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The architecture of connections between neurons is not static, 
but can vary on a timescale of hours (Minerbi et al., 2009) or days 
(Trachtenberg et al., 2002; Holtmaat et al., 2005), because of ongo-
ing formation and loss of dendritic spines and axonal contacts onto 
those spines (Yuste and Bonhoeffer, 2004). While the determinants 
of spine retention versus spine loss have not been characterized as 
well as the determinants of changes in synaptic strength, recent 
evidence suggests the requirements are similar (Toni et al., 1999; 
Alvarez and Sabatini, 2007; Becker et al., 2008; Wilbrecht et al., 
2010), and synaptic strength correlates with size of dendritic spines, 
while smaller spines – thus weaker synapses – are most likely to 
disappear (Holtmaat et al., 2006; Becker et al., 2008). Moreover, 
the correlations observed in the connectivity between cells matches 
the correlations observed in the strengths of synapses between cells 
(Song et al., 2005; Perin et al., 2011).

Others have shown that Hebbian-like functional plastic-
ity mechanisms can produce the observed cluster-like cor-
relations in synaptic strengths that are typical of small-world 
networks (Siri et al., 2007) or disconnected cliques (Cateau et al., 
2008). For example, in a network trained with a voltage-based 

IntroductIon
Connections between neurons are not randomly distributed, but 
contain correlations indicative of clustering (Song et al., 2005; Lefort 
et al., 2009; Perin et al., 2011). In particular, an in vitro study of 
connections among cells in a small region of visual cortex in rats 
demonstrated that bidirectional connections between pairs of neu-
rons are much greater than expected by chance, given the measured 
probability of individual connections (Song et al., 2005). This result 
did not simply arise from differing distances between cells (nearby 
cells have greater connection probability) because all of the cells 
measured had overlapping dendritic and axonal arbors. Moreover, 
when the authors analyzed triplets of cells, they found an excess of 
fully connected three-cell connection patterns or “motifs” compared 
to chance, even after accounting for the excess of bidirectional con-
nections (Song et al., 2005). A more recent study (Perin et al., 2011) 
extended these results by simultaneously recording from groups of 
up to 12 cells in rat somatosensory cortex, finding spatially interlock-
ing but distinctly connected clusters of dozens of cells. The authors 
suggest these latter findings place constraints on any experience-
dependent structural reorganization of synaptic connections.
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The pattern of connections among cortical excitatory cells with overlapping arbors is non-random. 
In particular, correlations among connections produce clustering – cells in cliques connect to each 
other with high probability, but with lower probability to cells in other spatially intertwined cliques. 
In this study, we model initially randomly connected sparse recurrent networks of spiking neurons 
with random, overlapping inputs, to investigate what functional and structural synaptic plasticity 
mechanisms sculpt network connections into the patterns measured in vitro. Our Hebbian 
implementation of structural plasticity causes a removal of connections between uncorrelated 
excitatory cells, followed by their random replacement. To model a biconditional discrimination 
task, we stimulate the network via pairs (A + B, C + D, A + D, and C + B) of four inputs (A, B, C, 
and D). We find networks that produce neurons most responsive to specific paired inputs – a 
building block of computation and essential role for cortex – contain the excessive clustering 
of excitatory synaptic connections observed in cortical slices. The same networks produce 
the best performance in a behavioral readout of the networks’ ability to complete the task. A 
plasticity mechanism operating on inhibitory connections, long-term potentiation of inhibition, 
when combined with structural plasticity, indirectly enhances clustering of excitatory cells via 
excitatory connections. A rate-dependent (triplet) form of spike-timing-dependent plasticity 
(STDP) between excitatory cells is less effective and basic STDP is detrimental. Clustering 
also arises in networks stimulated with single stimuli and in networks undergoing raised 
levels of spontaneous activity when structural plasticity is combined with functional plasticity. 
In conclusion, spatially intertwined clusters or cliques of connected excitatory cells can arise 
via a Hebbian form of structural plasticity operating in initially randomly connected networks.
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 spike- timing-dependent plasticity (STDP; Clopath et al., 2010), if a 
connection directed from presynaptic cell i to post-synaptic cell j is 
strong, then the reverse connection, directed from j to i is likely to 
be stronger than an average connection. If one assumes that weak 
connections disappear, then the expected effect of a structural 
implementation of Hebbian plasticity is an excess of bidirectional 
connections between cells, compared to that expected by chance. 
Other modeling work (Koulakov et al., 2009) has focused on how 
the skewed unimodal distribution of synaptic strengths, best mod-
eled as a log-normal distribution, can be reconciled with a similarly 
skewed distribution of neural firing rates. Their solution – that 
certain cells with higher firing rates also had stronger presyn-
aptic connections, apparent as a striated, plaid-like structure in 
the connectivity matrix – could arise from Hebbian-like plasticity 
(Koulakov et al., 2009).

In this paper, we use numerical simulation to study how net-
works of spiking neurons, initially containing sparse and random 
recurrent connections, can be trained to produce the observed non-
random structural correlations (Song et al., 2005; Perin et al., 2011). 
By studying a diverse set of networks – with varying input correla-
tions and probability of connection (Figure 1A) – and plasticity 
mechanisms, we reproduce the experimentally observed correla-
tions when the firing of cells is significantly heterogeneous on the 
timescale of correlations required to produce synaptic changes and 
a form of Hebbian-like structural plasticity is present.

The particular training protocol we used, biconditional dis-
crimination (Figure 2A) is one that requires the network to pro-
duce an Exclusive-Or (XOR) logical response to pairs of activated 
stimuli (Dusek and Eichenbaum, 1998; Lober and Lachnit, 2002; 
Takeda et al., 2005; Sanderson et al., 2006; Harris et al., 2008, 
2009). Production of XOR responses is non-trivial, since a cor-
rect set of responses cannot be achieved by making a choice 
according to a linear combination of the inputs (i.e., the task is 
not linearly separable; Hasselmo and Cekic, 1996; Senn and Fusi, 
2005). Others have produced solutions of XOR tasks with neu-
ronal networks via a variety of forms of reinforcement learning 
(Seung, 2003; Xie and Seung, 2004; Florian, 2007) or non-linear 
neural response (Hasselmo and Cekic, 1996; Christodoulou and 
Cleanthous, 2011). We find that our network achieves XOR-logic 
by enhancing initial selectivity of cells responsive to particular 
pairs of stimuli (Bourjaily and Miller, 2011; Christodoulou and 
Cleanthous, 2011). Generating selectivity to specific combinations 
of stimuli is a well-known function of sensory areas (Desimone 
et al., 1984; Ito et al., 1995; Baker et al., 2002). When coupled with 
a method for producing invariance, such stimulus-combination 
selectivity provides a framework for general feature and item detec-
tion (Serre et al., 2007). Thus, the task and ensuing XOR response 
simulated in our model networks is likely to be representative 
of many of the computations carried out by circuits of neurons 
throughout the brain.

We show that other stimulation protocols, with either more 
specific input and completely non-specific input (spontaneous 
background activity), can also lead to the structural correlations 
observed in vitro (Song et al., 2005; Perin et al., 2011), so long as the 
activity of cells is sufficiently diverse. We note that such heterogene-
ity across cells is necessary for producing solutions to the XOR-like 
behavioral task (Rigotti et al., 2010; Bourjaily and Miller, 2011).

MaterIals and Methods
The overall network structure and training protocols described 
below follow those from a previously published study (Bourjaily 
and Miller, 2011). Table 1 provides a summary of the model’s 
structure and parameters, in a form suggested for neuronal net-
work models (Nordlie et al., 2009). In this paper we add struc-
tural plasticity to the networks studied previously and analyze 
the resulting changes in network structure in a manner similar 
to that used by Song et al. (2005) for the connections within 
cortical slice data.

network Inputs
Pairs of stimuli activated together (either A + B, C + D, A + D, C + B) 
produced inputs as Poisson spike trains. In order to investigate the 
robustness of each learning rule, we examined their effects on sets 
of 25 different networks with each set of networks explored under 
four or more distinct plasticity protocols.

We produced networks with different degrees of input cor-
relations, as shown in Figure 1A, by altering the number of 
independent inputs per stimulus, as 2, 4, 6, 10, or 20 (6 in the 
default network) to excitatory and inhibitory cells in the asso-
ciative layer (Figure 1B). Each input comprised a train of inde-
pendent Poisson spikes with a mean firing rate defined by: 
r = 480 Hz/(Number of Inputs per stimulus). For example, in a 
network with 20 inputs any stimulus produced 20 independent 
Poisson spike trains at 24 Hz, with each input projecting to inde-
pendent sets of cells within the associative layer. Whereas, with 
two inputs per stimulus, the two trains of 240 Hz Poisson spikes 
(a firing rate much higher than produced by an individual cell) 
can be considered as 20 independent Poisson spike trains of 24 Hz 
grouped into two sets of 10 – while the receiving cells between sets 
are uncorrelated, the receiving cells within such a set of 10 would 
be identical. Thus, as the number of inputs per stimulus decreases, 
the correlations in connectivity from afferent cells increases. In 
this paper we do not address structural plasticity of the input con-
nections, which we expect to determine the actual level of input 
correlations.

We examined how the sparseness and correlations of input groups 
affected both the initial selectivity of a network and how the network 
responded to each of the synaptic plasticity rules. Input sparseness is 
defined via the probability of any input group projecting to any given 
cell. As input connection probability increases, sparseness decreases. 
We used the following five values for input connection probability: 
1/2, 1/3, 1/5, 1/10, and 1/20 (1/5 in the default network).

Five levels of input sparseness, combined with 5 different degrees 
of input correlations led to 25 variant networks in each regime.

Our initial network possessed neither structure in its afferent 
connections nor in its internal recurrent connections. Random con-
nectivity produced cell-to-cell variability since no two cells receive 
identical inputs. Such heterogeneity of the inputs across cells led to 
a network of neurons with diverse stimulus responses.

In a subset of examples (Figures 10 and 11A,C) we trained the 
network, with a single stimulus at a time (e.g., “A” alone) rather 
than with paired inputs (e.g., “A + B”; see Figure 2B). Total time of 
inputs was unchanged, but neural responses were sparser, produc-
ing greater selectivity (fewer cells active at any one time and any 
cell is active to fewer inputs).

Bourjaily and Miller Structural correlations from learning

Frontiers in Computational Neuroscience www.frontiersin.org September 2011 | Volume 5 | Article 37 | 2

http://www.frontiersin.org/Computational_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


constant 2 ms) to a cell-dependent base value (given below) 
between spikes. The membrane potential, V, evolves according 
to the equation:

C
dV

dt
g V V g t V V g t V V F V

g

= − + − + −

+

L L GABA I NMDA E NMDA

ref

( ) ( )( ) ( )( ) ( )

(tt V V g V V g V V)( ) ( ) ( )ref ext
E

E ext
I

I− + − + −

neuron propertIes
We use leaky integrate-and-fire (LIF) neurons (Tuckwell, 1988) 
defined by the leak conductance, g

L
, synaptic conductances g

AMPA
, 

g
NMDA

, g
GABA

, and a refractory conductance, g
ref

, resting potential 
(i.e., leak potential) V

L
 and threshold potential, V

th
. The threshold 

potential is dynamic: it increases to a maximal value of 150 mV 
immediately after a spike and decreases exponentially (with time 

Figure 1 | Network architecture. (A) Example of input configurations from a 
single stimulus-responsive input population. Each input population is 
represented by 20 cells, which output independent Poisson spike trains but 
correlated connections. The total number of independent sets of connections 
ranges from 2 to 20. Left: with two independent inputs per stimulus population, 
and low input connection probability (1/5 is shown) associative layer cells receive 
selective input. Right: with 10 independent inputs per stimulus population, and 
low input connection probability (1/5 is shown) associative layer cells receive 
more uniform, less correlated inputs. Poisson input groups randomly project to a 
sparse-random recurrent network of excitatory (red) and inhibitory (cells). Input 
projection probability ranges from 1/20 (sparse) to 1/2 (dense), with input 
connections selected independently between each set of independent input 
cells per input population. (B) Complete network structure (Bourjaily and Miller, 
2011). Excitatory-to-excitatory connections (arrows) and inhibitory-to-excitatory 
connections (balls) are probabilistic and plastic. All-to-all inhibitory-to-inhibitory 

synapses are also present but not plastic. In the relevant simulations, STDP or 
triplet-STDP occurs at excitatory-to-excitatory and input-to-excitatory synapses, 
while LTPi occurs at inhibitory-to-excitatory synapses. Inhibition is feed forward 
only (i.e., the network does not include recurrent excitatory-to-inhibitory 
synapses). Excitatory cells from the Associative layer project all-to-all, with 
initially equal synaptic strength to excitatory cells in both the Hold and Release 
pools of the decision-making network. The decision-making network consists of 
two excitatory pools with strong intra-pool recurrent connections, which 
compete via cross-inhibition between pools (Wang, 2002). Strong intra-pool 
recurrent excitation ensures bistability for each pool, while the cross-inhibition 
generates winner-take-all (WTA) dynamics such that only one population can be 
active following the stimulus, resulting in one decision. Whether the motor 
output (based on the decision of hold versus release) is correct for the 
corresponding cue, determines the presence of Dopamine (DA) at the input 
synapses, according to the rules of the task in Figure 2.
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A

B

Figure 2 | Task logic. (A) In an example of biconditional discrimination 
(Sanderson et al., 2006), two of four possible stimuli (A, B, C, and D) are 
presented simultaneously to a subject. If either both A and B are present or 
neither is present, the subject should make one response (such as release a 
lever). If either A or B but not both are present, the subject should make an 
alternative response (such as hold the lever until the end of the trial). Neurons 

must generate responses to specific stimulus-pairs (e.g., A + B) to perform this 
task successfully. A response to a single stimulus (e.g., A) is not sufficient to 
drive the correct response in one pairing without activating the incorrect 
response for the opposite pairing of that stimulus. (B) In the simplified task of 
single stimulus-response matching, network input is more specific, with just 
one input activated at a time.

Table 1 | Components of the network simulations.

A MoDel SuMMAry

Populations Input: 4 excitatory (A, B, C, D).

 Associative: 1 inhibitory + 1 excitatory.

 Decision: 2 excitatory, 2 inhibitory.

Connectivity Input to associative: sparse-random E-to-E and E-to-I.

 Recurrent associative: sparse-random E-to-E and I-to-E, all-to-all I-to-I associative to decision: all-to-all E-to-E.

 Recurrent decision: all-to-all within-choice E-to-E; all-to-all across-choice E-to-I; all-to-all within-choice I-to-E; all-to-all I-to-I.

Neuron model Leaky integrate-and-fire (laf) with dynamic threshold and dynamic refractory conductance.

Synapse model Excitatory AMPA + NMDA, inhibitory GABA conductances with step increase then exponential decay; voltage-dependence in NMDA.

Plasticity Input to associative and recurrent associative layer E-to-E and I-to-E synapses with various forms of correlational plasticity.

 Associative to output synapses with reward-based plasticity.

 Recurrent associative layer E-to-E with structural plasticity.

 Homeostasis by multiplicative synaptic scaling.

Input Independent fixed-rate Poisson spike trains from populations of input cells.

Measurements Spike trains, synaptic connections and synaptic weights.

B PoPulATioNS

Name elements Size

Input-E Poisson trains NIn = 2, 4, 6, 10, 20

Associative-E laf Neuron NE = 4NI

Associative-I laf Neuron NI

Decision-E laf Neuron 100

Decision-I laf Neuron 25

C CoNNeCTiviTy

Name Source Target Pattern

InE Input-E Associative-E Random, p = 0.05 −0.5; plastic, initial weight InE0

InI Input-E Associative-E Random, p = 0.05 −0.5; plastic, initial weight InI0

(Continued)
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EE Associative-E Associative-E Random, p = 0.1; plastic, initial weight WEE0

IE Associative-I Associative-E Random, p = 0.25; plastic, initial weight WIE0

II Associative-I Associative-I All-to-all, weight WII

E to D Associative-E Decision-E All-to-all; plastic, initial weight DW0

DE to DE Decision-E Same decision-E All-to-all, fixed weight DWEE

DE to DI Decision-E Opposite decision-I All-to-all, fixed weight DWEI

DI to DE Decision-I Same decision-E All-to-all, fixed weight DWIE

DI to DI Decision-I All decision-I All-to-all, fixed weight DWII

D NeuroN AND SyNAPSe MoDel

Name laf neuron

Type Dynamic leaky integrate-and-fire, exponential conductance input

Subthreshold C
dV
dt

g V V g t V V g t V V F V g= −( ) + −( ) + −( ) +L L GABA I NMDA E NMDA AMPA( ) ( ) ( ) (( ) ( ) ( ) ( )t V V g t V V g V V g V VE ref ref ext
E

E ext
I

I−( ) + −( ) + − + −  

dynamics

 
τref

ref
ref

dg
dt

g= −
  
and

  
τth

th
th th

dV
dt

V V= − −( )0

Spiking If V(t−) ≤ Vth(t
−) ∧ V(t+) > Vth(t

+) then

 (1) Set t* = t

 (2) Emit spike with time-stamp t*

 (3) gref(t) → gref(t*) + ∆gref

 (4) V t Vth th( ) max

Synapse g t g s tX X X( ) ( )max= ; where following a spike sX(t
+) = sX(t

−) + αX[1 − sX(t
−)] and between spikes τX dsX/dt = −sX with X = AMPA, NMDA, or  

 GABA

e PlASTiCiTy

Type Mechanism Connections

Basic STDP If tpost > tpre then ∆W = A+ exp[(tpre − tpost)/τ+] EE and InE 1 synapse per spike pair

 If tpost < tpre then ∆W = A− exp[(tpost − tpre)/τ] 

Triplet STDP If tpost > tpre then ∆W t t A A t tj yj
= −( ) 

 + −( )

{ }+

+ + ∑exp / exp /pre post postτ τ2 3  EE and InE 1 synapse per spike pair

 If tpost < tpre then ∆W t t A A t tk xk
= − −( ) 

 + −( ) 
{ }−

− − ∑exp / exp /post pre preτ τ2 3  

LTPI If |tpost – tpre| < ∆TLTPi or Vpost(tpre) ≤ EL + 5 mV then ∆W = 0 else ∆W = ∆WLTPI IE all presynaptic weights per presynaptic spike

DA ∆ ΘW R R r t r t rR= −( ) ⋅ ( ) ⋅ ( ) −



ε pre post win  EtoD all synapses every trial 

EHomeo ∆W W r r t= −( )εEH Egoal post ( )  InE, EE, EtoD all synapses every trial

IHomeo ∆W W r r tIH Igoal post= −( )ε ( )  InI all synapses every trial

IEHomeo ∆W W r r t= −( )εIEH IEgoal post ( )  IE all synapses every trial

Structural For each new synapse S = 0 EE

 If tpost > tpre then ∆S = exp[−(tpost – tpre)/τStruc] (per spike pair) 

 S → S – νStruc (per trial) 

 If S < T remove synapse and replace with new synapse 

F iNPuT

Type Description

Poisson generators Fixed rate, νIn = ν0/NIn for ton ≤ t < toff (ν0 = 480 Hz) for selected Input populations 

g MeASureMeNTS

Spike activities: mean rate per cell across stimuli and variance across population per stimulus.

Reward history: R = 0, or R = 1 if final rate of the correct DE population is above threshold.

Connectivity: final distribution and correlations of EE connections and their strengths.

Table 1 | Continued

reversal potentials for excitatory and inhibitory currents  respectively. 
Rather than a hard reset, following a spike, we mimic delayed recti-
fier potassium currents with reversal potential, V

ref
 = −70 mV, via a 

refractory conductance, g
ref

, which increases immediately following 
a spike by δg

ref
 = 150 μS and decays to zero exponentially with a 

cell-dependent time constant, τ
ref

.

noIse
We model noise as independent excitatory and inhibitory synaptic 
conductance variables, drawn from a uniform  distribution [0 gnoise] 
with gnoise = 1.2 mS/s1/2 in the associative layer cells in default net-
works and gnoise = 4 mS/s1/2 in the decision layer cells. In networks 
without stimuli, we increase the noise level (gnoise = 2.5 mS/s1/2) 
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with a probability of 25%. Initial excitatory-to-excitatory synaptic 
strength is taken from a uniform distribution, with a mean value 
of W

0
 = 0.05 and range of ±50% about the mean. These simula-

tions were carried out in a network with 320 excitatory and 80 
inhibitory neurons in our default implementation and all net-
works with increased size maintained the 4:1 excitatory:inhibitory 
ratio (Abeles, 1991). Connections to the decision layer are ini-
tially all-to-all from excitatory neurons with a uniform strength 
of DW

0
 = 0.075.

decIsIon layer connectIvIty
The decision-making network based on prior models (Wang, 2002) is 
composed of two excitatory pools (each containing 200 cells) and two 
inhibitory pools (each containing 50 cells. Excitatory-to-excitatory 
synaptic strength is W

0
 = 0.25. Connections within each pool are 

all-to-all. Cross-inhibition is direct from each inhibitory pool to the 
opposing excitatory pool, which generates winner-take-all activity so 
that only one pool is stable in the up state (active). Network bistability 
is generated by strong inhibition and self-excitation.

The decision-making network receives a linear ramping input 
that initiates at the start of the cue and continues until the end of 
the cue where it reaches its maximal value of g

urgency
 = 5 μS at the 

end of the cue. This input is adapted from the “urgency-gating” 
model (Cisek et al., 2009), in order to ensure that a decision is 
made each trial.

plastIcIty rules
For all connections undergoing functional plasticity, changes in 
synaptic strength are limited to a maximum of 50% per trial (the 
maximum potentiation seen in typical experimental protocols) 
while across all trials, synaptic strength is bounded between 0 and 
10 times W

0
, the initial mean synaptic strength.

long-terM potentIatIon of InhIbItIon
Long-term potentiation of inhibition (LTPi) is modeled after (Maffei 
et al., 2006): LTPi occurs when an inhibitory cell fires, but the post-
synaptic excitatory cell is depolarized and silent. If the excitatory 
cell is coactive (i.e., spiking), then there is no change in the synapse 
strength. We refer to this as a veto effect in our model of LTPi. Any 
excitatory spike within a window of ±20 ms for an inhibitory spike 
will result in a veto. For each inhibitory spike (non-vetoed) the syn-
apse is potentiated by idW = 0.001. LTPi was reported experimentally 
as a mechanism for increasing (but not decreasing) the strength of 
inhibitory synapses in cortex (Maffei et al., 2006). To compensate 
for the inability of LTPi to depress synapses, we use multiplicative 
post-synaptic scaling (Turrigiano et al., 1998b) for homeostasis 
at the inhibitory-to-excitatory synapses. We explicitly model the 
post-synaptic depolarization required by LTPi by defining a voltage 

to produce sufficient levels of spontaneous activity for synaptic 
potentiation between some cells.

assocIatIve layer paraMeters
LIF neurons had a mean leak reversal potential of V

L
 = −67.5 ± 1.25 mV, 

membrane time constant of τ
m

 = 10 ± 0.75 ms and leak conductance 
of g

L
 = 36 ± 0.5 μS (see Table 2). Excitatory neurons had a firing thresh-

old of V
th

 = −48 ± 1 mV, with time constant τ
th

 = 2.25 ± 0.125 ms a 
reset voltage of V

reset
 = −58 ± 1 mV, and a refractory time constant 

of τ
ref

 = 2.25 ± 0.125 ms. Inhibitory neurons had a firing threshold 
of V

th
 = −48 ± 1 mV, a reset voltage of V

ref
 = −58 ± 1 mV, and a 

refractory time constant of τ
ref

 = 1.25 ± 0.125 ms. Heterogeneity 
of these parameters was drawn from uniform distributions with 
the given ranges.

decIsIon layer paraMeters
Excitatory LIF neurons had a leak reversal potential of V

L
 = −70 mV, 

membrane time constant of τ
m

 = 20 ms, and leak conductance of 
g

L
 = 35 μS (see Table 2). Excitatory neurons had a firing threshold of 

V
th

 = −48 mV, a reset voltage of V
reset

 = −55 mV, and a refractory time 
constant of τ

ref
 = 2 ms. Inhibitory LIF neurons had a leak reversal 

potential of V
L
 = −70 mV, membrane time constant of τ

m
 = 10 ms, 

and leak conductance of g
L
 = 30 μS. Inhibitory neurons had a firing 

threshold of V
th

 = −50 mV, a reset voltage of V
reset

 = −55 mV, and 
a refractory time constant of τ

ref
 = 1 ms.

synaptIc InteractIons
Synaptic currents were modeled by instantaneous steps after a 
spike followed by an exponential decay described by the equation 
(Dayan and Abbott, 2001) ds(t)/dt = −s/τ

s
 + Σ

k
 δ(t − t

k
). Recurrent 

excitatory currents with reversal potentials, V
E
 = 0 mV, were mod-

eled as mediated by AMPA receptors (τ
AMPA

 = 2 ms) and NMDA 
receptors (τ

NMDA
 = 100 ms). Inhibitory currents with reversal 

potential, V
I
 = −70 mV, were modeled as mediated by GABA

A
 

receptors (τ
GABA

 = 10 ms). Conductance of NMDA receptors was 
modified by the voltage term F

NMDA
(V) (Jahr and Stevens, 1990): 

F VNMDA extMg V( ) / [ ]exp( . )/ .= + −{ }+1 1 0 062 0 003572 with the external 
magnesium concentration, [ ]Mg mM.ext

2 1+ =  To assess whether this 
established voltage-dependence of NMDA receptors played any 
role in our network, we also ran simulations with the function set 
as a static value of F

NMDA
(V = −0.055).

assocIatIve layer connectIvIty
Excitatory-to-excitatory connections are sparse with 10% connec-
tion probability. Initially connections are random and uncorrelated. 
Inhibition is feedforward only, so there are no excitatory-to-inhib-
itory connections. Inhibitory-to-Inhibitory connections are all-to-
all. Finally, Inhibitory-to-excitatory synapses connect randomly 

Table 2 | Summary of single-neuron parameters.

layer Cell-type Vl (mv) gl (μS) Vth (mv) Vreset (mv) τm (ms) τref (ms) τ th (ms)

Associative Excitatory −67.5 ± 1.25 36 ± 0.5 −48 ± 1 −58 ± 1 10 ± 0.75 2.25 ± 0.125 2.25 ± 0.125

Associative Inhibitory −67.5 ± 1.25 36 ± 0.5 −48 ± 1 −58 ± 1 10 ± 0.75 1.25 ± 0.125 2.25 ± 0.125

Decision Excitatory −70 35 −48 −55 20 2 2

Decision Inhibitory −70 30 −50 −55 10 1 1
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updated on a trial-by-trial basis as ∆ = −W W r rij ij j jε ( ),goal  where 
the mean rate of the post-synaptic cell, j, is rj and its goal rate is 
rj

goal .  We use the parameter ε = 0.001 for all synapses. Goal rates 
for all types of cell and synapse were taken from a uniform dis-
tribution, with mean 8 Hz and range ±50%. Others have shown 
the value of homeostatic rules for stabilizing networks with oth-
erwise unstable STDP (Kempter et al., 2001). Our implementa-
tion (Renart et al., 2003; Bourjaily and Miller, 2011) results in the 
strengthening of synapses even in the absence of any post-synaptic 
spikes, as seen in cortical slices (Turrigiano et al., 1998a), so in 
this sense it is related to homeostatic rules that normalize (Lazar 
et al., 2009) or otherwise constrain total synaptic input onto a cell 
(Fiete et al., 2010), rather than those which shift the parameters 
for STDP (Bienenstock et al., 1982; Clopath et al., 2010) or pro-
duce homeostasis via the inherent structure of the STDP window 
(Kempter et al., 2001).

plastIcIty vIa dopaMInergIc ModulatIon to decIsIon layer 
cells
Synapses to the decision-making layer from the associative layer 
are modulated according to a dopamine-based reward-prediction 
error signal (Soltani and Wang, 2006, 2010; Soltani et al., 2006), 
which in essence produces Hebbian learning when unanticipated 
reward arrives, and anti-Hebbian if delivery of reward does not 
meet expectations (Schultz, 1998, 2010; Reynolds et al., 2001; 
Reynolds and Wickens, 2002; Jay, 2003; Shen et al., 2008; Fremaux 
et al., 2010).

Excitatory synapses onto decision-making cells that belong to 
the “winning” population, as defined by a mean firing rate above 
r

win
 = 25 Hz following the end of stimulus presentation, are modi-

fied by an amount proportional to the square of the mean presyn-
aptic firing rate multiplied by the reward-expectation error.

The reward-expectation is calculated from a geometrically weighted 
sum of the 5 prior rewards to that stimulus-pair, such that each trial 
contributes +1 when rewarded, −1 if not rewarded, with a weight that 
decreases by a factor of 0.5 for successive trials in the past. The reason-
ing is that once the behavior predictably produces reward, the reward-
expectation error becomes zero and no dopamine signal arises upon 
reward delivery. For the network, once the response produces reward 
reliably, the reward-expectation reaches one, so delivery of reward pro-
duces no further plasticity in synapses to the decision-making layer. 
Results in studies without this factor (by setting reward-expectation to 
zero on all trials) were similar (Bourjaily and Miller, 2011).

structural plastIcIty
Our rule for structural plasticity assumes that synapses disappear if 
there is little Hebbian-like causal correlation between presynaptic 
and post-synaptic spikes, which could be detected by a calcium 
signal (Helias et al., 2008). The synapses are replaced at random 
to maintain the total number of connections at a constant value. 
We consider three types of random replacement:

(1) Select at random a new presynaptic cell, keeping the same 
post-synaptic cell.

(2) Keep the same presynaptic cell, but select at random a new 
post-synaptic cell.

(3) A 50% choice of process (1) or process (2).

threshold that the post-synaptic excitatory cell must be above in 
order for potentiation to occur. We used a value of −65 mV, which 
is 5 mV above the leak reversal. Finally, we include a hard upper 
bound of inhibitory synaptic strength, such that those cells most 
strongly inhibited (so being less depolarized as well as not spiking) in 
practice receive no further potentiation of their inhibitory synapses.

basIc stdp
We implement basic STDP according to standard methods (Song 
et al., 2000) assuming asymmetric exponential windows for poten-
tiation when a presynaptic spike at time t

pre
 precedes a post-synaptic 

spike at time t
post

, and for depression if the order is reversed. Thus 
the change in connection strength, ∆W, follows:

∆ = − −

− >

+ +W A t t

t t

exp[ ( )/ ]post pre

post preif

τ

0

and

∆ = −

− <

− −W A t t

t t

exp[( )/ ]

.

post pre

post preif

τ

0

All pairs of presynaptic with post-synaptic spikes are included 
(i.e., all-to-all). Basic STDP produces changes in synaptic weight 
whose sign depends only on the relative order of spikes, thus only 
on the relative order and direction of changes in rate, not on the 
absolute value of the rate. The LTD amplitude A− was 0.80, and the 
LTP amplitude A+ was 1.20. The LTD time constant, τ−, was 25 ms; 
the LTP time constant, τ+, was 16 ms.

trIplet-stdp
Triplet-STDP was modeled after the rule published by Pfister and 
Gerstner (2006). Their model includes triplet terms, so that recent 
post-synaptic spikes boost the amount of potentiation during a 
“pre-before-post” pairing, while recent presynaptic spikes boost the 
amount of depression during a “post-before-pre” pairing.

Specifically if t
post

 − t
pre

 > 0,

∆ = − − + − −{ }+ + + ∑W t t A A t t j yjPG post pre postexp[ ( )/ ] exp[ ( )/ ]τ τ2 3

while if t
post

 − t
pre

 < 0,

∆ = − + − −{ }− − −∑W t t A A t tk xkPG post pre preexp[( )/ ] exp[ ( )/ ] .τ τ2 3

We use the parameters cited from the full model “all-to-all” cortical 
parameter sets in the paper (Pfister and Gerstner, 2006). The ampli-
tude terms are doublet LTP A2

55 10+ −= × ,  doublet LTD A2
37 10− −= × ,  

triplet LTP A3
36 2 10+ −= ×. ,  and triplet LTD A3

42 3 10− −= ×. . The time 
constants we used are τ+ = 16.68, τ− = 33.7, τ

y
 = 125, and τ

x
 = 101 ms. 

These parameters generated an LTD-to-LTP threshold for the post-
synaptic cell of 20 Hz, above which uncorrelated Poisson spike trains 
produce potentiation and below which they produce depression.

hoMeostasIs by MultIplIcatIve synaptIc scalIng
Synapse stability is maintained by a homeostatic form of multipli-
cative post-synaptic scaling (Turrigiano et al., 1998b; Turrigiano 
and Nelson, 2000; Renart et al., 2003) with synaptic strengths 
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synapse heterogeneity, and background noise. Simulations were 
written in C++ on Intel Xeon machines. Matlab R2010a was used 
for data analysis and visualization.

analyses
Stimulus-pair selectivity metric
Stimulus-pair selectivity, Si

PS , defines for each excitatory neuron, 
i, its selectivity for one stimulus-pair over the other three stimu-
lus-pairs. Si

PS  is the maximum firing rate of neuron i, minus its 
mean response across all stimuli, normalized by its mean response:
S r r ri i i i

PS = −( )max / . The network’s stimulus-pair selectivity 
value, 〈SPS〉 is the mean of Si

PS  taken across all excitatory cells. 
The measure ranges from 0 to 3 and was found to correlate better 
with performance on the paired-stimulus task than a similar metric 
without weight normalization (Bourjaily and Miller, 2011). Cells 
are only included if their mean rate is greater than 1 Hz to at least 
one stimulus-pair.

Clustering
We calculated three different indices to represent the amount 
of clustering in the network. The bidirectional ratio, σ

bi
, is the 

ratio of number of pairs of cells with bidirectional connections 
divided by the number expected by chance: σ

bi
 = N

bi
/〈N

bi
〉 where 

〈N
bi
〉 = p

act
N

conns
/2 ∼ p2N

cells
(N

cells
 − 1)/2 with p the given connec-

tion probability (p = 0.1 in our default networks) and p
act

 is the 
actual connection probability (the approximate instantiation 
of p), p

act
 = N

conns
/[N

cells
(N

cells
 − 1)]. N

cells
 is the total number of 

excitatory cells (N
cells

 = 320 in our default networks) and N
conns

 
is the total number of connections in that instantiation of the 
network (N

conns
 is typically slightly different from its expected 

number, 〈N
conns

〉 = pN
cells

(N
cells

 − 1), because initial  connections 
are chosen probabilistically). The triplet ratio is the number 
of fully connected triplets of cells (motifs numbered 10–16 in 
Figure 4A) divided by the expected number: σ

tri
 = N

tri
/〈N

tri
〉 where 

N p N N Nltri ink cells cells cells= − −3 1 2 6( )( )/  in which p
link

 is the prob-
ability of any connection (whether unidirectional or bidirectional) 
between two cells: p

link
 = 1 − (1 − p

act
)2. The clustering coefficient of 

a network is defined as the number of triplets that are fully con-
nected (all pairs in the triplet share a link) divided by the number 
of triplets that are at least partially connected (all cells are con-
nected to at least one other in the triplet). In terms of our motifs 
in Figure 4A, the clustering coefficient is the sum of numbers 
of motifs numbered 10–16 divided by the sum of motifs num-
bered 4–16. For a network with connection probability, p = 0.1, so 
p

link
 = 0.19 and the clustering coefficient for a random network is

c p p p p p prand link link link link link link= − + = − =3 2 3 33 1 3 2 0 072/ ( ) / . 55.

Triplet motifs
We compare the number of each triplet motif (labeled 1–16, 
Figure 4A) with the expected number calculated using the 
numbers of pairs of cells found to be unconnected (with 
probability p

no
) or unidirectionally connected (with prob-

ability p
uni

, thus p
uni/2

 for a given direction) or bidirectionally 
connected (with probability p

bi
) and assuming these probabili-

ties are uncorrelated across pairs as a random control. Hence 
the expected number〈N

i
〉 of any triplet motif labeled i is given 

by: N C p p p N N Ni i
n i n i n i= − −no uni bi cells cells cells

0 2 22 1( ) ( ) ( )( / ) ( )( 22 6)/  
where n

0
(t), n

1
(t), and n

2
(t) are respectively the number of 

The criterion for selection of synapses to be removed is based 
on three parameters:

(1) The width of a temporal window for coincidence of spiking – 
if a post-synaptic cell spikes within such a temporal window 
following a presynaptic spike, the synapse between the two 
cells is more likely to be retained.

(2) The frequency of such coincidences necessary to prevent 
removal of the synapses.

(3) The number of trials without sufficient numbers of coinci-
dent spikes to result in removal of the synapse.

The main effect of changing these parameters is to alter the 
number of synapses that get removed across trials, rather than 
changing from removal of one set of synapses to another set. Thus, 
the magnitudes of correlations are affected by parameter changes, 
but not the overall sign and directions of correlations.

The specific implementation of structural plasticity under our 
default parameter set is to update a parameter, S

ij
, for each synapse 

between presynaptic cell i and post-synaptic cell j following each trial, 
and remove the synapse if S

ij
 falls below a threshold, τ = −8. Any new 

synapse and all synapses at the beginning of the simulation are initial-
ized with S

ij
 = 0. Within a trial, for each pair of presynaptic and post-

synaptic spikes at times t
i
 and t

j
 respectively, with t

j
 > t

i
, we increase 

S
ij
 according to: S

ij
 → S

ij
+exp[−(t

j
 − t

i
)/τ

Struc
], where τ

Struc
 = 25 ms. 

The necessary rate of coincident spiking to prevent loss of a synapse 
is given by the value R = 1, which is subtracted from S

ij
 after each 

trial: S
ij 
→ S

ij
 − R. Thus a new synapse can be removed after 8 trials 

(because − T/R = 8) if its presynaptic and post-synaptic neurons pro-
duce no causally coincident spikes in these trials. The more coincident 
spikes in the past history of the synapse, the more trials it can survive 
without coincident spiking, thus strong synapses are more stable. In 
our simulations, since the total numbers of inputs are the same for 
every block of four trials, the history-dependence is not an important 
factor (we set an upper bound on S

ij
 of Sij

max ,= 8  but either increasing 
or decreasing this by a factor of two, or even removing the bound has 
no significant effect – see Table A1 in Appendix).

control network of cell asseMblIes
As a control, we produced a network of 320 excitatory cells, ran-
domly assigning each cell to one of four assemblies. We then assigned 
synaptic connections randomly, but with connection probability 
within an assembly, P

S
 = 0.2 or 0.35, higher than the mean con-

nection probability, 〈P〉 = 0.1 and therefore higher than the mean 
connection probability between assemblies, P

X
 = (4〈P〉 − P

S
)/3. 

Connection strengths were selected randomly from a Gaussian dis-
tribution with mean of 2, SD 0.5 for within-assembly connections, 
and with a mean of 1, SD 0.25 for between-assembly connections 
(negative values were reselected). We did not simulate the activity of 
such a network, but assessed how the correlations among connec-
tions produced in such a simple manner match the observed data.

nuMerIcal sIMulatIons
Simulations were run for either 400 trials or 2000 trials as stated – in 
most networks a steady state was achieved (Carnell, 2009) by 1000 
trials – using the Euler-Maruyama method of numerical integra-
tion with a time step, dt = 0.02 ms. All simulations were run across 
at least four random instantiations of network structure, cell and 
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triplet containing that motif (as described by the calculation in 
the previous section). We approximate σ

i
 by assuming a Binomial 

distribution, such that σi i iN p= −( ).1

results
dIfferences between pre- and post-synaptIc IMpleMentatIons 
of structural plastIcIty
Our formulations of structural plasticity are Hebbian, requiring 
a presynaptic spike to precede a post-synaptic spike sufficiently 
often to prevent synapse removal. Since we assume that cells have 
no mechanism to detect correlations in their activity until a con-
nection forms, new connections are selected at random, via three 
different methods. In the first method, once a synapse is removed, 
we provide the post-synaptic cell with a new, randomly chosen 
afferent connection. This method is analogous to keeping the 
number of dendritic spines constant but allowing spine mobil-
ity to produce new connections. Thus, the number of incoming, 
afferent connections per cell remains constant while the number of 
outgoing, efferent connections can vary greatly across the network 
(Figures 3A,B). The second method is a mirror of the first, as we 
provide the presynaptic cell with a new, randomly chosen, post-
synaptic partner. This is analogous to maintaining the number of 
axonal boutons per cell, but allowing them to move and connect to 
new cells. Thus the number of efferent connections does not change, 
but a broad distribution of numbers of afferent connections arises 
(Figures 3C,D). In the third method, neither number of afferents 
nor efferents is fixed (Figures 3E,F) as with equal probability we 
either randomly select a new presynaptic cell or randomly select a 
new post-synaptic cell. Indeed, the latter method produces a highly 
significant correlation (σ = 0.97, p < 10−100) between the number 
of afferent and efferent partners of each cell. Such a correlation 
arises, as fewer inputs lead to fewer spikes by a cell, and fewer spikes 
by the cell mean fewer coincidences of spikes with those of post-
synaptic partners – and such coincidences are necessary to retain 
a synapse. All of these methods assume processes arising from one 
cell move to form a new partner. The other logical possibility of 
choosing a totally new random pair of cells, is less biological, and 
produces results qualitatively matching our third method (data not 
shown). We note that following structural plasticity, some cells may 
lack efferents or afferents or both, depending on implementation. 
Such a result is not unreasonable when considering the relatively 
small number of excitatory cells (320) and the paucity of activated 
stimuli that are simulated.

All three implementations of structural plasticity produced sim-
ilar changes in the numbers of bidirectional connections, but pro-
duced differences in the patterns of connections (motifs numbered 
1–16 in Figure 4A) among triplets of cells (Figure 4). The most 
obvious difference between switching presynaptic versus switching 
post-synaptic cells in the structural plasticity rule appeared in the 
motifs numbered 4 and 5 of Figure 4A. If the presynaptic cell was 
switched, so that some cells had more efferent projections than 

pairs in the triplet motif with 0, 1, or 2 connections, such that 
n

0
(t) + n

1
(t) + n

2
(t) = 3 ∀ i and C

i
 is a combinatorial factor which 

takes into account the number of ways a triplet of cells can form 
the same motif, as given in Table 3.

Statistical tests
For the majority of comparisons of plasticity mechanisms, for 
each of the 25 separate input configurations to an associative layer 
network (Figures 1A,B), we produced four instantiations of the 
associative layer network itself and performed paired t-tests across 
individual input configurations, reporting a significant difference 
in an individual configuration if p < 0.002 (5% significance with 
Bonferroni correction) as well as a paired t-test for a global effect 
across all 100 networks. For certain controls (stated as one-network 
comparison) we tested just one version of the associative layer net-
work with 25 different input configurations and performed a paired 
t-test versus the same 25 examples of the control networks and a 
two-sample t-test between the four control versions of the net-
work and the version with altered parameters for each individual 
configuration.

When analyzing triplet motifs, we also calculate a Z-score (Z
i
) 

from the numbers of each motif, i, expected for a random network 
as Z

i
 = (N

i
 − 〈N

i
〉)/σ

i
 where N

i
 is the number of a given motif in the 

network, and 〈N
i
〉 = p

i
N(N − 1)(N − 2)/6 is the expected number 

for a random network, where p
i 
is the probability of any given 

Table 3 | Combinatorial factors to produce expected numbers of motifs.

Motif, i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ci 1 6 3 3 3 6 6 6 3 6 2 3 6 3 6 1
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Figure 3 | Histograms of numbers of outgoing and incoming 
intra-network connections per cell for different structural plasticity 
mechanisms. (A,B) Switching presynaptic cell. (C,D) Switching post-
synaptic cell. (e,F) Select with 50% probability either presynaptic cell or 
post-synaptic cell to be switched. In all cases, network with 6 input groups 
per stimulus, 1/20 input connection probability and undergoing combined 
triplet-STDP with LTPi.

Bourjaily and Miller Structural correlations from learning

Frontiers in Computational Neuroscience www.frontiersin.org September 2011 | Volume 5 | Article 37 | 9

http://www.frontiersin.org/Computational_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


of training our default network in biconditional discrimination 
(Figure 2A) while undergoing both LTPi and triplet-STDP (Pfister 
and Gerstner, 2006) with homeostasis, the ratio of number of 
pairs with bidirectional connections to the expected number by 
chance increased to 5.4 ± 0.1 (four independent simulations). 
The numbers of fully connected triplets (motifs 10 or higher, 
Figure 4A) similarly increased, by a factor, 5.9 ± 0.2 relative to 
chance. If, while retaining structural plasticity and triplet-STDP, 
we did not include LTPi, so that inhibition to excitatory cells 
remained unchanged from their initial value, then the ratios were 
smaller, namely 4.2 ± 0.2 for connected doublets and 5.2 ± 0.2 
for fully connected triplets. Moreover, the ratios for networks 
with LTPi but no triplet-STDP were 3.5 ± 0.2 for doublets and 
3.9 ± 0.3 for triplets, showing that inhibitory plasticity allowed 
structural plasticity to sculpt excitatory connections to a similar 
extent as a Hebbian form of excitatory plasticity. In fact, with 
neither triplet-STDP nor LTPi, changes produced by structural 
plasticity alone led to ratios of 1.77 ± 0.03 for connected dou-
blets and 1.96 ± 0.04 for connected triplets. These results are 
summarized in Table 4.

others then motif 4 arose more often (Figures 4B,E) whereas if 
the post-synaptic cell was switched all cells had the same number 
of efferent projects but some received more connections and motif 
5 was more common (Figures 4C,F). In vitro data (Song et al., 
2005) demonstrate an excess of motif 4. Our third implementa-
tion (Figures 4D,G) produced an excess of motif 4, but also an 
excess of motif 11 – and all other connected triplets, motifs 10 and 
higher – in agreement with in vitro data (and unlike the first two 
methods). Thus, for optimal agreement with in vitro data (Song 
et al., 2005) we use the third implementation as our default method 
for the rest of this work.

structural plastIcIty can Increase the nuMbers of 
bIdIrectIonal connectIon and connected trIplets
Initially, internal connections were random (with 10% prob-
ability), so numbers of bidirectional connections or connected 
triplets of cells were at chance level. In all simulations we included 
structural plasticity, but varied the types and combinations of 
functional plasticity, including cases with structural plasticity 
alone if we omitted functional plasticity. Following 2000 trials 
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Figure 4 | overrepresentation of specific three-cell motifs. (A) List of motifs 
representing the possible connectivity patterns of three cells (Song et al., 2005). 
Motifs numbered 10 or higher are connected triplets that contribute to the 
clustering coefficient and triplet ratio. (B–D) Ratio of numbers of motifs 
produced to numbers expected by chance, given the unidirectional and 
bidirectional connection probabilities. (e–g) Z-scores for the numbers of motifs 
plotted on a non-linear (cube-root) scale. Dashed-lines represent p = 0.001, 

Z = ±3.3. (B,e) Switching presynaptic cell produces excess of motif 4, deficit of 
motif 5. (C,F) Switching post-synaptic cell produces deficit of motif 4, excess of 
motif 5. (D,g) Select with 50% probability either presynaptic cell or post-
synaptic cell to be switched produces excess of motif 4, deficit of motif 5. 
Results are for our default network (6 independent inputs per stimulus, with 
input connection probability 1/20, trained for 2000 trials with LTPi and 
triplet-STDP).
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preferred response. Increased stimulus selectivity of cells would 
increase correlations in firing rate between cells, as the activity 
of cells became grouped by their preferred stimulus. Structural 
plasticity would then increase the connection probabilities between 
coactive cells (Figure 8). Thus, in our protocol, LTPi led to more 
clustered connections among cells, because such clustering of con-
nections arises when subsets of cells are active strongly together 
for a small subset of stimuli – a feature of cell assemblies. Such 
behavior was indicated by a high stimulus-pair selectivity index 
for the network, and correlated with reliable decision-making and 
high accumulation of reward in the task, even without structural 
plasticity. If the production of cell assemblies by structural plasticity 
relies on the same correlations in activity that produce stimulus 
selectivity and reliable performance in our task, then one expects 
to see correlations between measures of clustering and measures 
of network performance.

Indeed, Figure 7 (blue crosses) demonstrates, across 100 dif-
ferent networks (4 random instantiations of each of 25 types) 
the high correlation between either paired-stimulus selectivity 
(Figures 7A,B) or accumulated reward (Figures 7C,D) and either 
the excess of bidirectional connections (Figures 7A,C) or fully con-
nected triplets of cells (Figures 7B,D) in networks trained with 
LTPi and triplet-STDP combined with homeostasis and structural 
plasticity. Similar results hold for networks trained with LTPi alone 
(Figure 7, red circles) or triplet-STDP alone (green plus signs) when 
combined with homeostasis and structural plasticity.

Figures 7A,B suggest a threshold value of stimulus-pair selec-
tivity (approximately 1.2), above which the neural firing is suf-
ficiently structured to produce the high clustering of connections. 
Since reward accumulation also relies on selective responses, we 
find all of these features are significantly correlated with each 
other as shown in Table 5. However, networks with structural 
plasticity alone (no functional plasticity; Figure 7, black dots) 
showed the opposite correlation. Upon further examination, 
we find that in networks without triplet-STDP (i.e., those with 
structural plasticity combined with LTPi alone or no functional 

To assess the generality of our result, for each combination of 
plasticity mechanisms, we produced 25 types of network, differ-
ing in their input structure via 5 values of connection probability 
per input (1/20 to 1/2) and 5 values for the number of different 
random sets of input connections activated per stimulus (2–20; 
see Network Inputs). Figure 5 demonstrates that addition of LTPi 
during training with structural plasticity (C compared to A; D 
compared to B) increased the number of pairs of neurons with 
bidirectional connections. Moreover, in this type of protocol 
with paired stimuli, we found that triplet-STDP often reduced 
the number of such pairs (B compared to A; D compared to C). 
Indeed, our default network (chosen because it produced the most 
clustering) was the only one where triplet-STDP alone produced 
more bidirectional connections than LTPi alone. Across input 
configurations each of the two protocols with LTPi produced 
more bidirectional connections than each of the two protocols 
without LTPi (paired t-test, 4 instantiations per configuration, 
p < 0.01 versus structural plasticity alone, p < 10−4 versus triplet-
STDP; see Figure 5).

These results, showing an increase in ratio by LTPi and often a 
decrease in ratio by triplet-STDP, were reproduced when analyzing 
the excess of fully connected triplets (Figure 6), indicative of a high 
clustering coefficient.

clustered connectIvIty correlates wIth task perforMance
In a prior publication (Bourjaily and Miller, 2011) we showed the 
necessity of high stimulus-pair selectivity among cells in the asso-
ciative network (Figure 1B) to produce reliably correct behavior 
as determined by the trained output of a biologically inspired 
decision-making network (Wang, 2002). Moreover, in many of 
these networks, LTPi was necessary to produce the requisite high 
stimulus-pair selectivity. LTPi enhanced cross-inhibition, as inhibi-
tory cells selective to a stimulus would strengthen their inhibitory 
connections preferentially to excitatory cells with low activity. Such 
an enhancement of cross-inhibition led to an increase in stimulus 
selectivity, as excitatory cells would receive less inhibition for their 

Table 4 | Structural indices, selectivity and performance of the default network (A) and the mean of 25 configurations (B).

 Biratio Triratio Selectivity reward

A

No Fnct Plast 1.77 ± 0.03 1.96 ± 0.04 0.64 ± 0.02 0.46 ± 0.11

LTPi alone 3.5 ± 0.2 3.9 ± 0.3 1.30 ± 0.04 0.95 ± 0.02

3-STDP alone 4.2 ± 0.2 5.2 ± 0.2 1.86 ± 0.05 0.83 ± 0.12

LTPi + 3-STDP 5.4 ± 0.1 5.9 ± 0.2 1.73 ± 0.05 0.98 ± 0.01

B

No Fnct Plast 1.56 1.82 0.69 0.59

LTPi alone 2.13 2.20 1.16 0.82

3-STDP alone 1.32 1.33 1.00 0.75

LTPi + 3-STDP 2.17 2.11 1.24 0.80

3-STDP denotes triplet-STDP and “No Fnct Plast” denotes structural plasticity alone. “Biratio” denotes ratio of numbers of bidirectional connections compared to 
chance, “triratio” denotes ratio of fully connected triplets (motifs 10–16) compared to chance, “selectivity” is the mean stimulus-pair selectivity metric across all cells 
in the network, and “reward” is the mean reward accumulated across the final 40 trials. The default network is aberrant in that it is the only configuration for which 
triplet-STDP alone produces more clustering than LTPi alone (see Figures 5 and 6 and B). Standard errors are given in (A) but not in (B) as the difference across 
network configurations dominates. However, when tested across the range of networks leading to (B), all measures with LTPi are significantly higher than those 
without (paired t-test across 4 instances of each of 25 configurations p < 0.01).
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Figure 6 | inhibitory plasticity boosts numbers of connected triplets of 
excitatory cells. Sets of five by five networks with different degrees of 
sparseness of inputs (y-axis where low input probability reflects high 
sparseness of inputs) and different degrees of input correlations (x-axis where 
more input groups per stimulus reflects lower correlations). (A) Network with 
structural plasticity alone. (B) Network with triplet-STDP and structural 
plasticity. (C) Network with LTPi and structural plasticity. (D) Network with 
triplet-STDP, LTPi, and structural plasticity. In both cases (A) versus (C) and (B) 
versus (D), the addition of inhibitory plasticity increases the numbers of 
networks with excess connected triplets (color bar, red = 4 times chance, 
blue = chance). Networks trained for 2000 trials of the biconditional 
discrimination task.

Figure 5 | inhibitory plasticity boosts numbers of bidirectional 
connections between excitatory cells. Sets of five by five networks with 
different degrees of sparseness of inputs (y-axis where low input probability 
reflects high sparseness of inputs) and different degrees of input correlations 
(x-axis where more input groups per stimulus reflects lower correlations). (A) 
Network with structural plasticity alone. (B) Network with triplet-STDP and 
structural plasticity. (C) Network with LTPi and structural plasticity. (D) 
Network with triplet-STDP, LTPi, and structural plasticity. In both cases (A–C) 
and (B–D), the addition of inhibitory plasticity increases the numbers of 
networks with excess bidirectional connections (color bar, red = 4 times 
chance, blue = chance). Networks trained for 2000 trials of the biconditional 
discrimination task.

Figure 8 | Cells with similar response properties cluster together. We label 
each cell by the stimulus-pair to which it is most responsive. For each of the three 
cells (indexed i, j, k) in fully, bidirectionally connected triplets (all examples of motif 
16) we record the combinations of three most responsive stimuli. Color denotes 
the counts of these combinations across the network. The single highlighted 
squares on the diagonal indicate triplets of cells most responsive to the same 
stimuli are found fully connected. For example, the top-left panel shows that a cell 
most responsive to stimulus-pair A + B is predominantly found in triplets with both 
other cells most responsive to stimulus-pair A + B. Results are from the default 
network (input probability of 1/20 and 6 cell groups per input) trained with 
triplet-STDP and LTPi for 2000 trials of the biconditional discrimination task.
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Figure 7 | excess of bidirectional connections and connected triplet 
motifs is highly correlated with biconditional discrimination task 
performance across networks. (A–D) Each data point represents results 
for a single network. 4 instantiations of each of 25 configurations with 
each plasticity mechanism: LTPi alone, red circles; LTPi with triplet-STDP, 
blue crosses; triplet-STDP alone, green plus signs; no functional plasticity, 
black dots. All networks incorporate homeostasis and structural 
plasticity. Networks with high stimulus selectivity (averaged over cell 
responses) produce (A) excess bidirectional connections and (B) excess 
connected triplets. The average reward per trial, is highly correlated with 
numbers of (C) bidirectional connections and (D) connected triplets (see 
Table 5). Networks trained for 2000 trials of the biconditional 
discrimination task.
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bIModal versus unIModal dIstrIbutIons of synaptIc 
strengths
We assessed changes in synaptic strength of excitatory-to-excitatory 
connections, in our default network trained with a combination 
of triplet-STDP and LTPi with structural plasticity. Figure 9A 
indicates the non-Gaussian (though unimodal) distribution of 
connection strengths, with a long tail to higher strengths, as is 
observed experimentally (Song et al., 2005; Lefort et al., 2009). 
Nonetheless, the hard bound on synaptic strength of 0.5 (10 times 
initial strength) was rarely reached, even after 2000 trials by any 
synapses in these simulations.

Spike-timing-dependent plasticity rules that are additive (van 
Rossum et al., 2000) typically produce a bimodal distribution of 
synaptic strengths. Multiplicative STDP reproduces the experimen-
tally observed unimodal distribution of synaptic weights of inputs 
to a single cell (van Rossum et al., 2000); thus we also trained net-
works with such a rule, whereby any increase in synaptic strength 
was multiplied by a factor: (W

max
 − W)/W

max
 − W

0
 where W, W

0
, 

and W
max

 are respectively the current, the mean initial and the 
maximum values of synaptic strengths. In our simulations with 
structural plasticity, the distribution of weights (for all synapses 
in the network) was unimodal, even with additive triplet-STDP 
(Figures 9A,C). Moreover, when we removed structural plastic-
ity, even with multiplicative triplet-STDP, we observed a bimodal 
distribution of synaptic strengths, with a large number of synapses 
reaching the maximum value (Figures 9D,H).

Analysis of our results indicates that the distribution of synaptic 
strengths was dominated by cell-to-cell variability (Koulakov et al., 
2009) resulting in a striated, plaid-like structure of the connectivity 
matrix (see Figure A5 in Appendix). Without structural plasticity, 
the most active cells had the most strengthened input synapses, 
with the values readily reaching the upper bound, even though 
homeostasis by multiplicative synaptic scaling acted to oppose the 
trend. In the presence of structural plasticity, these cells gained 
more input synapses, so they could achieve the same firing rates 
(where homeostasis would compensate ongoing Hebbian synaptic 
strengthening) with a lower mean synaptic strength. Thus, the com-
bination of structural plasticity with homeostasis via multiplicative 
scaling allowed the steady state synaptic strength of the most active 
neurons to be lower, preventing a pile up of synaptic strengths at 
the upper bound and the ensuing bimodality of the distribution.

In vitro data shows that bidirectional synapses are stronger than 
unidirectional ones (Song et al., 2005), a feature reproduced in 
a network model with a different protocol from ours (Clopath 
et al., 2010). In our default network (6 independent inputs with 
connection probability 1/20) the mean strength of bidirectional 
connections was significantly greater than that of unidirectional 
connections (p < 10−100, two-sample t-test) with a ratio of 1.2. A sim-
ilar increase in strength of bidirectional connections was observed 
in other networks with a high degree of clustering if trained with tri-
plet-STDP (with or without LTPi; see Figures A6B,D in Appendix). 
However in some networks we found stronger unidirectional con-
nections. Such a reduction in the relative strength of bidirectional 
synapses is a consequence of homeostasis, and indeed was the norm 
in networks trained with LTPi alone, where homeostasis was the 
only mechanism to alter excitatory synaptic strength (Figure A6C 
in Appendix).

plasticity) performance and stimulus-pair selectivity are strongly 
positively correlated with clustering for low levels of clustering 
(ratios below 1.5). However, under these plasticity conditions, 
the highest degree of clustering is produced within the spars-
est networks, with few independent inputs per stimulus, which 
have poor stimulus-pair selectivity and low reward accumula-
tion. These networks contain isolated, strongly interconnected cell 
groups that are responsive to single stimuli, but are not stimulus-
pair-selective. Thus, in networks with sparse activity, such that 
cells respond to single stimuli alone, the stimulus-dependent 
correlations in firing rate can lead to high clustering, without 
the concomitant high stimulus-pair selectivity necessary for good 
task performance.

Networks trained with basic STDP and structural plasticity (data 
not shown) never exceeded chance performance in the task and 
produced minimal stimulus-pair selectivity (never exceeding 0.5 
and typically below 0.1). However, some of these networks did 
produce an excess of bidirectional connections and high clustering 
compared to chance. Such clustering of connections arose between 
a subset of highly active, non-selective cells, while other cells became 
silent.

Figure 8 confirms (in our default network) that clustering is 
via increased connectivity between coactive cells. We labeled cells 
by their preferred stimulus-pair and separated the triplet motifs 
according to the three labels of the connected cells. We found that 
trios of cells with identical labels, meaning the cells were coactive 
to the same stimulus-pairs, dominated triplet motifs.

Table 5 | Correlations among properties of trained networks with the 

four combinations of functional plasticity.

 Biratio Triratio Selectivity reward

LTPi + 3-STDP

 Biratio  ρ = 0.98  ρ = 0.47 ρ = 0.39

 Triratio p = 4 × 10−73  ρ = 0.44 ρ = 0.37

 Selectivity p = 6 × 10−7 p = 5 × 10−9  ρ = 0.90

 Reward p = 5 × 10−5 p = 1 × 10−4 p = 3 × 10−37 

LTPi

 Biratio  ρ = 0.94 ρ = 0.05 ρ = 0.60

 Triratio p = 2 × 10−49  ρ = 0.43 ρ = 0.54

 Selectivity n.s. n.s.  ρ = 0.71

 Reward p = 5 × 10−11 p = 5 × 10−9 p = 7 × 10−17 

3-STDP

 Biratio  ρ = 0.98 ρ = 0.69 ρ = 0.35

 Triratio p = 4 × 10−69  ρ = 0.63 ρ = 0.28

 Selectivity p = 1 × 10−15 p = 2 × 10−12  ρ = 0.74

 Reward p = 4 × 10−4 p = 4 × 10−3 p = 7 × 10−19 

No Fnct Plas

 Biratio  ρ = 0.99 ρ = −0.30 ρ = −0.50

 Triratio p = 5 × 10−94  ρ = −0.32 ρ = −0.50

 Selectivity p = 2 × 10−3 p = 1 × 10−3  ρ = 0.74

 Reward p = 1 × 10−7 p = 1 × 10−7 p = 1 × 10−18 

Upper triangular: correlation coefficient between pairs of network properties. 
Lower triangular: corresponding p-value. 3-STDP denotes triplet-STDP and “No 
Fnct Plast” denotes structural plasticity alone.
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our implementation of structural plasticity enhanced the amount 
of bidirectional connectivity (Figure 10). Indeed, since selective 
responses to single stimuli appeared in the majority of initial (i.e., 
untrained), randomly connected networks, structural plasticity 
alone was sufficient to produce the observed excess (Figure 10A).

Figures 11A,C indicated that the simplified protocol in our 
default network (2 input groups per stimulus with connection 
probability 1/5) readily reproduced the excess of connected tri-
plets (motifs 10 or higher). All of the motifs for partially connected 
triplets of cells (motifs 2–9) were significantly less common than 
chance, in contrast to slice data (Song et al., 2005; Perin et al., 2011). 
It is likely that with the single stimulus protocol, cell responses are 
more correlated than in vivo so that partially connected triplets are 
more likely to become fully connected in this paradigm than in vivo.

Finally, we assessed how much of the slice data could be repro-
duced by a simple network of four cell assemblies (see Control 
Network of Cell Assemblies). With a mean connectivity probability 
maintained at 0.1 across all cells, when the within-assembly con-
nection probability was increased to 0.2 (3 times greater than that 
between assemblies) we found an excess of bidirectional connections 
(p = 3 × 10−37, ratio to number expected was 1.4) and that bidirec-
tional connections were on average stronger than unidirectional 
connections (p < 10−100, ratio was 1.37). Even though connections 
within a cell assembly were not correlated, because some bidirec-
tional connections arose between assemblies – and in these cases 

All networks with a significant excess of bidirectional connec-
tions produced a positive correlation in the strengths of reciprocal 
synapses when trained with additive triplet-STDP (Figure A5 in 
Appendix). Such a result may be expected from the rate-dependence 
of triplet-STDP and agrees with work using a voltage-dependent 
STDP mechanism (Clopath et al., 2010) and cortical slice data 
(Song et al., 2005). The rate-dependence of triplet-STDP causes 
a strengthening of connections in both directions between two 
cells if they are highly active at the same time. By contrast, basic 
STDP (unless dendritic delays are prominent; Lubenov and Siapas, 
2008; Morrison et al., 2008) can only produce negative correlations 
between reciprocal connections, since any spike pair that increases 
the strength in one direction would reduce the strength in the recip-
rocal direction. Moreover, basic STDP alone can lead to a loss of 
connected loops (Kozloski and Cecchi, 2010) that are a necessary 
component of high clustering in networks.

sIMplIfyIng the protocol or the network
By simplifying the protocol to be a single stimulus at a time 
(Figure 2B), we increased the stimulus specificity and the sparseness 
of neural firing. In these examples, the network is functioning only 
to relay in a noisy manner the information already present in the 
input groups, so is unlikely to be an ideal model of cortical activity. 
Nevertheless the simplified protocol highlights that once we had 
a network with different subsets of cells active at different times, 
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Figure 9 | unimodal distributions of synaptic strength produced by 
structural plasticity with homeostatic multiplicative synaptic scaling. In all 
networks, initial synaptic strength has a mean of W0 = 0.05 and maximum 
synaptic strength is Wmax = 0.5. (A–D) Functional plasticity is LTPi and 
triplet-STDP. (e–H) Functional plasticity is triplet-STDP alone. (A,C,e,g) (Left) 
Networks with structural plasticity included. (B,D,F,H) (Right) Networks without 

structural plasticity. (A,B,e,F) Triplet-STDP is the default additive rule (+3-STDP). 
(C,D,g,H) Triplet-STDP includes the multiplicative term (X STDP) that produces 
unimodality when analyzed for a single cell. Results are from the default network 
(input probability of 1/20 and 6 cell groups per input) trained for 2000 trials of the 
biconditional discrimination task. Note the initial distribution, and distribution of 
strengths of all replacement connections is uniform between 0.025 and 0.075.
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the within-assembly connection probability further to 0.35 (and 
reducing the between-assembly connection probability to 0.35/21) 
led to changes in the numbers of triplets more quantitatively similar 
to the experimental data (solid blue with crosses, Figures 11B,D). 
Thus, the only significant aspect of the slice data missing from the 
cell-assembly structure was the observed excess of motif 4 and 
dearth of motif 8 (Song et al., 2005).

clusterIng vIa spontaneous actIvIty
In our default network, spontaneous activity was low, but when 
we raised the level of background noise within the associative 
layer, the rate of spiking activity can be sufficient to produce sig-
nificant levels of functional and non-random structural plasticity 
in the absence of directed external input. Moreover, even in the 
absence of any functional plasticity or homeostasis, some networks 
with structural plasticity alone produced high degrees of cluster-
ing (Figure 12) based on the cell-to-cell variability in firing rate 
of a heterogeneous network. Indeed, when we rendered the cell 
parameters homogeneous, then structural plasticity produced no 
clustering, even when coupled with forms of functional plasticity 
(Figure 12). Thus, structural plasticity produced highly clustered 
groups of cells whenever large differences in concurrent levels of 
activity were present across cells. Such concurrent differences in 
firing rates arose within spontaneous activity when cells possessed 
sufficient heterogeneity. In such cases, coactive cells became highly 
connected with each other, as coincident spikes would maintain 
their synapses, whereas less active cells lost their connections, due 
to their dearth of coincident spikes with other cells.

both connections would be weak – the network produced a small 
but highly significant correlation in the strengths of the two synapses 
between pairs of cells with a bidirectional connection (ρ = 0.23, 
p = 2 × 10−9). The distribution of synaptic strengths was the sum of 
two overlapping Gaussians (one with mean 1, the other with mean 2, 
with SD of 0.25 and 0.5 respectively). Since the Gaussian with higher 
synaptic strength contained fewer total connections (only 1/4 of all 
cell pairs were within the same cell assembly, so only 1/2 of connec-
tions were strong and within a cell assembly) the overall shape of 
synaptic strength distribution had the same skew as the slice data 
(Song et al., 2005; Lefort et al., 2009). We found qualitatively similar, 
but quantitatively more pronounced results when we increased the 
within-assembly connection probability to 0.35 (becoming 21 times 
greater than that between assemblies).

Figures 11B,D indicates the patterns of connectivity among 
triplets of cells in these manufactured multiple-assembly networks. 
Although doubling the within-assembly connection probability 
to 0.2 (and reducing the between-assembly probability to 0.2/3) 
produced relatively small absolute changes in the numbers of triplet 
motifs compared to chance (red-dashed Figure 11B) nearly all pat-
terns were still present at significantly greater than or significantly 
less than chance (outside the dotted lines denoting p = 0.001 in 
Figure 11D). In particular, the number of triplets with zero (motif 
1), one (motif 2), or three (motifs 10–16) linked cells was greater 
than chance, whereas the number of triplets with only two of the 
three links present (motifs 4–9) was lower than chance. Increasing 

Figure 10 | Stronger stimulus specificity produces networks with high 
numbers of bidirectional connections. If single stimuli are activated, rather 
than paired stimuli, more selective responses arise, with less need for 
functional plasticity. Sets of five by five networks with different degrees of 
sparseness of inputs (y-axis where low input probability reflects high 
sparseness of inputs) and different degrees of input correlations (x-axis where 
more input groups per stimulus reflects lower correlations). (A) Network with 
no functional plasticity, just structural plasticity. (B) Network with triplet-STDP 
and structural plasticity. (C) Network with LTPi and structural plasticity. (D) 
Network with triplet-STDP, LTPi, and structural plasticity. While in both cases 
(A–C) and (B–D) addition of inhibitory plasticity increases the numbers of 
networks with excess bidirectional connections, for many networks, structural 
plasticity alone is sufficient to produce excess bidirectional connections (color 
bar, red = 4 times chance, blue = chance). Networks trained with 400 trials of 
the single stimulus-response matching task.
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Figure 11 | Triplets of connected cells appear with high stimulus 
specificity and in a cell-assembly network. (A,B) Ratio of numbers of 
three-cell connectivity motifs produced to numbers expected by chance, given 
the unidirectional and bidirectional connection probabilities. (C,D) Z-scores for 
the numbers of motifs plotted on a non-linear scale. Dashed-lines represent 
p = 0.001, Z = ±3.3. (A,C) Network with no functional, only structural plasticity, 
but highly selective responses via activation of single stimuli (after 400 trials). 
(B,D) Network designed as a set of four cell assemblies, with higher 
probability of connection, PS, within an assembly versus PX between 
assemblies. In both cases mean connection probability, 〈P〉 = 0.1, thus PX = (4
〈P〉 − PS)/3. Solid blue line, with crosses, PS = 0.35; dashed red line with 
bullets, PS = 0.2.
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our default conditions, both with 1500 cells in the associative layer 
(1200 excitatory, 300 inhibitory, thus an average of 120 excitatory 
intra-layer connections per excitatory cell and over 140,000 total) 
and in 15 configurations (those with 2, 4, and 6 input groups per 
stimulus and all 5 degrees of input connectivity) with 4000 cells in 
the associative layer (3200 excitatory, 800 inhibitory, thus an aver-
age of 320 excitatory intra-layer connections per excitatory cell, 
and over one million in total). The networks with 1500 Associative 
Layer cells showed no globally significant differences (two-sample 
t-tests across 4 instances of each of the 25 input configurations and 
paired t-test across the means of each of the 25 input configura-
tions) though 11 networks significantly increased selectivity while 
only 4 significantly decreased selectivity (changes in the range −0.2 
to +0.35, p < 0.002, two-sample t-test). Changes in selectivity were 
significantly correlated (p = 1 × 10−5, σ = 0.71) with the level of 
selectivity, i.e., versions of networks with low selectivity became 
lower, while those with high selectivity became higher with increas-
ing network size.

In the largest (4000-cell) networks, we observed small trends for 
increased clustering (bidirectional and triplet), reward and selectiv-
ity compared to 400-cell networks (changes of +0.08, +0.06, +0.01, 
and +0.07 respectively, all n.s. by paired t-test, one instantiation 
of each of 15 input configurations – those with 2, 4, or 6 input 
groups per stimulus) for learning with triplet-STDP combined with 
LTPi. For triplet-STDP alone, increasing network size had similar 
effects (the respective changes were +0.03, +0.04, +0.24, and −0.02 
all n.s. except for the increase in selectivity, p = 0.001). The increase 
in stimulus-pair selectivity for larger associative layers is likely to 
precede an increase in clustering (we simulated 400 trials) given 
the results of Figures A1–A4 in Appendix. The opposite trend for 
reward obtained in networks without LTPi arose from a decrease 
in the amount of reward in some simulations following a peak near 
100% between 100 and 200 trials. Measures of clustering (both 
bidirectional and triplet), selectivity and reward obtained remained 
significantly greater (by +0.27, +0.18, +0.07, and +0.09, respectively, 
all p < 0.005, by paired t-test, 15 input configurations,) in the largest 
networks when LTPi was added to triplet-STDP. Thus our princi-
pal result that inhibitory plasticity enhances network performance 
and clustering of excitatory cells does not depend on network size.

IMportance of Model paraMeters: assocIatIve network 
connectIon probabIlIty
We also addressed the effects of either increasing or decreasing 
the connection probability within the associative layer. We found 
that decreasing the excitatory-to-excitatory connection probability 
to 5% produced more selective responses, which led to a signifi-
cant increase in clustering (p < 0.001, paired t-test across input 
configurations, relative changes +0.02, +0.22, and +0.20 for selec-
tivity, bidirectional and triplet measures respectively, and reward 
increased by a mean of 0.01, n.s.), whereas increasing the prob-
ability to 20% had the opposite effect, decreasing bidirectional con-
nectivity, connected triplets, reward, and selectivity (respectively 
by the mean amounts 0.14, 0.15, 0.05, and 0.07 with p = 0.0009, 
p = 0.005, p = 4 × 10−6 and p = 1 × 10−7 by paired t-test across input 
configurations). Similarly, when we made inhibitory connections 
probabilistic (25% connection probability) rather than all-to-all, 
as in the default network, then selectivity and clustering increased 

IMportance of Model paraMeters: structural plastIcIty
Our method for producing structural plasticity contains a number 
of unconstrained free parameters, whose values determined when 
connections are replaced. The main consequence of altering these 
parameters was to change the numbers of synapses replaced per 
trial (i.e., the rate of network restructuring) rather than which 
synapses become replaced (i.e., the form of restructuring). Thus, 
upon doubling or halving individual parameters for structural 
plasticity, the only significant global consequence (by paired t-test 
across 25 networks) was a reduction of clustering when the rate 
factor, R, was halved and the network was tested after 400 trials. 
When the number of trials for the altered-parameter network was 
increased to 2000, the global reduction disappeared (see Table A1; 
Figures A1–A4 in Appendix).

IMportance of Model paraMeters: assocIatIve network sIze
Our default network, with 10% connectivity between excitatory 
cells in the associative layer, results in an average of only 32 intra-
layer connections per cell (albeit with more than 10,000 such con-
nections in total), which may be too few to allow correlational 
effects in synaptic plasticity to fully manifest themselves. We tested 
this by reproducing simulations with larger associative layers under 
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Figure 12 | Clustering arises in random heterogeneous networks with 
raised spontaneous activity. (A,B) Excess of triplet motifs produced by 
structural plasticity in a default network with no functional plasticity and 
default, heterogeneous cells. (A) Ratio of counts for each motif (Figure 4A) to 
expected count. (B) Z-score (see Materials and Methods). (C) Ratio of 
bidirectional connections to expected number as a function of the variance of 
firing rates across cells of normalized by the population’s mean firing rate 
(σ = 0.83, p = 1 × 10−4). (D) Ratio of numbers of triply connected motifs 
(numbered 10–16, Figure 4A) to expected number as a function of the 
variance of firing rates across cells of normalized by the population’s mean 
firing rate (σ = 0.77, p = 8 × 10−4). (C,D) Networks labeled homogeneous had 
identical cells, but random connectivity, with variable base firing rates and 
plasticity mechanisms. Otherwise cells were heterogeneous (see Materials 
and Methods) with the indicated plasticity mechanisms. Results are based on 
all 320 excitatory, associative layer cells in a default network with no inputs, 
but with increased AMPA and GABA conductance noise (gnoise = 2.5 mS/s1/2) 
and in some examples, also reduced leak (to gL = 25 μS) to raise spontaneous 
activity. Networks were trained for 400 trials.
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in clustering when delays were purely dendritic when networks 
with delays were compared with those without propagation delays 
(p < 0.001 for networks with triplet-STDP + LTPi, p < 0.05 for 
networks with 3-STDP). Surprisingly, the increase in clustering 
for networks with triplet-STDP + LTPi and dendritic delays was 
concurrent with a decrease in both selectivity and performance 
when compared to the same networks without delays. This was the 
only case where a change in selectivity did not correlate positively 
with a change in clustering.

dIscussIon
We have shown in initially randomly connected networks that the 
non-random structural correlations observed in cortical slice data 
(Song et al., 2005; Perin et al., 2011) can arise given appropriate 
plasticity mechanisms, so long as neural firing rates – either spon-
taneous or stimulus-driven – are sufficiently diverse across cells on 
the timescale of plasticity mechanisms. Under these conditions, 
cells with similar functional responses become more highly con-
nected together (Figure 9), as observed recently in mouse visual 
cortex (Ko et al., 2011).

Most of the features observed in the slice data – namely high 
clustering as evinced by an excess of bidirectional connections and 
an excess of fully connected triplets (Song et al., 2005; Perin et al., 
2011) – arise whenever structural plasticity is Hebbian in form. In 
our control study of cell assemblies (Figure 11), cells were randomly 
assigned to one of four sub-groups then assumed to have corre-
lated activity when within the same subgroup. We increased both 
the probability of connection (as would arise via a Hebbian form 
of structural plasticity between correlated cells) and the strength 
of connection (as would arise by Hebbian functional plasticity 
between correlated cells) between cells within the same subgroup. 
Most in vitro structural features arose in such a model cell-assembly 
network. However, when analyzing the patterns of connections 
among triplets of cells, all partially connected motifs (numbered 4 
to 9) were significantly depleted, yet certain ones (e.g., motif 4) are 
observed significantly in excess in the cortical slice data.

The significantly non-random abundances of some motifs 
place constraints on the implementations of structural plasticity. 
In particular, an excess of motif 4 – where one cell projects to two 
other non-connected cells – arises when presynaptic partners are 
replaced upon removal of a synapse (Figure 4). The mechanism is 
akin to a shift in dendritic spines until they connect with presyn-
aptic cells that often produce spikes preceding spikes in the post- 
synaptic cell. In particular, this process leads to increased numbers 

significantly (by 0.02 and 0.04 for selectivity and bidirectional con-
nections respectively, p = 0.005 and p = 0.001 from paired t-tests 
across input configurations, with slight <0.01 increases in reward 
and triplet connectivity, n.s.).

IMportance of Model paraMeters: conductIon delays
Our default model did not incorporate conduction delays: thus 
a presynaptic spike immediately impacted the conductance at 
the soma of the post-synaptic cell. In this section we add a delay 
between presynaptic spike time and time of post-synaptic conduct-
ance change. Also, our default rules for basic STDP and triplet-
STDP switched between potentiation and depression at zero time 
lag between the pre- and post-synaptic spikes. However, if conduc-
tion delays are primarily axonal, thus presynaptic, then the rule for 
STDP would switch sign at a positive lag, such that too small an 
interval between a presynaptic spike followed by a post-synaptic 
spike would lead to depression rather than potentiation (because 
the presynaptic spike has not reached the synapse by the necessary 
time). This type of shift in the STDP window has been shown to 
have stabilizing properties (Babadi and Abbott, 2010). Alternatively, 
if the conduction delay is primarily dendritic, it is reasonable to 
consider a shift in temporal lag of the STDP rule such that the post-
synaptic cell can spike slightly before the presynaptic cell but result 
in potentiation rather than depression, which can lead to instability 
as synapses increasingly potentiate (Lubenov and Siapas, 2008). The 
reason being that by the time any backpropagating action potential 
reaches a synapse to be modified, the EPSP arising from the presyn-
aptic cell has already arrived, so the temporal relationship at the 
synapse appears as pre-before-post. Thus when using the default 
formalism for both STDP and structural plasticity rules, instead of 
the lag, ∆t, being defined as ∆ = −t t tspike

post
spike
post  it is defined as lag at 

the synapse, such that ∆ = + − −t t d t dspike
post dend

spike
pre axon ,  where ddend 

and daxon are dendritic and axonal delays respectively (Morrison 
et al., 2008). We consider three cases, each with conduction delays 
of 5 ms: (1) temporal lags for STDP and structural plasticity rules 
are unchanged, corresponding to equal axonal and dendritic delays; 
(2) the total conduction delay is axonal; and (3) the total conduc-
tion delay is dendritic.

In all three cases, the addition of LTPi to triplet-STDP, produced 
significantly greater clustering (p < 0.005), selectivity (p < 10−10) 
and performance (p < 0.05; paired t-test across 25 input configura-
tions of 4 instantiations of the associative network) when structural 
plasticity was present, just as seen in networks without propagation 
delays (see Table 6). The most consistent finding was an increase 

Table 6 | Configuration-averaged results with propagation delays.

Plasticity Delay-type Selectivity reward Biratio Triratio

3-STDP No delay 0.90 0.70 1.18 1.17

LTPi + 3-STDP No delay 1.21 0.78 1.43 1.36

3-STDP 5 ms axonal 0.92 0.69 1.32 1.28

LTPi + 3-STDP 5 ms axonal 1.21 0.72 1.71 1.61

3-STDP 5 ms mixed 0.88 0.67 1.18 1.17

LTPi + 3-STDP 5 ms mixed 1.17 0.70 1.47 1.41

3-STDP 5 ms dendritic 0.89 0.68 1.24 1.23

LTPi + 3-STDP 5 ms dendritic 1.18 0.70 1.54 1.46
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in synaptic strengths – inputs to some cells become stronger than 
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network structure took more trials to reach a steady state, in 
some cases more than 1000 trials. Moreover, in some networks 
(e.g., Figure A4) the relative ordering of the effects of plastic-
ity mechanisms could change between trial 400 and trial 2000. 
However, all of the significant systematic differences between 
parameters observed after 400 trials were also present after 2000 
trials (see Main Text).

robustness of paraMeters
The parameters used for structural plasticity were highly uncon-
strained, and chosen to ensure a very small fraction of synapses 
would be replaced per trial on average. To test how robust our 
results were to changes in these parameters, we simulated a single 
set of 25 input configurations with each parameter individually 
either halved or doubled in value. The results were remarkably 

appendIx
dynaMIcs of network propertIes durIng traInIng
Initially our default results were calculated after 400 training 
trials, based on the network performance which rarely changed 
significantly after the first 100–200 trials (a number typically 
required when training rats or monkeys). However, it was not 
clear that our networks had reached a stable steady state by the 
end of the standard training period, so we performed a series 
of simulations up to 2000 trials. While the main results are 
summarized in the main text, we present some examples of the 
dynamics in Figures A1–A4. Each figure depicts the results for 
a single input sparseness and single input correlation (i.e., 1 of 
the 25 possible input configurations) tested across four instan-
tiations of the full network. While reward obtained (Panel D in 
each figure) reached equilibrium in fewer than 400 trials, the 
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FigureS A1–A4 | Temporal evolution of network structure and performance. 
(A) Ratio of number of bidirectional connections to expected number. (B) Ratio of 
number of fully connected triplets to expected number. (C) Paired-stimulus 
selectivity averaged across network. (D) Mean reward obtained. All results depict 
the mean and standard error from four different network instantiations. Plasticity 
mechanisms are triplet-STDP (blue), combined triplet-STDP with LTPi (red) and 

LTPi alone (green). The black curve without error bars depicts one example of the 
worst performing network when parameters for structural plasticity were 
modified (setting R = 0.5) with triplet-STDP combined with LTPi. Figure A1: input 
probability = 1/5, 2 input groups. Figure A2: input probability = 1/20, 2 input 
groups. Figure A3: input probability = 1/20, 4 input groups. Figure A4: input 
probability = 1/20, 6 input groups.
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robust to these changes as described in Table A1. The single 
parameter change that produced globally significant consequences, 
namely less clustering, after 400 trials was a reduction of the rate 
of structural plasticity by reducing R from 1 to 0.5. No results 
from simulations of this network for 2000 trials were globally 
significantly different from those with control parameters after 
400 trials. Some example networks (which include the two most 
strongly altered by this parameter adjustment) are shown as the 
single black curve in Figures A1–A4. Analysis of the two worst 
cases (Figures A1 and A4) revealed that in these networks with 
R = 0.5, the number of synapses removed and replaced was more 
than 10-fold smaller than control. Thus our conclusion is that 
modification of parameters for structural plasticity can strongly 
alter the rate of structural plasticity (average number of synapses 
lost and replaced per trial) but does not alter the tendency of 
structural plasticity to enhance clustering.

For each parameter change from the control network, the upper 
row indicates number of network input configurations (out of 25) 
where the single instance of altered-parameter differed from the 
four control instances at 5% significance (lower row at 0.2% signifi-
cance) by two-sample t-test, with +indicating improvement and – a 
worsening from control. * Indicates p < 05 and **p < 001 for global 
significance by paired t-test across all 25 input configurations with 
the same instantiation in the control network.

Importance of model parameters: single cell intrinsic properties
Our standard network has different refractory properties for excita-
tory versus inhibitory cells; however, none of the results depended 
significantly (p > 0.05, paired t-test across four instantiations of 
each of 25 input configurations) on whether for inhibitory cells 
we set both of τ

ref
 and τ

th 
to 1 ms or 2 ms (the latter matching 

excitatory cells).
Cells in our standard network included the NMDA conduct-

ance with a voltage-dependence that is observed in vitro (Jahr and 
Stevens, 1990). Removing the voltage-dependence had no signifi-
cant effect on any of our results (p > 0.05, paired t-test across four 
instantiations of each of 25 input configurations).

dIstrIbutIon of synaptIc strengths
The presence of structural plasticity in our networks can convert a 
bimodal distribution of synaptic strengths into a unimodal distri-
bution (Figure 8). Such a result is in spite of the fact that the rule 
for triplet-STDP is additive, so should produce a bimodal distribu-
tion of synaptic strengths, whereas a multiplicative rule is known 
to produce a unimodal distribution (van Rossum et al., 2000). The 
distribution of synaptic strengths in our network is dominated by 
the cell-to-cell variation in mean synaptic strength, which produces 
a plaid-like striated structure to the matrix of connection strengths 
(Figure A5) as suggested by others (Koulakov et al., 2009).

In networks with multiple functional plasticity mechanisms, the 
steady state synaptic strength is a dynamic equilibrium, whereby 
neither functional mechanism is at equilibrium alone, but the com-
bined effects of different mechanisms cancel each other. When a 
Hebbian form of synaptic plasticity is combined with homeostasis 
by multiplicative synaptic scaling, the mean rate of initially highly 
active cells equilibrates at a level above the homeostatic goal rate, 
where the Hebbian increase in synaptic strengths is countered by a 
homeostatic decrease in synaptic strengths. When structural plas-
ticity is present, these more active cells receive more inputs. Thus, 
the rate of the cell for equilibrium across plasticity mechanisms is 
reached at a lower synaptic strength per input – the total input to 
the cell that produces balance is reached with a lower individual syn-
aptic strength, because more synapses are present. Thus the piling 
up of synaptic strengths at the upper bound, a cause of bimodality 
in the distribution, can be avoided.

Table A1 | robustness of results to two-fold changes in structural 

plasticity parameters. For each parameter change from the control 

network, the upper row indicates number of network input configurations 

(out of 25) where the single instance of altered parameter differed from the  

4 control instances at 5% significance (lower row at 0.2% significance) by 

2-sample t-test, with + indicating improvement and – a worsening from 

control. 

Parameters for structural plasticity

Parameter Biratio Triratio reward Selectivity

τStruc = 50 ms +2 −1, +2 0 0

 +2 +1 0 0

τStruc = 12.5 ms +1 +5 0 0

 0 0 0 0

Threshold, T = −4 +1 +1 0 0

 0 0 0 0

Threshold, T = −16 0 −1 0 0

 0 0 0 0

Rate, R = 2 +6 +14 0 0

 0 +1 0 0

Rate, R = 0.5 −**  −6 −*  −5, +3 0 0

 0 −1 0 0

*Rate, R = 0.5 −6, +2 −4, +3 +2 +2, −2

 +2 +3 0 0

Sij
max = 4  0 0 0 0

 0 0 0 0

Sij
max = 16

 0 0 0 0

 0 0 0 0

*p < 0.05 and **p < 0.001 for global significance by paired t-test across all 25 
input configurations with the same instantiation in the control network.
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Figure A5 | Synaptic strengths are not distributed randomly. (A,D) 
Matrix of connection strengths for an example network reveals plaid-like 
striations. (B,e) Mean of efferent synapses as a function of mean of afferent 
synapses for all cells in the network. (C,F) Strengths of reciprocal connections 
for all bidirectionally connected pairs of cells. (A–C) Additive plasticity 
produces positive correlations for global inputs and outputs across cells and 
across reciprocal connections [(B) σ = 0.88, p < 10−100, (C) σ = .11, p = 6 × 10−9]. 
(D–F) Multiplicative STDP produces a negative correlation between reciprocal 
connection strengths [(e) σ = 0.57, p < 10−100, (F) σ = −0.10, p = 2 × 10−8].

Figure A6 | Bidirectional connections are stronger than unidirectional 
connections in networks with high degrees of clustering. Color indicates 
ratio of average strength of excitatory connections when the reciprocal 
connection is present to the strength of those with no reciprocal connection. 
All simulations include structural plasticity and homeostasis. (A) Simulations 
with no other functional plasticity show no effect (ratio remains at 1), while (C) 
simulations with LTPi alone show slightly weaker bidirectional connections 
caused by homeostasis on the excitatory synapses. By contrast, (B) 
simulations with triplet-STDP and (D) simulations with LTPi + triplet-STDP 
show that synapses partaking in a reciprocal connection are stronger than 
those forming a unidirectional connection in networks with a high degree of 
clustering (cf. Figures 5 and 6 of the main paper).
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Figure A7 | Cells with higher firing rates participate in more highly 
connected triplets. The local clustering coefficient of a cell is strongly 
correlated with its firing rate, as exhibited by the high correlation in the number 

of partially connected triplets (motifs 4–8) and fully connected triplets (motifs 
10–16) with firing rate. Conversely, cells with low firing rate were more likely to 
be found in a fully disconnected triplet of cells (motif 1).
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