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The retrospective identification of preseizure states usually bases on a time-resolved 
characterization of dynamical aspects of multichannel neurophysiologic recordings that can be 
assessed with measures from linear or non-linear time series analysis. This approach renders 
time profiles of a characterizing measure – so-called measure profiles – for different recording 
sites or combinations thereof. Various downstream evaluation techniques have been proposed 
to single out measure profiles that carry potential information about preseizure states. These 
techniques, however, rely on assumptions about seizure precursor dynamics that might not be 
generally valid or face the statistical problem of multiple testing. Addressing these issues, we have 
developed a method to preselect measure profiles that carry potential information about preseizure 
states, and to identify brain regions associated with seizure precursor dynamics. Our data-driven 
method is based on the ratio S of the global to local temporal variance of measure profiles. We 
evaluated its suitability by retrospectively analyzing long-lasting multichannel intracranial EEG 
recordings from 18 patients that included 133 focal onset seizures, using a bivariate measure for 
the strength of interactions. In 17/18 patients, we observed S to be significantly correlated with 
the predictive performance of measure profiles assessed retrospectively by means of receiver-
operating-characteristic statistics. Predictive performance was higher for measure profiles 
preselected with S than for a manual selection using information about onset and spread of 
seizures. Across patients, highest predictive performance was not restricted to recordings from 
focal areas, thus supporting the notion of an extended epileptic network in which even distant 
brain regions contribute to seizure generation. We expect our method to provide further insight 
into the complex spatial and temporal aspects of the seizure generating process.
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replaced by an on-demand therapy. This includes, among  others, 
the application of fast-acting anticonvulsant substances or electri-
cal stimulation (Theodore and Fisher, 2004; Morrell, 2006; Stacey 
and Litt, 2008).

Research in the field of seizure prediction over the last 15–20 years 
has identified analysis techniques that appear to be capable of detect-
ing long-lasting spatial–temporal changes on intracranially recorded 
electroencephalograms (iEEG), which can be regarded as seizure 
precursors (see Mormann et al., 2007; Schelter et al., 2008 for compre-
hensive overviews). Despite the availability of continuous multiday, 
multichannel iEEG recordings, and statistical methods for testing 
the significance of the predictive performance of analysis techniques 
(Andrzejak et al., 2003, 2009; Winterhalder et al., 2003; Kreuz et al., 
2004; Schelter et al., 2006a; Wong et al., 2007; Snyder et al., 2008), 

IntroductIon
Epilepsy affects 60 million humans worldwide, which is approxi-
mately 1% of the world’s population (Hauser et al., 1996). Two-
thirds of epilepsy patients achieve effective seizure control from 
anticonvulsive medication, and another 8–10% benefit from 
resective surgery. Thus, presently in about 25% of epilepsy 
patients, seizures cannot be successfully controlled by any avail-
able therapy. The sudden, apparently unforeseen occurrence of 
seizures, which represents one of the most disabling aspects of 
epilepsy (Murray, 1993; Schulze-Bonhage et al., 2010), calls for a 
method that is capable of predicting the occurrence of seizures. 
This could significantly advance therapeutic possibilities (Elger, 
2001). But also for those patients who can be treated success-
fully nowadays, current  preventive treatment strategies could be 
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no study has been published that demonstrates the identification 
of seizure precursors in prospective, randomized clinical trials with 
accuracy sufficient for clinical application (Schelter et al., 2010).

One of the challenges in this field is the fact that a priori it is 
not obvious which regions in the brain have to be studied in order 
to reveal predictive information (Lehnertz, 2009). Dependent on 
clinical requirements, iEEG is recorded for prolonged periods from 
several tens of electrode contacts to identify potentially epileptogenic 
brain tissue and to delineate it from regions that are indispensable for 
defined cortical functions (Rosenow and Lüders, 2001). Nevertheless, 
for a retrospective identification of seizure precursors promising 
results have been achieved particularly with bivariate measures from 
linear or non-linear time series analysis. With a time-resolved analy-
sis of multichannel iEEG recordings these techniques render time 
profiles of a characterizing measure, the so-called measure profiles.

Various downstream evaluation techniques have been proposed 
to single out measure profiles that carry potential information 
about preseizure states. These techniques either rely on heuristic 
topologic criteria like a restriction to neighboring electrode contacts 
(Mormann et al., 2003a,b, 2005) or use a priori clinical information 
about individual recording sites (Maiwald et al., 2004; Esteller et al., 
2005; Schelter et al., 2006a,b; Feldwisch-Drentrup et al., 2010). 
Some studies used a distinct part of the available iEEG data, e.g., 
from the beginning of the recording, to determine those measure 
profiles carrying optimal predictive information (D’Alessandro 
et al., 2005; Le van Quyen et al., 2005), while others examined the 
predictive information of measure profiles for one seizure to select 
those for the prediction of a subsequent seizure (Iasemidis et al., 
2001; Sackellares et al., 2006). Knowledge about the time of seizure 
onsets is required for the latter approaches.

A different approach bases on an evaluation of the significance 
of predictive information of measure profiles. When investigat-
ing synchronization phenomena in the epileptic brain (Mormann 
et al., 2005; Schelter et al., 2007; Osterhage et al., 2008; Lehnertz 
et al., 2009; Mirowski et al., 2009; Kuhlmann et al., 2010), however, 
a time-resolved analysis of interactions between all possible pairs 
of recording sites results in a large number of measure profiles. A 
significance evaluation will inevitably lead to the statistical problem 
of multiple testing. For approaches based on analytic random pre-
dictors (Winterhalder et al., 2003; Schelter et al., 2006a), this leads to 
high sensitivities of the random predictors and therefore to reduced 
statistical power. For Monte-Carlo based approaches, which use ran-
domized surrogate data to test for statistical significance (Andrzejak 
et al., 2003, 2009; Kreuz et al., 2004), the high number of measure 
profiles may lead to non-independent surrogate realizations.

Addressing these issues, we have developed a method to preselect 
measure profiles that carry potential information about preseizure 
states and to identify brain regions associated with seizure pre-
cursor dynamics, by exploiting specific aspects that appear to be 
associated with seizure precursor dynamics. We demonstrate the 
suitability of our method through a retrospective time-resolved 
analysis of the strength of interactions in long-lasting, multichan-
nel iEEG recordings.

MaterIals and Methods
clInIcal data
We analyzed continuous iEEG recordings from 18 patients who 
suffered from pharmacoresistant focal epilepsy with neocortical 
and/or hippocampal origin (cf. Table 1). All patients underwent 
resective surgery.

Table 1 | Patient and EEG data characteristics.

Patient 

no.

Epilepsy 

center

Sex Age Seizure 

onset zone

Electrode 

types

Bilateral implant. Electrode 

contacts

Outcome EEG total 

(h)

Number of 

seizures

1 Bonn m 20 H s, d Yes 44 Ia 113.3 10

2 Bonn m 55 H s, d Yes 60 Ia 232.2 6

3 Bonn m 21 H g, s, d Yes 64 Ia 180.7 9

4 Bonn f 31 H g, s, d Yes 54 Ia 140.5 8

5 Bonn f 25 H g, s, d Yes 58 Ib 219.7 4

6 Bonn f 48 H g, s, d Yes 74 Ia 280.0 6

7 Bonn f 35 H g, s, d Yes 72 IIa 142.0 4

8 Bonn f 31 NC g, s, d Yes 60 Ia 328.3 9

9 Bonn m 57 NC g, d No 72 Ia 94.2 5

10 Bonn f 36 H g, s, d Yes 70 IIa 169.2 6

11 Bonn f 24 NC g, s No 42 Ia 94.7 6

12 Bonn f 44 H g, s, d No 52 Ia 240.0 6

13 Freiburg m 31 H g, s, d No 55 Ib 93.7 4

14 Freiburg m 25 NC g, s, d Yes 90 Ia 74.7 5

15 Freiburg m 43 H d Yes 28 Ia 93.4 4

16 Freiburg m 50 H g, s, d No 65 Ib 250.3 13

17 Freiburg f 37 H d Yes 28 IIb 261.5 7

18 Freiburg m 21 NC + H s, d No 69 Ia 185.6 21

∅ 35.2 58.7 177.4 7.4

Recordings were performed with strip (s), depth (d), and/or grid (g) electrodes (Spencer et al., 2007). Location of the seizure onset zone: hippocampal (H), neocortical 
(NC). Outcome according to a modified Engel classification (Engel and Rasmussen, 1993).
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important property of the frequency-adaptive approach is that the 
instantaneous phase/frequency always relates to the predominant fre-
quency in the spectrum (Boashash, 1992). In iEEG time series this pre-
dominant frequency is subject to changes. From an electrophysiological 
point of view, an extraction of phase information that automatically 
adapts to the main rhythm locally in time can thus be advantageous 
particularly when analyzing non-stationary signals such as the EEG.

For windows of 30 s duration, the first and last 5 s of each win-
dow were tapered by a Hann window to reduce spectral leakage. 
Windows were shifted forward in time by 10 s. The resulting meas-
ure profile was smoothed using a 5-min median filter (Mormann 
et al., 2003b; Schelter et al., 2006a; Kuhlmann et al., 2010). For the 
M electrode contacts of each patient, all K = M(M − 1)/2 possible 
pairs of contacts were considered, resulting in a total of 378–4005 
measure profiles (average: 1815.2 profiles).

Preselection method
The preselection method introduced here is based on the idea that 
any measure profile suitable for studies on the predictability of 
seizures must contain distinctive signatures in advance of seizure 
onsets. In contrast to unspecific fluctuations of measure profiles on 
a short timescale, these changes are expected to occur on a longer 
timescale (cf. Lehnertz et al., 2007). As quantification thereof, we 
estimated the ratio of the global to local temporal variance of each 
measure profile x

k
, k = 1,…, K, by calculating

Sk

k

k
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k
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number of data points of a measure profile is denoted by N. In Eq. 1, 
the factor of two in the numerator imposes a specific normalization; 
for independently distributed random variables x

k
, the expecta-

tion value of S
k
 would be one. Thus, values of S

k
 not equal to one 

indicate correlations in the data. In general, measure profiles with 

Intracranially recorded electroencephalograms were recorded 
during presurgical epilepsy monitoring at the Department of 
Epileptology at the University Hospital of Bonn, Germany, and 
at the Epilepsy Center of the University Medical Center Freiburg, 
Germany. The retrospective evaluation of the data received prior 
approval by the local Ethics Committees and informed consent was 
obtained from each patient.

The iEEG recordings were performed by digital video EEG 
systems with a sampling rate of 200 Hz (Bonn: Stellate Systems, 
Montreal, Canada and Schwarzer, Munich, Germany) or with 256 Hz 
or 1024 Hz (Freiburg: Neurofile NT, IT-Med, Usingen, Germany). 
The total number of electrode contacts on subdural grid and strip 
electrodes and/or intrahippocampal depth electrodes ranged from 
M = 28 to M = 90 (Table 1; see Figure 1 for an exemplary electrode 
implantation scheme). Data were high-pass filtered at 0.5 Hz, low-
pass filtered for anti-aliasing, and digitized with a 16-bit analog-
to-digital converter. iEEG signals were offline low-pass filtered at 
85 Hz; data recorded with 1024 Hz were resampled at 256 Hz in 
order to achieve a comparable number of data points per analysis 
window. The overall recording time amounted to 133.1 days during 
which 133 spontaneous seizures occurred (cf. Table 1). We visually 
identified the time of seizure onset on the iEEG as the time of earli-
est clear change from the patient’s baseline or normal background 
iEEG that eventually led to an electrographic seizure. Subclinical 
seizures were neglected in our analysis. In the majority of patients, 
antiepileptic medication was reduced during the recording period.

Methods
Measuring the strength of interactions
We estimated the mean phase coherence R (Mormann et al., 2000), a 
bivariate symmetric measure for the strength of interactions between 
two brain regions, in a time-resolved fashion (moving-window 
approach). The phases of the iEEG time series can be obtained either 
with a frequency-adaptive (via the Hilbert transform) or with a 
frequency-selective approach (e.g., via the wavelet transform). Both 
approaches were shown to give similar results for a quantitative analysis 
of phase synchronization from neuronal data (Le Van Quyen et al., 
2001; Quian Quiroga et al., 2002; Bruns, 2004) as well as in seizure-
prediction studies (Mormann et al., 2004; Osterhage et al., 2007). An 

FiGurE 1 | Electrode implantation scheme for patient no. 4. 
Intrahippocampal depth electrodes (A) were implanted stereotaxically along 
the longitudinal axis of the hippocampal formation from an occipital approach 
with the amygdala as the target for the most anterior electrode. Each 
catheter-like, 1 mm thick silastic electrode contained 10 cylindrical contacts of 
a nickel chromium alloy (2.5 mm) every 4 mm. Subdural strip and grid 

electrodes (B,C) consisted of either four (strips) or 4 × 8 (grid) stainless steel 
contacts with a diameter of 2.2 mm, embedded in a silastic (intercontact 
spacing of 10 mm). Strip electrodes (B) were inserted through burr holes and 
were placed over the left anterior and posterior inferior temporal cortex. The 
grid (C) was inserted after craniotomy and covered a lesion in the left 
temporal lobe.
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cases where the time between two successive seizures was less than 
T

p
 + 30 min, the maximum amount of data available (i.e., from 

seizure onset back to the end of the postictal phase of the preceding 
seizure) was used instead.

We derived the ROC curve by varying a threshold for amplitude 
values of R. The area under the ROC curve (AUC) can be used to 
quantify the degree to which the two distributions can be distin-
guished. For identical distributions AUC = 0.5, which indicates 
that no predictive changes before seizure onset can be detected. 
We here considered ROC∗ = |AUC − 0.5|, which allows testing the 
hypotheses of an increased or a decreased strength of interactions 
during the preictal period as compared to the interictal period (cf. 
Mormann et al., 2005). Larger values of ROC* represent a higher 
predictive performance.

Testing for statistical validity
While the appreciation of the clinical relevance of an analysis tech-
nique needs to be based on patient views and requirements of 
intervention strategies, a decisive test is whether the predictive per-
formance is better than random. To test whether the performance 
ROCk

∗ of a measure profile k is indeed indicative of a true predictive 
power, we employed the concept of seizure time surrogates (STS; 
Andrzejak et al., 2003), a Monte-Carlo based resampling technique 
for the generation of randomized seizure onset times. In order to 
preserve the total number of seizures as well as the distribution of 
time intervals between consecutive seizures, a random permuta-
tion of the original seizure intervals was performed. Additionally, 
the duration of the initial interval was chosen randomly between 0 
and 4 h. If the predictive performance ROCk

∗ of measure profile x
k
 

with the true sequence of seizures exceeded the maximum ROCSTS,k
∗  

obtained from 19 realizations of STS, the predictive performance of 
this measure profile was considered significant at a level of α = 5% 
(cf. Schreiber and Schmitz, 2000 and references therein).

Testing the relationship between predictive performance and 
variance ratio
Methods for a data-driven preselection of measure profiles are 
sensible only if preselected profiles contain more predictive infor-
mation of an upcoming seizure than the remaining profiles. We 
therefore hypothesized to observe a close relationship between the 
variance ratio S and ROC∗, which would suggest that measure pro-
files can be identified which carry relatively high predictive infor-
mation – without considering any information about seizure onset 
times in the preselection process. For each patient, we investigated 
the relationship between S

k
 and ROCk

∗  of all K measure profiles by 
determining the non-parametric correlation coefficient of Kendall’s 
tau (Kendall, 1976).

Testing the relationship between variance ratio and brain sites
We also investigated a possible relationship between the variance 
ratio S

k
 and the location of the electrode contacts that the meas-

ure profile x
k
 was derived from. For this purpose, we assigned all 

electrode contacts to four location categories. Thereby, we made 
use of knowledge concerning location and extent of the seizure 
onset zone, which is defined by the electrode contacts showing 
initial ictal activity. We considered the following four categories 
of electrode contacts:

low values of S
k
 exhibit a dominance of short-term fluctuations 

over long-term variations, whereas profiles with higher values of 
S

k
 contain more long-term fluctuations, which supposedly carry 

predictive information (cf. Figure 2).

Estimating predictive performance
In order to test whether measure profiles carry potential information 
about preseizure states, we estimated their predictive performance in 
terms of their ability to distinguish between the interictal period and 
the preictal period. To this end, we followed Mormann et al. (2005), 
assuming the existence of a preictal period with a duration T

p
 = 4 h. We 

investigated the separability of amplitude distributions of the mean 
phase coherence R from the interictal and preictal period using the 
receiver-operating-characteristic (ROC) statistics which is widely used 
in studies on the predictability of seizures. We adopted evaluation 
scheme #2 in Mormann et al. (2005) and estimated, for each measure 
profile x

k
 separately, the preictal, and interictal distributions from the 

pooling of all preictal and interictal periods, respectively. Hereby, we 
expected to find an increased performance particularly for measure 
profiles for which seizure precursors (either preictally increased or 
decreased strength of interactions) occur constantly in the same pair 
of recording sites and on a similar level for all the seizures of a patient.

In order to exclude effects from the postictal period, which can 
be accompanied by alterations in the EEG, recording periods within 
30 min after the electrographical onset of a seizure (Wyllie et al., 
2006; So and Blume, 2010 and references therein) were discarded 
from the analysis. We thus considered seizures with an inter-seizure 
interval of more than 30 min only (Table 1 summarizes the number 
of seizures per patient that entered subsequent analysis steps). In 

FiGurE 2 | Exemplary measure profiles with different variance ratio S. 
(A) Small global and local variations (S ≈ 1), (B) large global and local variations 
(S ≈ 1), (C) global variations larger than local variations (S > 1).
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variance ratios S
k
 could be observed. For all other patients, ROCk

∗  
and S

k
 were significantly positively correlated (p < 0.05; results 

not shown).
Since statistical evaluation techniques such as the STS used here 

allow the quantification of the significance of the predictive per-
formance, we can further substantiate our results of the correla-
tion analysis by restricting it to measure profiles with a significant 
predictive performance. The corresponding results are shown in the 
histograms of Figure 3. Especially for patients nos. 9 and 17, high 
values of S were observed for measure profiles with a significant 
predictive performance. Albeit the multiple testing challenge, the 
observed correlations indicate that measure profiles with above-
chance performance exhibit – on average – a higher variance ratio 
S than the remaining profiles.

relatIonshIp between varIance ratIo and braIn sItes
For 17 of 18 patients (all but patient no. 15), we observed differences 
in the distributions of S values among all categories of electrode 
contact combinations f/f, f/n, f/c, f/e, n/n, n/c, n/e, c/c, c/e, and e/e 
(p < 0.001; cf. Figure 4). Varying between individual patients, sig-
nificantly larger or also significantly smaller values of S were found 
for the different groups of contact combinations tested, i.e., those 
involving focal, neighboring, contralateral, or extra-focal contacts, 
than for the respective remaining groups. Details are summarized 
in Table 2.

coMparIson to preselectIon based on clInIcal InforMatIon
For each of the six patients from the Epilepsy Center Freiburg, 
an increased average predictive performance could be observed 
for the 15 measure profiles with highest values of S in compari-
son to the 15 manually preselected measure profiles (cf. Table 3). 
Mean predictive performance (ROC*) of the 15 measure profiles 
increased for these patients on average from 0.072 to 0.107. For 
patients nos. 14, 15, and 17, the predictive performances of the 15 
measure profiles selected by considering S were significantly higher 
than those of the 15 manually selected measure profiles (p < 0.01, 
Mann–Whitney–Wilcoxon signed rank sum test).

For four patients (patient nos. 13, 16, 17, and 18), the major-
ity of the 15 measure profiles preselected with highest values of 
S belonged to the e/e combination category. For patient no. 14, 
combinations n/e and also e/e were prominent, and for patient 
no. 15, the majority of preselected measure profiles belonged to 
combination category c/e. For only two patients (no. 17 and no. 
18), measure profiles from combination category f/f were among 
the 15 profiles with highest variance ratio S.

dIscussIon
We introduced a method for the data-driven preselection of meas-
ure profiles in retrospective studies on the predictability of epileptic 
seizures. The method is based on the ratio S of the global to local 
temporal variance of a measure profile. Due to the high correlation 
between S and the predictive performance of a measure profile (as 
quantified by the ROC), a preselection based on S enables a reduc-
tion of the number of profiles to a small subset containing those that 
carry potential information about preseizure states. In contrast to 
previously proposed methods (Iasemidis et al., 2001; D’Alessandro 
et al., 2005; Le van Quyen et al., 2005), our procedure does not 

Focal (f) Electrode contacts located within the seizure onset zone 

(on average for all patients 10.1% of all contacts, varying 

between 1.4 and 29.7%)

Neighbor (n) Electrode contacts not more than two contacts distant 

to those from category “f” (on average 17.2%, varying 

between 6.9 and 42.9%)

Contralateral (c) Electrode contacts homologous to those from “f” and 

“n” in the contralateral hemisphere (available for 12 

patients with a bilateral electrode implantation; on 

average 7.8%, varying between 3.4 and 18.5%)

Extra-focal (e) All remaining electrode contacts (on average 67.5%, 

varying between 32.8 and 89.6%)

Since the mean phase coherence is a symmetric measure, meas-
ure profiles were thus derived either from f/f, f/n, f/c, f/e, n/n, n/c, 
n/e, c/c, c/e, or e/e combination categories. The non-parametric 
Kruskal–Wallis test (Kruskal and Wallis, 1952) was applied to test 
for differences in the distributions of S values among combina-
tion categories. For those patients for whom significant differences 
were observed, post hoc non-parametric Mann–Whitney–Wilcoxon 
signed rank sum tests (Mann and Whitney, 1947) were used to 
analyze whether specific groups of combination categories differed 
in S. We investigated whether S values of measure profiles derived 
from focal contacts (f/f, f/n, f/c, f/e) differed from those of the 
remaining ones. The same was also done for S values of measure 
profiles derived from neighboring contacts (f/n, n/n, n/c, n/e), from 
extra-focal contacts (f/e, n/e, c/e, e/e), and for the 12 patients with 
bilaterally implanted electrodes also for the S values of measure 
profiles from contralateral contacts (f/c, n/c, c/c, c/e). The signifi-
cance levels were adjusted in order to correct for the application 
of the eightfold test.

Comparison to preselection based on clinical information
For the patients who underwent presurgical evaluation at the 
Epilepsy Center Freiburg, we compared the proposed preselec-
tion method to an approach that is based on clinical information 
(Maiwald et al., 2004; Schelter et al., 2006a,b, 2007; Winterhalder 
et al., 2006; Feldwisch-Drentrup et al., 2010). Thereby, three elec-
trode contacts showing initial ictal activity and three contacts 
not involved at all or latest during spread of ictal activity were 
preselected by a certified epileptologist (ASB). In order to contrast 
this approach with the preselection based on S, we compared the 
predictive performance ROC∗ of the 15 measure profiles derived 
from the manually preselected electrode contacts to the ROC∗ 
values of the 15 measure profiles preselected with highest vari-
ance ratio S.

results
relatIonshIp between predIctIve perforMance and varIance 
ratIo
In Figure 3 we show, for two exemplary patients with unilaterally 
(no. 9 and no. 11) and for two exemplary patients with bilater-
ally implanted electrodes (no. 4 and no. 17), the predictive perfor-
mances ROCk

∗  of all measure profiles x
k
 in dependence on their 

variance ratios S
k
. Except for patient no. 11, significant positive 

correlations (p < 0.05) between predictive performances ROCk
∗  and 
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mean phase coherence as a bivariate measure for the strength of 
interactions. We note, though, that our preselection method can 
be applied to any measure profile that is derived from univariate, 
bivariate, or multivariate EEG analysis techniques (see Mormann 
et al., 2007; Schelter et al., 2008 for an overview). Nevertheless, 
further studies are necessary to evaluate the impact of the choice 
of the duration of preictal and postictal periods and of  algorithmic 

exploit any information about the relation of the measure profiles 
to the occurrences of seizures for the preselection process. Hence, 
it may be applied prior to an analysis of predictive performance, 
based on the same data.

To demonstrate the suitability of the method, we retrospectively 
analyzed interactions in long-lasting, multichannel intracranial 
EEG recordings from 18 patients with focal epilepsies using the 

FiGurE 3 | relationship between predictive performance rOC* and 
variance ratio S for four exemplary patients. Upper parts of plots show ROC* 
values for all measure profiles (time-dependent mean phase coherence from all 
possible combinations of electrode contacts) depending on S. Crosses indicate 
profiles with a significant predictive performance, i.e., exceeding maximum 

performance obtained from 19 realizations of STS. Lower parts of plots show 
relative frequency histograms of the distributions of profiles with significant 
(empty bars) and non-significant (black bars) prediction performance. For patient 
nos. 9 and 17, high values of S can be observed for profiles with a significant 
predictive performance (marked by black arrows).
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FiGurE 4 | Exemplary scatterplots of medians and 95% quantiles of the 
distributions of predictive performance rOC∗ and ratio of variances S for 
measure profiles derived from the different categories of combinations of 
recordings sites. f, Focal; n, neighboring; e, extra-focal; c, contralateral (in case 
of bilaterally implanted electrodes). Same patients as in Figure 3. For patient no. 

9, high values of S could be observed for measure profiles characterizing 
interactions within the seizure onset zone (f/f). For patient no. 17, interactions 
between extra-focal brain regions (e/e) yielded high values of S, also carrying the 
most predictive information. No clear distinctions could be made for patient nos. 
4 and 11.

Table 2 | Number of patients for whom the variance ratio S of measure 

profiles involving focal, neighboring, contralateral, or extra-focal 

contacts was significantly smaller (first row) or larger (second row) 

than for profiles from the other contact combinations.

Focal 

contacts 

(f/f, f/n, 

f/c, f/e)

Neighboring 

contacts 

(n/n, f/n, 

n/c, n/e)

Contralateral 

contacts (c/c, 

f/c, n/c, c/e)

Extra-focal 

contacts 

(e/e, f/e, 

n/e, c/e)

# Patients 

with sign. 

smaller S

6/18 7/18 5/12 6/18

# Patients 

with sign. 

larger S

4/18 4/18 4/12 6/18

Bilateral electrode implantations with contacts contralateral to the epileptic 
focus were performed in 12 of 18 patients.

Table 3 | Mean predictive performance of 15 measure profiles based on 

a manual preselection of recording sites using clinical considerations 

(first row) and on the variance ratio S (second row).

Patient no. 13 14 15 16 17 18 Average

ROC* based 

on manual 

preselection

0.124 0.024 0.065 0.051 0.104 0.065 0.072

ROC* based 

on 

preselection 

with S

0.141 0.074 0.106 0.072 0.157 0.089 0.107

Patients from the Epilepsy Center Freiburg.

parameters. In addition, future studies should also investigate 
whether precursors of very focal subclinical seizures can be iden-
tified on the EEG.

Modern EEG acquisition systems enable recordings with high 
spatial and temporal resolution. The large numbers of recording 
channels pose severe challenges due to the tremendous increase in 

the number of measure profiles, particularly for algorithms based on 
bivariate and multivariate EEG analysis techniques. In such cases, the 
proposed preselection strategy can be used to quickly screen measure 
profiles in order to identify those with a presumably high predictive 
performance. This is especially helpful if only few seizures are avail-
able and if a rigorous statistical evaluation of predictive performance 
is hardly possible due to the statistical problem of multiple testing.

The close relationship between the variance ratio S and predic-
tive performance, which could be observed in 17 out of 18 patients, 
indicates that our method is beneficial for the preselection of 
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 measure profiles carrying potential information about preseizure 
states. In comparison to an ad hoc preselection criterion based on 
prior knowledge concerning the location of recording sites rela-
tive to the seizure onset zone, measure profiles preselected with S 
had a considerably higher predictive performance. Interestingly, 
these profiles mostly captured interactions between non-focal brain 
regions rather than interactions that involved focal regions. Our 
investigation concerning a possible relationship between predictive 
performance and the location of recording sites yielded statistically 
significant differences in the variance ratios between different cate-
gories of combinations of sites. Yet, for the patients investigated here, 
no consistent patterns for optimal combinations could be observed, 
which may indicate a high intra- and interindividual variability of 
the spatial-temporal dynamics underlying the generation of focal 
onset seizures (cf. Mormann et al., 2003a,b, 2005; Winterhalder 
et al., 2006; Kuhlmann et al., 2010). This clearly underlines the 
importance to study brain regions outside the epileptic focus, which 
yet might be part of an epileptic network (Lehnertz et al., 2009; 
Kuhnert et al., 2010) and contribute to ictogenesis. The concept of 
an epileptic network, whose interactions extend over large regions 
of the brain, might also be of interest for computational neurosci-
ence approaches to epilepsy (Lytton, 2008; Soltesz and Staley, 2008).

To summarize, investigating the ratio of the global to local 
temporal variance of a measure profile constitutes an easy and 
efficient way to identify profiles that carry information predictive 
of impending seizures and thus to identify brain regions possibly 
involved in seizure generation. Hence, our method can help to 
improve knowledge about the complex spatial and temporal aspects 
of the seizure generating process and to substantiate the existence 
of preseizure states in epileptic brain networks. This may eventually 
facilitate the development of seizure-prediction techniques to be 
used in clinical applications.
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