
COMPUTATIONAL NEUROSCIENCE

In a recent paper (Buehlmann and Deco, 2010), a biophysi-
cally plausible semi-large-scale model was built on the results of 
Womelsdorf et al. (2007). In the present work, we have developed 
a simpler linear model in order to try to understand what the main 
principles defining the relationship between oscillation amplitude 
correlations and phase differences are. We found that a linear inter-
action between oscillators can qualitatively fit the experimental 
results, which allowed us to extract several analytical predictions. 
These basic principles could then be applied to understand phase-
dependent amplitude statistics in spiking activity and in LFP, EEG, 
and MEG (Wendling et al., 2009).

MATERIALS AND METHODS
MODEL
The model consists of two interacting units represented by vari-
ables, O

a
 and O

b
, each of which correspond to a narrow-band fil-

tered LFP or MUA around a given frequency. We assume that the 
interaction is linear, and in general, described by the sum of a 
remote and a local oscillatory component. The governing equa-
tions are written as

O t A t ft w B t ft fa
k k

b a
k( ) ( )sin( ) ( )sin( )= + + +→2 2 2π ϕ π π τ∆  (1)

O t B t ft w A t ft fb
k k

a b
k( ) ( )sin( ) ( )sin( )= + + ∆ +→2 2 2π π ϕ π τ  (2)

INTRODUCTION
Different situations may require different aspects of knowledge 
stored in the brain (Dayan et al., 2000). This adaptive knowledge 
selection can be achieved by enhancing the influence of a specific set 
of synapses. The selective use of certain synapses is a way to route 
information and to modulate communication between neurons. 
The communication through coherence (CTC) theory postulates 
that the communication between two neuronal populations is 
supported by the membrane potential phase difference between 
the oscillations in the two populations (Fries, 2005). This theory 
has been very influential because it confirms a role for oscillations 
in the neuronal code (Buschman and Miller, 2007; Knight, 2007; 
Saalmann et al., 2007; Womelsdorf and Fries, 2008; Fries, 2009; 
Tiesinga and Sejnowski, 2009; Hipp et al., 2011; Singer, 2011).

It has been tested experimentally by means of the phase differ-
ence between the multi-unit activity (MUA) from two recorded 
units, or between the MUA and the local field potential (LFP; 
Womelsdorf et al., 2007). To this end, for both recorded units, 
amplitude and phase of a given oscillation frequency were esti-
mated on a trial by a trial basis. Interestingly, for those trials that 
had a phase difference similar to the mean phase difference (“good 
phase”) oscillation amplitudes were more strongly correlated than 
for those trials that had a phase difference not corresponding to 
the mean (“bad phase”).
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Ak(t) and Bk(t) denote the amplitude of unit A and B before any 
coupling occurs at the k-th trial. O

a
(t) and O

b
(t) without the trial 

superscript k will be used to denote the output in general. f
a
 and f

b
 

denote the frequencies of interest in unit A and B. τ is the conduc-
tion delay between unit A and B. Notice that conduction delays of 
cortico-cortical long-range connections have been measured to 
amount up to several tens of milliseconds (Swadlow and Waxman, 
1975; Swadlow, 1985; Nadasdy, 2009). Therefore, it may be impor-
tant to take the conduction delay into account in order to define the 
good phase (for a definition of the good phase see Power and Phase 
Estimation in the Analysis part in the Materials and Methods). 
w

I → J
 is the connection strength from unit I to unit J. ∆ϕ denotes 

the phase difference between O
a
(t) and O

b
(t) when the connection 

strengths are zero, we name this phase difference the uncoupled 
phase difference.

We would like to stress that the model described by Eqs 1 and 
2 together with its parameter settings is not intended to represent 
the actual interference of the electric fields generated at two differ-
ent brain areas. Rather it should be viewed as an abstraction of a 
linear and phase-dependent coupling of two oscillatory processes.

SETTINgS fOR THE SIMULATIONS
Simulations with stationary parameters
Two different cases of stationary parameters were simulated accord-
ing to the distribution of the amplitudes over trials:

(i) All the variables of the model, A(t), B(t), and ∆ϕ(t), were 
constant in time during one trial and could be described by 
A, B, and ∆ϕ. w

b → a
was set to 0 and w

a → b
 was referred to as w. 

Only one period was simulated with 100 time points. For the 
realizations over trials A and B were drawn from a uniform 
distribution from 0 to 1. The phase difference, ∆ϕ, was drawn 
from a −π to π uniform distribution. For simplicity τ was set 
to 0 and w(f) was set to 1. These settings were also used in the 
section of analytical predictions.

(ii) For the variables, A(t), B(t), and ∆ϕ(t), w
b → a

, w
a → b

 see (i). 
The realizations A and B were drawn from a Gaussian distri-
bution with a SD one and mean zero. The values for the 
variables in Eq. 2 were set to the following. We randomized 
50,000 amplitude pairs A(k) and B(k), and 50,000 ∆ϕ(k), i.e., 
k = 1.50000. The time t was run from 0 to 2π in steps of 0.1, 
i.e., the simulation was run for one period. For simplicity τ 
was set to 0.

Simulations with non-stationary parameters
This changing parameter-set was chosen to test the timing of the 
establishment of a “good” phase relationship relative to the increase 
in power correlation. A trial of 120 time points was defined with 
1 ms resolution per time point. The period of oscillations was set to 
20 ms. The time resolved phase relation was calculated as cos(∆ − δ), 
where δ is the phase accumulated due to the conduction delay, and 
∆ is the phase difference between the coupled model variables O

a
(t) 

and O
b
(t) at time t (cos(∆ − δ) = 1 or −1 for the “good” or “bad” 

phase, respectively). The amplitudes for both recorded units were 
always kept constant during this time period, but were drawn from 
a Gaussian distribution for different repetitions, independently for 
the two units. Repeated simulations with different amplitudes were 

necessary in order to estimate the power correlation for every time 
point. The power correlation at each time point was estimated 
across 200 repetitions. The phase relation was always the same 
across repetitions.

ANALySIS
Power and phase estimation
In simulations, the phase and amplitude were calculated using a 
windowed fast Fourier transform. The window was rectangular 
and had a duration corresponding to one period. The amplitude 
and phase of the signal, y, at time t will be referred to as |fft(y,t)| 
and ϕ(fft(y, t)), respectively, where |x| = |a + ib| = √(a2 + b2) and 
ϕ(x) = arg(a + ib). The good phase was defined as the mean phase, 
i.e., ϕ(Σi

N
i ix x=1 / ), where N denoted the number of trials. The power 

was calculated as |a + ib|2.

Estimation of power correlation, mutual information, and modulation 
depth
To estimate the phase-dependent power correlation (PDPC), 
amplitude, and phase for O

a
(t) and O

b
(t) were estimated in a 2π− 

wide window centered around π, i.e., from 0 to 2π. According to 
Womelsdorf et al. (2007), the phase difference was divided into six 
equally sized bins. The power correlation was then calculated as 
the Pearson coefficient for the powers of those trials that had phase 
differences belonging to the same bin.

Mutual information between the amplitudes of O
a
(t) and O

b
(t) 

was calculated using a bias-corrected “naive histogram” estimate 
(computed via the Matlab function “information.m,” available from 
http://www.cs.rug.nl/∼rudy/matlab/doc/information.html). For 
each bin of the phase difference the mutual information was cal-
culated on 3000 pairs (in the bad/good phase bin there were around 
5000/16000 pairs) that were drawn with replacement. The mean 
of the information in each bin was calculated on 1000 repetitions.

The modulation depth is the peak-trough distance, where peak 
corresponds to the maximal power correlation and trough cor-
responds to the minimal power correlation.

RESULTS
First, using analytical derivations, we will examine the character-
istics of the PDPC for oscillators interacting with uni-directional, 
bidirectional, and common drive connectivity. Using results 
from the analytical study, we predict that the width of the phase 
dependency will be different for the uncoupled and the coupled 
phase difference. This is tested with numerical simulations. Using 
numerical simulations we also examine if the power correlation 
lags the phase difference, i.e., if the phase difference plays a causal 
role in determining the power correlation. Finally, we summarize 
the results using a non-linear correlation index such as mutual 
information.

ANALyTICAL DERIvATIONS AND pREDICTIONS
In this section, we compute how power correlations between two 
linearly coupled oscillatory processes depend on their phase dif-
ference and coupling strength. We start by considering the case of 
uni-directionally coupled oscillators by setting w

b → a
 = 0 (see Eqs 

1 and 2) and denoting w
a → b

 with w. We set the amplitudes A and 
B fixed in time and only depending on the trial realization.
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and its analog version for functions of multiple random variables. 
After computing the integrals appearing in Eq. 8 the Pearson cor-
relation coefficient between the powers A2 and D2 as a function 
of the coupling strength and phase difference can be obtained as

ρ

ϕ

ϕ ϕ

D A

w w

w w w w

2 2

4 2

16 15

4 16 1 5 6 6 7

,

cos( )

cos( ) cos(

( )
=

+( )
+( ) + + +

∆

∆ ∆ ))
./( )( )1 2

 (11)

Now, it is possible to study with more detail how power cor-
relations are due to different coupling characteristics. For example, 
from the formula above it can be deduced that the maximum of the 
power correlation grows with the coupling strength monotonically. 
However, the phase difference for which this maximum arises pre-
sents a switching point for a coupling strength w ≈ 0.95 (Figure 1A). 
Below that critical coupling strength, the maximum of the power 
correlation is achieved at a zero phase difference (∆ϕ = 0). When the 

O t A f ta
k k

a( ) sin= +( )2π ϕ∆  (3)

O t B f t wA f t fb
k k

b
k

a a( ) sin sin= ( ) + + +( )2 2 2π π ϕ π τ∆  (4)

We first proceed by relating the amplitude of process O
b
(t) (the 

receiver) to that of process O
a
(t) (the emitter) and the coupling 

coefficient, w. Once such a relation is established we can compute 
the Pearson correlation coefficient between the powers of the two 
processes. This holds, regardless of the particular distribution from 
which the amplitudes over trials are drawn. For simplicity, we will 
illustrate here the case where the amplitudes are sampled from a 
uniform distribution covering from 0 to 1.

We proceed by computing the amplitude of process O
b
(t). We 

use the fact that process O
b
(t) is the sum of two harmonic processes, 

and therefore, it is itself a harmonic process. Thus, the modified 
(after being coupled) amplitude D and phase θ of process B can 
be obtained by solving the equation

O t B ft wA ft D ftb( ) sin( ) sin( ) cos( )= + + = +2 2 2π π ϕ π θ∆  (5)

For each trial, this leads to a new amplitude D and phase differ-
ence θ that read

D B wAB w A= + +( )2 2 2 1 2
2 cos( )

/
∆ϕ  (6)

and

θ

ϕ
ϕ

ϕ
=

+






+ <arctan
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arctan
s

wA

B wA
B wA

wA

∆
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∆
∆
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 (7)

Eq. 7 demonstrates how the amplitude difference (wA/B) can 
modulate the phase difference (see Figure A1 in Appendix). Since 
we are interested in the power correlation between the two processes 
we are left to compute the Pearson coefficient between D2 and A2

ρ D A
E D E D A E A

E D E D

2 2

2 2 2 2

2 2
2

,( ) =
−  ( ) −  ( )





−  ( )





EE A E A2 2
2

1 2

−  ( )











/ ,  (8)

where E[] denotes the expected value operator

E X Xp X dX[ ] ( ) ,=
−∞

∞

∫  (9)

and p(X) is the probability density function of a real random vari-
able X.

In this simplified model we assume that from trial to trial the 
amplitudes A and B are drawn from a uniform distribution. Since 
A2 and D2 are functions of A and B, it is possible, in principle, to 
compute the probability density functions that A and B induce on 
each of the powers and later compute the integrals appearing in 
Eq. 8. However, since we are only interested in the expected values 
a much more practical approach is to use the fact that

E f X f X p X dX[ ( )] ( ) ( ) ,=
−∞

∞

∫  (10)

Figure 1 | Analytical results. (A) Power correlation as a function of the 
uncoupled phase differences for a range of connection strengths (color 
coded). For comparison with the experimental results of Womelsdorf et al., 
2007, we have plotted a cosinus function that is vertically translated to not 
interfere with the PDPC curves. (B) Bidirectional coupling for five different 
delays (color coded). Coupling strength w = 0.3. Uniform distribution of 
uncoupled amplitudes over trials. Note that the lowest correlation (bad phase) 
can be around 90° for some delays.
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coupling case for which we have considered different axonal delays. 
Clearly, the delay does not simply shift the curve but modifies its shape 
indicating that axonal conduction delays have to be taken into account 
when interpreting power correlation curves from experimental data.

Distinct neuronal units can also share power correlations with-
out directly interacting. Common drive from a third source can 
create PDPCs between the driven units as it occurs described for 
uni-directional and bidirectional interactions. A distinction of the 
two scenarios is relevant to assess the origin of the phase-depend-
ent correlations in neurophysiological recordings. In general, we 
observe that correlations generated by the three topologies qualita-
tively differ in terms of their dependency of the connection strength 
(see Appendix and Figure A3).

pOwER CORRELATION AS A fUNCTION Of THE COUpLED pHASE 
DIffERENCE
Overall, the phase dependency in Figure 1A is broader compared 
with the one for the experimental data. This could be because the 
experimental data exhibit a coupled phase difference (θ) rather than 
an uncoupled one (∆ϕ). In principle, Eq. 7 relates the coupled phase 
difference to the uncoupled one but lamentably such dependency 
is not one-to-one since A and B are not fixed from trial to trial. 
Therefore, one cannot translate directly from the uncoupled to the 
coupled phase difference. It is possible, however, to relate them in a 
statistical sense. To that end, we integrate θ over the random distri-
butions of A and B to obtain an average coupled phase difference 
as a function of the uncoupled one,

θ ϕ ϕ
ϕ

( )∆ ∆
∆

= +









−∞

∞

−∞

∞

∫∫ arctan
cos( )

sin( )
( ) ( )

B wA

wA
p A p B dAdB  (15)

The numerical estimation of such integral shows that for a 
moderate coupling strength the average phase difference depends 
almost linearly on the uncoupled one (Figure 2A). Therefore, it is 
expected that power correlations as a function of the coupled phase 
look similar to Figure 1A but with the phase difference axis scaled 
by a numerical factor. Indeed, the power correlation curve becomes 
narrower when the power correlation is calculated as a function 
of the coupled phase difference instead of the uncoupled phase 
difference (Figure 2B and see Figure A4 in Appendix). A similar 
result is obtained when power is estimated instead of amplitude 
and when Spearman rank correlation is used instead of Pearson 
correlation (data not shown).

coupling strength is larger than ∼0.95, there is a double maximum 
which in the case of large coupling strength limit occurs for phase 
differences of ∆ϕ = ± π. Additionally, one can observe that negative 
power correlations can arise for certain phase differences only if 
the coupling is below the critical strength. (Note, however, that a 
Gaussian amplitude statistics, in contrast to a uniform amplitude 
statistics, in general generates a more positive correlation for the bad 
phase, see Figure A2 in Appendix). Beyond that limit only positive 
correlations arise, no matter the phase difference.

The former analysis considered a uni-directional type of interac-
tion between units. Cortical connectivity is, however, much more 
often bridging areas in a bidirectional or reciprocal manner. Next, 
we explore therefore how power correlations arise in a bidirectional 
scheme of coupled oscillations. For the bidirectional case, w

b → a
 > 0 

see Eqs 1 and 2), the analysis proceeds as described for the uni-
directional one, except for one distinction, namely, that the phase 
difference between the oscillators is composed by an initial phase 
difference and a propagation phase due to a delay in the interaction. 
In the uni-directional case, these two contributions could be simply 
added into a single term rendering the individual contribution of 
each indistinguishable. In the reciprocal case, axonal delays add a 
factor that strongly modifies the shape of the power correlation 
curve. The interacting oscillators are now described by

O t B ft w A ft f

D ft

O t

b b a

b

a

( ) sin( ) sin( )

cos

( )

= + + +
= +( )

→2 2 2

2

π π ϕ π τ
π θ

∆

== + + +
= +( )

→A ft w B ft f

C ft

a b

a

sin( ) sin( )

cos ,

2 2 2

2

π ϕ π π τ
π θ

∆

 (12)

whereby both powers depend explicitly on the phase propagation 
accumulated due to axonal delay in addition to the initial phase 
difference. They read as

D B w AB f w A

C A w AB f

b a

a b

= + + +( )
= + −

→

→

2 2 2 1 2

2

2 2

2 2

cos( )

cos( )

/
∆

∆

ϕ π τ

ϕ π τ ++( )w B2 2 1 2/
.  (13)

The power correlation can now be computed as a function 
of different variables from the expected values appearing in Eq. 
8 once A is replaced by the expression of the new power C. The 
analytical expression for the power correlation curve can be 
obtained even for asymmetric values of the coupling strengths 
w

b → a
 ≠ w

a → b
 and reads

ρ C D
w w w O w Oa b b a a b b a b a a b2 2

2 2 2 216 15 1 15 1 3
,( ) =

+( ) + +( ) + +( ) +→ → → → → → 55

16 1 5 6 6 7 14 2

O O

N N

N w O w O

b a a b

a b b a

i j i j i j i j i j

→ →

→ →

→ → → → →= +( ) + + +( ) ( 44)

O w f

O w f
b a b a

a b a b

→ →

→ →

= +
= −

cos( )

cos( )

2

2

π τ ϕ
π τ ϕ

∆
∆

Figure 1B displays the analytical results for the power correlation 
versus the uncoupled phase difference in a bidirectional interaction 
of oscillations. The Figure illustrates the symmetric and moderate 

The shape of the PDPC was also found to be dependent on the 
connection strength (Figure 2C). The shape of the PDPC can be 
better visually inspected after dividing the PDPC by its maximal 
value. For large connection strengths we observe that the normal-
ized shape stabilized (Figure 2D).
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lag is around 5 ms in the experimental data, this suggests that 
the average connection delay for the connection studied is in the 
range of 5 ms.

ExTENDINg THE LINEAR CORRELATION ANALySIS TO A NON-LINEAR 
INfORMATION INDEx
The Pearson correlation measures the degree of linearity and the 
Spearman rank correlation the monotonicity between two varia-
bles. However, two variables can share information by being related 
in a more complex manner. Mutual information will now be used 
to characterize the relationship between oscillatory variables since 
it is essentially free from any assumptions required for the above 
mentioned correlation measures. In Figure 5A, we have plotted 
the mutual information for three different cases as a function of 
the uncoupled phase difference. When mutual information is cal-
culated between O

b
(π/(4f)) and O

a
(π/(4f)), i.e., at a fixed point in 

time, and therefore without the non-linear amplitude extraction, 
the information for the bad phase is equal to that for the good 
phase condition. In contrast, when the amplitude is extracted, most 
information for both uniform and Gaussian amplitude distribu-
tions is retrieved specifically at the good phase. This is explained by 
the fact that amplitude (power) extraction is a non-linear operation 
that averages out correlations occurring between the instantaneous 
outputs at a given point in time. Moreover, the Gaussian distribu-
tion gives rise to a larger relative difference between bad and good 
phase than the uniform distribution.

Next, we examined how the modulation depth (see Analysis 
subsection in the Materials and Methods) of the PDPC and the 
strength of the phase coherence scale with different connection 
strengths (Figure 3). This is of particular interest because according 
to Womelsdorf et al. (2007, their Figures 1 and 2), there exist cases 
in which the two can dissociate; a relatively high phase coherence 
not always predicts a PDPC. Indeed, one can observe how for low 
coupling strengths (∼0.2) there is a regime where phase coherence 
can coexist with an almost flat or slightly negative peaked PDPC 
curve (Figure 3). However, at higher connection strengths an over-
all positive correlation between phase coherence and modulation 
depth is found.

THE TIMINg Of pHASE RELATIONS AND pOwER CORRELATIONS
The experimental results have shown that a good phase relation-
ship precedes a strong power correlation as shown in Figure 3 of 
Womelsdorf et al. (2007). Such a lag could indicate a causal role 
for the phase relation in modulating the efficacy of the interac-
tion as measured by power correlations. In order to examine this 
question we have introduced a sudden change in the phase rela-
tion (perturbing the phase in unit A) from a bad phase to a good 
phase at 60 ms, and back to a bad phase at 80 ms (Figure 4A). 
For a connection delay of 4 ms, the peak of the power correla-
tion is delayed by approximately 4 ms relative to the maximum 
of the phase relation. The connection delay is correlated with the 
power correlation lag (Figure 4B). Since the power correlation 

Figure 2 | The shape of the phase-dependent power correlation is 
changed when the coupled phase is regarded rather than the uncoupled 
phase. The amplitude distribution is Gaussian. (A) Relation between the 
averaged coupled and the uncoupled phase difference. Note that the slope of 
the regression line is 0.5. Thereby, the uncoupled phase difference is 

compressed as it is transformed into the coupled phase difference. 
(B) Comparison between the phase-dependent power correlation for connection 
strength of 0.3 and a cosine. (C) Correlation as a function of phase and 
connection strength. (D) Maximum normalized correlation as a function of 
phase and connection strength.
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dependency have been investigated as a function of the correla-
tion measure (non-linear versus linear), amplitude distribution, 
directionality, and of the nature of the phase difference (uncou-
pled or coupled).

ASSUMpTIONS Of THE LINEAR MODEL
Our model is approximate and makes three main assumptions, 
i.e., the interaction is linear, and the input is sinusoidal and spa-
tially uncorrelated. Here, we discuss those three assumptions. First, 
even though a linear model might not be biophysically plausible, 
linearity might be included as a main component of the interac-
tion between postsynaptic potential and membrane potential. The 
relative contribution of that linear component decreases, however, 
when neighboring synapses are activated (Polsky et al., 2004), and 
certain types of theoretical models do not even consider a linear 
component (Rabinovich et al., 2008). Thus, a future approach 
extending our model should demonstrate how the phase depend-
ency changes when different types of biophysical non-linearities 
are taken into consideration.

Second, we used a sinusoid as the oscillatory carrier to simu-
late the input since the sinusoid is the eigenfunction of the 
Fourier transform which was used to estimate the power. Power 
and phase of recorded signals are typically estimated around 
a particular frequency by using a narrow-band-pass filter. 
Therefore, the processed oscillatory activity is almost sinusoidal. 
The exact type of oscillator, however, does not matter since the 
results presented here hold for any periodic random function 
(data not shown).

Finally, we assume that the uncoupled activities of the units 
are independent. Such an assumption can be expected to hold 
for spatially distant neuronal populations (Smith and Kohn, 
2008; Ecker et al., 2010). In reality, the spatial correlation 
length is probably limited to the minimal distance between two 

When comparing model results for the coupled phase, the most 
prominent change is that the phase dependency becomes bi-modal 
for amplitude extraction and a uniform amplitude distribution (see 
Figure 5B). This is related to the fact that the tails of the power 
correlation curve as a function of the coupled phase difference 
take negative values (Figure A4B in Appendix). Since positive and 
negative correlations contribute equally to mutual information, a 
double peak is present when measuring mutual information versus 
the coupled phase difference.

Overall, the width of the mutual information based phase depend-
ency is narrower than that of the correlation based. Furthermore, we 
have seen that the width is different between uncoupled and coupled 
phase differences. In Figure A5 in Appendix, we present a model 
that illustrates that the width can be of importance in particular for 
contrast dependent modulation of long-range lateral connections.

DISCUSSION
We apply a model using a linear, albeit conduction delay depend-
ent, neuronal interaction to examine how power correlations 
depend on phase differences and other parameters of oscillatory 
activity. Because of the simplicity of the model, the presented 
results are predicted to apply to generic interactions between 
oscillatory populations. Interestingly, the linear model leads to 
similar results as recently published experimental data. According 
to the model the influence of the connection makes one particular 
phase difference more frequent than other phase differences. This 
phase difference corresponds to the mean phase and it is referred 
to as the “good” phase. Since the mean phase emerges from the 
connection it is also a marker of the effective connectivity. Thus, 
it is argued that such phase might be responsible of generat-
ing the largest power correlations. In addition to explaining the 
experimental results the main contribution of the model has been 
the examination of how different parameters are influencing the 
shape of the phase dependency. The characteristics of the phase 

Figure 4 | good phase is followed by high power correlation. The 
connection strength is equal to 0.3. (A) A strong power correlation is preceded 
by a high coupled phase relation. Connection delay is 4 ms. Top panel: 
Background signal in unit A, Ia(t) = Oa(t) (black), background signal in unit B, Ib(t) 
(light blue), and “measured” signal in unit B with Ob(t) = w(f)Oa(t-T/2πf) + Ib(t) 
(cerise). Note that the amplitude of Ob(t) is larger during the good phase 
between 60 and 80 ms. Bottom panel: Normalized phase relation (blue) and 
normalized power correlation (green) for the same parameters. For the 
normalized phase relation values one corresponds to a good phase relation 
and zero corresponds to a bad phase relation. (B) The temporal lag of the 
power correlation relative to the phase relation is correlated with the 
connection delay.

Figure 3 | The relation between the phase coherence and the shape of 
the coupled phase-dependent power correlation depends on the 
connection strength. The shape of the coupled phase-dependent power 
correlation was quantified either using the correlation difference between the 
0 and π phase difference (dashed black line) or the correlation difference 
between the 0 and π/3 phase difference (solid black line). The two correlation 
difference curves intersect when the connection strength is approximately 0.1 
(indicated by an asterix *). Therefore, correlations for π and π/3 are 
approximately identical (see inset). Note that the good phase has lower 
correlations than the bad phase despite the phase coherency is larger than 0.1 
(red line).
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reference for such a comparison. The experimentally retrieved PDPC 
can be compared to a predicted PDPC. The only variable that is needed 
for that prediction is the connection strength, which in a strict sense 
can be estimated from the experimentally measured phase coherence.

A direct test for a non-linear relationship between phase and 
input has been done by TMS stimulation in the motor cortex while 
measuring the spinal input: “This enabled us to test whether the 
phase of the spinal beta rhythm at which the input arrived modu-
lated the gain of this input” (van Elswijk et al., 2010). The authors 
describe that a naturally occurring beta rhythm is strong enough 
to change the gain of the spinal input. Oscillations slower than beta 
frequency have also been shown to modulate the cortical gain of 
sensory input (Lakatos et al., 2005; Lakatos et al., 2007; Rajkai et al., 
2008). These studies point out the existence of some non-linear 
interactions at low frequencies between peripheral nerve systems 
and either sensory or motor cortex. However, the effect of such 
non-linearities on gamma power correlation statistics across corti-
cal areas has still to be measured under physiological conditions.

IS A HIgH pOwER CORRELATION INDICATIvE Of CAUSALITy?
Although, we have simulated here a case where – by construction – 
the phase has a causal role in power correlations, we would like to 
mention that in other scenarios, especially in more realistic setups, 
different interpretations of their lag are possible. First, the phase and 
amplitude of many oscillatory processes are intimately and mutu-
ally linked, and it is therefore not easy to assign a causal role to only 
one of the two variables. For instance, a perturbation in the phase 
of an oscillator can modify its amplitude, and vice versa. Further, 
the two variables can have a different inertia to perturbations, and 
therefore, temporal lags cannot be univocally interpreted as a sign 
of causality. Second, different measuring indices (e.g., phase differ-
ences and power correlations) can have different bias to detect the 
timing of perturbations. For example, in the presence of conduction 
delay T, it will take T ms until the effect of a sudden perturbation 
in A can reach unit B. If both phase and amplitude have been per-
turbed in A, the instantaneous phase difference will pick up such a 
change immediately. However, it might take some time around T 
for the variables at B to follow the change in A and build up some 
significant correlation with those at A. Thus, phase differences can 
precede power correlations even if the amplitude variable can have 
a causal role.

Related to the causality question is the fact that both com-
mon drive and direct interactions provide phase-dependent cor-
relation curves. However, as we have seen there are qualitative 
differences between the PDPC for different topologies (Figure 
A3 in Appendix). For uni-directional topology and low connec-
tion strength, the correlation at zero phase difference is lower 
than that of the π phase difference (Figure A3B in Appendix). 
In contrast, for high connection strength, the correlation at π 
phase difference is lower than that of the zero phase difference. 
For the common drive topology, the correlation at π phase differ-
ence is lower than that of the zero phase difference, irrespective 
of connection strength (Figure A3D in Appendix). Therefore, 
the two topologies show differences in terms of the effect of the 
connection strength. In an experimental condition, however, we 
do not know the “connection strength” between two recording 
points. Instead, to disambiguate between the two topologies, we 

 phase-independent oscillators. The upper limit of this distance 
has been estimated around 0.65 mm (Womelsdorf et al., 2007, 
their Figure 4).

IMpLICATIONS fOR THE INvESTIgATION Of NON-LINEARITIES
Here, we have shown that a linear model can fit some recent experi-
mental results concerning power correlation dependencies. Within a 
linear model information transmission can be reliably controlled if 
the noise amplitude is proportional to the signal, i.e., multiplicative 
noise. For example, if the DC level of the signal is decreased the noise 
would decrease too. If, on the other hand, the noise source is additive 
the signal would have to be amplified in order for the signal to noise 
ratio to increase, i.e., gain control (Haider and McCormick, 2009). 
Amplification, however, is a non-linear mechanism. If phase modula-
tion is therefore proposed as a gain control mechanism it must operate 
in a regime that deviates from linearity. Here, we present the linear 

Figure 5 | Mutual information for different settings of the model. (A) 
Uncoupled phase. The connection strength is 0.3. The x-axis (columns) 
denotes a phase difference in six bins. For a uniform amplitude distribution, 
correlations were calculated for both one time point amplitude (t = π/(4f)) and 
full period amplitude. For Gaussian amplitude distribution, correlations were 
calculated for full period amplitude. Note that the mutual information for the 
good phase is equal to that of the bad phase. (B) Same as in (A) but with 
coupled phase. Note that the full width half maximum is narrower in (B) than 
in (A).

Eriksson et al. Linear phase-dependent power correlations

Frontiers in Computational Neuroscience www.frontiersin.org July 2011 | Volume 5 | Article 34 | 7

http://www.frontiersin.org/Computational_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Synchronization dynamics in response 
to plaid stimuli in monkey V1. Cereb. 
Cortex 7, 1556–1573.

Luhmann, H. J., Greuel, J. M., and Singer, 
W. (1990a). Horizontal interactions in 
cat striate cortex: II. A current source-
density analysis. Eur. J. Neurosci. 2, 
358–368.

Luhmann, H. J., Singer, W., and Martínez-
Millán, L. (1990b). Horizontal interac-
tions in cat striate cortex: I. Anatomical 
substrate and postnatal development. 
Eur. J. Neurosci. 2, 344–357.

Murakoshi, T., Guo, J. Z., and, Ichinose, 
T. (1993). Electrophysiological iden-
tification of horizontal synaptic con-
nections in rat visual cortex in vitro. 
Neurosci. Lett. 163, 211–214.

Nadasdy, Z. (2009). Information encod-
ing and reconstruction from the 
phase of action potentials. Front. 
Syst. Neurosci. 3:6. doi: 10.3389/
neuro.06.006.2009

Nauhaus, I., Busse, L., Carandini, M., 
and Ringach, D. L. (2009). Stimulus 
 contrast modulates functional 
connectivity in visual cortex. Nat. 
Neurosci. 12, 70–76.

Hipp, J. F., Engel, A. K., and Siegel, M. 
(2011). Oscillatory synchronization 
in large-scale cortical networks pre-
dicts perception. Neuron 69, 387–396.

Hirsch, J. A., and Gilbert, C. D. (1991). 
Synaptic physiology of horizontal con-
nections in the cat’s visual cortex. J. 
Neurosci. 11, 1800–1809.

Knight, R. T. (2007). Neuroscience. Neural 
networks debunk phrenology. Science 
316, 1578–1579.

Konig, P., Engel, A. K., Roelfsema, P. R, 
Singer, W. (1995). How precise is 
neuronal synchronization? Neural 
Comput. 7, 469–485.

Lakatos, P., Chen, C. M., O’Connell, M. N., 
Mills, A., and Schroeder, C. E. (2007). 
Neuronal oscillations and multisen-
sory interaction in primary auditory 
cortex. Neuron 53, 279–292.

Lakatos, P., Shah, A. S., Knuth, K. H., 
Ulbert, I., Karmos, G., and Schroeder, 
C. E. (2005). An oscillatory hierarchy 
controlling neuronal excitability and 
stimulus processing in the auditory 
cortex. J. Neurophysiol. 94, 1904–1911.

Lima, B., Singer, W., Chen, N. H., 
and Neuenschwander, S. (2010). 

17 on the visual cortex. Philos. Trans. 
R. Soc. Lond. B Biol. Sci. 272, 487–536.

Fries, P. (2005). A mechanism for cognitive 
dynamics: neuronal communication 
through neuronal coherence. Trends 
Cogn. Sci. (Regul. Ed.) 9, 474–480.

Fries, P. (2009). Neuronal gamma-band 
synchronization as a fundamental 
process in cortical computation. Annu. 
Rev. Neurosci. 32, 209–224.

Fries, P., Reynolds, J. H., Rorie, A. E., and 
Desimone, R. (2001). Modulation of 
oscillatory neuronal synchronization 
by selective visual attention. Science 
291, 1560–1563.

Gilbert, C. D., and Wiesel, T. N. (1979). 
Morphology and intracortical pro-
jections of functionally characterised 
neurones in the cat visual cortex. 
Nature 280, 120–125.

Haider, B., and McCormick, D. A. (2009). 
Rapid neocortical dynamics: cellular 
and network mechanisms. Neuron 62, 
171–189.

Henrie, J. A., and Shapley, R. (2005). 
LFP power spectra in V1 cortex: the 
graded effect of stimulus contrast. J. 
Neurophysiol. 94, 479–490.

REfERENCES
Bringuier, V., and Chavane, F., Glaeser, 

L., and Frégnac, Y. (1999). Horizontal 
propagation of visual activity in the 
synaptic integration field of area 17 
neurons. Science 283, 695–699.

Buehlmann, A., and Deco, G. (2010). 
Optimal information transfer in 
the cortex through synchronization. 
PLoS Comput. Biol. 6, e1000934. 
doi:10.1371/journal.pcbi.1000934

Buschman, T. J., and Miller, E. K. (2007). 
Top-down versus bottom-up control 
of attention in the prefrontal and 
posterior parietal cortices. Science 
315, 1860–1862.

Dayan, P., Kakade, S., and Montague, 
P. R. (2000). Learning and selective 
attention. Nat. Neurosci. 3(Suppl.), 
1218–1223.

Ecker, A. S., Berens, P., Keliris, G. A., 
Bethge, M., Logothetis, N. K., and 
Tolias, A. S. (2010). Decorrelated neu-
ronal firing in cortical microcircuits. 
Science 327, 584–587.

Fisken, R. A., Garey, L. J., and Powell, T. 
P. (1975). The intrinsic, association 
and commissural connections of area 

et al., 1995). Finally, as the largest distance between two later-
ally connected neurons within one cortical area is roughly 3 mm 
(Fisken et al., 1975; Gilbert and Wiesel, 1979; Rockland and Lund, 
1982; Luhmann et al., 1990b), and the typical conduction velocity 
is around 0.3 mm/ms (Luhmann et al., 1990a; Hirsch and Gilbert, 
1991; Murakoshi et al., 1993; Bringuier et al., 1999; Nauhaus et al., 
2009), the largest connection delay is around 10 ms. Interestingly, 
this delay is relatively close to half the period of a 60-Hz gamma 
cycle (Fries et al., 2001; Womelsdorf et al., 2007). Therefore, glob-
ally synchronized distant (2–3 mm) neurons will accumulate a 
propagation phase close to the bad phase.

Essential for such a mechanism would be, however, the shape of 
the phase difference dependency. Assuming a constant conduction 
velocity this shape can be directly superimposed onto the corti-
cal surface to delineate the functional extent of horizontal con-
nections. Therefore, a crucial parameter returned by our model 
is the tuning width of the phase dependency (see Figure A5 in 
Appendix). Preferentially, the tuning width should be such that 
it maximizes the dynamic range of the horizontal connections.

AUTHOR CONTRIbUTION
The study was conceived by David Eriksson. The numerical simu-
lations were made by David Eriksson. The paper was written by 
David Eriksson, Raul Vicente and Kerstin Schmidt. The analytical 
solutions and predictions were derived by Raul Vicente.

ACKNOwLEDgMENTS
We thank the reviewers for their valuable comments and sug-
gestions to improve the paper. We thank Pascal Fries and Gilad 
Silberberg for comments on the early versions of the model, Wei 
Wu, Katharina Schmitz, Thomas Wunderle, and Peter Latham for 
comments on the manuscript.

can use the experimentally measurable phase coherence as a cor-
relate of the connection strength since we show that the two are 
monotonically related.

HOw A CONNECTION DELAy COULD MODULATE THE pROpORTION 
bETwEEN fEED-fORwARD AND LATERAL CONNECTIONS
For firing rates, it has been observed that the influential radius of 
lateral connections decreases when the contrast increases (Sceniak 
et al., 1999; Nauhaus et al., 2009). One could argue that if the 
stimulus has a high-contrast it needs little interpretation and there-
fore only weak lateral interactions, i.e., the feed-forward pathway 
is sufficient. However, if the stimulus were less salient, lateral con-
nections would be required to obtain a meaningful interpretation 
of the stimulus.

Could this feed-forward–lateral modulation be transmitted by 
neuronal oscillations?

The feed-forward pathway has, according to modeling stud-
ies, been shown to benefit from strong gamma coherence and 
synchrony (Tiesinga et al., 2004; Buehlmann and Deco, 2010). 
Long-range lateral connections could be rendered ineffective 
if their delay generates a bad phase relative to a globally syn-
chronized oscillation. Experimental evidence for such a delay-
mediated and possibly contrast-controlled modulation of lateral 
connections can be drawn from several studies that show the 
presence of oscillations for high-contrast stimulation together 
with global synchrony and suitable delayed interactions. First, 
stimulus-contrast has been associated with gamma oscillations 
because increasing the contrast, or the mere introduction of a 
stimulus, enhances the amplitude of gamma oscillations (Fries 
et al., 2001; Henrie and Shapley, 2005; Lima et al., 2010; Yu and 
Ferster, 2010). Second, it has been shown that distant neurons 
can be globally synchronized for a high-contrast stimulus (Konig 
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All units receive background input with a uniform phase dis-
tribution (∆ϕ

A
, ∆ϕ

B
, ∆ϕ

C,
 and ∆ϕ

D
) and a Gaussian amplitude 

distribution (A, B, C, and D) with a mean amplitude equal to one 
and a SD equal to one (see Materials and Methods for simula-
tion details). There is a connection delay, τ, between units A and 
B in radians. Different simulations have been run for different 
connection delay values ranging from A to B: 0 (neighboring 
neurons and good phase), π/5, 2π/5, 3π/5, 4π/5, and π (long-
range connections and bad phase). The other connections have 
no delay. All connections, except the connection between the 
input units, have strength one.

AppENDIx
pHASE-DEpENDENT pOwER CORRELATIONS INDUCED by COMMON 
DRIvE
A common drive describes the situation where two units are driven 
by an external source. In this case our model reads as

O t A t ft wC t fta
k k k( ) ( )sin( ) ( )sin( )= + + +2 2π ϕ π ψ∆  (A1)

O t B t ft wC t f tb
k k k

a( ) ( )sin( ) ( )sin( ),= + +2 2π π ψ  (A2)

where ∆ϕ and ψ, refer to the initial phase offsets between A and B, 
and B and C, respectively.

The phase-dependent power correlation induced by common 
drive can be analytically estimated in a similar way as described for 
the uni-directional and bidirectional case. The main difference is that 
the integrals appearing in Eq. 8 now have to be computed over three 
random variables representing the amplitudes of units A, B, and C 
[independent and uniformly distributed in the interval (0–1)]. The 
final expression for the power correlation between units A and B is
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In order to examine the effects of common drive as a function 
of the coupled phase difference, we computed PDPC directly from 
numerical realizations of (A1–A2). In this case, the three ampli-
tudes were independently drawn from the absolute value of nor-
malized Gaussian distributions. Figure A3 compares the PDPC for 
the common drive, uni-directional, and bidirectional connectivity. 
We observe that – although the three cases are qualitatively similar 
– the common drive model is the only topology which generates 
highest correlation at the zero phase difference, irrespective of the 
connection strength.

OSCILLATION COHERENCy MIgHT MODULATE THE ExTENT Of EffECTIvE 
LATERAL CORRELATIONS
Stimulus-contrast has been shown to increase the oscillation ampli-
tude of the LFP and/or the phase coherence between neurons. 
Here, we model stimulus-contrast as the increase of a connection 
between two units in the “input layer” (see Figure A5A). This con-
nection serves to increase the phase coherence and/or to increase 
the amplitude of the oscillations (see Figure A5B). We test if this 
amplitude and/or coherence increase can be used to regulate the 
extent of effective long-range lateral connections (see Discussion for 
a motivation). To quantify the extent of the communication we use 
mutual information between the two units in the “output layer.” All 
units are defined according to the principles dictated by Eqs 3 and 4.

Unit C and D are defined by:

O t C ft
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c C

d C D
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( ) sin( ) sin( )

= +
= + + +

2

2 2

π ∆ϕ
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 (A4)

We observe two things in Figure A5. First, the long-range 
communication decreased and the short-range communication 
increased for high connection strength, w. Second, the exact extent 
of the effective communication is dictated by the information index 
used, i.e., mutual information or correlation.

Figure A1 | Amplitude controlled phase relation. Amplitude scaling 
(λ = wA/B) larger than one enables phase reversal, which in turn results in a 
local acceleration of the phase relation (ϕ). The phase difference will lag the 
amplitude difference by the connection delay (data not shown).
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Figure A2 | Dependency on amplitude distribution type. A Gaussian 
amplitude distribution generates higher correlation than a uniform amplitude 
distribution. (A) Uniform amplitude distribution. (B) Distribution when the two 
units are connected, w=1, for the bad coupled phase. (C,D) The same as (A) 

and (B) but using the superposition of multiple uniform distributions in order to 
approximate a Gaussian distribution. (D) In case of a Gaussian distribution, 
there is a correlation but, in case of a uniform distribution, there is none 
[see (B)].
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Figure A3 | The PDPC as a function of the connection strength and three 
different topologies. The uni-directional model (A,B), the common drive model 
(C,D), and the bidirectional model (e,F) are all displayed in absolute correlation 

(left column) and min–max normalized correlation (right column). Note that the 
common drive case is the only one in which the 0 phase difference has a larger 
correlation than the π phase difference, irrespective of connection strength.
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Figure A4 | The power correlation as a function of uncoupled phase 
difference is broader than the power correlation as a function of the 
coupled phase difference. (A) Uncoupled phase-dependent power correlation 
(top). Coupled phase difference is mapped with a pseudo color scale (bottom).  
The orange line indicates where the coupled phase difference is around 90°. At 
each uncoupled phase difference the slope of the orange line is different. If all 

the points representing coupled phase difference around 90° were pooled [see 
(B)], the resulting correlation would be less than the correlation seen for 90° of 
uncoupled phase difference. (B) Same as A, but with coupled phase difference. 
Note the relatively low correlation at a coupled phase difference of −90°. This 
explains why the coupled phase difference generates a narrower correlation 
curve than the uncoupled phase difference.
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Figure A5 | Oscillation coherency might modulate the extent of 
effective lateral long-range correlations. (A) The model consists of two 
linear units in the input layer and two linear units in the output layer. All units 
are defined according to the principles dictated by Eqs 3 and 4. (B) The 
amplitude and the phase coherency between the oscillations of the two input 
units increase as the connection strength between the two units increases. 
The “feed-forward” mutual information (see Materials and Methods) between 
unit A and C increases as the connection strength w increases. (C) The mutual 
information between the most distant units decreases as the connection 
strength w increases. The mapping from phase difference to cortical distance 
has been done by assuming a conduction velocity of 0.3 mm/ms and an 
oscillation frequency of 60 Hz (see Discussion). Note that the distance 
relationship is dependent on which information index [mutual information 
(black line) versus correlation (red line)] was used.
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