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inverse inference is thought to be given shape by conforming to the 
Bayesian principle that allots the probability to the possible causes 
that may have led to the given results (Rieke et al., 1997; MacKay, 
2003; Beck et al., 2008; Quiroga and Panzeri, 2009; Jazayeri and 
Shadlen, 2010; Pillow et al., 2011).

For this study, we design a basic Bayesian algorithm that esti-
mates the lapse of time from neuronal population signals averaged 
over a short interval, and apply it to neuronal spike trains recorded 
from the pre-SMA, previously found to exhibit salient modula-
tion in firing activity over several seconds during which monkeys 
were kept waiting for action (Mita et al., 2009). In the experiment, 
monkeys were requested to recall a pre-assigned interval of time 
selected from several alternatives. We attempt to estimate not 
only the current lapse of time, but also the scheduled total waiting 
time-interval, both of which are needed for the agent in the brain 
that determines the timing of action. In the population analysis, 
we determine whether or not the neuronal representation of the 
elapsed time is influenced by a scheduled total time-interval in each 
waiting trial; we examine whether the elapsed time is represented 
as actual passage of time or relative to the entire scheduled interval.

Results
In a previous study (Mita et al., 2009), we reported that neurons 
in the pre-SMA exhibited systematic temporal variation in their 
firing rates while monkeys were estimating time-interval. In this 
experiment, the monkeys were trained to hold down a key for longer 
than a pre-assigned time-interval that was selected from several 

IntRoductIon
The neural basis of temporal processing has gathered increasing 
interest in the field of neuroscience (Coull et al., 2004; Mauk and 
Buonomano, 2004; Buhusi and Meck, 2005; Buonomano and Laje, 
2010). Recent studies have discovered brain regions that exhibit 
activity correlated to the elapsed time while animals were kept 
waiting for several seconds for a variety of actions; for instance, 
the basal ganglia and the cerebellum are activated during time 
perception tasks (Rao et al., 2001; Matell et al., 2003; Meck et al., 
2008; Jin et al., 2009), the prefrontal and parietal cortices exhibit 
neuronal climbing activity in delay response tasks or motor plan-
ning (Niki and Watanabe, 1979; Brody et al., 2003; Durstewitz, 
2003, 2004; Leon and Shadlen, 2003; Reutimann et al., 2004), and 
the pre-supplementary motor area (pre-SMA), as well as premotor 
and primary motor areas exhibits both ascending and descending 
neuronal activities in an interval timing task (Lebedev et al., 2008; 
Mita et al., 2009; Rickert et al., 2009; Kilavik et al., 2010).

Rather than detecting neuronal involvement in timing behavior, 
we attempt here to decode the lapse of time from neuronal popula-
tion signals throughout the time period during which subjects were 
required to estimate the passage of time. We reason that it should 
be possible to assess the passage of time, by deciphering temporal 
information hidden in the noisy firing of a population of neu-
rons, enabling the monitoring of time as if watching an hourglass. 
Accordingly, we apply a theoretical approach to determine the lapse 
of time in the range of seconds from time-dependent tendencies 
in the overall properties of the firing of individual neurons. Such 
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alternatives, including 4 and 8 s. Each trial began when the monkey 
pressed a hold key. Instruction light designating the waiting-interval 
was illuminated 1–2 s later for 2 s. The monkeys were rewarded 
with juice 0.5 s after releasing the key if they held it longer than 
the pre-assigned time-interval, and became skilled at these tasks 
with a success rate of over 80%. Neuronal firing data were obtained 
using a conventional single-unit recording method. The presumed 
single-neurons to which spikes were sorted out are called units. In 
the present analysis, we used 25 units that were selected as being 
significantly task-related (the Wilcoxon signed rank test, p < 0.01; 
Materials and Methods). While the previous study explored sin-
gle-neuronal activities correlated to the passage of time, here we 
attempted to decode time from activity of neuronal populations.

decodIng the elapsed tIme fRom neuRonal populatIon sIgnals
First, we devised an algorithm for decoding the lapse of time 
(Figure 1; Materials and Methods) and applied it to an ensemble 
of 25 units that exhibited salient modulation in firing activity over 
several seconds. Simple average of their population activities was 
not an adequate measure to estimate the time, because the average 
activity indicated no prominent dependency on the time (Figure 2). 
By contrast, the Bayesian “TIME DECODER 1” developed here 
allowed us to draw an inference about the elapsed time by combin-
ing information of specific temporal variation in individual unit 
activity. Here, the passage of time was estimated only from N = 25 
spike trains that were obtained by joining the recordings of differ-
ent units across different trials. After selecting a single set of spike 
trains as a test set, the Bayesian decoder was adjusted to the rest 
of spike trains that were not used for the test set. The decoding 
capability was evaluated by repeating this validation test 100 times 
(Materials and Methods).

TIME DECODER 1 estimates the conditional probability of the 
elapsed time t given the population activities 
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actual time T, which are given by the numbers of spikes that N = 25 
units have generated in a 1-s interval of [T-1, T]. Here, the time 
decoding algorithm was independently applied to an individual 
waiting task of S = 4 or 8 s. For each test set of population signals 
derived from the actual elapsed time T, we selected the conjectured 
time t = t* that rendered the highest confidence level in the decoder. 
The conjectured times t* obtained for 100 test sets of the population 
signals were distributed narrowly around the actual time T and 
typically deviated on the order of 1 s (Figures 3A,B). The first and 
last time boxes gave higher confidence than others. This is presum-
ably because a time box at each end has only one neighboring box, 
and accordingly the probability to leak out is smaller.

In addition, we examined the manner in which the accuracy 
in estimating time depends on the number of units (Figure 3C). 
Namely, we measured the error of the conjectured time t* from 
the actual time T by changing the number of units. For the case of 
N < 25, we randomly selected smaller subset of units. In these cases, 
the prediction accuracy fluctuated according to the selection of 
ensembles but it did not depend on particular units; this indicates 
that time is not represented at the single-unit level but is distributed 
over many units. The cases for N > 25 were tested by employing 
multiple spike trains from every unit and virtually regarding them 
as independent neuronal data. The prediction accuracy increased 
with the number of neurons.

analyzIng neuRonal codIng of the elapsed tIme and 
scheduled tIme-InteRval
Next, we attempted to simultaneously estimate the scheduled 
waiting time-interval s as well as the elapsed time t by devising 
“TIME DECODER 2” (Figure 4; Materials and Methods). This 
algorithm allows us to estimate the elapsed time t = t** using 
only signals that have rendered the correct conjecture of the 
scheduled interval, s* = S (Figure 5A). The distribution of t** was 
very close to that of t* obtained with TIME DECODER 1 for each 
scheduled time-interval S = 4 or 8 s (Figure 3). Exclusive infor-
mation that TIME DECODER 2 provides is the inference of the 
scheduled waiting time-interval, which is obtained by marginal-
izing the conditional probability distribution (Figure 4C). The 
percentage of correctly hitting the actual waiting time-interval, 
s* = S, turned out to be significantly high (p ∼ 0.7), showing that 
the scheduled waiting time-interval S can be decoded from the 
activities of only N = 25 units even in the middle of the waiting 
period (Figure 5B).

In addition, TIME DECODER 2 provided us more intriguing 
information of the manner in which the time is encoded in neu-
ronal populations. This information was revealed by estimating 
the elapsed time t under the presumption that the scheduled 
waiting time-interval s is different from the actual S: if the con-
jectured time t indicates the original lapse of time T indepen-
dently of the presumption of the entire waiting time-interval s, 
we should conclude that the neuronal populations encode the 
raw physical time. However, it turned out that the conjectured 
time t was scaled with an assumption about the entire scheduled 
interval s: the elements of the confusion matrix representing 
rescaled time schema, t/s = T/S, indicated the higher probability 
than the elements representing the raw physical time schema, 
t = T (Figure 5C). This fact implies that the neuronal ensemble 
is gaging the passage of time relatively to the entire scheduled 
interval (Renoult et al., 2006).

To visualize the neuronal encoding of the lapse of time, we 
mapped the temporal variation of the population activities in 
N-dimensional state-space onto a plane of the first two principal 
components (Nicolelis et al., 1995; Serruya et al., 2002): the neu-
ronal trajectories of two waiting tasks ran almost in parallel, with 
the passage of time in the 4-s task moving at double the speed 
of the 8-s task (Figures 6A,B). This indicates that the neuronal 
populations represent the passage of time in a manner relative 
to the entire scheduled waiting-interval, T/S, rather than the raw 
physical time, T (Figure 6C). For 100 sets of sample trajectories 
for 4- and 8-s tasks, we compared the preference to either the raw 
physical timescale or the relative timescale, which is determined 
by the shorter average distance in the two-dimensional plane con-
necting either T = 1, 2, 3, and 4, or T/S = 1/4, 1/2, 3/4, and 1. The 
majority of the sample datasets exhibited the preference for relative 
time coding (77/100 samples), indicating again that timing is gaged 
in the relative timescale (Chi-squared test, p < 0.01).

analyzIng neuRonal data by alIgnIng at the onset of 
movement
In the above, we have shown the results of analysis performed on 
population signals aligned at the onset of the cue signal. We also 
performed the same analyses on the data aligned at the time of key 
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dIscussIon
In the present study, we developed a method for decoding time and 
applied it to neuronal population signals recorded in the pre-SMA. 
The decoding analysis provided two compelling conclusions with 
respect to the participation of the pre-SMA in interval timing. 
First, activity of the neuronal ensemble represents not only the 
lapse of time but also the scheduled waiting time-interval in each 
trial. These two pieces of information are necessary for an agent 
that determines the timing of action without receiving any infor-
mation from external clocks. Second, the lapse of time is gaged in 
a manner scaled relative to the entire waiting time-interval, rather 
than in the raw physical timescale. Such representation of time is 
close to our naive sense of timing (Allan, 1979; Renoult et al., 2006; 
Brown et al., 2007).

In conventional neurophysiological analyses, neuronal correlates 
to the animal’s behavior are detected by superposing neuronal spike 
trains obtained from typically tens of repeated trials. The trial aver-
age is a standard method for removing high single-trial variability 
of the neuronal activity (Churchland et al., 2010). Here we adopted 
a method of population decoding in analyzing the neuronal activity 
in waiting time task. The knowledge that is added to the averaging 

release movement, in which case the time is measured  retrogressively 
(Figure 7A). Here, we summarize quantitative results obtained by 
the data alignment at movement onset.

Average activity of neuronal population activities neither indi-
cated prominent dependency on the time (Figure 7B). It is note-
worthy that their variance decreased in time until approximately 
1 s prior to the initiation of motor action (Figure 7C).

The accuracy of decoding time using the two kinds of time 
decoders did not exhibit any notable difference between the cue 
onset and the motion onset analyses. In the state-space analysis 
measuring the orbit distance in the plane of two principal compo-
nents, we observed subtle differences: in the analyses of cue onset 
data (Figure 6), the distances of the physical and relative time pairs 
were 17.1 and 13.6, and the sample pairs exhibiting shorter distances 
were 23 and 77, respectively. When analyzing movement onset data, 
we measured the distance retrogressively from the motion onset. In 
this case, the distances of the physical and relative time pairs were 
14.3 and 12.4, and the sample pairs exhibiting shorter distances 
were 36 and 64, respectively. The relative time coding is dominant 
in both cases, but the latter results indicate that the physical time 
coding is slightly emerging in the late phase of the waiting period.
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Figure 1 | A device for decoding the elapsed time from neuronal 
signals. (A) Lapse of time in the waiting-interval and neuronal population 
activities. Neuronal spikes were recorded while monkeys held down a key 
longer than the pre-assigned waiting time-interval S = 4 or 8 s. Population 
signals 

�
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N= ( , , , )1 2  are referred to as a set of firing rates or the numbers 
of spikes elicited from N neurons in a 1-s interval just before the elapsed time 
T. (B) Schematic representation of neuronal population-activity trajectory in 

the N-dimensional state-space. A vector 


aT  moves differently from trial to trial. 
The points connected by green arrows schematically represent trajectory of 
one trial. The colored ellipses represent their distributions, p a TT( )



|  (Eq. 3). (C) 
The probability p t aT( )|



 allotted to every elapsed time t given the population 
signals recorded at the actual time T (Eq. 1). For a given set of signals, the 
elapsed time t* is conjectured as the time that rendered the highest 
confidence (Eq. 4).

Shinomoto et al. Deciphering time from neuronal signals

Frontiers in Computational Neuroscience www.frontiersin.org June 2011 | Volume 5 | Article 29 | 3

http://www.frontiersin.org/Computational_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


The present study has attempted to determine the timing of 
action from neuronal signals, under the assumption that the wait-
ing task has already started. In considering real applications, it is 
equally important to know the task state itself, namely to determine 
whether or not the waiting task is currently running, as has been 
investigated by Achtman et al. (2007). It is worthwhile to examine 
the possibility of extending the present analysis into this direction.

The algorithms we implemented in this analysis are basic, and 
thus decoding efficiency can be improved by more complicated 
analyses. For the purpose of simply enhancing the capability in 
estimating time, we may consider introducing the Bayesian updat-
ing method that refers to the history of the neuronal states. As we 
were concerned with the neuronal time codes here, we attempted 
to determine time solely from neuronal population signals averaged 
over a short interval, without referring to its history. Even under this 
condition that limits the information to the activity in 1 s, it is still 
possible to overcome fluctuation by smoothing sequential states and 
selecting the essential signals as suggested for improving the current 
BCI/BMI technology (Nicolelis et al., 1995; Carmena et al., 2003; 
Lebedev and Nicolelis, 2006; Santhanam et al., 2006; Cunningham 
et al., 2009; Jacobs et al., 2009; Rickert et al., 2009; Bansal et al., 
2011; Pillow et al., 2011). In the present analysis, we were rather 
free from such potential fluctuation as we used a small number of 
units that were already selected as being significantly task-related. 
In an actual situation in which signals are recorded from randomly 
sampled units that are not entirely correlated to the task, it would 
be worthwhile to consider introducing more elaborate techniques.

There has been a great deal of debate on the neuronal mecha-
nisms of interval timing (Pillow et al., 2008; MacEvoy and Epstein, 
2009). Although we have assumed here that timing is represented in 
the temporal modulation of the neuronal firing rate, there are other 
possible means that may account for determining a time-interval, 
such as assembling multiple oscillators (Miall, 1989, 1993; Matell 
and Meck, 2004), using delay lines (Fiala et al., 1996; Ivry, 1996) or 
observing complex neuronal states (Karmarkar and Buonomano, 
2007; Szátmary and Izhikevich, 2009).

Rather than proposing a specific model, we propose here a hypoth-
esis that will allow consistent comprehension of the experimental 
facts revealed in the present analysis: we focus on a fact that there are 
units that display both ascending and descending activities, and the 
firing frequencies of those different neurons are approaching similar 
values, as evidenced by the decrease in the deviation of firing rates 
among various units (Figure 2B). By aligning data at the time of move-
ment onset, we observed that the frequency condensation is occurring 
approximately 1 s prior to the initiation of motor action (Figure 7A).

We wish to argue here a theoretical possibility of such frequency 
condensation for being related to movement initiation signal. It is 
noteworthy that frequency condensation of regular spike trains 
may induce coincidental occurrence of spike (Hopfield and Brody, 
2001). Although interesting, this issue is based on firing regularity, 
which we found to be absent by using the metric of local variation 
(Shinomoto et al., 2003, 2009). If the units with ascending and 
descending activities consist of different types of neurons, such 
as excitatory and inhibitory neurons (Leon and Shadlen, 2003; 
Mongillo et al., 2008; Gavornik and Shouval, 2011), their frequency 
condensation must induce large modulation in outgoing signals. 
It has been argued that frequency condensation of excitatory and 

analysis is the range of possible deviation of predicted time given 
a set of population data. One merit of our decoding analysis is 
the potential application in the brain–computer or brain–machine 
interface (BCI/BMI) for online prediction of movement timing.

The time-estimation accuracy of the order of 1 s could be rated 
highly in consideration of the fact that the decoding was performed 
using only N = 25 spike trains obtained from a single-trial. It should 
be noted, however, that the pre-SMA is not an exclusive area that 
participates in interval timing. Rickert et al. (2009) achieved accu-
rate time inference from single-unit activities in premotor and pri-
mary motor areas. In that analysis of the behavioral tasks of shorter 
timescale, the temporal resolution was higher than the one achieved 
by the current analysis of pre-SMA in the tasks of longer timescale. 
It could occur that the different areas are taking over portions of 
time-estimation according to different timescales.

Reading intended motion from signals in the brain forms an 
important part of BCI/BMI, in which reliable identification of the 
intended movement from single-trial neuronal activity is crucial. On 
the other hand, the across-trial variability of single-neuron’s activity 
compromises the accurate estimation of the movements. Previous 
studies have demonstrated that this inaccuracy inherent in the single-
neuronal activity could be overcome by analyzing the activity of the 
neuronal ensemble (Nicolelis et al., 1995; Serruya et al., 2002; Yu et al., 
2009). The present study has demonstrated that the same approach 
makes it possible to reliably predict the timing of movement initia-
tion. BCI/BMI performance would be improved by combining the 
estimation of movement and time of the voluntary action.
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Figure 2 | Temporal modulations of neuronal firing rates. (A) Temporal 
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at the cue onset for each neuron. The thick line represents the firing rate 
averaged over all neurons. (B) SD of the firing rates of 25 units.
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Neuronal firing data were obtained using a conventional 
 single-unit recording method. Extracellular recordings of sin-
gle-neuron discharges were made using a standard technique 
of transdural recording (Evarts, 1968). Glass-insulated Elgiloy-
alloy microelectrodes, with impedances of 1.5–3 MΩ (measured 
at 1 KHz) were used. Up to two neuronal discharges were col-
lected from a single recording using a window discriminator that 
produced a pulse for each valid spike that met both amplitude 
and time constraints (Bak and Schmidt, 1977). Extreme care was 
taken to sort out spikes belonging to each single-neuron, avoid-
ing spurious contamination of spikes from other neurons. This 
was confirmed by real-time, high-speed monitoring of spikes on 
a computer display, which were triggered by each sorted pulses. 
The spiking signals were recorded while the waiting tasks were 
repeated dozens of times (ranges from 12 to 91 times, average 44). 
For the present analysis, we selected 25 units that were significantly 
task-related, exhibiting a significant modulation of the firing rate 
following the cue signals (the Wilcoxon signed rank test, p < 0.01) 
from among 200 units in the pre-SMA examined in the former 
study under a less significant criterion (p < 0.05). We analyze spike 
trains recorded from successful trials of 4- and 8-s tasks in which 
the holding times were distributed over a range of 5.0 ± 0.6 and 
9.3 ± 1.0 s (mean ± SD), respectively.

pRoceduRes foR tIme decodIng and Its vaRIatIon
We implement algorithms for decoding the lapse of time and 
applied them to the population signals. As neuronal signals are 
available here only from single-unit recordings, we construct virtual 
population signals by collecting single spike trains from individual 

inhibitory neurons may facilitate rhythmic activity even in the 
 presence of noise (Shimokawa and Shinomoto, 2006). Although 
we are not in the stage to narrow down to a single model to explain 
the present phenomena, there is room that the frequency condensa-
tion is related to an initiation of an action.

The present study demonstrated that an attempt to determine 
the timing from neuronal signals may provide insight for the neu-
ronal mechanisms of gaging time, determining a given passage of 
time, and preparing and executing action. The estimation of the 
passage of time was possible even from dozens of neurons if they 
are selected from an appropriate brain region. In addition to pro-
viding a hypothesis for the neuronal coding of time, the present 
results also point to the possibility for developing devices that are 
capable of predicting the time for subjects to initiate voluntary 
action. Such devices may assist in the development of the BCI that 
provides signals for motor planning.

mateRIals and methods
WaItIng task and RecoRdIng pRoceduRe
Two Japanese monkeys (Macaca fuscata) were cared and trained to 
perform the “interval-generation task” designed in a former study 
(Mita et al., 2009). All procedures for animal care and experi-
mentation were in accordance with the guidelines of the National 
Institutes of Health.

The monkeys were trained to hold down a key for longer than a 
pre-assigned time-interval that was selected from 2, 4, and 8 s. The 
required waiting-interval is instructed by the color of LED that was 
lit for the initial 2 s of the interval. In the present study, we analyze 
4 and 8-s tasks that genuinely require estimating the time-lapse.
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Figure 3 | estimation of the elapsed time. (A,B) The distribution of the 
elapsed time conjectured t* determined by the time decoder, given population 
signals at every actual time T for the cases of scheduled time-intervals of S = 4 
and 8, respectively. Left: the color code represents the percentage of the 
population signals that gave the conjectured time t*. Right: the mean and SD of 

conjecture times t* at each actual time T. (C) Dependence of the average 
deviation of conjectured time t* from the actual time T on the number of neurons 
N. For the case of N < 25, a subset of neurons was randomly chosen. For N > 25, 
neuronal data were augmented by employing multiple spike trains from 
each neuron.
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(3) Validate the capability of the time decoder by applying it to 
the test set of signals.

(4) Repeat (1) through (3) 100 times by randomly selecting test 
spike trains.

We attempt to estimate the lapse of time with an accuracy of 0.5 
or 1 s, respectively, for a task involving waiting 4 or 8 s. It may appear 
difficult to achieve this accuracy using signals whose waiting times 
deviated on the same order. Nevertheless, an inference is drawn if deci-
sions are made based on the majority of the population data. Here, we 

units (N = 25) for each task of 4 and 8 s. The population signals 
are used for adjusting the decoder and validating the decoding 
capability in the following procedure.

(1) Extract single spike trains from individual units to construct 
a test set of population signals (one spike train from each 
neuron).

(2) Construct the time decoder by using the information of the 
mean and variance of the firing rates of the remaining spike 
trains, which were not used for the test set.
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Figure 4 | A device for simultaneously decoding the scheduled waiting-
interval and the elapsed time. (A) Population signals derived from S = 4- and 
8-s tasks. (B) Schematic representation of the motion of the population signals in 
N-dimensional state-space. For each task of S = 4 or 8 s, population signals 
�

�a a a aT S T S T S T S
N

, , , ,( , , , )≡ 1 2  moves differently. Their average trajectories are 
schematically represented by the dashed lines. Colored ellipses represent the 
distributions of the training datasets p a T ST S( , ),



|  at each elapsed time T in the 
scheduled waiting-interval S. (C) The probability p t s aT S( , ),|



 allotted to each 
elapsed time t and scheduled waiting time-interval s given population signals 

recorded at the actual time T and schedule S (Eq. 5). The confidence for any 
population signals having been derived from the entire waiting time-interval s, 
p s aT S( ),,|



 is estimated by marginalizing the joint distribution (Eq. 6), which 
corresponds to collecting fragments of probability for (t, s). For a given set of 
signals, the scheduled time-interval s* is presumed as the time-interval that 
rendered the highest confidence (Eq. 7). The conditional probability of the elapsed 
time t given the conjecture scheduled time-interval s = s*, p t s aT S( , ),,|  



 is given by 
dividing p t s aT S( , ),

∗ |


 by p s aT S( ),
∗ |


 (Eq. 8). The elapsed time conjectured t** given 
s = s* is defined as the time that rendered the highest confidence (Eq. 9).
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decodIng the elapsed tIme: tIme decodeR 1
First, we attempt to decode the lapse of time from unit signals 
recorded in each task having a scheduled waiting time-interval of 
4 or 8 s; we implement an algorithm that allots the probability to 
conjecture the elapsed times t given population signals (Figure 1C) 
using the Bayes theorem (Rieke et al., 1997; MacKay, 2003; Quiroga 
and Panzeri, 2009),

p t a
p a t p t

p aT
T

T

|
|






( ) =

( ) ( )
( ) ,

 

(1)

show the method of analysis performed on virtual population signals 
constructed by aligning recorded spike trains according to the onset 
of the cue signal that informs the initiation of the waiting-interval. 
We have also tested the case of aligning data at the time of movement 
onset (Figure 7A), but the essential features remained the same.

Here, we refer to the “population signals” or “population activi-
ties” as a set of firing rates of N units measured in 1 s (equiva-
lently, the numbers of spikes elicited in a 1-s interval) prior to the 
“elapsed time” T (Figure 1A). Accordingly, a vector representing 
the population activities 

� �a a a aT T T T
N≡ ( , , , )1 2  moves in time T in 

the N-dimensional state-space (Figure 1B).
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Figure 5 | estimation of the elapsed time and the scheduled time-
interval. (A) Distribution of the elapsed time t** conjectured from samples that 
rendered the correct conjecture for the scheduled interval (s* = S). (B) 
Percentage of hitting the correct scheduled time-interval, s* = S, given 100 test 
sample sets of population signals at every time T. (C) The elapsed time was 
conjectured under the postulate that the scheduled waiting-interval s is 

different from the actual interval S (cases for incorrect postulate). Dashed lines 
represent the linear relationship between the conjectured (t*) and actual (T) 
elapsed time, representing two different sets of relative timescales; t* = 2T for 
s = 2S = 8 (left), or t* = T/2 for s = S/2 = 4 (right). The average probability of 
hitting the relative timescale was 0.33, while that of hitting the physical 
timescale is 0.22.
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where 
� �a a a aT T T T

N≡ ( , , , )1 2  represents the population activities of 
N = 25 units observed at the real elapsed time T. Here, we divide 
the scheduled waiting time-interval of 4 or 8 s into 8 pieces, namely 
t = 0.5, 1, 1.5, …, 4, or t = 1, 2, 3, …, 8, and chose equal prior prob-
abilities p(t) = 1/8. The denominator on the right-hand side is 
obtained by marginalizing joint probability,

p a p a t p tT T
t

 ( ) = ( ) ( )∑ | .
 

(2)

The unit activities are mostly mutually independent at 
every T, because the data are the collection of unit recordings 
obtained from independent trials, in each of which only one or 
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Figure 6 | The state-space representation of neuronal population 
activities. (A) Schematic representation for the projection of N-dimensional 
orbits into two-dimensional plane spanned by the directions for the largest and 
second-largest deviations. (B) The state-space representation of the averaged 
orbits for two waiting tasks. The across-trial variance is shown by the ellipses 
representing the 1/2 quantile of a two-dimensional Gaussian distribution fitted to 
the data. (C) Two possible neuronal representations of elapsed time. In the left 

(right), the orange lines connecting identical physical times T = 1, 2, 3, and 4 [s] 
are shorter (longer) than the green lines connecting identical relative times 
T/S = 1/4, 1/2, 3/4, and 1. (D) The numbers of trajectory pairs that exhibited a 
preference for each of the two possible alternatives for time representation, 
determined by comparing the distance between physical time pairs and relative 
time pairs in the plane of two principal component axes. The average distances 
for the physical and relative time pairs were 17.1 and 13.6, respectively.

two units were sorted out. Thus the probability of population 
activity is factorized into the probabilities of individual unit 
firing rates as

p a t p a tT T
i

i

N
 | |( ) = ( )

=
∏

1

.
 

(3)

We further assume that the firing activity aT
i  for each unit had 

a Gaussian distribution with given average and variance com-
puted from the training signals at each given time T. Though the 
Gaussian distribution gives finite probability for the negative rate 
as an artifact, it gave the better prediction results than the Poisson 
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(Figure 4A). This inference is obtained by allotting the probabil-
ity to the combination of the conjecture elapsed time t and the 
scheduled waiting-interval s. To allot equal prior probabilities to 
two tasks of different waiting-intervals, we evenly divide each total 
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Figure 7 | Alignment of spike trains at the movement onset. (A) Lapse of time in the waiting-interval and neuronal population firings aligned at the time of key 
release movement. Population signals in this analysis are referred to as a set of firing rates in a 1-s interval just before the remaining time R. (B,C) Temporal 
modulation of the firing rates of 25 pre-SMA neurons, their average, and SD, aligned at the movement onset.
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Figure 8 | Distributions of the neuronal firing rates. Distributions of the 
numbers of spikes aT

i  recorded every second in 4-s task (T = 1, 2, 3, 4), for 5 
units that were recorded most frequently (i = 1, 2, 3, 4, 5). Gauss and Poisson 
distribution functions fitted to individual data are superposed to each 
histogram (area normalized), respectively with red solid and blue dashed lines.

distribution, presumably because the data do not obey the Poisson 
distribution due to large across-trial variability. We fitted the Gauss 
and Poisson distribution functions to the distributions of the firing 
rates aT

i  recorded every second in 4-s task (T = 1, 2, 3, 4), for 5 units 
that were recorded most frequently (i = 1, 2, 3, 4, 5). It is plainly 
observed that the Gauss distribution is superior to the Poisson 
distribution in fitting the actual distribution (Figure 8).

The procedure to estimate the probability of conjecturing the 
elapsed times t is summarized as follows.

(1) Construct the conditional probability distribution function 
p a tT( )
 |  according to Eq. 3, as a product of the Gaussian fun-

ctions given by the information of the mean and variance of 
the firing rates.

(2) Compute the marginal distribution p aT( )


 according to Eq. 2, 
with p(t) = 1/8.

(3) Construct the function p t aT( )|   according to Eq. 1.

In presuming the elapsed time t at which population signals 
would have been recorded, we employ the maximum a posteriori 
(MAP) criterion, that is to choose a conjecture t = t* that rendered 
the highest confidence or p t aT( ),|   or

t p t a
t

T
∗ |= ( )arg max .



 
(4)

decodIng the scheduled tIme-InteRval and the elapsed tIme: 
tIme decodeR 2
Second, we augment the algorithm so that it may decode not 
only the current elapsed time but also the scheduled waiting 
time- interval assigned in each trial solely from population signals 
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vIsualIzatIon of neuRonal tRajectoRIes In the state-space
To analyze the dynamics of the population signals, we map the 
N-dimensional vector representing the population activities � �a a a aT S T S T S T S

N
, , , ,( , , , )≡ 1 2  into a lower-dimensional space using a 

dimensionality–reduction method based on principal compo-
nent analysis (PCA; Nicolelis et al., 1995; Serruya et al., 2002). 
The process of performing the PCA analysis is summarized as 
follows.

(1) Segment 4-s trials into 40 × 0.1 s intervals, and 8-s trials into 
40 × 0.2 s 

(2) Compute mean firing rate aT S
i

,  averaged over all trials for 

each (ith) unit in 1 s prior to the elapsed time T.
(3) Construct a set of vectors representing average population 

activities 
� �a a a aT S T S T S T S

N
, , , ,, , , .≡ ( )1 2

(4) For those 80 population vectors, we determine their most 
significant covariance using PCA.

Then, the population neuronal trajectory is mapped to each 
principal component axis by weight-summing the activities of 
individual units with the coefficients of unit eigenvector that cor-
responds to each principal component axis. Here we analyzed 
the neuronal trajectories in a plane of the first two principal 
components.
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time-interval, s = 4 or 8 s, into the same number of pieces, namely, 
8 pieces consisting of t = 0.5, 1, 1.5, …, 4 for s = 4, and t = 1, 2, 3, …, 
8 for s = 8 (Figure 4B). In constructing the conditional probability,
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(5)

we choose equal prior p(t, s) = constant = 1/16 for every combina-
tion of (t, s). Here in particular, we denote the population activities 
as 


aT S,  by specifying the real scheduled interval S (=4 or 8) in addi-
tion to the real elapsed time T. The degree in which the firing signals 
contain information of the scheduled waiting-interval s is estimated 
by marginalizing the joint probability distribution (Figure 4C),

p s a p t s aT S T S
t

| | 

, ,, .( ) = ( )∑
 

(6)

In presuming the scheduled waiting time-interval s to which 
population signals would have belonged, we employed the MAP 
criterion again, that is to choose a conjecture s = s* that rendered 
the highest confidence p s aT S( ),,|   or

s p s a
s

T S
∗ |= ( )arg max .,



 
(7)

The conditional probability of the elapsed time t given the 
conjecture scheduled time-interval s can be obtained using Bayes’ 
relation again as

p t s a
p t s a
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(8)

In presuming the elapsed time t under an assumption that the 
scheduled time-interval is s*, we employ the MAP criterion again, 
that is to choose a conjecture t = t** that rendered the highest con-
fidence p t s aT S( , ),,| ∗  



 or

t p t s a
t

T S
∗∗ ∗|= ( )arg max , ., 



 
(9)
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