.0 1.0 400

I2 25 −63 −40 −10 10 0.25 1.5 0.5 50

I2L 13 −65 −47 −10 10 0.25 1.5 0.5 50

E4 30 −65 −40 −25 50 0.75 8.0 1.0 400

I4 20 −63 −40 −10 10 0.25 1.5 0.5 50

I4L 14 −65 −47 −10 10 0.25 1.5 0.5 50

E5a 65 −65 −40 −25 50 0.75 8.0 1.0 400

E5b 17 −65 −40 −25 50 0.75 8.0 1.0 400

I5 25 −63 −40 −10 10 0.25 1.5 0.5 50

I5L 13 −65 −47 −10 10 0.25 1.5 0.5 50

E6 60 −65 −40 −25 50 0.75 8.0 1.0 400

I6 25 −63 −40 −10 10 0.25 1.5 0.5 50

I6L 13 −65 −47 −10 10 0.25 1.5 0.5 50

t (ms), V (mV).
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Each cell’s spatial location is determined by its column and cell 
type. Together, these determine the cell’s probability of connecting 
to other cells.

Biological connection densities across and within cell type 
groupings are believed to cover the wide range of 1–50% in dif-
ferent areas (Thomson et al., 2002; Song et al., 2005; Orman et al., 
2008). A typical number of synapses for a baseline simulation was 
831,967 out of 17,888,670 (full number of possible connections: 
n2 − n for a fully connected network without self-connections), 
for an overall density of 4.65%, consistent with densities found in 
the literature. Within a column, the average number of synapses 
was 8390, 5767, 7449, and 3810 for E → E (excitatory → excita-
tory), E → I (excitatory → inhibitory), I → E, and I → I synapses, 
respectively. Between columns, the average number of synapses 
was 1974 and 1331, for E → E and E → I connections, respectively.

Descriptions of the dynamics emerging from structural layouts 
of neural tissue must be seen in the context of the vertical wiring 
layout between different layers and the horizontal layout across 
areas and columns. Although both wiring and component speci-
fications remain incompletely understood, there is growing knowl-
edge on which we base our model, depicted in Figure 1 (Douglas 
et al., 1989; Thomson and Bannister, 2003; Binzegger et al., 2004; 
Douglas and Martin, 2004, 2007a,b; Markram et al., 2004; Traub 
et al., 2005; Thomson and Lamy, 2007; Izhikevich and Edelman, 
2008; Weiler et al., 2008; Brown and Hestrin, 2009; Lefort et al., 
2009; Adesnik and Scanziani, 2010; Anderson et al., 2010; Groh 
et al., 2010; Neymotin et al., 2010).

Figure 1A shows the cell types in the various layers, with connec-
tivity depicted by red arrows for excitatory and blue for inhibitory 
connections. Intergroup connectivity density within the column is 
moderate (43%; 72 out of 169 possible connections for the 13 cell 
groups). Total E → E connections were 88%; E → I connections 
25%; I → E connections 45%; I → I connections 34%. All popula-
tions have self-connections (note that these are not connections 
from a cell to itself but from cells in a group to different cells in 
the same group).

Figure 1B shows a graph-theoretic visualization of the interco-
lumnar group-to-group wiring between neocortical columns. There 
are again 169 possible connections, but the connection probability 
is 7% (12/169), far lower than within column. Although all projec-
tion pathways are excitatory, most project onto inhibitory cells and 
thereby produce feed-forward inhibition, largely laterally to the same 
layer across columns. An additional major lateral inhibitory projec-
tion goes from E5b → I2L. E5, the main output layer, is also the source 
of intercolumnar feed-forward excitatory connections, including 
E5b → E2 and connections from both E cell groups in layer 5.

each of excitatory AMPA, NMDA, and two inhibitory GABA
A
 s, 

which simulated GABA
A
 at soma (fast time-constant) and GABA

A
 

at dendrite (slower time-constant). Synaptic inputs were simulated 
by step-wise changes in V

syn
 and then added to the cell’s V

m
 level. 

To allow for dependence on V
m
, synaptic inputs changed V

syn
 by 

d
V
 = w

syn
.(1 − V

m
/E

syn
), where w

syn
 is the synaptic weight and E

syn
 is 

the reversal potential, relative to V
RMP

. E
syn

 took the following values 
(in mV): AMPA 65, NMDA 90, GABA

A
 −15. w

syn
 was positive for 

excitatory synapses and negative for inhibitory synapses. NMDA 
synapses also had an additional voltage-dependent scaling factor 
based on Jahr and Stevens (1990a,b). For all synapses, after syn-
aptic input events, V

syn
 decayed exponentially toward 0 with time-

constant t
syn

. t
syn

 took the following values (in milliseconds): AMPA 
20, NMDA 300, somatic GABA

A
 10, dendritic GABA

A
 20. Synaptic 

weights were constant between a given set of populations. Dendritic 
synapses (AMPA, NMDA, dendritic GABA

A
) utilized delays chosen 

from a uniform distribution ranging from 3 to 5 ms, while somatic 
synapses (somatic GABA

A
) had delays ranging from 1.8 to 2.2 ms.

The network consisted of nine cortical columns (from sensory 
neocortex) with each column connected to all other columns. We 
refer to simulations with interconnected columns as multicolumnar 
simulations. Each of the nine cortical columns had 470 cells, for 
a total of 4230 cells. The number of synapses for a particular cell 
was chosen from a normal distribution using average connection 
densities between different classes of cells. Intra- and intercolumnar 
connectivity information is shown in Tables 2 and 3, respectively. 

Table 2 | Intracolumnar connectivity parameters are listed below.

E2 E2 29 4.25 E4 E2 22 3.16 E5a I5 11 3.45

E2 I2 11 3.45 E4 E4 8 5.18 E5a I5L 7 1.73

E2 I2L 7 1.73 E4 I4 9 3.45 E5a E6 2 1.53

E2 E4 1 1.96 E4 I4L 8 1.73 E5b E2 3 1.42

E2 E5a 4 5.07 E4 E5a 8 2.95 E5b E4 1 0.93

E2 E5b 1 1.96 E4 E5b 3 5.51 E5b E5a 2 1.31

I2 E2 66 8.18 E4 E6 2 12.38 E5b E5b 2 3.87

I2 I2 16 8.18 I4 E4 14 8.18 E5b I5 11 3.45

I2 I2L 5 8.18 I4 I4 13 8.18 E5b I5L 7 1.73

I2L E2 54 2.26 I4 I4L 5 8.18 E5b E6 5 2.67

I2L I2 14 4.09 I4L E4 11 2.26 I5 E5a 29 8.18

I2L I2L 2 8.18 I4L I4 11 4.09 I5 E5b 8 8.18

I2L E5a 24 2.26 I4L I4L 2 8.18 I5 I5 16 8.18

I2L E5b 9 2.26 E5a E2 4 3.65 I5 I5L 5 8.18

I2L I5 14 2.26 E5a E4 1 2.62 I5L E2 51 2.26

I2L E6 15 2.26 E5a E5a 13 3.6 I5L I2 14 2.26

I2L I6 13 2.26 E5a E5b 2 4.8 I5L E5a 23 2.26

I5L I5L 2 8.18 I6 E6 27 8.18 I6L E6 21 2.26

I5L E6 15 2.26 I6 I6 16 8.18 I6L I6 14 4.09

I5L I6 13 2.26 I6 I6L 5 8.18 I6L I6L 2 8.18

E6 E5a 1 0.44 I6L E2 52 2.26 I5L E5b 6 2.26

E6 E5b 1 2.89 I6L I2 14 2.26 I5L I5 14 4.09

E6 E6 2 2.89 I6L E5a 17 2.26 I6L E5b 5 2.26

E6 I6 11 3.45 E6 I6L 7 1.73 I6L I5 14 2.26

E cells used AMPA and NMDA synapses (NMDA, not displayed, had weights 
set at 10% of the colocalized AMPA synapse). Columns (in three groups) are 
presynaptic type, postsynaptic type, divergence from pre to post and weight.

Table 3 | Intercolumnar connectivity parameters.

E2 I2 4 2.81 E5b I2L 2 1.41

E4 I4 3 2.81 E5b E5a 18 0.42

E5a E5a 10 0.42 E5b E5b 5 0.42

E5a E5b 5 0.42 E5b I5 4 2.81

E5a I5 4 2.81 E5b I5L 2 1.41

E5b E2 37 0.42 E6 I6 4 2.81

NMDA weights and column definitions as in Table 2.
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developMent of hubbed networks
To increase the efficacy of a chosen subpopulation, we added 
hubs to that subpopulation. Hubs are individual cells with a larger 
number of inputs and outputs than the average cell of the given 
type. Wiring changes were performed by first randomly selecting 
1–10 cells from a group to be hubs. To preserve the overall number 
of synapses in the network, we randomly moved existing synapses 
from other cells and set the new hubs as their target or as their 
source. We avoided unconnected cells, holes, in the network by 
preventing wiring changes that resulted in a cell having no inputs, or 
no outputs. We set the hub cells to have 3× the post-rewiring aver-
age convergence and divergence of the non-hub cells of the same 
type. For excitatory cell hubs, the number of inputs and outputs to 
and from interneurons was not altered. This allowed these hubs to 
control excitation in the network, without changing inhibition. For 
inhibitory cell hubs, we increased the number of excitatory inputs 
from and inhibitory outputs to excitatory cells, allowing this type 
of hub to more effectively inhibit.

data analysIs
Simulation spike trains were organized into multiunit activity 
(MUA) vectors, defined for a cell population within a column, 
as the number of spikes in the population over a time interval 
(bin). Bin sizes were set to 5 ms (200 Hz sampling rate). We 
evaluated bin sizes ranging from 0.1 to 5 ms and found similar 
results. We also generated simulated local field potential (sLFP) 
for easier visual comparison with experimental data. The sLFP 
is a summed and filtered result of synaptic activity that produces 

Figure 1C shows a graph-theoretic schematic of intracolumnar 
connectivity. Each population is arranged in a circular layout in 
order to minimize the number of edge crossings (Six and Tollis, 
1999a,b; Gansner and North, 2000). This has the effect of placing 
the nodes that are more densely connected closer to each other. 
The size of the circles shows the number of cells in that population 
and the width of the arrows indicates the strength of a projection 
(consisting of the product of the connection density and the average 
synaptic weights). The red circles are larger than the blue circles, 
indicating that the majority of neurons are excitatory. E2, the circle 
representing layer 2/3 pyramidal cells, is the largest, foreshadow-
ing its large role in determining network dynamics. Additionally, 
the E2 → E2 connecting edge is very thick, indicating the strong 
recurrent connectivity within E2. E2 also strongly feeds into the 
I2 inhibitory population and gets strong feedback inhibition from 
there. E2 activity is thereby modulated through strong self-coupling 
via both excitation and inhibition.

The thick edge from E2 → E5a reflects the strength of this major 
intracolumnar, inter-layer excitatory pathway. E5a also has relatively 
strong recurrence, and feeds strongly onto E5b, reinforcing output 
layer 5’s activity. In most of the populations, inhibitory feedback 
loops are prominent, but with the E → I projection generally weaker 
than the I → E back-projection. We suspect that the stronger I → E 
might reflect the dual role of inhibitory cells as part of both feed-
back and feed-forward inhibition.

The graph visualization of network structure suggested that E2, 
I2, and E5 would have particularly large influence on the dynamics 
of the system. We tested this in the simulations.

A B

C

FIgure 1 | Network structure and wiring. Directed wiring is red for 
excitatory and blue for inhibitory connections. Cell types are E (excitatory) or I 
(inhibitory), followed by layer number (2 represents 2/3) and an additional letter 
for cell subsets: L = low-threshold spiking cells; Layer 5 has two E cell 
subpopulations: 5a, 5b. (A) Intracolumnar wiring. (B) Graph-theoretic 
representation of intercolumnar wiring. Circles (octagons) represent pre- (post-) 

synaptic types. Circle size ∝ # cells in population (E red, I blue). Wiring 
among the nine columns was all-to-all. (C) Graph-theoretic representation of 
intracolumnar wiring. Circle size ∝ # cells in population (E red, I blue) Line 
thickness ∝ connection strength (divergence multiplied by average synaptic 
weight). [(A,B,C) drawn with Graphviz software system; Gansner and North, 
2000].
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(24-bits, 48 kHz; Axona Ltd, St. Albans, U.K.) and transmitted gal-
vanically along a counter-balanced cable. The digital signals were 
received by a set of dedicated digital signal processors, bandpass 
filtered (1–500 Hz), amplified digitally, and then down-sampled 
(2000 Hz). Comparisons with simulation were done using normal-
ized spectral data since simulation spectra were based on MUAs 
of arbitrary amplitude.

results
This study involved over 1200 20 s simulations, using five different 
random wirings and five different input streams, as well as many 
briefer simulations used during tuning. Results shown were consist-
ent across the variations in input streams and random wirings. Each 
simulation had nine columns, connected in some cases and not in 
others. Simulations were run on Linux on a 2.7 GHz quad-core Intel 
XEON CPU. A 20-s simulation ran in 2–4 min, depending on the 
simulation type. The full model is available on ModelDB (https:// 
senselab.med.yale.edu/ModelDB/ShowModel.asp?model=138379).

eMergent rhythMs
To maintain activity throughout the simulation, each synapse was 
independently provided with background inputs: sub-threshold 
stimulation from external, independent, Poisson-random inputs 
at rates of 240–360, 40–60, and 100–150 Hz, for AMPA, NMDA, 
and GABA

A
 synapses respectively. The frequency spectra of the 

interspike intervals of the background inputs were relatively flat, 
indicating white-noise spectra. Interspike interval local variation 
(ISI L

v
, see Materials and Methods) of each input was near 1, fur-

ther verifying that intervals between inputs were exponentially dis-
tributed (Shinomoto et al., 2005). In addition to external inputs, 
synapses received inputs from other cells in the model. Initially, 
with the cells of the network not connected, the weights of the 
background inputs were adjusted to provide low levels of activity. 
The cells were then connected up and the networks hand-tuned 
through adjustment of E → E, E → I, I → E, and I → I gains till 
physiologically realistic firing rates were obtained: E cells firing 
0.5–3 Hz and I cells 1.5–10 Hz (Table 4). In the resulting network, all 
excitatory postsynaptic potentials remained sub-threshold, hence 
cell firing would only occur through integration of several inputs.

A network with strong E → E connectivity is at risk of runaway 
excitation that will produce epileptiform activity, either immedi-
ately self-limiting (interictal spike), or continuing (seizure). In 
order to avoid these pathologies, we did further E/I balancing so 
that there were no multilayer population spikes seen in the raster 
or simulated local field potentials (sLFPs), as shown in Figure 2. In 
addition, inhibitory weights onto E cells were set so as to prevent 
oversynchronization and stereotyped firing. In this way, we avoided 
the positive feedback latch-up seen with increased synaptic strength 
and increased excitatory firing rates (Lytton and Omurtag, 2007).

The network produced a complex repertoire of activity patterns, 
including periods of low and high synchrony between neurons. In 
Figure 2, this alteration can be appreciated both in the raster, with 

dipoles. With our limited, “point-neuron” model, sLFPs were 
approximated by summing excitatory-inhibitory synaptic input 
differences across excitatory cells and adding a small component 
of spike activity. The following expression was used for the synaptic 
contribution from each excitatory cell to the sLFP at each time 
step: V V V V Vcell AMPA NMDA soma dend= + − −GABA GABAA A

.  Organization 
of simulations and analysis of output data was done with Neural 
Query System (Lytton, 2006; Lytton and Stewart, 2007). Spectral 
analyses used mean-subtracted vectors and were performed using 
Matlab’s implementation of the multitaper spectral power esti-
mation method and FFT (pmtm() and FFT() functions; The 
MathWorks, Natick, MA, USA 2009b). The resulting power spectra 
were smoothed using a moving average filter for easier visualiza-
tion and comparison of multiple power spectra. Similar peaks were 
visible in the unsmoothed spectra as well.

To measure regularity of individual spike trains, we used the 
local variation of interspike intervals method, defined as:
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(Shinomoto et al., 2005), where T
i
 represents the ith interspike 

interval, and n is the number of intervals. L
v
 is 0 for interspike 

intervals formed from regular spike trains with a fixed interval 
between spikes and L

v
 is 1 for irregular spike trains with interspike 

intervals that are independently exponentially distributed, such as 
those generated by a Poisson process. Higher values tend to suggest 
clustered or burst firing.

electrophysIology
All procedures received IACUC approval and were in accordance 
with institutional and NIH guidelines. Recordings were part of an 
experiment on the effect of hippocampal lesions using injections of 
ibotenic acid. The single recording used for this paper was from a 
control animal that had a saline injection. Briefly, timed-pregnant 
Long-Evans rats were obtained at 13–14 days of gestation from 
Charles River Laboratories (Wilmington, MA). On postnatal day 
7 (P7), pups weight 14–18 g were anesthetized by hypothermia. 
A puncture hole was made bilaterally on the skull for injection 
sites (relative to bregma AP: 3.0 mm, ML: ±3.5 mm), and 0.3 μl 
of saline was infused bilaterally into the ventral hippocampal for-
mation (relative to the skull surface DV: 5.0 mm) at 0.15 μl/min. 
The pups were warmed and then returned to their mothers. Since 
only saline was injected, this animal was considered a control ani-
mal which had no significant brain lesion. On P21, animals were 
weaned. At P60, the rats were implanted and recorded for local field 
potentials (LFP, procedure adapted from Olypher et al., 2006). The 
LFP recordings used in this paper were made bilaterally from the 
medial prefrontal cortex AP: +3.0 mm, ML: ±1.0 mm, DV: 4.0 mm 
(only left side recording used). Electrodes were referred to a refer-
ence electrode implanted in the cerebellar white matter. The rat 
was recorded in its homecage for 30 min. The signal was digitized 

Table 4 | Average firing rates (Hz) for the different cell types at baseline.

E2 I2 I2L E4 I4 I4L E5a E5b I5 I5L E6 I6 I6L

0.577 4.29 3.26 0.731 2.19 2.85 0.676 0.697 2.85 3.15 0.553 1.94 2.95
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with L
v
 decreasing from 0.9 to 0.7 (50% E → E weight increase) 

and to 0.3 (75% increase). This greater single cell firing regularity 
was associated with oversynchrony and fairly regular recurrence 
of population spikes. A somewhat more subtle form of synchro-
nization pathology was the occurrence of synchronization across 
columns. A slight correlation between the sLFPs from different 
columns can be see in Figure 2B. We tuned intercolumnar excita-
tory connection strength to bring baseline correlations down to 
∼0.09 (Pearson correlation of sLFPs). Note that there was no cor-
relation when columns were unconnected, since each was driven 
with independent noise.

We tuned the networks using only two criteria, realistic firing 
rates and absence of pathological activity. When connecting the 
cells, all networks showed emergent activity with MUA frequency 
peaks close to physiologically relevant frequency bands (Figure 3). 
We used MUA rather than sLFP for spectral analysis since MUA 
is a representation of population output while sLFP is a repre-
sentation of input to a population. MUA was formed by binning 
spikes with bin size 5 ms (200 Hz sampling rate); further decreasing 
bin size incrementally down to 0.1 ms did not change the spectra. 
Simulations with disconnected cells showed a fairly flat spectrum 
inherited from the white-noise driving (Figure 3A black traces). 
Strong theta/alpha (our model is not species specific, and one man’s 
alpha is another rat’s theta), emerged in the excitatory cells of the 
connected network with a prominent peak in E cell MUA near 
7 Hz (Figure 3A, left, red). I cell MUA of connected cells showed a 
broad high gamma peak between 40 and 80 Hz (Figure 3A, right, 

its diffuse vertical stripes alternating with periods of asynchrony, 
and in the amplitude alterations of the sLFP. Additionally, indi-
vidual cells fired with irregular patterns (Figure 2C). Note that the 
E2 pyramidal cell, like other excitatory cells, fired at a significantly 
lower rate than the inhibitory cells. We quantified the irregularity 
of single cell firing by using the local variation (L

v
) measure used 

physiologically (Shinomoto et al., 2005). The background spike 
driving, being Poisson, is very tightly clustered around L

v
 = 1. 

Activity of the cells had a lower mean (L
v
 = 0.9; differs p < 0.001 

by Student’s T-test) indicating more regular firing on average, and 
a much broader range of values (SD 0.32 compared to 0.01). This 
indicates that some cells were showing regular firing (L

v
  1) while 

others were fairly bursty (L
v
  1), despite there being no intrinsic 

bursting mechanism for the cells in this network. Increasing the 
strength of E → E coupling led to increased regularity of firing, 
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FIgure 3 | Spectral peak emerges from cell-cell interactions in network. 
Each trace shows spectrum from one of the nine columns in a given network. 
(A) Disconnected cells (black) vs connected cells (red). Flat spectrum for 
excitatory (E; left) and inhibitory (I; right) subsets directly reflected white-noise 
inputs with the cells disconnected. Connected cells in individual unconnected 
columns produced large theta peak in E cells and broad gamma peak in I cells. 
There is wide variation among the nine columns but peaks are largely aligned. 
Apparent falloff on both sides of spectrum is a smoothing artifact. 
(B) Unconnected columns [red identical to those in (A)] vs connected columns 
(blue). Connecting columns augments I population gamma (lateral activation 
of inhibitory cells) and dampens E population across the spectrum (feed-
forward inhibition).
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FIgure 2 | Basic activity of network. (A) Raster plot taken from a single 
column. Dots represent spikes from each cell, arrayed from bottom (Layer 6) 
to top (Layer 2/3) with cell populations labeled at right. (B) sLFPs from nine 
columns. “+” (lowest trace) indicates sLFP corresponding to raster in part 
(A). (C) Single cell voltage traces from low-threshold spiking interneuron (I2L), 
fast-spiking interneuron (I2), and pyramidal neuron (E2) in Layer 2/3.
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number of other nodes (as in an airline hub). In this case, the hubs 
were individual cells with 3× the post-rewiring average of conver-
gence and divergence of non-hub cells of the same type. Connections 
remained individually sub-threshold, but large convergence means 
that these cells fired more. To preserve the overall number of syn-
apses in the network (connection density), we randomly moved 
existing synapses from other cells and set the new hubs as their 
target or as their source. We avoided unconnected cells by prevent-
ing changes that would result in a cell having 0 inputs or 0 outputs.

Using individual (unconnected) columns, we increased the 
number of hubs in each excitatory population independently and 
calculated the E MUA spectral power from the remaining subset 
of cells. Power greatly increased above baseline with addition of 
hubs to E2 but not with addition of hubs to other populations 
(Figure 4). This increase was evident both in the E MUA power 
and the I MUA power (not shown), across frequencies. E2 cell 
parameters did not differ from those of other E cell types, so the 
change was due to the position of the E2 population in the overall 
network. The increase was particularly prominent in the theta/
alpha and low beta bands (note different y-axis scales). Detectable 
increases in oscillatory power took place with as few as 5 of the 150 
E2 cells being wired as hubs.

local structural changes produced dynaMIcal changes
In the 10-E2-hubs columns (multi-hub columns), individual E2 
hubs had average excitatory convergence of 95 and divergence of 91, 
approximately 3× the 31 average for the non-hub cells in the net-
work. E2 hub cells were activated by more cells so showed average 
firing rates of 2.68, compared to 1.01 Hz for non-hub E2 cells. The 
E2 hubs also increased the average firing rates of other populations 
(in Hz): overall E2 1.124; I2 2.988; I2L 4.83; E4 0.804; E5a 0.914; 
E5b 0.659; I5 1.46; I5L 3.48 (compare to Table 4). The increased 
rate of non-hub cells was due to the excitatory positive feedback 
resulting from enhanced bidirectional connectivity between the 
hubs and their targets/sources. As a result, when a hub cell fired, a 
much larger number of cells in the network had their probability of 
firing increased after synaptic delay. Since the hub received a higher 
number of feedback projections from its targets than the average 
cell, it was also much more likely to fire within a short interval of 
its targets firing, potentially receiving disynaptic activation from 
itself. This positive feedback resulted in enhanced synchrony among 
hubs and between hubs and targets.

red), consistent with evidence that interneurons generate gamma 
oscillations physiologically (Lytton and Sejnowski, 1991; Traub 
et al., 1996; Wang and Buzsaki, 1996; Tamás et al., 2000; Bartos 
et al., 2007; Tukker et al., 2007; Cardin et al., 2009; Sohal et al., 
2009). This gamma peak was the result of selective attenuation 
of low-frequency oscillations due to synchrony within the I cell 
populations produced by the faster-firing I cells. The I2 popula-
tion reflected the 7 Hz E2 peak when looked at in isolation (not 
shown), but this peak was lower than that of the E2 population. 
Both the E and I peaks demonstrated that individual subnetworks 
filtered out some frequency bands while augmenting or resonating 
to others. Note that all the emergent frequencies were considerably 
higher than the firing frequencies of the constituent cells. This 
demonstrated that these frequencies were produced by coordina-
tion within and across populations. Different cells fired on different 
cycles of the dominant frequencies, consistent with physiological 
data (Fries et al., 2007).

In Figure 3A we showed the emergence of specific frequencies 
when cells were connected within the column. In Figure 3B we show 
the alteration in spectrum when the columns were connected to one 
another. The theta peak in E cell MUA near ∼7 Hz was dampened 
(Figure 3B left, blue). Dampening was also seen in the gamma band 
out to about 35 Hz. By contrast, I cell MUA was augmented when 
columns were connected consistent with the strong intercolumnar 
excitatory projections onto inhibitory cells (Figure 3B right, blue). 
This then provides the feed-forward inhibition that reduced the 
power in the E cell spectrum.

rewIrIng to deterMIne dynaMIcal causalIty
Dynamical system evaluation offers a chicken and egg problem: 
given the existence of multiple loops, and loops within loops, there 
is no clear way to elucidate who drives whom. Those who drive 
are driven in turn. If we remove a subpopulation from a network 
(an ablation experiment) in an effort to determine whether this 
subpopulation was the major driver, we are left with a radically 
different network, that will show very different dynamics.

Our approach to this conundrum was to use a minimal dynamical 
perturbation: gently alter the network and determine how dynamics 
gradually changed. We slowly increased the efficacy of particular 
subpopulations through the addition of intracolumnar hubs. In a 
directed network (directed graph) such as this one, hubs are nodes 
that both receive projections from, and in turn project to, a large 

FIgure 4 | Addition of hubs to e2 produces substantial power increases in 
unconnected columns. Changes in power in E MUA subnetwork with 
increased number of E hubs in particular subpopulations in theta/alpha 

(4–12 Hz), beta (13–30 Hz), and gamma (30–100 Hz) frequency bands 
(subnetwork excludes the subpopulation being affected). Each point is mean 
(n = 9) ± SEM.
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increased 3× relative to other I2 cells. As with the E2 case, the I2 
cells had greatest influence over the spectrum compared to I cells 
in other layers. However, where the E2 hubs had created increases 
in spectral strength, I2 hubs caused prominent reductions in 
theta and beta power (Figure 7). These reductions were consist-
ent with the expected dampening effect of inhibitory interneurons. 
Interestingly, dampening was far less in the gamma band, where 
maximum reduction was <3%. Hence the presence of the I2 hubs 
produced an overall shift of frequencies toward gamma through 
selective dampening, sculpting the response by selective frequency 
removal. This selective dampening is consistent with the effects of 
low-frequency attenuation of I MUA oscillations seen when con-
necting the cells (Figure 3A right).

Additional dynamical effects were also noted in this 10-I2-hub 
network. I2 hub rates were 2.93 ± 0.04 Hz, compared to 1.24 ± 0.02 Hz 
for non-hub I2 cells. E2 firing rates decreased slightly to 0.70 Hz, 
down from 0.76 Hz without I2 hubs. Note that the dampening 
effects became complex since I hubs reduced activation of E cells 
which then fed back to produce reduced I cell activation, mostly 
in the non-hub cells. At the same time, inhibition from hubs to 
other I cells caused further suppression of interneuronal activity.

frequency hoMeostasIs
We looked at the effect of driving on the network by increasing 
the strength of the random inputs onto the E2 subpopulation 
(Figure 8). This would correspond to activation due to the back-
projections from higher cortical areas, postulated to accompany 
increased attentional focus (Bollimunta et al., 2008). Firing rates 
increased substantially with this manipulation: nearly doubling to 
1.1 Hz for the E2 cells, more than doubling for I2 cells to 10.19 Hz; 
and increasing 18, 9, 16% for E5a (0.8 Hz), E5b (0.76 Hz), and I5 
(3.31 Hz) populations (compare to Table 4). Small increases were 
also seen in most other cell subpopulations. Remarkably, these large 

Individual columns of unconnected networks showed  population 
spikes (Figure 5), where population spikes were defined as the co-
firing of ≥35% of all E cells during a 20-ms interval (Neymotin et al., 
2008). As seen from the raster plot, these extend across pyramidal 
cells of Layers 2/3 and 5. The population spikes are also apparent 
in the sLFP (Figure 5B). Individual columns had an average of 1.6 
population spikes per minute. The number of spikes was negligible 
for columns without E2 hubs.

We then connected the columns as before (Figure 6). Therefore, 
the E2 hubs remained as strictly intracolumnar hubs and did not 
have any increased probability of projecting laterally to neighbor-
ing columns. However, E2 is a major lateral-projection source, so 
some of these E2 hubs would project from the column. As before, 
connecting the columns produced feed-forward inhibition. This 
reduced the overall hyperexcitability that was seen with the uncon-
nected columns. Hence E2 firing rates were augmented less in 
comparison to the isolated columns. Rates of the other excitatory 
cells groups were also relatively depressed. Due to increased feed-
forward inhibition from lateral connections, hub-induced popula-
tion spikes were also reduced to only 0.25/min.

I2 hubs sculpt out addItIonal hIgh gaMMa
We hypothesized that the I2 interneurons played a prominent 
role in determining gamma activation in the network. We tested 
the effects of increases in I2 hub density in the individual uncon-
nected columns. I2 hubs were created with respect to excitatory 
cells: convergence from and divergence to excitatory cells was 

A

B

FIgure 5 | Population spikes are prominent in unconnected columns of 
10 e2 hub network. (A) Single column raster. (B) sLFP from nine columns. 
“+” (lowest trace) is sLFP corresponding to raster in part (A).

A

B

FIgure 6 | Feed-forward inhibition across columns reduces population 
spikes. Multicolumnar network with 10 E2 hubs/column. (A) Raster from one 
column; (B) sLFP of all nine columns. “+” (lowest trace) indicates sLFP 
corresponding to raster in part (A).
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Schneider, 1986; Gray and Singer, 1989; Engel et al., 1991; von der 
Malsburg, 1995). These experiments are largely done using LFP 
recordings. Therefore we looked at pairwise correlations between 
our simulated LFPs across connected columns of multiple multico-
lumnar networks of each simulation type (Figure 10). As expected, 
all network types showed substantial increases in correlations 
compared to the random correlations seen in the unconnected 
network. There was a significant further increase in correlations 
in the 10-E2-hub models, with an average of 0.117 compared to 
0.089 (p < 0.001). This was due to the added excitation spreading 
first within, and then across, columns, as a result of the hub activity.

coMparIson to experIMental data
We compared the spectral power of each of our multicolumn 
simulations against the pattern of spectral power taken from a 
30-min duration LFP recording from left medial prefrontal cortex 
from an awake rat (Figure 11). Although this was a characteristic 
spectrum, analysis of spectra from 1-min sections showed con-
siderable variation over this period, with substantial shifts in both 
amplitude and position of the major frequency bands. Best matches 
to the spectrum shown were found by minimizing mean-squared 
error across different scalings of the arbitrarily-scaled simulation 
power spectra. The best overall match came from an E2

inc
 simu-

lation with a mean-squared error of 1.4.10−4. The power spectra 
shown lines up with the experimental at the low-frequency peak 
and at the high-frequency peak in gamma near 60 Hz. Best fit error 
for the other simulations were 1.6.10−4 for the E2

hub
 simulation, 

2.3.10−4 for a baseline simulation, and 2.5.10−4 for a I2
hub

 simu-
lation. Other exemplars of our simulation variants also showed 

changes in individual cell firing rates did not produce substantial 
changes in the E cell spectral profile. Spectral power increased across 
all frequencies for the E cell population with no appreciable shift 
in peak, demonstrating that the network compensated in order to 
maintain spectral consistency. This compensation, a form of home-
ostasis, appeared to involve feedback from the I cell population 
which did show substantial shifts, with greatly increased strength 
in the theta and high gamma bands.

We also assessed the effects of changes in synaptic delays (Figure 9). 
We ran 75 20-s simulations increasing and decreasing mean values of 
synaptic delays by 50% relative to baseline: dendritic delays centered 
at 2, 4 (baseline simulation), 6 ms; somatic delays at 1, 2 (baseline), 
3 ms. Increasing the delays to 150% reduced MUA spectral power 
and produced a significant shift in the theta peak down to 6.1 Hz, 
which could be partially explained by sharpening of the peak at the 
left side. The power reduction was explained by noting a slight but 
significant (p < 0.001) increase in the firing rate of I cells from 4.29 to 
4.38 Hz. The added I cell activity may also be responsible for the shift 
in gamma toward higher frequencies. Firing rates of E cells across 
the three sets of simulations did not change significantly. Similarly, 
excitatory MUA spectral power was increased in the 50% delay simu-
lations, with some decrease in I cell firing rate. The relative altera-
tions in population frequency are small compared to the 50% change 
in synaptic delays, further demonstrating frequency homeostasis.

coordInatIon across coluMns
Shared spectrum across columns has been hypothesized to allow 
for various forms of phase locking that permits intercolumnar and 
interareal communication and coordination (von der Malsburg and 

FIgure 8 | Frequency homeostasis: no appreciable shift in e MuA peak 
with increased external inputs to e2 cells. E and I MUA power spectra in 
individual columns of multicolumnar network (black: baseline; red: 10% 
increase in AMPA weight).

FIgure 7 | Spectral sculpting by selective frequency dampening. Individual column E MUA power reductions as a function of number of I2 hubs in different 
frequency bands. Note different y-axes; each point mean (n = 9) ± SEM.

A B

FIgure 9 | effects of altered synaptic delays. (A) Average E MUA power for 
the different delays. Spectral power decreases and shifts slightly left with 
increased delay. (B) Peak frequency (± SEM) of E MUA spectral power.
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similarity to the  experimental spectrum over the full range of fre-
quencies, many showing a small gamma peak similar to that of 
the experimental spectrum. The distribution of errors for each 
simulation type is shown in Figure 11B. Overall, the E2

hub
 and E2

inc
 

simulations matched the best, with errors of 2.76.10−4 ± 4.10−6 and 
2.86.10−4 ± 4.10−6 respectively (mean ± SEM). The added E2 activity 
levels in these simulations supports the role of E2 in generating 
physiological oscillatory activity. The baseline, and I2

hub
 simula-

tions had higher errors of 3.71.10−4 ± 4.10−6 and 3.99.10−4 ± 4.10−6, 
respectively. As noted, biological recordings also show considerable 
variability among LFP power spectra measured at different times or 
in different areas, with theta and gamma peaks always recognizable 
despite shifts and changes in amplitude.

Experimentally, theta and gamma show cross-frequency coupling, 
with activations coincident in time (Palva et al., 2005; Canolty et al., 
2006). We were able to capture a similar pattern of relationship in multi-
ple simulations (Figure 12). To quantify the coupling of power changes 
between pairs of frequencies across time, we used power-fluctuation 
correlation matrices. This involved calculating pairwise Pearson correla-
tion between the MUA spectrogram’s time-series of power from each 
pair of frequencies, f

1
 and f

2
. The values were then stored in a matrix and 

plotted in a two-dimensional heat-map with the color at coordinates f
1
, 

f
2
 in the matrix representing the correlation between frequencies f

1
 and 

f
2
. High off-diagonal values indicated that the power of one frequency 

fluctuated in tandem with another. In Figure 12, the frequencies that 
show coupling, and those that do not, are similar in both experiment 
and simulation. Our simulations suggest that this pattern would be 
expected to emerge from the relation of E2 generation of theta with 
I2 sculpting of gamma. E2 hubs produced augmented theta directly 
(Figure 4) and at the same time activated I cells that fired in the gamma 
range (Figure 8). The I cells, I2 in particular, then dampened activity 
but preferentially allowed gamma expression (Figure 7).

dIscussIon
We have demonstrated that a surprisingly realistic pattern of fir-
ing frequencies and frequency relationships (Figures 11 and 12) 
emerges from a relatively simple multicolumnar network: highly 
simplified cells subdivided into 13 cell populations organized using 
anatomically and physiologically determined intra- and interco-
lumnar projection densities (Figure 1). Function follows form 
insofar as layer 2/3, containing the largest subpopulations with 
the strongest projections, can be identified as a primary driver 
(for E cells) or sculptor (for I cells) of overall spectral patterns 
(Figures 4 and 7). Feed-forward inhibition between columns in the 
full multicolumn network reduces activity, but does not change the 
form of the spectrum (Figure 3). The network possesses internal 
homeostatic mechanisms: the spectral form remains intact when 
stressed by forcing the network with added activation (Figure 8) 
and altered synaptic delays (Figure 9). Finally, the network pro-
duces a set of intercolumnar correlation relationships that could 
provide the basis for the neocortical phase relations putatively used 
in cognitive binding (Figure 10).

We make a number of testable predictions from the model:

1 Layers of high recurrent connectivity and population density, 
E2/3 in our current networks, will play the role of a control 
layer. Such a layer will largely determine network dynamics, 

correlation
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FIgure 10 | Intercolumnar Pearson correlation histograms from 
simulation sLFPs using 500 ms windows. Twenty-five random networks 
were assessed for each simulation type (connected columns). “unconn” 
indicates simulations of unconnected columns used as control.

A

B

FIgure 11 | Comparison of power spectrum from 30-min LFP recorded in 
left medial prefrontal cortex of awake rat to normalized MuA power 
spectra from the different simulation types. Low-frequency cut-off for the 
experimental spectrum was due to a 1-Hz high-pass filter. (A) Best matches for 
each simulation type are displayed. (B) Distribution of normalized errors for the 
different simulation types are displayed. Units are mean-squared error times 10−4.
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of emergent dynamics will require multiple depictions of various 
aspects of cell typology, of wiring, and of dynamics at different 
scales. Graphical depiction techniques may be drawn from neuro-
anatomy, from graph theory, and from other domains. These are 
multiscale models, so that different depiction scales are necessary 
in order to make predictions at the various levels of organization 
(Sejnowski et al., 1988). In our explorations of circuitry, we found 
that a graph-theoretic schematic provided the best clues to the 
major dynamical features (Figures 1B,C), but necessarily obscured 
the underlying cortical structure that we depicted in Figure 1A. In 
our exploration of dynamics, we found that rasters, MUAs, sLFPs 
and correlation plots were all useful for seeing different scales and 
different aspects of the dynamics.

The graph-theoretic schematic that we used for anatomy pro-
vided visual indicators of population proportions (nodes) and of 
the strength and type of connections (edges). Network features 
that stood out in this depiction played an important role in shap-
ing dynamics. Important aspects of neocortical architecture that 
were revealed included the centrality of layer 2/3 pyramidal cells, 
the descending excitatory pathway from layer 2/3 to 5, and negative 
feedback patterns featuring stronger I → E compared to E → I pro-
jections. Additional schematics (not shown) suggested a dominant 
lateral inhibitory effect between columns. The graph visualizations 
led us to our initial hypotheses and simulation experiments which 
focused on tests for the role of E2 and I2.

Similar graphical techniques may be particularly beneficial when 
detailed simulations are not feasible, and can help play a linkage role 
in the development of multiscale models. Working backward, it is 
also valuable to use these visualization techniques on experimental 
(or simulation) dynamical data to infer functional connectivity, as 
is routinely done for functional magnetic resonance imaging data. 
Assessing graphs of functional connectivity at different time-peri-
ods may also allow for measuring similarity of correlation structure 
across time in an intuitive manner.

drive other layers, and set the spectral profile. We suggest that 
different Brodmann areas may have different dominant layers: 
some primarily supragranular as here, others infragranular. 
This would be testable by combinations of unit and field recor-
ding in different neocortical layers.

2 Hub cells will be present in these control layers. This increa-
ses the control layer’s synchronization of network dynamics. 
Experimentally, hub existence and prevalence would be testa-
ble with paired/multiple simultaneous single cell recording in 
slice. Further simulation would allow us to test hub influence 
using causal measures such as Granger causality and transfer 
entropy (Neymotin et al., 2011).

3 Frequency homeostasis: spectral profile is resilient to chan-
ges in network activation level as well as to variation in delay. 
Activation of cortex testable with modulating inputs indirectly 
in vivo using attention modulation behavioral experimental 
paradigms (Bollimunta et al., 2008). Delay alteration might be 
testable in vitro using temperature changes.

4 Fast-spiking interneurons enhance the proportion of gamma 
power by selectively dampening low-frequency activity. 
Testable using optogenetics to selectively alter firing rates of 
different interneuron classes (Cardin et al., 2009).

5 Excitatory populations produce low-frequency oscillations in 
vivo and drive interneuron production of gamma. The feed-
back between these populations allows for intrinsic network 
dynamics to create the commonly observed phase relationship 
of gamma and theta oscillations. Testable using optogenetics 
to selectively alter firing rates of different cell classes (Cardin 
et al., 2009).

graphIcal renderIng of neuronal cIrcuIts and dynaMIcs
Neuronal circuits are extremely complex, and not well represented 
by simply categorizing as feed-forward or recurrent as done by 
artificial neural network theory (Lytton, 2002). Understanding 

FIgure 12 | Comparison of power-fluctuation correlation matrices from LFP recorded in left medial prefrontal cortex of awake rat (left) to non-normalized 
e MuA from baseline simulation (right). Note that color scales are slightly different.
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(Figure 7 of Jones et al., 2009). The absence here of high gamma 
frequencies is justified, since the experimental data being modeled 
also lacks activity in that band. Other simplified multineuronal 
models generally show tight frequency peaks. A generalized cortical 
network by Rulkov et al. shows a tight peak at 45–50 Hz (Figure 13 
of Rulkov et al., 2004), as does a generalized network model by 
Brunel and Wang (Figures 1 and 6 of Brunel and Wang, 2003). A 
model by Karameh et al. has a more complex power spectrum, but 
still shows a relatively simple spectral structure with three separate 
peaks at 8, 15, and 24 Hz (Figure 11 of Karameh et al., 2006). By 
contrast, simplified “lumped” models, based on differential equa-
tions representing brain regions rather than individual brain cells, 
may readily demonstrate far more complex spectral fidelity (e.g., 
Figure 9 of von Albada et al., 2010).

From this brief survey, we conclude that simple models produce 
simple spectra, generally narrowly focused on a single frequency. 
Broad spectra are likely to emerge from complex multilayer net-
works. However, we note that different simulations produced dif-
ferent spectral patterns that sometimes involved physiologically 
disjoint frequencies or abrupt frequency cut-offs.

assessIng causalIty In a coMplex dynaMIcal systeM
In highly interconnected, high-dimensional dynamical systems, 
such as neuronal networks, bidirectional and nested loops are 
omnipresent, making it extremely difficult to ascertain which ele-
ments are causally responsible for each other’s activity pattern 
(Douglas and Martin, 2007b). Traditional methods for determining 
causality in non-linear dynamics, such as phase plane analysis, are 
not useful when applied directly to such high-dimensional net-
works, requiring an initial dimensional reduction which is of itself 
a major research project and which necessarily eliminates much of 
the dynamics. Other methods that have been developed to assess 
causality include transfer entropy (Schreiber, 2000; Gourevitch 
and Eggermont, 2007; Neymotin et al., 2011; Quinn et al., 2011), 
Granger causality (Roebroeck et al., 2005; Chen et al., 2006; Seth, 
2008), Bayesian dynamical modeling (Baldi et al., 1998; Rajapakse 
and Zhou, 2007; Eldawlatly et al., 2008), and combinations of 
modeling and optimization (Makarov et al., 2005). Although these 
methods are useful in many scenarios, a unique benefit of simula-
tion is that it allows the experimenter to have full control of the 
system. This allows the use of a more direct method to ascertain 
dynamic causality, by performing perturbations to a system and 
observing the effects (Paus, 2005; Chen et al., 2008; Daunizeau 
et al., 2009). However, a caveat is in order. If the perturbation is too 
drastic, then one is likely to enter a new dynamical regime rather 
than accurately probing the dynamics of the current regime. An 
example of an overly drastic intervention would be any pertur-
bation producing a parameter change that crosses a bifurcation 
boundary, since this will create a new dynamical pattern that was 
not there before.

One of the most extreme, yet most commonly used, such per-
turbations is the ablation experiment. In this type of experiment, 
one proceeds around the system removing one component at a 
time until some oscillation or activity pattern of interest, pattern A, 
disappears. Let’s say that removal of component Q abolishes pattern 
A. One then declares victory: component Q is the producer, cause, 
or primary driver of pattern A. However, what if the remaining 

spectruM as an eMergent property
We set up our network from what is known from neurophysiology 
and neuroanatomy. We then had to tune the network by adjust-
ing weights in order to set approximate known firing rates of the 
cells in the different cell subpopulations. This tuning is typically 
required for simulations, in part because the numbers of cells and 
convergence of inputs are so much less than those found in the brain 
(Izhikevich and Edelman, 2008). Part of this tuning involves the 
provision of continuous ongoing random synaptic inputs (white-
noise). These white-noise inputs are meant to very imperfectly 
represent the incoming activations and excitations from other parts 
of the brain, which may not have a white-noise spectral profile 
under more realistic conditions (Kerr et al., 2011).

Tuning our network required adjustment of local properties 
utilizing only global parameters: the strength of external excitation, 
and four tuning factors for weight of connection between excita-
tory and inhibitory populations: E → E, E → I, I → E and I → I 
connections. Cell properties themselves remained unchanged. The 
local property that was the main tuning target was firing rates for 
all cell types, keeping them within the bounds of propriety. Some 
further tuning was then done for a global property: weights were 
reduced in order to avoid any appearance of impropriety at the net-
work level: hypersynchrony and epileptiform activity. After tuning 
based on these two criteria, physiologically realistic power spectra 
and cross-frequency coupling appeared as an emergent property 
through the cooperativity of the individual neuronal elements in 
the system. The general spectral form revealed was similar to that 
of rat brain in terms of both direct comparison (Figure 11) and 
frequency interrelationships (Figure 12). These results suggest that 
our model may have captured aspects of neocortical dynamics.

In order to evaluate how readily a comparable broad spectrum 
arose from other models, we surveyed several neocortical and tha-
lamocortical models from the literature. Many papers, including 
those describing our prior models, do not show power spectra 
(Lytton and Omurtag, 2007; Lytton et al., 2008b; Neymotin et al., 
2011). Generally this is because most models are focused on some 
particular phenomenon that does not require exploration of this 
facet of model behavior. Some others, that do concern themselves 
with frequencies, model the sleep state, or a slice, and produce 
spectra not similar to the whole-brain awake state. As an example, a 
neocortical slice simulation by Traub et al. models kainate-induced 
gamma oscillations and shows a single peak at 30 Hz (Figure 2 of 
Traub et al., 2005). However, this same paper has a model with a 
much broader spectrum (Figure 11A of Traub et al., 2005) that is 
comparable to in vivo activity. That spectrum has additional high-
frequency peaks due to modeling of epileptiform activity. Another 
complex model is that of Izhikevich and Edelman (Izhikevich and 
Edelman, 2008). Although they do not show spectra, they noted 
that areas show local fast (40–50 Hz) traveling gamma rhythms, 
and note that other areas (of this very large whole-brain model) 
are dominated by 20 Hz beta. However, they state that the overall 
model was dominated by 1–3 Hz delta rhythms with intermixed 
alpha (Figure 5 of Izhikevich and Edelman, 2008), rhythms that, 
as they point out, do not typically co-occur at high power in vivo.

Most other neocortical models are far simpler than the two just 
described. Despite its simplicity, a model of mu (10 Hz motor) 
rhythm by Jones et al. shows a fairly realistic awake spectrum 
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strength between pairs of neurons (Song et al., 2005). This study 
found a large asymmetry in the strength of synapses: 17% of 
the synaptic connections were shown to contribute half of the 
total synaptic strength, suggesting that some neurons may be 
significantly more effective in causing cells to fire than others. 
In addition, there was a correlation between the strength of 
incoming and outgoing connections. From these observations, 
the authors suggested the existence of pyramidal hub neurons 
in the neocortex.

Interneuron hubs have been demonstrated in developing hip-
pocampus (Bonifazi et al., 2009). Functional and effective connec-
tivity analysis was performed and revealed a power-law distribution. 
The hubs were found to have much larger axonal arborizations than 
the average cell in the network, accounting for large divergence. 
Dynamically, the hubs were able to synchronize network activity, 
either when stimulated or spontaneously, producing population 
spikes. Similarly, we observed the synchronizing effects of hubs in 
our simulations.

At the larger spatial scale of networks of brain regions, hubs 
have been found to play an important role in functional integra-
tion (Hagmann et al., 2008). Analysis of networks of brain areas 
with diffusion-weighted MRI also revealed the presence of hubs 
(Iturria-Medina et al., 2008). Other recent work in fMRI-based 
functional networks has demonstrated the presence of hubs in 
regions of unimodal or multimodal association cortex, suggesting 
these types of hubs can integrate different forms of information 
effectively (Achard and Bullmore, 2007).

the centralIty of layer 2/3 In thIs network
In our simulations, the E2 subpopulation, the excitatory cells in 
layer 2/3, appeared to provide a primary oscillatory drive to the net-
work, particularly in the theta/alpha band. In addition, E2 appeared 
to strongly drive the I2 cells to produce gamma, sculpted out of the 
network through differential damping. E2 hubs were able to syn-
chronize the intracolumnar activity via the mechanism of positive 
feedback between convergent and divergent cells. Activity spread 
first within, and then between columns. Our simulations com-
paring unconnected and connected columns demonstrated that 
columns may communicate by modulating the excitation within 
their neighboring columns via feed-forward activation of both E 
and I cells.

Layer 2/3 is implicated in the generation of theta oscillations in 
entorhinal cortex (Ylinen et al., 1995; Sirota and Buzsaki, 2005), 
and motor cortex (Weiler et al., 2008). Additionally, layer 2/3 has 
been suggested to be a major driver and determinant of activity in 
a number of studies of sensory cortex (Fransen and Lansner, 1998; 
Lundqvist et al., 2010). By contrast, a classical physiological study, 
Silva et al., does not support this model (Silva et al., 1991). This 
in vitro study evaluated smaller and smaller fragments of sensori-
motor neocortical slice and found that only layer 5 could produce 
activity in isolation. Clearly, this is a form of the type of ablation 
experiment criticized above. Additionally, slicing will injure cells, 
and injured cells may be prone to hyperexcitability.

However, rather than describe this as an either/or situation, 
we would note that there are considerable anatomical differences 
across cortical regions, as originally described by Brodmann. 
These feature different thicknesses of layers, numbers of cells in 

network, network minus Q, has moved into an entirely different 
pattern, pattern B? Should we now define component Q as driver of 
pattern A, or as suppressor of pattern B? An anecdote from the era 
of vacuum tubes bears repeating. Removing a particular vacuum 
tube from the radio “motherboard” would transform the white-
noise static of the untuned radio to a high amplitude, narrow-band 
signal (a howl). That evidence did not justify calling the particular 
tube the “static-generator unit,” nor the “howl-suppressor unit.”

To evaluate dynamics, we avoided drastic network changes by 
using only minimal dynamical perturbation as a methodology. We 
chose hub formation as a subtle perturbation that could be applied 
gradually to the system, starting at a low level which would have 
no detectable effect. Gradual addition of hubs could then be done 
without changing the number of elements or changing the total 
number of connections, thereby maintaining the basic structural 
attributes of the system. With addition of hubs, the influence of the 
hubbed subpopulation gradually increased as activity spread more 
effectively. For example, addition of hubs in the E2 subpopulation 
had no observable effect until a threshold was reached at about 
five hubs (3.3% of population). Above this point, the addition of 
additional hubs progressively augmented power in all bands tested 
(Figure 4). Note that though the number of hubs were changed 
identically in all subpopulations, the proportion of hubs at any 
given number was lowest in the case of E2 due to the larger size of 
this subpopulation. In our inhibitory subpopulation experiments, 
the addition of even one hub produced alterations in power, sug-
gesting that we should have set our hub’s convergence and diver-
gence level smaller in order to get less effect with one hub. Despite 
this, we were able to demonstrate a clear distinction between hub 
addition in the I2 subpopulation and hub addition in the other 
inhibitory subpopulations (Figure 7).

experIMental evIdence for hubs In the braIn
Graph-theoretic hubs have been implicated in the spread of epi-
demics, synchronization, and enhanced communication in com-
plex networks across a wide variety of fields and spatiotemporal 
scales (Strogatz, 2001; Wang and Chen, 2003). Examination of the 
connectivity distribution of a nematode’s neurons revealed that it 
obeyed a power-law distribution with rarely occurring, but highly 
connected hub cells present (Barabási and Albert, 1999; Strogatz, 
2001). The role of hubs in synchronizing neuronal network activ-
ity was shown in a series of experimental and simulation stud-
ies of dentate gyrus (Dyhrfjeld-Johnsen et al., 2007; Morgan and 
Soltesz, 2008). In these studies, it was shown that granule cell hubs 
played a contributing role in epileptogenesis even when only a few 
hub cells were added. This is similar to the higher frequency of 
population spikes observed in our model when several E2 hub cells 
were present. These studies also showed that efficacious hubs had 
increases in both incoming and outgoing connections: hubs with 
only increased incoming connections produced much less hyper-
excitability, while hubs with only increased outgoing connections 
produced no hyperexcitability. The existence of these hubs was 
explained by noting that some few cells had both large dendritic 
and large axonal arborizations.

Recent experimental work demonstrated that in neocortical 
networks, layer 5 pyramidal neurons showed non-random con-
nectivity suggestive of hubs: a low probability of high-connection 
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cognItIve IMplIcatIons
Brains receive information from different sensory modalities as well 
as internal sources and integrate them into coherent representations 
(Treisman, 1996). One hypothesis for how the brain solves this 
problem is via the synchronized activation of distributed neuro-
nal ensembles (von der Malsburg and Schneider, 1986; Engel and 
Singer, 2001; Singer, 2001; Wu et al., 2007). Additionally, synchro-
nization across brain areas has been suggested as a prerequisite for 
optimal information transfer between them (Buehlmann and Deco, 
2010). Oscillations have been suggested as a mechanism for fine 
temporal tuning of neural firing times which could provide coding 
and learning via spike timing (Canolty et al., 2006; Fries et al., 2007; 
Clopath et al., 2010). Specifically, gamma and theta oscillations have 
been suggested as partners in a multiplexing mechanism via subsets 
of cells that fire on a particular gamma subcycle superimposed on 
a theta cycle (Lisman and Idiart, 1995). Human neocortical theta 
has also been implicated in working memory tasks (Raghavachari 
et al., 2001; Jensen and Tesche, 2002). Co-occurrence of theta and 
gamma, demonstrated in the present study in both experiment 
and simulation (Figure 12), would provide a substrate for these 
types of mechanisms.

While fairly high levels of synchronization are required for 
cognition, pathological increase in synchronization may lead to 
seizures (Osterhage et al., 2007; Schindler et al., 2007; Lytton, 2008; 
Lehnertz et al., 2009; Neymotin et al., 2010). This suggests a tradeoff: 
synchronization between components is required for information 
processing, but too much leads to pathology. Frequency homeosta-
sis might then be important to maintain conditions required for a 
cognition that relies on tuned brain oscillations (von der Malsburg 
and Schneider, 1986; Gray and Singer, 1989; von der Malsburg, 
1995; Kopell et al., 2000; Spencer et al., 2003; Buzsaki and Draguhn, 
2004; Uhlhaas et al., 2006).

In our model, E2 cells had the strongest recurrent connectivity 
and had excitatory projections laterally via E5, as well as strong 
lateral inhibitory projections. We therefore hypothesize that layer 
2/3, together with layer 5, will be primarily responsible for the 
intercolumnar coordination we demonstrate in Figure 10. When 
we added hubs to E2, we produced population spikes in the isolated 
columns, an epileptiform indicator (Figure 5). These hubs were 
strongly suppressed by lateral inhibition in the connected network 
but were still apparent (Figure 6). The enhanced synchrony due to 
hubs also increased correlation across columns, possibly allowing 
for enhanced information transfer, but equally possibly associated 
with excessive coordination that would actually reduce information 
transfer (Olypher et al., 2006).

Our simulations modeled both the generation and the coupling 
of oscillations in the theta and gamma bands, and also suggest a pos-
sible mechanism for this coupling. Theta oscillations emerged pri-
marily from E cell activity. This activity then provided drive to the 
interneurons, which then produced gamma oscillations. Feedback 
of this activity onto E cells then sends a gamma timing signal into 
the E population. Interestingly our columnar sLFPs showed fluctua-
tions of synchrony. We hypothesize that states of low intercolumnar 
synchrony may be characterized by intracolumnar computation, 
and states of high intercolumnar synchrony may be periods when 
the columns communicate. We speculate that synchrony fluctuation 
may allow for isolating periods of local and global coordination.

each subpopulation, and apparently different connectivity densi-
ties. These anatomical differences are likely to be associated with 
dynamical differences, including alterations in spectral profile. 
Additionally, there is physiological evidence to suggest that the 
direction of driving differs from one area to another. In the awake, 
behaving animal study of Bollimunta et al. (2008), Granger causal-
ity inferred infragranular (layer 5/6) to supragranular (layer 2/3) 
driving in sensory areas (V2, V4), but supragranular to infragran-
ular driving in area IT (inferotemporal cortex). This suggested the 
possibility of dynamical differences between lower-level sensory 
areas (V2, V4) and higher cortical association areas (IT). Based 
on this distinction, we would propose our model as a model for 
higher centers. We will then need to produce variant models for 
primary sensory cortex, and for motor cortex. As with most areas 
of biology, there will be no single cortical model (hence, alas, no 
direct model falsification) but rather complex multiscale combi-
nations of model variants.

network stabIlIzatIon: frequency hoMeostasIs
Homeostasis, the maintenance of stability under varying envi-
ronmental conditions, is a feature of any biological system. In 
the brain, one form of homeostasis entails maintenance of base-
line activity patterns across varying levels of inputs and neuro-
modulators, avoiding seizures despite maintenance of the high 
levels of correlation needed for intracortical communication. We 
call this frequency homeostasis, the maintenance of the correct 
spectrum of frequencies and frequency interrelationships despite 
alternation of drive. This has been demonstrated physiologically 
(Bollimunta et al., 2008; Rajagovindan and Ding, 2011). In our 
simulations, we saw that adding power to the primary driving 
center, layer 2/3, a major perturbation that produced increased 
frequencies in most cell groups, caused the alpha/theta peak to 
grow but not shift substantially (Figure 8). This pattern of added 
driving might be produced in vivo by attentional focus provided 
through strong feedback from higher cortical centers to a lower 
center, an influence that arrives primarily in supragranular lay-
ers (Quilodran et al., 2008). We hypothesize that this homeo-
static effect in the simulation would be provided by a balance 
between I cell domination of the high-end of the spectrum and 
E cell domination of the low-end of the spectrum. The increased 
high-band inhibition counteracted the tendency of the existing 
peak to start spilling over into higher frequency bands, preserv-
ing the overall shape of the spectral power profile. An additional 
homeostatic mechanism was shown with the preservation of 
population frequencies despite alterations in the delays between 
neurons (Figure 9).

The beginning of a failure of homeostasis is shown in Figures 5 
and 6 – the occurrence of population spikes, harbinger of seizure 
activity. Notably, the strong feed-forward inhibition between col-
umns served to reduce the number of population spikes consider-
ably, partly suppressing population spikes and restoring something 
of a normal appearance to the sLFPs (Figure 6). Additional homeo-
static processes remain to be explored and explained. For example, 
we expect that the spectral relationship shown in Figure 12 will 
also be resistant to increased activation. It will also be important 
to check the effects of activation by way of other pathways, most 
notably via sensory activation through layer 4.
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