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It has been observed that prey animals increase their flight ini-
tiation distance (predator–prey distance at which they flee) when 
intruders begin their approach from farther away (Blumstein, 
2003). This observation challenges strictly economic decision 
models (although Cooper et al., 2009 has modeled this by assum-
ing the prey animal has multiple “risk” functions and chooses one 
based on the predator behavior, which includes starting distance) 
but may have a simple interpretation: when intruders approach 
from farther away, the animal has longer to detect and assess the 
threat, thus fleeing sooner. This “increased information” interpre-
tation is also consistent with the observations that prey animals 
increase their flight initiation distance when an intruder has a 
higher approach speed (Cooper, 2006), and that odors (Apfelbach 
et al., 2005; Ylonen et al., 2007) and shapes (Hemmi and Merkle, 
2009) are important in eliciting defensive behaviors – the approach 
speed may indicate that the intruder is likely to attack, while the 
odor and morphology may indicate that the intruder is a poten-
tially dangerous one.

The current models of escape decisions (Ydenberg and Dill, 1986; 
Broom and Ruxton, 2005; Cooper, 2006; Cooper and Frederick, 
2007, 2010; and others) have yet to incorporate factors such as 
olfaction and intruder morphology into their models. Such factors 
are difficult to include in economic models. For example, what is 
the cost associated with a particular smell?

Inspired by these observations, we propose a new approach for 
studying escape decisions in prey animals, namely that they are 
engaged in a decision-theoretic process, wherein they must decide, 
with imperfect information, whether the current environment is 
likely to pose a significant enough threat to their safety that they 
should flee. This view is supported by observations of active risk 
assessment behaviors in prey animals (Schaik et al., 1983; Creswell 
et al., 2009; Hemmi and Pfeil, 2010).

1 IntroductIon
Prey animals frequently assess their surroundings to identify poten-
tial threats to their safety. If an animal does not flee soon enough 
in the presence of a predator (type I error), it may be injured or 
killed. If it flees when there is no legitimate threat (type II error), it 
wastes metabolic energy, and loses mating or foraging opportuni-
ties (Nelson et al., 2004; Creswell, 2008). However, predators can 
be camouflaged and prey animals have limited sensory systems, so 
escape decisions must often be made with imperfect information.

Previous studies have not investigated how escape decisions 
might be affected by prey animals’ degree of certainty about their 
environment. Indeed, the predominant assumption in the field 
appears to be that this uncertainty is not important, and that so long 
as the prey animal knows the most likely state of the environment 
(or the expected value of the state), they can still make economically 
optimal decisions. We question this assumption.

We explicitly consider the animal’s uncertainty in our model 
and subsequently demonstrate that, when a prey animal knows the 
environmental state with certainty, the optimal decision strategy 
is simply to flee whenever a threat is present. This strategy is inde-
pendent of any “economic” factors – predator lethality, predator 
frequency, loss of mating opportunities, etc. When the state of the 
environment is less certain, the animal is bound to make errors, 
and the optimal balance between type I and II errors is determined 
by economic factors. This is in contrast with previous theoretical 
studies (Ydenberg and Dill, 1986; Broom and Ruxton, 2005; Cooper, 
2006; Cooper and Frederick, 2007, 2010; and others), which have 
assumed that prey animals have perfect knowledge of their sur-
roundings (or, equivalently, that the uncertainty is unimportant, 
as discussed above) and that their decisions are made on purely 
economic grounds. Our result suggests that uncertainty may play 
a key role in making economics relevant in decision making.
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Sih (1992) has studied the decision to re-emerge from a burrow 
after flight, when the animal does not know if the predator is still 
present. Sih’s work is the closest in spirit to the current study, but 
it does not address how the initial escape decision is affected by 
uncertainty. No previous study satisfactorily addresses the issue of 
determining what objective function, when maximized, accurately 
predicts the escape decision strategy that is selected by evolution.

We demonstrate through computer simulation that animals sub-
ject to predation naturally evolve to display the strategy predicted 
by our model, confirming our choice of objective function.

2 Methods and Models
2.1 analytIcal calculatIons
As a starting point, we will assume that the prey animal chooses the 
strategy S that maximizes its genetic contribution to subsequent 
generations (see Janetos and Cole, 1981; Parker and Smith, 1990 
for criticism and discussion of optimality models), defined by the 
intrinsic rate of increase in prevalence of strategy S in the popula-
tion (Hairston et al., 1970; Parker and Smith, 1990); r(S) = [N(S)−1]
dN(S)/dt, where N(S) is the number of animals adopting strategy 
S, and t is time (note that we use the symbol r for the same quan-
tity that Hairston et al., 1970 call m). Since the large r strategies 
grow more quickly in terms of number of adherents, the popula-
tion should evolve toward the strategy that maximizes r. We later 
verify this assumption. We stress that our objective function is rate 
of reproduction and not “survival of the fittest.” A genotype that 
leads to long-lived animals, who fail to reproduce, is unlikely to 
significantly increase in prevalence over time.

We formulate a probabilistic automaton (Rabin, 1963) model 
of the life of a prey animal (Figure 1) to compute r(S). The model 
operates in discrete time, thus we are using the approximation 
r = [N(S)−1]dN(S)/dt ≈ [N(S)−1]∆N(S)/∆t. In every time step, every 

animal follows a complete path through the graph, beginning in 
the starting state (“start”), and ending either back at the start, or 
in death.

In each time step, the animal assesses a potential threat. For 
concreteness, we imagine the animal asking “Is that object likely to 
try to kill me?” Animals that do not flee from a real threat may be 
killed by a predator, while those that do flee, escape. Those animals 
that are not killed by predators may mate, and they may or may 
not die of causes other than predation.

We group potential threats into discrete “zones” in predator–
prey distance; Figure 1 illustrates an example with four such zones. 
The model can utilize continuous distances without affecting our 
conclusions. The object the animal assesses may or may not be a 
real threat – the animal does not have access to the ground truth. 
We explicitly incorporate this uncertainty by assigning probabil-
ity p

i
 of correct threat detection in zone i, leading to flight, and 

probability q
i
 of a false positive in zone i, leading to flight; q

i
 and 

p
i
 are related by the receiver–operator-characteristic (ROC) curve 

[p
i
 = f

i
(q

i
); see Figure 2].

Qualitatively, our automaton model captures many features 
pertinent to real prey animals. Effects like periodicity of mating 
opportunities and threat frequency, maturation periods, learning 
during the lifetime of the animal (Hemmi and Merkle, 2009; Rao, 
2010), and sexual reproduction (as opposed to asexual), are omitted 
in the interest of simplicity, but our automaton could be amended 
to incorporate these considerations. We have confirmed with a 
computer simulation that our results are unchanged when the 
animals undergo sexual, rather than asexual reproduction (results 
not shown).

Figure 2 presents an example ROC curve, for the case in which 
the animal makes its choice based on a single, scalar parameter (the 
“score”). The problem of choosing an escape strategy amounts to 

Figure 1 | Probabilistic automaton model of the life cycle of a prey animal. 
At each time step, every animal begins in the state “start,” and follows a 
complete path, ending either back at the start, or in death. Each arrow is labeled 
with the conditional probability that the given event occurs (die, survive, etc.), 
once the animal reaches the box at the tail of that arrow. The animal spots a 
potential threat in zone i with probability di. Four zones (groupings by predator–
prey distance) are shown in the diagram. The threat is real with probability a. If 
there is a threat the prey animal flees with probability pi. Those animals that do 
not flee are killed with probability Li, while those that do flee always escape. The 
animals that neither flee nor die mate with probability m, producing n progeny. 

The animals that do flee suffer a reduced mating rate of m(1 − R). In order to 
keep the population stable, some randomly selected animals are killed at the 
end of the time step with probability s. The probability of any path is obtained by 
multiplying the conditional probabilities of each subsequent step. A sample path 
is illustrated by the dashed arrows in the diagram: The animal spots a potential 
threat in zone 3. This is not a real threat, but, with its imperfect information, the 
animal incorrectly decides to flee. It then mates, producing n progeny, which are 
added to the population for the next time step. The animal does not succumb to 
disease, starvation, or other non-predation-related causes of death, and lives on 
to the next time step. The probability of this path is d3(1 − a)qim(1 − R)(1 − s).
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is −1. Those animals that are not already killed by the predator 
die with probability s, which again has a value −1. Thus, our 
expectation value is

E r q b q mn c q mn R a q a qi i i i i{ }( )  ≈ { }( ) + { }( ) − − { }( ) − − { }( )
≈

[ ]1 1

1

s

−− { }( )  − { }( ) − { }( ) −a q mn c q Rmn a qi i i s.
 

(2)

The second line follows from the first since a + b + c = 1, and, 
since both s and a are expected to be small, the product sa can 
safely be ignored.

Since the animals in our model assess one potential threat per 
unit time, the size of the “time steps” in our model is fairly short 
(seconds, or possibly minutes). In the real-world, we expect that 
actual threats are relatively uncommon (for example, the prob-
ability of encountering a real threat in any given short time period 
is small): a should be a relatively small quantity. Thus, a is small 
for real prey animals. Furthermore, since the time steps are fairly 
short, the probability s of dying from starvation or disease in any 
time step is quite small. Thus, our sa << 1 approximation (above) 
is reasonable.

The anticipated escape response threshold maximizes the expec-
tation value of the objective function E[r({q

i
})], subject to the con-

straints p
i
 = f

i
(q

i
) imposed by the ROC curves for each zone.

In the standard fashion (Boas, 2006), we utilize the method of 
Lagrange multipliers by defining a Lagrange function Ω = E[r] + Σ

i
 

j
i
(p

i
 − f

i
(q

i
)). The set {j

i
}, then, is then our set of (unknown) 

Lagrange multipliers, and we optimize by solving (for all i)
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(3)

The last of these equations enforces the constraint. The first 
two equations yield

 

j

j

i i

i i i

L mn Rmn

f q Rmn

= − + +
′ = − −
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a
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And the solution to our optimization problem is (for j
i
 ≠ 0)

 

′ = −
−[ ]+( )

= ( )

f q
Rmn

mn L R L

p f q

i i

i i

i i i

( )
[ ]

.

1 a

a  

(5)

Note that, were all of the threats in one distance zone, Eq. 5 
still yields the optimal result. Thus, the globally optimal solution 
consists of making the locally optimal decision for each zone, as 
one might expect.

For an explicit computation of where the decision threshold 
should lie, we require information about the ROC curve. As an exam-
ple, we assume that the score is distributed as g

i
(z|danger) = N(0,1) 

in the presence of danger in zone i, where N(m,Σ) represents a 

choosing where on the ROC curve the decision rule should lie. It 
can be specified in each zone either by p

i
, q

i
, or a threshold t

i
 (see 

Figure 2).
To simplify our notation, we first define the variables a,b,c 

to be the probabilities, in a given time step, of being killed by 
a predator, of not fleeing, and not being killed by a predator, 
and of fleeing, respectively. By tracing paths in Figure 1, we 
find that

 

a p L

b p L q

c p

i i i
i

i i i i
i

i i
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d
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∑

∑

q

a b c

i
i

i
i

1

1

 

(1)

where a is the probability that a given object is actually a threat, 
and L

i
 is the probability that failure to immediately flee a predator, 

initially in distance zone i, will be lethal.
The expectation value of the objective function (r = [N(S)−1]

dN(S)/dt ≈ [N(S)−1]∆N(S)/∆t) is given by multiplying the result 
of a given outcome by the probability of that outcome, and sum-
ming over all possible outcomes. These outcomes are as follows: 
animals that do not flee will mate with probability m, producing 
n progeny, while those that do flee will suffer a reduced mat-
ing rate m(1 − R), producing n progeny. Animals that die are 
removed from the population, thus the value of this outcome 

Figure 2 | Connection between rOC curves (p vs. q) and probability 
distributions. The probability distributions of some “score” parameter, 
conditioned on the presence (solid curve) or absence (dashed curve) of a 
threat are shown. A possible interpretation for this score is that it is the output 
of a neural network that assesses all of the information available to the animal, 
in an attempt to infer the danger of a given object. One possible decision 
threshold, t, is indicated, whereby the animal decides to flee from objects 
with scores above the threshold, and not to flee from those with scores 
below the threshold. By varying the threshold, the animal can alter the correct 
detection probability p, indicated by the area under the “threat” distribution 
(solid curve) to the right of the threshold; at the same time, varying the 
threshold also affects the false positive probability q, given by the area under 
the “no threat” distribution (dashed curve) to the right of the threshold. The 
same threshold determines both p and q; they are related by the ROC curve 
p = f(q) (inset).
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Gaussian (or normal) distribution with mean m and SD Σ. Now 
let the distribution of scores in the absence of danger in zone i be 
g

i
(z|no danger) = N(v

i
,1) for some v

i
 < 0.

Note that, given a Gaussian-distributed variable y with arbitrary 
mean m and variance Σ, we can choose to operate on the variable 
x = (y − m)/Σ, which will be distributed as N(0,1). Thus, within the 
realm of Gaussian-distributed scores, we are losing no generality 
by considering g

i
(z|danger) = N(0,1). Choosing the variance of “no 

threat” score distribution to be the same as that of the distribution 
conditioned on the presence of danger does entail a loss of gener-
ality, but it simplifies the analysis greatly and thus we do it for the 
purposes of this example. Given the distributions, we can define the 
values (p

i
, q

i
) as a function of the decision threshold t

i
. Let the animal 

decide that it is in danger for z > t
i
, and that it is not for z ≤ t

i
. Then

 

p f q
dz

e

q
dz

e

i i i i
z

i i
z
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i

i
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( ) =

−
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− −
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∫

∫

t
p

t
p

t

v

2

2

2

2

2

2

/

( ) / .
τ  (6)

We need the derivative ′f qi i( )  to implement the results of our 
optimization calculation. Using the chain rule,

 

′ ( )( ) =

= −
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
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f q
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Therefore, the optimal threshold for the ith zone is

 

t
v

v

a

a
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i

i i i

Rmn
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2

1 1
ln
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.

 (8)

It is clear that as |v
i
| increases (more obvious threats and thus 

less uncertainty), the second term, which contains all of the eco-
nomic factors about the environment, becomes less important in 
determining the decision threshold.

The decreasing importance of the “economic” term with increas-
ing |v| is not true for all possible score distributions. We have dem-
onstrated that this conclusion does apply to Gaussian distributions. 
Indeed, it also applies to any unimodal distribution in the expo-
nential family g z e z( ) | |∝ −l n

 with even n ≥ 2.
This can be seen by noting that, if the distribution of scores in 

the presence of a threat is g z e z( | ) ,| |threat ∝ −l n

 and in the absence 
of a threat is g z e z( | ) ,| |nothreat ∝ − −l v n  then the derivative of the 
ROC curve f ′(q) is given by

 

′ = − −( )
→ ′[ ] = − −

f q

f q

( ( )) | | | |

ln ( ) | | | | .

t l t l t v

l t t v

n n

n n

exp

−1

 (9)

Solving for t is hard for general n. Consider, for example the case 
where t ≥ 0 and t ≥ v. Then we see that l−1ln[f ′(q)] = tn − (t − v)n. 
For n = 1, this yields no solution for t because the derivative of the 
ROC curve is independent of t. This is peculiar to the exponential 
distribution, which is a pathological case in this sense.

For even n, with no restrictions on t, we see that 
l−1ln[f ′(q)] = tn − (t − v)n (the absolute value signs disappear 
for even n). Expanding (t − v)n using binomial theorem, we find 

that l t t t vn n n n n−
=

−′ = − − ∑ −1
1ln[ ( )] ( ) ( ) .f q j j

j j  Now, the tn terms 
cancel, and we can divide through by one power of v, yielding 

l v t vn n n− −
=

− −′ = ∑ −1 1
1

1ln[ ( )] ( ) ( ) .f q j j
j j  As in the Gaussian (n = 2) 

case, we see that increasing |v| de-weights the economic f ′(q) term.
Thus, we can be assured that the decreasing importance of 

the economic term with increasing |v| is true for all unimodal 
exponential distributions of the form g z e z( ) | |∝ −l n

 with even n ≥ 2. 
For n > 1 and values of n that are not even integers, there are some 
regimes in which the leading-order terms in t still cancel, however 
it is difficult to prove that our result holds in the most general case.

We note that, while it simplified our automaton model and 
our notation, nowhere was it necessary to assume that the danger 
occurs in discrete zones in distance. One could instead utilize a 
continuous distance measure by considering an infinitely large set 
of possible values of i, with each one corresponding to a particular 
point in space.

2.2 sIMulatIon experIMents
To verify that our objective function is the one selected for by natu-
ral evolution, we perform a computer simulation of a population 
of prey animals subject to predation.

Our simulation contains a population of animals whose life cycles 
are described by the probabilistic automaton model (Figure 1). At 
each time step of the simulation, the animals are considered one-
by-one. A pseudo-random number generator determines whether 
a prey animal will see a real threat (with probability a) or not. 
The threats are all in the same distance zone, since this simplifies 
the simulation, and we have shown that the optimal solution for 
many zones is to use the locally optimal solution in each separate 
zone (Eq. 5).

The animal is then presented with a “score” variable, with which 
it makes its decision. As in our analytic example, the scores are 
randomly drawn from the N(0,1) distribution if the threat is real, 
or from the N(v,1) distribution if the threat is fake. If the “score” 
is above the animal’s threshold, it chooses to flee. Otherwise it 
does not. The determination of which animals get to mate, or get 
killed by a predator is also done with a pseudo-random number 
generator, and follows the description in Figure 1.

Those animals that do mate produce n progeny. Each offspring 
has a decision threshold that is equal to its parent’s, plus Gaussian 
noise of mean zero and fixed (small) SD. This variation allows the 
population to explore the strategy space. The population in our 
simulation thus has the two key features (heritability, and vari-
ability) that allow for evolution.

At the end of every time step, the population is trimmed so that 
it does not get too large. This is done by killing random individu-
als, thus inducing no selection pressure. This is represented by the 
value s in our automaton model.

We initialize the simulation with a population of animals whose 
decision thresholds are drawn from a uniform distribution.

3 results and dIscussIon
3.1 the optIMal decIsIon strategy depends on the 
envIronMent and varIes wIth the anIMal’s uncertaInty about 
the state of the envIronMent
The strategy that maximizes the expectation value of r, subject to 
the p

i
 = f

i
(q

i
) constraints imposed by the ROC curves, is given by 

(for all zones i)
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3.2 an in silico populatIon of prey anIMals evolves to dIsplay 
the decIsIon strategy predIcted by our analytIcal 
calculatIons
To verify our choice of objective function, and the approximations 
made in our calculation, we performed a computer simulation of a 
population of prey animals subject to predation. Unlike previous 
work (Floreano and Keller, 2010), we did not define an objective 
function in our simulation: the animals in our simulation had no 
indication of what we thought they should be accomplishing with 
their escape strategy. They simply mated, died of predation, and 
were killed by non-predation-related causes. Those animals that 
did mate produced children whose escape thresholds were copies of 
the parent’s threshold, with added Gaussian noise. We investigated 
how the evolutionarily favored escape response threshold varied as 
a function of the parameters of their life cycle, and various proper-
ties of their predators.

Some of the results of this experiment are shown in Figure 4. 
For the results in the scatter plot, the simulation was repeated many 
times. For each run of the simulation, the parameters (a,L,m,n,R,v) 
were randomly selected from i.i.d. uniform distributions with the 
ranges specified in Table 1. The population average threshold was 
recorded after each time step, and the result shown on the plot is 
the average over the last 103 time steps. This reduces the variance 
of the results that stems, in part, from the variance of the children 
with respect to their parents, and in part from the relatively small 
population (N = 2 × 103) that was used in the simulation. This 
variance is depicted in Figure 4.

The results of the simulation (Figure 4) demonstrate that a 
population of animals whose life cycle is well-described by the 
automaton model in Figure 1 will naturally evolve to display the 
strategy defined in Eqs. 10 and 11. Much of the challenge in apply-
ing our method to real prey animals will be in accurately modeling 
their life cycle with a probabilistic automaton model.

 

′( ) = −
−( ) + 

f q
Rmn

L R mn L
i i

i i

( )
.

1 a

a
 (10)

Figure 2 shows that low thresholds yield small derivatives 
′f qi i( ) (for low thresholds, a small increase in t increases q much 

more than p), and vice versa. We observe that increased predator 
density and lethality leads to more timid prey animals (low t), 
while increased reproductive flight cost Rmn leads to bolder 
ones.

To investigate the influence of uncertainty on the decision strat-
egy, we consider a specific example: the decision is made based on a 
single “score” variable z, which is distributed as g

i
(z|danger) = N(0,1) 

in the presence of danger in zone i, where N(a,b) is a Gaussian (or 
normal) distribution with mean a and SD b.

This score may be, for example, the output of a neural net-
work that takes into account all of the information available to 
the animal, including information about the predator behavior, 
odor, morphology, etc. The use of a single score for the decision 
can be understood as a dimensionality reduction step: the high-
dimensional sensory data is reduced to a single scalar value, upon 
which the decision can be based. In the case of an animal with a 
“command neuron” (e.g., the Mauthner cell; Rock et al., 1981; 
Roberts, 1992; Zottoli and Faber, 2000; Korn and Faber, 2005), 
the score we refer to may be related to the membrane potential, 
which is a function of all the synaptic inputs to that cell from the 
sensory processing network.

Let the distribution of scores in the absence of danger in zone i 
be g

i
(z|no danger) = N(v

i
,1) for some v

i
 < 0. The absolute value of 

v
i
 defines the reliability of the information available to the animal: 

larger |v
i
| implies more reliable information. Let the animal decide 

that it is in danger for z > t
i
, and that it is not in danger for z ≤ t

i
. 

The optimal threshold t
i
 for zone i is

 
t
v

v
i

i

i

i if q= − ′[ ]
2

1
ln ( ) ,

 (11)

and ′f qi i( ), which incorporates all of the economic factors in the 
probabilistic automaton model, is given by Eq. 5.

For large |v
i
|, the dependence on the logarithmic term is small 

and, for ′ >f qi i( ) 0 (which is true, for example, when L
i
 > R and 

a ≠ 1), the threshold is t
i
 ≈ v

i
/2. This strategy resembles a maxi-

mum likelihood estimator (MLE), which, in this example, would be 
given by t

i
 = v

i
/2. As |v

i
| decreases, the economic factors become 

more important in determining the threshold t
i
. This conclusion 

(demonstrated in Figure 3) is independent of the details of our 
probabilistic automaton model. The specifics of the automaton 
determine the optimal ′f qi i( ), but Eq. 11 shows us that, independ-
ent of ′f qi i( ), the strategy still changes from maximum likelihood 
to economic cost reduction, as the amount of uncertainty in the 
information increases.

This result is true for Gaussian-distributed score variables, but 
is not true for all distributions. However, it is straightforward 
to prove that the result holds for all unimodal distributions in 
the exponential family g z e z( ) | |∝ −l n

 for even n ≥ 2. According 
to the central limit theorem, most variables that are weighted 
averages of many random components are Gaussian-distributed. 
Thus, our conclusion is likely to be applicable to many real-world 
examples.

Figure 3 | The importance of economic factors in decision making 
increases with rising uncertainty about the environment. The departure of 
the optimal decision threshold (t) from a MLE (described by t = v/2) is shown 
as a function of v, the displacement between the means of the score 
distributions for threats and non-threats. The result is shown for several 
different values of f ′(q), which contains all the economic factors, and 
quantifies how bold (large values) or timid (small values) the strategy is (see 
text). For large |v|, threats are easily identified, and the strategies all converge 
to a maximum likelihood decision strategy: flee if and only if danger is more 
likely than not. As the uncertainty increases (small |v|), the strategies diverge 
in a manner dictated by the economic factors.
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We conclude that, given sufficiently accurate and detailed 
(probabilistic) information about the life cycle of an animal, it 
may be possible (although difficult) to make quantitative  behavioral 
predictions.

dIscussIon and conclusIon
We have found that a prey animal’s uncertainty about threats in its 
environment has a profound effect on the optimal escape strategy. 
Moreover, computer simulations of the evolution of populations of 
animals subject to predation demonstrate that the objective func-
tion we assumed for our analytic calculations is, indeed, optimized 
by selection pressure.

Interesting work has modeled the learning process in the pres-
ence of uncertainty, in the context of optimal decision making (Rao, 
2010). Our results focus instead on instinctual responses, and do 
not explicitly incorporate learning over the lifetime of the animal. 
Clearly, in the real-world, both innate and learned behaviors are 
important. We leave the issue of combining these two response 
types for future work.

Whereas much previous work (Ydenberg and Dill, 1986; 
Blumstein, 2003; Broom and Ruxton, 2005; Cooper, 2006; Cooper 
and Frederick, 2007, 2010) has involved determining flight initia-
tion distances, our model does not do so explicitly. In our model, 
the animal simply flees when the possibility of danger exceeds some 
threshold, the value of which is determined by the level of uncer-
tainty, and, when that uncertainty is not small, by economic factors. 
However, we do have the ability to infer how such a strategy might 
vary when assessing threats at different distances.

We expect that nearby threats will be more conspicuous: |v| 
should be a decreasing function of distance. Thus, the economic 
factors are more important for potential threats at large distances 
compared to small. Consequently, those economic factors that 

We stress that we made a specific choice of objective function 
for our analytic calculation, but that objective function was not 
available to the animals in our simulation. Had we made a different 
choice of objective function, our analytic calculations would have 
yielded different results, and those would necessarily not have been 
in agreement with the simulation results.

For example, choosing longevity as an objective function, one 
would choose the strategy that maximizes lifetime. Given the struc-
ture of our automaton model, that strategy is clearly to flee all of the 
time; t = −∞, regardless of the model parameters. That result is clearly 
in disagreement with our simulation results. Thus, we argue that the 
results of our simulation support our chosen objective function.

It has previously been conjectured (Cooper and Frederick, 
2007) that, because the correct objective function is unknown, 
and prey animals have uncertain information about the envi-
ronment, quantitative behavioral predictions are impossible. We 
have addressed both of these issues: the correct objective function, 
while hard to compute for real prey animals (much information 
is required to correctly estimate r), is known, and we have explic-
itly incorporated the effects of imperfect information into our 
 decision model.

Figure 4 | Computer simulation confirms that our objective function, 
r = N−1dN/dt, is indeed maximized by selection pressure. (A), Time evolution 
of the distribution of escape response thresholds across a population of 
simulated prey animals. The time (in units of time steps) at which the histogram 
was measured is indicated on each histogram. The population was initialized at 
time t = 0 with a uniform distribution of escape strategies. The model 
parameters for this simulation were (a,L,m,n,R,v) = (0.15,0.8,0.02,4,0.5,−2.0), 
and the threshold of each progeny was equal to that of its parent, plus Gaussian 
noise with mean 0 and SD 0.01. (B), Average escape threshold across this 

simulated population asymptotes to the predicted value. The shaded region 
extends one SD above and below the average. At the end of this simulation, the 
population mean is −1.605 with SD 0.08, in good agreement with the theoretical 
value (Eq. 8) of −1.645. (C), Repeating this simulation 50 times with randomly 
selected parameter values shows good agreement between the analytical 
prediction and simulation results across the full range of parameter values 
tested (Table 1). Population average thresholds (after 104 time steps) are plotted 
against the analytical prediction. The red line represents equality between the 
prediction and simulation.

Table 1 | ranges of variables used in the simulation.

Variable range

a [0.05, 0.6]

L [0.5,1.0]

m [0.01, 0.5]

n [3,8]

R [0.1,0.7]

v [−7.0, −0.5]
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We propose that approaches based on optimal performance in 
the face of imperfect information are likely to be useful for study-
ing further aspects of escape decisions in prey animals, as they have 
been in other areas of biology such as mate selection (Benton and 
Evans, 1998; Luttbeg and Warner, 1999), house-hunting (Marshall 
et al., 2006), cellular-level decision processes (Perkins and Swain, 
2009), and chemotaxis (Adler and Wung-Wai, 1974; Bialek and 
Setayeshgar, 2005). Our approach is easily generalized to include 
other areas where decisions must be made with imperfect infor-
mation and the costs of type I and II errors are unequal (when the 
costs of both error type are equal, there are simpler tools, such as the 
Neyman–Pearson lemma (Neyman and Pearson, 1933), for assessing 
the optimal strategy). Immunology is one such area: excessive type 
I errors by macrophages result in infection of the host, while exces-
sive type II errors result in autoimmune disorders (Morris, 1987).
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make the strategy more timid (lower threshold) will increase the 
flight initiation distance – they make the optimal threshold lower 
at large distances, but do not affect the small distance threshold 
as strongly.

Similarly, when an intruder initiates its approach from further 
afield, the prey animal has more time to gain information about 
it. Thus, at a greater distance, the animal can correctly assess the 
threat, leading to a larger flight initiation distance, as observed in 
real prey animals (Blumstein, 2003).

Finally, when an odor or shape is presented to the animal that is 
associated with common predators, the score of the intruder will be 
far from the mean of the “no threat” distribution. Thus, defensive 
behavior is likely to be trigered.

Our decision-theoretic model for prey escape strategy can 
thus account for several observed behaviors (Blumstein, 2003; 
Apfelbach et al., 2005; Cooper, 2006) in a natural way. Indeed, 
to the best of our knowledge, ours is the first model to account 
(qualitatively) for the influence of all of these factors on 
escape decisions.
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