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 symmetric reciprocal interactions) give rise to a convergent mental 
activity involving multiple attractors (Hopfield, 1982; Cohen and 
Grossberg, 1983). There may be some cognitive activities, such as 
associative memory (Wills et al., 2005), which fits the attractor-
oriented description. However, computing with attractors gen-
erally limits the use of complex dynamical networks. Once the 
attractor (or its vicinity) is reached, the “dynamical” nature of the 
brain becomes irrelevant. Furthermore, this scheme overlooks 
the informational qualities of the (transient) path from the initial 
condition to the attractor, an important phase where the brain 
could exploit its remarkable repertoire of behaviors. In this short 
review, we discuss an alternative/complementary paradigm, i.e., 
brain information processing based on robust transient dynamics 
which is observed in experiments as a sequential switching from 
one metastable state to another. Following the general perspective 
of liquid state (Maass et al., 2002) and echo-state models (Jaeger, 
2003), we illustrate this paradigm with several examples that just 
point out the tip of an iceberg.

Sequential neural Switching in experimentS and 
modeling
Nearly all kinds of mental activities, i.e., perception, cognition, 
and emotion are transient and sequential (Roelfsema et al., 2003; 
Zylberberg et al., 2010). Let us begin by discussing perception. 
The way sensory signals are processed in animals is through the 
activation of specific groups of neurons, which is determined by 
both the quality and the quantity of the stimulus. The intrinsic 

introduction: tranSientS vS. attractorS in Brain 
functionS
In 1896 William James wrote: We impute no mentality to sticks and 
stones, because they never seem to move for the sake of anything, but 
always when pushed, and then indifferently and with no sign of choice. 
In modern language we can rephrase these words as: mental activity 
involves not only the processing of external information but also, 
may be even more important, the generation of new information 
(i.e., information not present in the stimulus) that finally leads to a 
specific choice. This idea was formulated 20 years later by Thomas 
Graham Brown. In his view, brain operations mainly relate to the 
intrinsic maintenance of information for interpreting, responding, 
and predicting. Nowadays we can go a little bit further and affirm 
that the human brain is intrinsically organized into active, mutu-
ally interacting functional networks. On a coarse-grain level of 
description, mental brain activity can be represented by the dynam-
ics of a complex self-organized system (Kelso, 1995; Port and van 
Gelder, 1995b). In spite of the fact the brain is a noisy place, i.e., 
the individual responses of single neurons to stimuli are highly 
variable, the cooperative activity of a large number of neurons is 
robust against noise and reproducible (Port and van Gelder, 1995b; 
Schurger et al., 2010).

Traditional efforts in modeling dynamical phenomena in the 
brain are predominantly based on the premise that dynami-
cal systems tend to converge to stable fixed points or dynamical 
states (limit cycles or strange attractors – see Figures 1 and 2, row 
1). Active neuronal networks in some specific conditions (with 
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dynamics of neural networks produces firing patterns that encode 
informational inputs and relay them to further processing centers 
upstream. In general, this code is spatiotemporal and sequential, 
i.e., transient. Such encoding has been observed recently in experi-
ments with olfactory and gustatory sensory systems (Jones et al., 
2007; Rabinovich et al., 2008b; Fernandez et al., 2009).

An analysis of the response of a rat’s gustatory cortex to proto-
type tastes has revealed that reproducible taste-specific switching 
patterns are triggered shortly after the stimulus is presented (Jones 
et al., 2007; see Figure 2, row 2). Experimental observations in 
the olfactory systems of locusts (Stopfer et al., 2003), zebrafish 
(Friedrich and Laurent, 2001), and honeybee (Fernandez et al., 
2009) reveal odor- and concentration-specific, reproducible, and 
transient patterns of activity in principal neurons. The odor repre-
sentations are spatiotemporal successions of states, or trajectories, 
each corresponding to one odor identity and one concentration 
(Stopfer et al., 2003). The results of these experiments, in fact, dem-
onstrate a stimulus-dependent switching dynamics that is based 
on the winnerless competition (WLC) principle (Rabinovich et al., 
2001, 2006c, 2008b).

The dynamical image of WLC is a robust heteroclinic cycle 
or stable heteroclinic channel (SHC; see Figures 1 and 2). 
Winnerless competitive dynamics in neural systems can result 
from the presence of inhibitory connections among neurons 
or neuronal groups (ensembles). For example, inhibitory con-
nected networks of interneurons in hippocampus and neocortex 
generate collective 40-Hz rhythms (gamma oscillations), when 
excited tonically (Jefferys et al., 1996). Here we use the term WLC 
principle for the non-autonomous transient dynamics of neu-
ral systems receiving external stimuli and exhibiting sequential 
switching among temporal winners – different neurons or neu-
ronal groups whose activity is sequentially switching. Thus, the 
main point of the WLC principle is the transformation of incom-
ing inputs into spatiotemporal outputs based on the intrinsic 

switching dynamics of the neuronal  ensemble. Such switching 
dynamics can be represented by many metastable states –  saddle 
equilibria or saddle cycles and many trajectories connecting them, 
i.e., many separatrices or heteroclinic orbits (Afraimovich et al., 
2004a; Muezzinoglu et al., 2010; see Figure 1 for an intuitive 
representation of this dynamics). The sequence can serve as an 
attracting set when the metastable sets satisfy some conditions 
(see below and Afraimovich et al., 2004b; Ashwin and Timme, 
2005; Rabinovich et al., 2006a, 2010b). The WLC network is able to 
solve the fundamental contradiction between robustness against 
noise and sensitivity to small informational signals because the 
metastable states – saddles – are determined by the stimulus sig-
nals (Rabinovich et al., 2008b). WLC dynamics can be described 
in the framework of different neuronal models. These could be 
rate models, Hodgkin–Huxley-type models, or even simple map 
models (Rabinovich et al., 2006c; see Figure 3 for an illustration 
of WLC dynamics in different models).

It is generally accepted that there is insufficient genetic infor-
mation to account for all the synaptic connectivity in the brain. 
Then, how can the functional architecture of WLC circuits be 
generated in the process of development? One possible answer 
has been found by Huerta and Rabinovich (2004) using a circuit 
of 100 rate model neurons randomly connected with weak inhibi-
tory synapses. The network demonstrated WLC dynamics after a 
period of Hebbian learning in the presence of weak noise. WLC 
can also be the result of local self-organization in networks of 
H–H model neurons that display STDP with inhibitory synaptic 
connections as shown in Rabinovich et al. (2006c).

As we already discussed, cognitive functions are usually exe-
cuted through robust transient dynamics. For example, under-
standing language and speech processing relies on the concurrent 
activation of multiple areas within a distributed brain network. 
Internal representations of words are not symbols but locations 
in state space. The lexicon or dictionary is a structure in this space, 

Figure 1 | Landscape metaphors for brain dynamics (A–C). (A) 
Representation of a simple attractor (stable fixed point) in the phase space of a 
dynamical system. (B) Representation of a metastable state (saddle fixed point) 
with two stable and two unstable separatrices (a separatrix is a surface or curve 

that refers to the boundary separating two modes of behavior in the phase 
space of a dynamical system). (C) Representation of a simple heteroclinic chain 
with two connected metastable states. (D) Representation of a stable 
heteroclinic channel – robust sequence of metastable states.
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An interesting example of possible applications of the WLC 
principle for understanding cognitive processes has been presented 
in the context of the study of the striatum (Ponzi and Wickens, 
2010). The striatum is the main input structure of the basal ganglia 
(BG), receiving excitatory inputs from the entire cerebral cortex 
(McGeorge and Faull, 1989). This neural system plays an important 
role in planning, decision making, and modulation of movement 
pathways, but is also involved in a variety of other cognitive pro-
cesses (Forstmann et al., 2008; Kubota et al., 2009). In humans the 
striatum is activated, for example, by stimuli associated with reward. 
Medium spiny neurons (MSNs), which account for 90% of striatal 
neurons, form inhibitory synapses with each other. This  anatomy 

and the processing rules are not symbolic specifications but the 
dynamics of the system which push the system state in a specific 
direction rather than in others (Port and van Gelder, 1995a). The 
general idea about the role of intrinsic transient brain dynamics 
for the execution of complex sequential behavior (such as playing 
a piece on the piano or delivering a speech) was formulated by 
Lashley (1951). He pointed out that such functions could not be 
executed solely by one response sending a proprioceptive signal 
back to the brain, which would then trigger the next response in the 
sequence. Behavior had to be controlled by a central, hierarchically 
organized program including multiple brain areas (Bornkessel 
and Schlesewsky, 2006).

Figure 2 | representative examples of dynamical images of brain functions. 
(1) Rhythmic oscillations (adapted from Gloveli et al., 2005; Walling and Hicks, 
2006). (2) Reproducible sequences of taste-specific switching patterns in the 
gustatory cortex (adapted from (Jones et al., 2007) and heteroclinic channel of 
saddle cycles (adapted from Rabinovich et al., 2008a). (3) Integration of different 

modalities – Heteroclinic Binding (Rabinovich et al., 2010a) for mutual modulation 
of coupled sequential dynamics. (4) Bistability and hysteresis (Jones and Hardy, 
1990; Rabinovich et al., 2010b). (5) Low-frequency oscillations and modulational 
instability in a network with non-symmetric inhibition (WLC; Rabinovich et al., 
2010b). (6) Intermittency of sequences (Rabinovich et al., 2010b).
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These modeling results demonstrate a good qualitative agreement 
with experimental studies and support a view of endogenously 
generated robust sequential dynamics in the striatum.

mental modeS. metaStaBle StateS. Sequential 
Switching
The concept of mental modes was introduced by James (1950) and 
is a central point in brain transient dynamics theory. Because the 
term is widespread in different contexts, to use it in a construc-
tive way we first need to explain our vision of this concept. As 
brain imaging shows (Friston, 2009), the execution of any mental 

has been interpreted in the past as a winner-take-all (WTA) 
 network. However, several experimental findings argue against this 
interpretation (Czubayko and Plenz, 2002; Tunstall et al., 2002; 
Koos et al., 2004; Taverna et al., 2004; Ponzi and Wickens, 2010): 
sparse connectivity with weak interactions, predominant one-way 
connections, and the presence of irregular firing (Wilson, 1993). 
A simulation of a striatal inhibitory network model composed of 
spiking neurons has shown that cells form assemblies that fire in 
sequential coherent episodes and display complex identity-tempo-
ral spiking patterns even when cortical excitation is simply con-
stant or fluctuating noisily (Ponzi and Wickens, 2010; see Figure 4). 

Figure 3 | Transition from multistability to WLC with the connection 
asymmetry as the control parameter. Panels show the bifurcation toward a 
heteroclinic chain in different models: a Lotka–Volterra model, a H–H model, and 
a rate model. The Lotka–Volterra model with three units (A–C), undergoes a 
simultaneous saddle-node bifurcation in the three corners of the shown phase 
space simplex; with increasing asymmetry of the inhibitory connections (red 
points – stable fixed points (SFP), blue points – saddles, green points unstable 

SFP). Numerical evidence for a similar bifurcation can be found in a system of 
realistic Hodgkin–Huxley neurons (g–i) coupled by inhibitory synapses. This is 
confirmed by a systematic reduction of the biophysical Hodgkin–Huxley model to 
an equivalent rate model (D–F) and a subsequent numerical bifurcation analysis 
[red and black crosses in (D–F)] denote the calculated SFPs – red crosses are 
stable SFP and black markers are SFP with at least one unstable direction 
(saddles or unstable SFP). Adapted from Nowotny and Rabinovich (2011).
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limited mental-attention and memory-(Kahneman, 1973; Banich 
et al., 2009; Martino et al., 2009; Slagter et al., 2010) and energy 
resources (for a review see Peters et al., 2004).

To describe mathematically the mental mode competition it is 
reasonable to separate two cases: (i) the intrinsic interaction inside 
the same modality (like odor, or gustatory encoding), and (ii) the 
interaction of mental fields corresponding to different modalities, 
i.e., perception, cognition, emotion, mental resources. In the sim-
plest approximation these modalities have their own phase sub-
space. The simplest model – canonic equations – considering both 
interactions within a modality and among different modalities, 
which is able to describe robust transient dynamics, can be written 
in the form of generalized Lotka–Volterra equations:
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where xi
l ≥ 0 represents the instantaneous amplitude of the (il)-

mode, t
i
 is a time constant that depends on the specific problem 

described (e.g., for sensory systems can be around 100 ms, for 
working memory (WM) 1–5 s, for resting-state dynamics about 
10 s), si

l ≥ 0 is the growth rate for the mode depending on the 
external stimulus, rij

l ≥ 0 and jij
lm ≥ 0 are the interaction strengths 

function is based on the dynamical interaction of many differ-
ent distributed functional networks of brain centers or neuronal 
groups. In general, these time-dependent distributed networks can 
be considered as mental modes. More specifically mental modes 
can be defined trough metastable states in the brain. Metastability 
imposes that there are semi-transient signals, which persist for a 
while and are different from the usual equilibrium state (Abeles 
et al., 1995). The metastable activity of the cortex can also be 
inferred from behavior (Bressler and Kelso, 2001). Metastability 
is a principle that describes the brain’s ability to make sense out of 
seemingly random environmental cues (Oullier and Kelso, 2006; 
Werner, 2007). The existence of mental metastable states is sup-
ported by interactions observed among diverse brain centers or 
neuron groups (Friston, 1997, 2000; Fingelkurts and Fingelkurts, 
2006; Gros, 2007; Ito et al., 2007; Sasaki et al., 2007), and it is the 
result of self-organization in very complex neuronal systems (see 
Figure 5). The temporal order of metastable states is determined 
by the functional connectivity of the underlying networks and 
their causality structure (Chen et al., 2009). Each metastable state 
i is represented in neuronal space by a distributed ensemble of 
excited neurons. We denote this ensemble as U

i
(k) where k is the 

index of the member of i-th ensemble.
For a coarse-grain description of mental dynamics, let us intro-

duce the concept of mental mode formally: a spatiotemporal mental 
mode i is x

i
(t)U

i
(k), where x

i
(t) ≥ 0 is the level of activity of i-th 

mode, in particular, it can be the average intensity of all voxels 
covering the spatial pattern U

i
(k) in an fMRI image at time win-

dow t + ∆t. Suppose that x
i
(t) are the axes of the phase space of the 

dynamical model, then metastable states x
i
 = const > 0 are saddles 

on these axes. Thus, the mental cooperative activity related to these 
metastable states, i.e., the spatiotemporal mental field (perception, 
cognition, or emotion) can be represented as Σ

i
x

i
(t)U

i
(k).

Below we wish to discuss mental mode competition. Why com-
petition? It is well accepted that excitation in neural networks is 
responsible for the transduction of information to the right place 
at the right time and inhibition is responsible for non-trivial infor-
mational dynamics (see Buzsaki, 2006). As we know from many 
experiments (see above) this non-trivial dynamics is a competitive 
dynamics. In very complex systems, like the brain, the competition 
is hierarchical and related to a general “ecological” problem, i.e., the 

Figure 4 | irregular switching between firing and quiescent states in an 
inhibitory striatal network model of 500 neurons under a fixed excitatory 
input condition. Different colors correspond to randomly selected neurons in 
the network. Adapted with permission from Ponzi and Wickens (2010).

Figure 5 | example of resting-state modes in the brain. (A) Activity as 
measured from a MRI signal recorded at rest from an example seed region 
within the motor cortex. (B) Time series of intrinsic low-frequency oscillation 
activity fluctuations from the seed region. (C) The correlated network of 
regions reveals multiple cortical areas within the motor system as well as 
regions within the cerebellum (not shown). Adapted with permission from 
Buckner (2010); see also Tomasi and Volkow (2010).
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The mathematical object that represents robust transient activity 
in the phase space of the corresponding model is a SHC, consisting 
of metastable states – saddle sets –, their vicinities, and the separa-
trices connecting them. A SHC is characterized by two properties: 
(i) a sufficiently strong convergence of the phase volume in the 
vicinity of each metastable state (saddle) with respect to the stretch-
ing along unstable separatrices in the case when these separatrices 
are one-dimensional; and (ii) the relatively long (but finite) passage 
(or exit) time that the system spends in the vicinity of a saddle in 
the presence of moderate noise.

To enlighten the conditions on the stability of one sequence of 
metastable states, we consider an elementary phase volume in the 
neighborhood of each saddle that is compressed along the stable 
separatrices and stretched along the unstable separatrix. Let us 
order the eigenvalues of saddle i as

 
l l l l1 2 30i i i

n
iRe Re Re> > ≥ ≥ ≥{ } { } { }…  (6)

which imposes only one unstable manifold to each saddle. The 
number

 
n

l

l
i

i

i

Re= − { }2

1  
(7)

is called the saddle value. If n
i
 > 1, then the compression along 

the stable manifolds dominates the stretching along the unstable 
manifold, and the saddle is called as a dissipative saddle.

If ∏ >=i
P

i1 1n  (where P is the number of metastable states along 
the heteroclinic chain), the trajectories from the vicinity of a 
heteroclinic chain cannot escape from the channel, providing its 
robustness.

Sequential working memory capacity
The analysis of the conditions for the structural stability of transient 
(sequential) dynamics allow us the possibility to explain phenom-
ena like the finite capacity of our sequential WM. WM is the ability 
to transiently hold and manipulate several items in the mind, which 
are involved in the immediate information processing or actions 
such as thinking, planning, and eventually, behavioral output. Tasks 
involving WM include, for example, remembering a sequence of 
statements that we recently heard in a lecture or following driving 
directions to an unfamiliar place. Language, as sequential activity, 
is also based on WM. However, the capacity of WM is limited and 
that is one reason why the metaphor “blackboard of the mind” 
became popular to describe WM.

Information processing related to WM activity can be repre-
sented in an abstract space (the phase space of the network that 
implements the WM) as a continuous flow of “liquid phase” (Maass 
et al., 2002): the incoming information encoded in spatiotemporal 
manner excites the specific network with a functional reverber-
ate loop that sustains the corresponding information item for a 
finite time (based on a transient attractor). The item networks are 
inhibitory interconnected with each other and build a macroscopic 
network that keeps the whole sequence of items. The cooperative 
dynamics of this macro-network can be based on the WLC principle 
and guarantee that the sequential items are recalled in the right 
order. Thus, all three processes – storing, maintaining, and retriev-
ing sequential information, in fact, can be thought as continuous 

between the modes. Here l, m indicate the modality and i, j indi-
cate the modes within the same modality. The parameters rij

l  and 
jij

lm can also depend on the stimuli. In the case of a single family 
modality, i.e., L = 1 (for example, a single sensory processing) we 
have the traditional Lotka–Volterra model (see Muezzinoglu et al., 
2010). The number of metastable states in this model is more or 
equal than N.

One of the remarkable features of such models is the existence 
in the phase space (for a wide range of control parameters) of a 
SHC that corresponds to robust sequential switching from one 
metastable state to other (Afraimovich et al., 2004b; Rabinovich 
et al., 2006b, 2010a; Bick and Rabinovich, 2009b).

In the case of interaction among modalities from different fami-
lies (like cognition and emotion) we can write a phenomenological 
model in the form (Rabinovich et al., 2010b):
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We introduce here the following notation for the variables that 
describe different modalities: A cognition, B emotion, R resources. 
The proposed model (2–5) reflects a mutual inhibition and excita-
tion within and among different families of modes, and takes into 
account three types of interactions: (i) a competitive interaction 
within each family, (ii) the interaction through mutual excitation 
among families, and (iii) the competition for resources that are par-
tially separated for different families. The mode dynamics depend 
on the inputs through parameter S (that may represent, for example, 
stress, cognitive load, physical state of the body). The variables RA

i  
and RB

i  characterize the K
A
 and K

B
 resource items that are allocated 

to different families, e.g., cognition and emotion (Banich et al., 2009; 
Martino et al., 2009). The vectors R

A
 and R

B
 are the collections of 

these items that gate the increments of the cognitive and emotional 
modes in competition. The characteristic times u of the different 
resources may vary. The coefficients f

A
 and f

B
 determine the level 

of competition among different families for the “brain community 
resources.” Each process takes place in the presence of noise denoted 
by the h and d terms in the equations. The values of the increments 
s

i
 and z

i
 depend on the stimuli and/or the intensity of the modes 

from different modalities. The only design constraint that we can 
impose on the increments s

i
 and z

i
 is that they must stay positive.
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about seven. Let us explain this result. Sequential WM dynamics 
is separated into two stages: the storage of sensory information 
and its retrieval. Storage means initiation of a specific pattern in 
the phase space of the corresponding dynamical system by both 
sensory input and the contents of WM. Based on the hypoth-
esis that WLC between different informational items is the main 
mechanism for the correct retrieval in sequential WM, the authors 
in Bick and Rabinovich (2009a) have analyzed the structural sta-
bility of sequential switching, i.e., the correct reproducibility of 
the sequence of the informational items (which is the key prop-
erty for memory performance). The stability conditions require 
a strong enough inhibition in the WM random network and, 
what is a key point, the level of the inhibition increases exponen-
tially with the WM capacity. If we suppose that the level of r

ij
/

r
ii
 is about 20 (large enough from the neurobiological point of 

view), the number of successfully recalled informational items, 
according to the exponential law, has to be between seven and 
eight. Recently, a functional magnetic resonance imaging (fMRI) 
study (Edin et al., 2009) has provided experimental evidence for 
the dependence of the capacity limitation for visual WM on the 
level of inhibition. WM capacity depends on the subject’s indi-
viduality that has to be reflected in the model’s architecture, i.e., 
the existence of subject-specific connections (parameters). WM 
capacity also depend on the environment - external inputs (S) 
that modulate the parameters, e.g. the connection strength that 
models the lateral inhibition r

ij
 = r

ij
(S).It is very important to 

emphasize that the type of modulation by external stimuli also 
depends on the individuality. For example, the personal percep-
tion of the same pain stimulus depends on the level of cognitive 
control that is another modulator of the inhibition. If we assume 
the relationship between the level of pain and inhibition, the sug-
gested model can be used to predict the dependence of working 
memory capacity in the presence of pain.

mutual modulation of coupled Sequential 
dynamicS. Binding
Suppose we are testing a fine wine. Although the flavor of wine is 
typically perceived as a single perceptual experience, flavor per-
ception reflects processing of inputs from multiple sensory sys-
tems: from gustation (through the stimulation of receptors on the 
mouth and tongue), smell (through the stimulation of receptors 
in the nose), and oral somato-sensation (through the stimulation 
of diverse receptors in the oral cavity, providing information about 
viscosity, temperature, pungency, spiciness, etc). Even though they 
derive from signals transmitted over several nerves, flavors often 
appear remarkably coherent in phenomenal perception. Integrating 
information across the senses enhance our ability to detect and 
classify objects in the environment. For example, to find flowers 
honeybees use the same multimodality approach – their sensory 
and central systems process in an integrative way at least three flows 
of sensory information, i.e., the color, odor, and taste of flowers. 
How does the brain do it?

As we discussed above, multi-electrode recordings from dif-
ferent areas of sensory systems in different animals have shown 
that sensory information on the first level of processing is encoded 
as spatiotemporal patterns by neural networks that implement a 

transient dynamical activity of hierarchically organized functional 
neuronal networks. This perspective has also been discussed in 
other models based on echo-state networks (Sussillo and Abbott, 
2009; Pascanu and Jaeger, 2011).

As many experiments show (see for a review Jensen and Mazaheri, 
2010), functional inhibition is reflected in oscillatory activity in the 
brain at the frequency band of 8–13 Hz (alpha rhythm). The alpha 
activity can facilitate sequential inhibition by reducing the activity 
of a given network. There are several models of WM based on the 
idea that all steps of WM information processing in the engaged 
distributed networks is reflected by neuronal synchronization in 
the gamma band (30–80 Hz) accompanied by a theta (5–8 Hz) 
or an alpha band (Lisman and Idiart, 1995; Roopun et al., 2008; 
Tort et al., 2008; Schroeder and Lakatos, 2009). It is reasonable to 
hypothesize that such synchronization leads to a temporal coordi-
nation between the fast one-item processing and the slow sequential 
item interaction.

One can expect that this coordination supports the robustness 
of information processing and contributes to a larger WM capacity 
(Palva et al., 2010). Now we show that sequential WM capacity in 
the context of our model is limited by conditions of the retrieval 
process stability (Bick and Rabinovich, 2009a).

The stability conditions of the models that we have discussed 
provide us with a very powerful tool to address and predict several 
dynamical aspects of brain activity. In particular, we can calculate 
how long a typical heteroclinic channel can be, i.e., how many steps 
the sequential switching can have. Note that we will not consider 
the time duration of the WM, this problem has been addressed in 
the context of several neuronal and synaptic mechanisms (Mongillo 
et al., 2008).

The capacity of sequential WM is defined as the number of 
items that can be recalled correctly after a WM task, and varies 
amongst different individuals, age and mental diseases. Numerous 
studies have led to the generally accepted view that the effective 
capacity for healthy subjects ranges between three to seven items 
(Swanson, 1999; Oberauer and Kliegl, 2006; Rouder et al., 2008; 
Edin et al., 2009). This limit has coined the term “magical number 
seven” (Miller, 1956) in conjunction with WM. In fact, this number 
is not strictly seven, but something in the range 3–7 depending on 
the subject.

The dynamical model for sequential WM that we would like 
to discuss here is based on WLC between informational items 
(Bick and Rabinovich, 2009a). These items are represented in 
the phase space by saddle fixed points and the mnemonic recall 
by a trajectory in a SHC (Rabinovich et al., 2008a,b). Note that 
there have also been several efforts to explain sequence genera-
tion with attractor networks based on synaptic delay and recur-
rent synaptic integration (Sompolinsky and Kanter, 1986; Rigotti 
et al., 2010).

Under certain simplifying assumptions, there is an upper 
bound on the number of items that can be stored in this sequential 
WM model when implemented by inhibitory-coupled neuronal 
clusters. Dynamics of such information items can be described 
by the model (1) with L = 1. The authors of Bick and Rabinovich 
(2009a) assumed that the relative connection strengths are sam-
pled from uniform distributions and cannot exceed an order of 
magnitude. They found that the bound for the number of items is 
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poSSiBle dynamical origin of low-frequency 
reSting-State oScillationS
Let us discuss briefly the spontaneous mental dynamics in a sta-
tionary environment where the brain is not engaged in a particular 
cognitive function, i.e., resting-state brain dynamics (Lewis et al., 
2009). The model (2)–(5) is very convenient for the analysis of such 
type of dynamics. We can choose the parameters of the model so 
that the basic dynamics of both cognitive and emotional modes 
demonstrate simple recurrent activity (pulsations with a character-
istic time scale of 2–3 s). Such “independent” emotional and cogni-
tive activity has been observed during weak competition between 
“cognitive” and “emotional” families. When competition passes the 
critical value, this simple independent activity becomes unstable 
due to a modulation instability that leads to stable low-frequency 
oscillations (LFO), as shown in Figure 2, row 5 (Rabinovich et al., 
2010b). The averaged time series indicate that this robust modula-
tion process is similar to the quasi-periodic LFO observed in Fox 
et al. (2005).

An increasing number of EEG and resting-state fMRI studies in 
both humans and animals confirm spontaneous LFO in cerebral 
activity at 0.01–0.1 Hz. This represents a fundamental component 
of brain functioning. However, the dynamical nature of LFO is 
unclear and has produced a lot of debates. In general, the LFO 
fluctuations observed with fMRI are not the same as the underly-
ing neuronal fluctuations because they have been passed through a 
hemodynamic response function. Nevertheless some experiments 
(Biswal et al., 1995; Salvador et al., 2005; Schutter et al., 2006; Ben-
Simon et al., 2008) support the hypothesis that LFO are correlated 
with the neural network’s activity, i.e., mode cooperative dynamics 
(e.g., due to their modulation or synchronization). The modula-
tion instability that has been observed in Rabinovich et al. (2010b) 
discloses a plausible dynamical origin of LFO in the resting-states, 
possibly related to the “cortical–subcortical cross-talk” (Schutter 
et al., 2006).

oBSeSSive–compulSive diSorder tranSient dynamicS
The Obsessive–compulsive disorder (OCD) is a type of anxiety 
disorder that traps people in endless cycles of repetitive feelings, 
unwanted thoughts, and unwanted repetitive acts. The compul-
sive rituals (Huppert and Franklin, 2005; Hollander et al., 2007) 
are performed in an attempt to prevent obsessive thoughts or 
make them go away. To model OCD, authors (Rabinovich et al., 
2010b) have introduced a sequence of metastable states (sad-
dles), in the cognitive phase subspace, which have not one- but 
two-dimensional unstable separatrices, by construction. One of 
these dimensions forms the way leading to the next cognitive 
metastable state along a cognitive sequence, whereas the second 
unstable one targets the emotional saddle that represents the entry 
to the ritual, which is modeled as a different stable chain of the 
“emotional” metastable states. The ritual sequence terminates at 
a saddle that has many unstable separatrices, each yielding to 
a cognitive mode (see Figure 2, row 6). As a result, the OCD 
dynamics is represented by a (N + M) – dimensional transient, 
which qualitatively distinguishes itself from the normal behavior 
and from other psychiatric disorders characterized by a specific 
instability that leads to uncertainty.

WLC interaction of different dynamical modes (variables). In the 
phase space, such dynamics is represented by a heteroclinic chan-
nel. Motivated by the multi-sensory dynamics observed in neural 
systems, authors in Rabinovich et al. (2010a) build a model that 
describes the heteroclinic integration of channels representing dif-
ferent modalities (binding dynamics). This model is described by 
model (1) with L > 1.

The main results of theoretical and computational analyzes in 
Rabinovich et al. (2010a) are the following: (i) for a wide range of 
control parameters, i.e., levels of excitation and inhibition, in the 
phase space of model (1) there exists an object that the authors 
named multimodality heteroclinic channel, and the trajectories in 
the vicinity/inside of this dynamical object represent an integrated 
(binded) information flow of different modalities (see Figure 2, 
row 3); (ii) the time series and spectrum of these multimodality-
trajectories demonstrate new features – mutual modulation and 
regularization of the different modalities and, correspondingly, 
the appearance of new components in the power spectrum (see 
Figure 2, row 3). The properties displayed by the model can be key 
features for the next step of multimodality information processing, 
such as object recognition, speech generation etc. The proposed 
dynamical mechanism for binding accounts for different levels of 
temporal hierarchy, from milliseconds to minutes.

emotion–cognition Sequential dynamicS
The relationship between emotion (i.e., spontaneous motivation 
and subsequent implementation of a behavior) and cognition (i.e., 
complex problem solving by information processing) is very diverse 
and multidimensional. The main mechanisms of cognitive-emo-
tional interaction are based on the involvement of multiple brain 
centers, e.g., amygdala and prefrontal cortex participate in both 
emotion and cognitive networks (Phelps, 2006; Adolphs, 2008), 
and the high degree of connectivity between different brain areas 
(Ranganath et al., 2005; Tomasi and Volkow, 2010). The strong 
influence of emotion to cognition is well known (some times the 
result of it is very unpleasant; Quartz, 2009). The more intrigu-
ing aspect of the interaction between emotion and cognition is 
the control of emotion by cognition. On the neurobiological level, 
this control is mainly due to prefrontal activity inhibiting relevant 
subcortical emotion processing regions.

Both emotion and cognition are sequential dynamic processes 
resulting from interactions of different brain subsystems in time 
(Scherer, 2001). Sequential transient dynamics of emotion–cogni-
tion interactions are directly relevant to action control, in terms 
of memory, decision making, reasoning, attention, and emotion 
regulation. As we illustrate below, the model (2)–(5) with hier-
archical competition can be regarded as a normal or canonical 
form for the description and prediction of the temporal evolution 
of cognitive-emotional states. Crucially, some of the fundamen-
tal instabilities that arise in these coupled systems are remarkably 
similar to endogenous activity seen in the brain (Rabinovich et al., 
2010b). Furthermore, by varying a small subset of the system’s 
parameters it is possible to produce bifurcations and changes in the 
metastable sequential dynamics, which can be a phenomenologi-
cal explanation of pathological brain states seen in psychiatry. We 
discuss some examples below.
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concluSion
The robustness and reproducibility of mental transients that we 
have discussed in this review are important features of global brain 
activities and functions. These features are based on several prin-
ciples of brain dynamics that we would like to remind here: (i) the 
self-organization of a cooperative activity of different elements 
and, in particular, the formation of mental modes and metastable 
brain states; (ii) the limitation of mental and energy brain resources 
(ecological principle); and (iii) the hierarchy of the brain organi-
zation – structural, temporal, and functional. These principles are 
strongly related to each other, as one can see on the example of 

the hierarchical competition that we have discussed in this review. 
The models discussed in this paper are not intended to provide a 
quantitative description of mental processes. However, such models 
reflect the type of dynamics observed in many experiments, provide 
a theoretical framework to understand it, and some of them can lead 
to a more quantitative description of mental activity in the future.
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