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Mammals navigate by integrating self-motion signals (“path integration”) and occasionally
fixing on familiar environmental landmarks.The rat hippocampus is a model system of spa-
tial representation in which place cells are thought to integrate both sensory and spatial
information from entorhinal cortex.The localized firing fields of hippocampal place cells and
entorhinal grid-cells demonstrate a phase relationship with the local theta (6–10 Hz) rhythm
that may be a temporal signature of path integration. However, encoding self-motion in the
phase of theta oscillations requires high temporal precision and is susceptible to idiothetic
noise, neuronal variability, and a changing environment. We present a model based on
oscillatory interference theory, previously studied in the context of grid cells, in which tran-
sient temporal synchronization among a pool of path-integrating theta oscillators produces
hippocampal-like place fields. We hypothesize that a spatiotemporally extended sensory
interaction with external cues modulates feedback to the theta oscillators.We implement a
form of this cue-driven feedback and show that it can retrieve fixed points in the phase code
of position. A single cue can smoothly reset oscillator phases to correct for both system-
atic errors and continuous noise in path integration. Further, simulations in which local and
global cues are rotated against each other reveal a phase-code mechanism in which con-
flicting cue arrangements can reproduce experimentally observed distributions of “partial
remapping” responses. This abstract model demonstrates that phase-code feedback can
provide stability to the temporal coding of position during navigation and may contribute to
the context-dependence of hippocampal spatial representations.While the anatomical sub-
strates of these processes have not been fully characterized, our findings suggest several
signatures that can be evaluated in future experiments.
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1. INTRODUCTION
Mammals maintain an internal representation of position by con-
tinually integrating their movements along a path and periodically
reorienting to familiar environmental landmarks (Etienne et al.,
1996; Etienne et al., 2000). The process of path integration neces-
sarily accumulates errors due to variability in self-motion cues and
must be corrected relative to an externally stable frame of reference
(Etienne et al., 2004). The neural mechanisms of path integration,
external cues, and their complementary interaction have not been
fully characterized, such that any physiologically detailed model
of navigation must rely on a large number of assumptions. Thus,
it is critical to demonstrate generalized theoretical models that
comport with what is currently known and that help to identify
possible functional and anatomical substrates that can be assessed
in future experiments.

In rodents, grid cells in medial entorhinal cortex (MEC; Haft-
ing et al., 2005; Sargolini et al., 2006) and place cells in hip-
pocampus (O’Keefe and Dostrovsky, 1971) carry, respectively,
absolute and context-dependent spatial representations that sup-
port navigation and spatial memory (Knierim, 2006; Witter and
Moser, 2006; Moser et al., 2008). The lateral entorhinal cortex

(LEC) is functionally distinct from MEC and carries largely non-
spatial activity (Hargreaves et al., 2005; Kerr et al., 2007; Monaco
et al., 2007; Henriksen et al., 2010; Yoganarasimha et al., 2010),
leading to theoretical suggestions that the context-dependence
of hippocampal place-cell activity follows from the integration
of information about external landmarks from LEC with the
spatial metric provided by MEC (Redish, 2001; Knierim et al.,
2006; Manns and Eichenbaum, 2006; Lisman, 2007; Hasselmo,
2008; Hayashi and Nonaka, 2010; Silkis, 2011). Spiking activity
across both place fields (O’Keefe and Recce, 1993; Skaggs et al.,
1996) and grid fields (Hafting et al., 2008) processes from late
to early phases of successive cycles of the local theta (6–10 Hz)
rhythm. This theta-related spiking activity may reflect a tempo-
ral code organizing hippocampal activity (Buzsáki, 2002, 2005;
Harris et al., 2002; Maurer et al., 2006), however, LEC activity
is only weakly theta-modulated compared to MEC (Deshmukh
et al., 2010). Thus, navigation may require that asynchronous
landmark information interacts with theta-synchronous spatial
activity in the hippocampus. We explore this form of inter-
action in an abstract model of path integration and sensory
feedback.
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To help explain theta-phase precession, somato-dendritic inter-
ference models posit a frequency-modulated dendritic oscillation
that interferes with a somatic hyperpolarizing theta oscillation
(O’Keefe and Recce, 1993; Kamondi et al., 1998; Bose et al., 2000;
Magee, 2001; Lengyel et al., 2003). The dendritic phase modula-
tion in somato-dendritic models provides a potential carrier for
path integration information. Oscillatory interference models of
grid-cell activity extended this idea such that the temporal interfer-
ence of several velocity-modulated oscillators (VMOs), supported
by dendritic branches of grid cells or external oscillatory inputs
to grid cells, produces the characteristic hexagonal grid patterns
(O’Keefe and Burgess, 2005; Burgess et al., 2007; Hasselmo et al.,
2007; Hasselmo, 2008). The relative phase differences between
path-integrating oscillators in these models directly encode the
current position.

While firing-rate mechanisms can transform the resulting grid-
cell activity into place fields (McNaughton et al., 2006; Solstad
et al., 2006; Blair et al., 2008; Hasselmo, 2009; Savelli and Knierim,
2010; Monaco and Abbott, 2011), we examine the alternative
hypothesis that place fields may be generated directly by tem-
poral interference (Blair and Zhang, 2009; Blair et al., 2010). To
develop this hypothesis, we need to address the primary criti-
cisms initially raised for oscillatory models of grid formation: that
dendritically localized oscillators tend toward self-synchronization
and lose independence (Remme et al., 2010), and that path integra-
tion based on precise neural timing will be rapidly overwhelmed by
both cumulative noise in self-motion cues and intrinsic neuronal
variability (Welinder et al., 2008; Zilli et al., 2009). Unlike grid
cells, whose hexagonally periodic activity places geometric con-
straints on the directional modulation of input oscillations, the
relative sparsity of place-cell activity may derive from the combi-
natorically rare synchronization of a large number of oscillators
at a single location in the environment. Since it is unlikely that
a pyramidal cell can intrinsically support large numbers of inde-
pendent oscillations (Remme et al., 2010), we further hypothesize
that the VMO population is an extrinsic layer of theta cells pro-
jecting to place cells (Blair et al., 2008; Blair and Zhang, 2009).
Under this hypothesis, place cells individually compute the instan-
taneous amplitude envelope of their inputs, which is determined
by the relative phase offsets of the oscillators, as the basis of place-
field activity (Blair et al., 2010). These interference envelopes are
stable, depending only on current spatial location and not on the
particular movements of a trajectory. For this type of model, we
distinguish two sources of error in the phase code: the large-scale
systematic error that must be corrected upon introduction to a
familiar environment, and the cumulative error due to phase noise
that occurs continuously while path-integrating over behavioral
time-scales.

In this modeling study, we simulate an extrinsic pool of VMOs
with randomly oriented preferred directions and random feed-
forward projections to linear output units that generate place-
cell activity. We show that randomly initializing VMO phases
yields“complete remapping”similar to hippocampal remapping in
which substantially novel environments evoke a statistically inde-
pendent spatial representation (Bostock et al.,1991; Knierim,2003;
Leutgeb et al., 2005). We then introduce cue-associated phase-code
feedback, which enables externally referenced calibration of the

position encoded by the oscillators. We show that this phase reset-
ting mechanism can correct for both systematic phase error and
continuous phase noise. This feedback makes path integration
robust to both intrinsic neuronal noise and noise in idiothetic
cues, but also allows the simulation of discordant arrangements
of external sensory cues. By rotating two sets of cues against each
other around a circular track, we show that sensory feedback in our
model produces “partial remapping” effects that resemble the hip-
pocampal responses observed in cue-rotation experiments (Tanila
et al., 1997; Brown and Skaggs, 2002; Knierim, 2002; Lee et al.,
2004b).

2. RESULTS
2.1. PATH INTEGRATION MODEL
Temporal interference models of two-dimensional spatial activity
require that VMO phases are modulated by the velocity vector
of the animal exploring an environment (Burgess et al., 2007;
Hasselmo, 2008; Blair et al., 2010). This modulation allows the
phase code, consisting of the relative phase offsets between oscil-
lators, to perform spatially stable path integration of a realistic
trajectory. To model the activity of a population of place cells, we
implemented a feedforward network (Figure 1) of VMOs driving
a population of linear outputs that we call“place units.”Sparseness
in the firing-rate output of the place units is enforced with feed-
forward inhibition modeled as a global activity threshold. Thus,
place units here are linear thresholded readouts of the phase inter-
ference of their VMO inputs, and are not a biologically detailed
representation of hippocampal place cells (see Section 3).

We define a population of N independently path-integrating
VMOs as a phase vector θ evolving through time,

θ̇ = 2πf + vM, (1)

FIGURE 1 | Schematic diagram of the path integration network,

consisting of oscillatory inputs and place-unit outputs. The
instantaneous velocity vector v of the simulated trajectory modulates the
phases of the oscillators (Eq. 1). These velocity-modulated oscillators
integrate distance traveled along independent and random preferred
directions. Place-units (triangles) receive feedforward input from a random
fixed-size subset of these oscillators. Phase interference produces a unique
and spatially stable amplitude-modulated envelope of subthreshold activity
for each place unit. The population firing-rate vector r is computed as a
linear rectification of this spatial envelope for each place unit (Eq. 3). Unless
otherwise specified, network simulations comprise 1000 oscillators driving
500 place units with 5% connectivity.
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where f = 7 Hz is the theta carrier frequency, v = (vx, vy) is the
instantaneous velocity vector (cm/s) of the trajectory, and M is
a matrix specifying the velocity modulation of each oscillator
(Burgess et al., 2007; Blair et al., 2008; Hasselmo, 2009). While
running speed modulates local theta frequency in rats (McFarland
et al., 1975; Geisler et al., 2007), our carrier wave has a constant
frequency f. Since the carrier wave is shared across VMOs and
the phase-code relies on relative phases, the addition of speed-
dependence to the carrier frequency would not change our results.
Unless we specify that phases are initialized to previous values,
initial VMO phases are randomly sampled at the beginning of sim-
ulations presented here (see Section 4). Thus, the path integration
parameters of each VMO are represented as a column of the matrix

M =
[

cos(φ1)/λ1 · · · cos(φN )/λN

sin(φ1)/λ1 · · · sin(φN )/λN

]
, (2)

where φi and λi specify the preferred direction and spatial scale
(cm), respectively, of the ith oscillator. The phase modulation
parameters are randomly and independently sampled. For the ith
VMO, preferred direction φi is sampled from 0 to 2π radians and
spatial scale λi from 16 to 32 cm. The scale parameter λ deter-
mines the size of place fields and is the inverse of the slope of
phase modulation along the preferred direction (Lengyel et al.,
2003; Burgess et al., 2007; Blair et al., 2008). We chose a two-
fold range of spatial scales with an upper bound commensurate
with the radius of the track used in most simulations here (see
below and Section 4), allowing for the formation of differently
shaped place fields at distinct regions of the track. Further, the
upper bound here matches the grid spacing (∼30 cm) of grid cells
located dorsally in MEC and recorded in a larger 1 m2 environ-
ment (Hafting et al., 2005). While larger scale ranges can be used
to simulate larger environments with this model, the particular
spatial scales used here are not determinative of our results. Based
on Eq. 2, the relative phase of each VMO is positively modulated
by velocities along its preferred direction, negatively modulated by
velocities along the anti-preferred direction, and invariant along
orthogonal directions. That is, the instantaneous effect of path
integration can include either phase advance or phase delay. The
amount of directional modulation is proportional to the cosine
of the angle between the preferred and ongoing directions (see
Section 3). For our simulations, the phase vector is numerically
integrated by the first-order Euler method. Higher-order integra-
tion does not improve the quality of simulation results because
phase evolution is predominantly linear.

Each place-unit receives unity-gain input from a fixed-sized
random subset of the VMO population. The columns of the
binary connectivity matrix J specify which VMOs provide fan-
in input to each place unit. The connectivity in this model makes
no assumption regarding the anatomical location of the VMOs
beyond that they are an external input population shared by the
place units. Unless specified otherwise, we simulate 1000 theta
oscillators projecting to 500 place units with 5% connectivity
(Figure 1). For every timestep, the synaptic drive to each place
unit is the sum of the oscillations of its randomly chosen VMO
inputs. That is, instantaneous place-unit excitation ξ is related
to the VMO response vector s = [cos(θi)] N

i=1 by ξ = sJ so that

ξi is an amplitude-modulated theta signal representing the total
synaptic drive of the place unit i. The amplitude envelope of ξi

reflects the degree of phase synchronization among the inputs to
place unit i. Since transient synchronization among the ongoing
oscillations of VMOs may represent some location in the environ-
ment (Hopfield and Brody, 2001), we define place-unit excitation
as the amplitude envelope of ξ across time. We compute the enve-
lope ξ∗ = |ξ + iH (ξ)| as the magnitude of the analytic signal of the
excitation time-series, where H (·) is the Hilbert transformation.
It should be noted that this envelope is invariant to phase shifts
such as those that may occur from one trial to the next or if the
sign of the input oscillations were to be flipped. That is, simulation
results here do not depend on whether the VMOs are excitatory or
inhibitory (see Section 3). The output firing rate of the place unit
i is computed as

ri(t ) = [
ξ∗

i (t ) − T
]
+ , (3)

where T is the global activity threshold, and brackets indicate
half-wave rectification such that [x]+ = 0 for x < 0 and [x]+ = x
otherwise. Thus, place-unit responses here are firing-rates com-
puted as linear suprathreshold excitation. Future generalization to
oscillatory spiking inputs (e.g., Hopfield and Brody, 2001) would
allow the implementation of more biophysically realistic spik-
ing outputs. While small numbers of oscillators are sufficient to
produce periodic grid-cell activity (Burgess et al., 2007), larger
numbers of randomly oriented VMOs are necessary to produce
the unitary firing fields characteristic of hippocampal place-cell
activity (Blair and Zhang, 2009). The sparsity of activity peaks
across a simulated environment follows from the relative rarity of
relatively strong synchronization among a larger set of oscillators.
We did not fine-tune the connectivity for spatial specificity, but we
found that this model produces place fields in open field environ-
ments (1 m2) using at least ∼50 VMO inputs. The threshold T is
set to the median of the maximum excitation across place units.
Applying place-field criteria (see Section 4), this threshold typi-
cally results in ∼40–45% activation of the place-unit population.
This network sparsity is within the range of activity levels observed
for ensembles of CA1 place cells (Wilson and McNaughton, 1993;
Guzowski et al., 1999; Lee et al., 2004b; Leutgeb et al., 2004; Karls-
son and Frank, 2008). Note that the phase-coding VMOs and
rate-coding place units are independent populations: the only
network interaction is the temporal interference performed by
the place units. While the hippocampus comprises many different
network types, the feedforward structure employed here allows
consideration of the temporal coding mechanisms independent
of network effects.

2.2. CIRCLE-TRACK SIMULATION
To enable comparison with the results of cue-rotation experiments
(Tanila et al., 1997; Brown and Skaggs, 2002) on circular tracks
(Knierim, 2002; Lee et al., 2004b), we simulated the model using
an experimentally recorded trajectory (see Section 4). The time-
series data for an example simulation of this 14-lap trajectory
are shown in Figures 2A–C. The track angle (Figure 2A) shows
predominantly forward locomotion around the track (clockwise,
CW) with a small number of pauses. The instantaneous veloc-
ity vector (Figure 2B), which drives VMO phase modulation
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FIGURE 2 | Example simulation of the path integration network for

a 14-lap trajectory on a circular track. The input trajectory is actual
position-tracking data from a previously published set of cue-rotation
experiments (Lee et al., 2004b). Tracking data has been smoothed and
interpolated (see Section 4) to be used as simulation input. (A) Position
is converted to a track-angle relative to the track’s center (lap crossings,
dashed lines) and shown for the duration of the simulation (t = 325 s).
(B) The instantaneous velocity vector of the trajectory (x and y
components: vx, top; vy, bottom) directly modulates the VMO phase

vector (Eq. 1). Lap-to-lap (blue/green alternation) variation shows
periodicity but also significant differences in traversal. (C) Interference
patterns for two example place units with place fields. Inset: single lap
with envelope (black lines) and threshold (dashed lines). (D) Firing-rates
across time are mapped to position coordinates (left) to reveal distinct
place fields. Linearized spatial responses (see Section 4) for each of the
14 completed laps (right) demonstrate the relative stability of
VMO-based place fields. Black arrows indicate the running direction of
the animal around the track.

(Eq. 1), demonstrates both substantial short time-scale variabil-
ity and longer time-scale periodicity due to the lap traversals
(blue/green alternation in Figures 2B,C). The temporal interfer-
ence patterns representing the synaptic drive of two example place
units (Figure 2C) consist of cyclical peaks and valleys across the
simulation. The oscillatory inputs of these two place-units syn-
chronize to different degrees at different locations of the track.
Within a single lap, their excitation envelopes are suprathresh-
old for different durations (Figure 2C, inset). The subthreshold
activity exhibits increasing oscillatory amplitude up to the initial
threshold crossing and through to the activity peak. The excitation
envelopes, here analogous to the membrane voltage of a place cell,
directly reflect the increase in oscillatory power. This subthreshold
ramping of excitation and power in our path-integration simula-
tion is consistent with similar observations based on intracellular
recordings of CA1 place cells during place-field traversal (Harvey
et al., 2009).

To show the place fields, we mapped the resulting firing-rates
across time to the spatial coordinates of the trajectory. The place
fields of the two example outputs are distinct and unimodal
(Figure 2D, left). The fields can be symmetrical (Unit 1) or
asymmetrical (Unit 2) depending on the distribution of preferred
directions of the component VMOs which synchronize to pro-
duce the fields. Response matrices of the individual laps show
the high lap-to-lap stability of the place-unit activity [Figure 2D,
right; population correlations of per-lap and pooled responses
(see Section 4), N = 14 laps, r = 0.991 ± 0.002, mean ± SD] despite
significant variability in the velocity signal (Figure 2B). Thus,
temporal variability due to the details of the trajectory is coun-
teracted by path integration to provide spatially stable responses
for different runs around the track. For this simulation, 42% of the
place-unit population had place fields: out of 500 place units, 182,
25, and 2 had 1, 2, or 3 place fields, respectively. Active place units
(N = 209) had peak firing rates of 2.4 ± 1.7 Hz, a maximum rate
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of 9.9 Hz, and spatial information scores of 1.88 ± 3.78 bits (see
Section 4). Place fields (N = 238) had track-angle sizes of 55 ± 24˚,
corresponding to lengths of 32 ± 14 cm assuming the track-center
radius of 33 cm. The spatial scale of these simulated place-fields
matches that of grid (Hafting et al., 2005; Fyhn et al., 2007) and
place (Lee et al., 2004b; Maurer et al., 2005) cells recorded near the
dorsal poles of entorhinal cortex and hippocampus.

Without retrieval of a previous representation, the ongoing
phase code in a novel environment may interact with unfamil-
iar sensory inputs to produce a novel phase code. We demonstrate
complete remapping of the population spatial code by randomiz-
ing the initial phase vector of the VMO population. The network
is simulated as in Figure 2 but with two different random ini-
tial phase vectors corresponding to distinct environments A and
B. Individual place-unit responses across environments (Figure 3,
top) show a variety of remapping behaviors, including changes in
firing rate, shifts in field location, and the appearance or disappear-
ance of place fields. The place fields of environment A uniformly
spanned the extent of the track (Figure 3, bottom left). The pop-
ulation responses (Figure 3, bottom), with place-units sorted by
peak firing location in environment A, were fully remapped by
the randomization of the initial VMO phases [population corre-
lation between environments (see Section 4), r = -0.006, p < 0.01]
without changing the spatial information scores of the place-unit
responses [F(1,483) = 0.105, p > 0.5].

2.3. SENSORY FEEDBACK FROM EXTERNAL CUES
We now introduce sensory cue inputs to our path integration
model (Figure 4) that perform smooth and spatially extended
phase resetting of the oscillators. Resetting the path integrator is
a necessary condition for stable navigation in mammals (Etienne
et al., 2004). The unit of this phase reset is an external cue whose
interaction with the VMO population is described as a circular
Gaussian centered at some position on the track. We define the
cue interaction coefficient Ccue as a von Mises function,

Ccue(Δα) = A exp
(
(cos(Δα) − 1)/σ2

a

)
, (4)

where Δα is the angle in radians between current track position
and cue center, A is the peak gain of the cue, and σa is the cue
size specified as the arc SD in radians of the cue interaction pro-
file. An example 15˚ cue interaction centered at 0˚ is shown in
Figure 4A. Though we refer to this interaction as an external cue,
we are explicitly modeling only the spatially modulated influence
(Eq. 4) of an environmental or sensory cue on the path integration
mechanism. Here, cues directly control feedback to the oscillators
(Figure 4B). The feedback targets are fixed points of the phase
code, defined as a vector of phase angles relative to a shared carrier
wave. Phase targets are acquired by path integrating the first lap of
the trajectory (Eq. 1) and storing a vector of VMO phase offsets at
the first crossing of each cue (see Section 4). There may be mul-
tiple cues, each of which is associated with a distinct phase target
vector, but we initially consider single-cue simulations. Without
modifying the output mechanism (Eq. 3), cue feedback is added
to the phase equation (Eq. 1) so that

θ̇ = 2πf + vM + Ccue〈Δθ∗ − Δθ〉, (5)

FIGURE 3 | Complete remapping by randomized phase initialization.
We compare responses from two simulations of the same path integration
network: initialized with two different phase vectors representing
environments A (left) and B (right). (Top) Individual place-unit responses
(place-unit index, left) have place fields that variously appear, disappear, or
remap their firing positions and/or rates (peak firing rate, right) between
environments. (Bottom) Population response matrices show that place
units, sorted by peak firing position along the track in environment A,
exhibit primarily unimodal spatial activity that evenly spans the extent of the
track. The population spatial representation randomly remaps between
environments A and B.

where Δθ is current phase offset vector; Δθ∗ is the phase target
vector associated with the cue; and 〈〉 signifies that phase differ-
ences are wrapped to the range [−π, +π). The wrapped phase
differences provide a linear contribution to phase synchronization
between the ongoing phase of VMOs and the phase targets associ-
ated with the cue. Thus, the cue interaction Ccue multiplicatively
modulates the gain of a VMO-specific phase-code feedback signal
(Figure 4B). Traversing an external cue independently impels each
theta oscillator, either retarding or advancing its phase, toward a
previously learned target. This is a not a perfect or instantaneous
reset of all phases to the same angle (Burgess, 2008; Hasselmo,
2008), but a smooth approach to a point in the space of relative
phases. An illustration of the effect of feedback on VMO activity
(Figure 4C) shows the ongoing oscillation of a VMO gradually
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FIGURE 4 | Sensory cue interaction as phase-code feedback. (A) The
spatial profile of cue interaction C cue is a circular Gaussian field (Eq. 4)
oriented at some position on the track (dotted line). Example cue is 15˚
(SD) wide and centered at 0˚. (B) Schematic circuit diagram of the
abstract phase feedback mechanism (Eq. 5) for a single oscillator from
the VMO population. The i th VMO is decomposed into its phase variable
θi and output waveform. The phase of every oscillator receives the same
velocity (v) and sensory (C cue) inputs, and has an oscillator-specific
feedback target depending on the current (closest) cue on the track.

Phase targets are learned by path integration during the first lap. The
phase difference between the ongoing (θ) and target (θ*) phase offsets is
gain modulated (×) by the strength of the cue. (C) Illustration of VMO
synchronizing to a phase target. (Simplified for purposes of illustration,
see Figure 5 for simulation and analysis output.) Top two panels: without
feedback, constant phase offsets (top) yield out-of-phase oscillations
(bottom). Bottom three panels: idealized cue interaction (top) modulates
VMO phase offset (middle) so that its oscillation becomes phase
synchronized with the target (bottom).

resetting toward its target phase defined relative to a reference theta
wave. Note that while nearly perfect synchronization is shown for
purposes of illustration (Figure 4C), a generalized solution for the
phase reset is derived below and model simulations are shown in
Figure 5.

2.4. PHASE-CODE RETRIEVAL BY A SINGLE CUE
To understand the relationship between cue interaction and the
resulting phase-code modulation, we consider a VMO integrating
a straight line through a cue at constant speed. For this idealized
cue traversal, path integration reduces to a linear function of time
in which the slope of the phase depends on the running direction
and the VMO parameters (Eq. 2). If Δθ0 is the initial phase offset
of the training lap, then we can introduce an initial phase error η0

in a subsequent lap or simulation by initializing the VMO phase
to Δθ0 + η0. With no cue present, this phase error will be con-
stant; introducing cue-based feedback will change the magnitude
of the phase error over time as the cue is traversed. To determine

analytically the time-course of phase error for a linear traversal,
we treat the cue interaction (Eq. 4) as a linear Gaussian func-
tion through time C(t ) = A exp (−(vt )2/2σ2

c ), where σc = Rσa ,
R = 35 cm is the track radius, v is the running speed, and the peak
of the cue occurs at t = 0. We can then approximate the error cor-
rection performed by a cue by reformulating cue feedback (Eq. 5)
with respect to phase error such that η̇ = −Cη. Integrating this
phase error approximation,

∫
dη

η
= −

∫
C dt ,

shows that phase error follows

η(t ) = η(0) exp

(
−Aσc

v

√
π

2
erf

(
vt√
2σc

))
, (6)

where η(0) is the remaining phase error at cue peak. This time-
course describes a monotonically decreasing sigmoid function
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FIGURE 5 | Correction of initial phase error during cue traversal. We
show idealized simulations of a single oscillator (A) and circle-track
trajectory simulations of a population of oscillators (B,C). Phase angles
[first (A) and second (A–C) column], phase error (relative to cue interaction
with 0 initial phase error, third column), and normalized error [simulated
and predicted (Eq. 6, red dashed line), fourth column] show the
time-course of error correction. Background color indicates cue
modulation. (A) VMO is simulated for a linear constant-speed traversal of a
0.5-s SD cue. Phase angles for different initial phase errors (black lines)
show modulation toward the phase target (thick dashed line, second

panel) around the peak of the cue interaction (t = 0) and approach path
integration (dashed magenta line) after the cue. Crop: second panel data
same as within gray rectangle in first panel. (B,C) For cue sizes of 10 (B)

and 20 (C) degrees SD, the 8-s time window around cue peak (shown as
cue coefficients C10 and C20 on the first lap, left) is shown for 16 VMOs
simulated with random initial phase errors on the first lap around the
circle-track. Despite independent path integration, error correction for each
oscillator follows the same time-course. The larger cue (C) evoked a
temporally skewed sensory interaction, accounting for earlier correction
than predicted by a symmetric interaction.

with the fastest correction occurring at cue peak. The fraction
of the initial error remaining after the cue interaction, which we
call the error tolerance, can be computed by evaluating the phase
error at the limits:

ε = η(+∞)

η(−∞)
= exp

(
−Aσc

v

√
2π

)
, (7)

where η(−∞) and η(+∞) are initial and remaining amounts of
phase error, respectively. We calculate the peak gain for any given
cue interaction by solving (Eq. 7) for A by setting our desired error
tolerance to ε = 0.05, the speed v = 13.3 cm/s to the average run-
ning speed of the trajectory, and σc to the parameterized cue size.
Thus, simulated cue traversals will, on average, yield 95% total
correction of phase error regardless of cue size.

To illustrate initial phase error correction, we simulated a sin-
gle oscillator following an idealized cue traversal as described
above (Figure 5A). This VMO had preferred direction φ = π/3
radians and spatial scale λ = 32 cm. The running speed was a
constant v = 10 cm/s along the positive x-axis. Path integration

alone (Eq. 1) produced a linear phase modulation (Figure 5A,
magenta dashed line) whose value at t = 0 provided the phase tar-
get Δθ∗ = 1.84 radians (Figure 5A, gray dashed line). We then
activated the cue feedback using a cue size of σ = 5 cm and sim-
ulated the same traversal with initial phase errors of 0, ±π/4,
and ±π/2. The resulting phase trajectories smoothly approached
the original path-integration phase code (Figure 5A, two left
panels, black curves). Without initial phase error, the cue itself
(Figure 5A, second panel, curve indicated by arrowhead) elicited
a bidirectional phase modulation relative to path integration by
advancing and retarding the phase prior to and after, respectively,
the peak of the cue interaction. We computed phase error across
time (Figure 5A, third panel) by subtracting this cue-only mod-
ulation. Phase errors, shown as both absolute and normalized
phase differences, are reduced during cue traversal (Figure 5A,
two right panels) following the predicted time dependence (Eq. 6;
red dashed line).

Circle-track simulations of a population of randomly ori-
ented VMOs (Figures 5B,C) show the same stereotyped error
correction as the idealized cue traversals. We simulated 16 VMOs
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with random initial phase errors traversing 10˚ (Figure 5B, C10)
and 20˚ (Figure 5C, C20) cues across the first 25 s of the trajectory.
The resulting phase trajectories show temporal variability based
on the spatiotemporal details of the behavioral trajectory. Phase
errors, computed as in Figure 5A, show that the actual time-course
of error correction was modulated by cue size even though the two
cue sizes elicit similar overall error correction (median ε = 0.036
and 0.040 for C10 and C20, respectively). Interestingly, error cor-
rection for the larger cue appears to have been shifted earlier than
predicted. The initial edge of C20 (Figure 5C, left) overlapped a
location where the trajectory momentarily slowed down, enhanc-
ing the amount of cue feedback at that location (Figure 5C, right)
relative to predictions based on a temporally symmetric cue inter-
action (Eq. 6). These initial phase errors are the type of error that
provoked complete remapping in Figure 3. By restoring the phase
code at the appropriate location, we suggest that“familiar” sensory
cues can retrieve a previous spatial representation.

2.5. CONTINUOUS PHASE NOISE
Independent, ongoing phase-noise rapidly destabilizes spatial
activity in oscillatory interference models (Welinder et al., 2008;
Zilli et al., 2009; Zilli and Hasselmo, 2010) as phases randomly
drift apart. To examine the effects of such continuous phase noise,
we simulated spatial responses of a place-coding network with
(Eq. 5) or without (Eq. 1) a cue for various multiples mσ of
a baseline phase dispersion σ = 0.05 radians. This dispersion is
equivalent to σ(2πf)−1 = 1.1 ms, which is low enough to provide
76 s of phase-code stability according to the metric derived by Zilli
et al. (2009). The anatomical and physiological source of the VMO
signals posited by this model is unknown (see Section 3), so we
cannot easily estimate biologically realistic levels of phase noise.
However, according to period variance measurements by Zilli et al.
(2009) of several parahippocampal oscillators, the range of noise
levels that we test here overlaps typical distributions of biological
phase noise.

The cue for the simulations shown in Figure 6 is the same as
C10 in Figure 5B. For each simulation timestep of duration Δt, we
sample a phase-noise vector from N (0, m2σ2Δt ) and add it to the

VMO phase vector. We computed the population spatial correla-
tions (see Section 4) between each test condition and a reference
simulation consisting of path integration with no noise or cue.
Correlations are element-by-element Pearson product-moment
coefficients between population rate matrices. The whole-session
correlations (Figure 6A) show that 1σ dispersion produces mod-
erate decorrelation (Pearson r = 0.664) while 4σ dispersion yields
nearly uncorrelated spatial activity (r = 0.0546). The cue counter-
acts the effect of noise so that the 4σ (r = 0.850) and 8σ (r = 0.532)
conditions show relatively strong spatial correlations. Correlations
across individual laps (Figure 6B) show progressive decorrelation
with high noise levels that is prevented by the presence of the cue.
However, strong correlations tend to occur only near the loca-
tion of the cue (Figure 6C), with the slope of decorrelation away
from the cue dependent on the noise level. Multiple cues may be
necessary to enable more frequent phase resets and prevent the
decorrelation of spatial activity by phase noise.

2.6. PARTIAL REMAPPING
The double cue-rotation paradigm (Tanila et al., 1997; Knierim,
2002) differentially rotates two sets of external cues around the
track to create an ambiguous or discordant sensory environ-
ment. In a cue-conflict configuration, local (track-based) and
distal (room-based) cues are rotated counter-clockwise (CCW)
and clockwise (CW), respectively, relative to a familiar configura-
tion. We simulate double rotation (see Section 4) by coherently
rotating the track-angle positions of cues within two independent
cue sets (CA and CB; Figure 7, top). Each of the three cues in a
set is active within a one-third sector of the track. We extend the
cue feedback mechanism (Eq. 5) to two cue sets additively so that
VMO phases follow

θ̇ = 2πf + vM + CA
〈
Δθ∗

A − Δθ
〉 + CB

〈
Δθ∗

B − Δθ
〉

, (8)

where CA and CB are the cue coefficients of the two sets, and
Δθ∗

A and Δθ∗
B are the phase targets of the active cues in each set.

We show individual responses from a 90˚ cue mismatch (MIS-90;
Figure 7, bottom) and population responses for a series of mis-
match angles (Figure 8) simulated with the same place network

FIGURE 6 | Continuous phase-noise decorrelation of spatial map

counteracted by cue. We simulate full circle-track sessions with a single cue
(same as Figure 6B) and varying levels of independent continuous noise
injected into the VMO phase vector (see Section 4). The baseline noise level
σ = 0.05 radians was chosen to produce moderate spatial decorrelation across
the 325-s simulation (see Section 2 for details). Measurements are relative to
the population response due to path integration (0σ, no cue). (A) Population

spatial correlations (see Section 4) with (black) and without (gray) the cue
present for multiples of σ. (B) Correlations are computed for each of the 14
individual laps around the track in the cue (right) and no-cue (left) simulations.
Cue feedback prevents progressive decorrelation across laps. (C)

Cue-centered average of population correlations across the track (see Section
4). The cue strongly but transiently restores local spatial correlations even at
high levels of phase noise.
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FIGURE 7 | Double-rotation experiment simulated with a 90˚ cue

mismatch. Two independent sets of cues (represented by cue interactions
CA and CB) were simulated both in standard (STD, or “familiar”) and
mismatch (MIS-90) configurations. Cue sets (STD configuration, top)
consisted of three 20˚ cues that were each active on one-third of the track
(enumerated areas) and were rotated 45˚ counter-clockwise (CCW arrow,
left) or clockwise (CW arrow, right). Examples of simultaneous place-unit
responses to the cue mismatch (bottom) include rate remapping, cue
following in both CW and CCW directions, and on/off remapping. Arrow,
bottom: CW running direction. Population responses for these data are
shown in Figure 8.

and cues. Among the place-unit responses (Figure 7, bottom),
there are examples of rate remapping (Unit 299), CCW (74) or
CW (4) cue following, ambiguous responses (174 and 188), and
place-field activation (365) or silencing (440). For each of four
mismatch conditions, we compute the rotation angles and peak
correlations (see Section 4) of all the place-unit responses. The dis-
tribution of responses across rotation and correlation are shown
as two-dimensional histograms in Figure 8A. For the smallest
mismatch angle (MIS-45), the singular response mode (rotation,
1.63 ± 0.45˚, circular mean ± SEM; correlation, r = 0.95 ± 0.0038,
mean ± SEM) is largely invariant to the mismatch. In contrast,
the responses to MIS-90 are much more varied (cf Figure 7),
consisting of cue-following modes in both rotation directions in
addition to a large number of low-correlation responses. The larger

FIGURE 8 | Population remapping response to various cue mismatch

angles. For the same network in Figure 6, we simulated double-rotation
mismatches of 45, 90, 135, and 180 total degrees between cue sets. Peak
correlation and rotation angle (see Section 4) were computed for every
place unit. (A) Two-dimensional 16 × 16 histograms of place-unit correlation
and rotation (dashed line, no rotation) demonstrate different remapping
modes across mismatch angles. MIS-45 was highly stable, while the
population response to MIS-90 was dispersed. Histogram maxima: MIS-45,
112; MIS-90, 11; MIS-135, 26; and MIS-180, 14. (B) Individual responses
were categorized (see Section 4) as cue following (CCW or CW) or
remapping (On or Off) or neither (Ambiguous). Stacked category charts
show response prevalence across mismatch angles for simulation results
(top) and a hippocampal data set (bottom). The hippocampal data (spike
times and position tracking from five rats, Lee et al., 2004b; J. Neunuebel,
unpublished) has been re-analyzed here for visualization (see Section 4). No
previous figures have been adapted.

mismatch angles elicit a stronger CCW cue-following mode and
fewer ambiguous responses.

We classified place-unit mismatch responses into remapping
categories based on peak correlation and rotation angle (see
Section 4). Coherently rotated responses were classified as cue
following; the activation/deactivation of place units was classi-
fied as on/off remapping; the remaining responses were consid-
ered ambiguous. The distributions of response types (Figure 8B,
top) highlight the decreasing proportions of ambiguous responses
and increases in both coherent and on/off remapping responses
with increasing mismatch angles. Notably, the simulated response
distributions showing bias toward the CCW cues qualitatively
resemble those of a hippocampal data set (Figure 8B, bottom;
see Section 4). However, the simulated MIS-45 condition showed
no coherent rotation and less remapping than the hippocampal
data. Coherent rotation at small mismatch angles could be intro-
duced by, for instance, increasing the number of CCW cues. Due
to the minimal construction of this model, it is not instructive
to fine-tune the configuration of the cue sets to more exactly
match experimental data, but it is notable that CCW bias occurred
despite the two cue sets having the same size and number of
cues. To demonstrate that the amount and direction of cue bias
depend on network parameters, we simulated 12 additional MIS-
90 experiments with new VMO-place networks. Despite similar
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proportions of overall cue following (0.204 ± 0.014, mean ± SD),
the cue mismatch produced CCW-to-CW ratios (1.02 ± 0.238)
ranging from 0.729 to 1.57. The phase-code interaction between
conflicting cues (Eq. 8) is able to produce heterogeneous mixtures
of remapping responses consistent with the partial remapping
observed in double cue-rotation experiments (Lee et al., 2004b).

2.7. LINEAR PHASE RESET WITH A SPIKING NEURON
While this study investigates effects of sensory feedback, our firing-
rate model does not address the underlying neural mechanisms.
To demonstrate a plausible phase feedback mechanism, we require,
first, a more detailed oscillator model and, second, an input rep-
resentation of the encoded phase target. We simulated a single
theta oscillator as a leaky integrate-and-fire (LIF) neuron, allow-
ing phase reset to be measured as a change in spike timing. The
phase target is here represented as the relative timing of the sen-
sory stimulus corresponding to an external cue (see Section 3). For
the feedback to be effective, the phase reset evoked by the stim-
ulus must reduce the phase difference between the stimulus and
the oscillator. The phase resetting curve (PRC) representing the
LIF phase response to stimulus timing can take different forms
depending on the temporal profile of the stimulus. We are inter-
ested in the total effect of a stimulus on spike timing, whether the
stimulus results in an advance or delay of the output spike relative
to a control condition with no stimulus. Thus, we calculate the
PRC (see Section 4 and Eq. 12) to include the effects of first and
second order phase resetting (Oprisan et al., 2004). Here, we use
the conventions that positive phase reset indicates a delay in spike
timing and that 0-phase is defined by the control spike times.

Demonstrating that the sensory feedback from our firing-rate
model can be implemented with a spiking oscillator requires both
cue modulation (Eq. 4) and the linear feedback term that syn-
chronizes the oscillator with a phase target (Eq. 5). The gain
modulation induced by the cue can be implemented as the mag-
nitude of the sensory stimulus. The feedback term is a phase
difference wrapped to the range [−π, π] (Eq. 5). Thus, it must
be shown that stimulus timing can produce a linear phase reset
analogous to the phase difference term. That is, the phase at which
a stimulus occurs must cause the spike timing to approach that
same stimulus phase on later cycles, and the size of this phase reset
should be linearly related to the stimulus phase. Additionally, the
wrapped phase difference entails a discontinuity whereby differ-
ences larger than one half-cycle produce a change in sign. The
essential requirement, however, is that each oscillator can be either
advanced or delayed toward synchronization with the phase target.
The spiking PRC must be bidirectional. By contrast, the linearity
and discontinuity of the phase reset assumed in our firing-rate
model are secondary features that are not strictly required for
effective phase feedback, but they are consistent with the output
of the spiking model below.

We simulated the LIF theta oscillator in a control condition
with no stimulus and then in a series of stimulus conditions
(see Section 4). We computed subthreshold membrane voltage
V following

τ
dV

dt
= EL − V + R (Iconst + Ie(t − ts)) , (9)

where membrane time constant τ = 40 ms and total membrane
resistance R = 100 MΩ, and using 0.01 ms timesteps with forward
Euler integration. Spikes occur when V reaches spike threshold
V th = −50 mV, and V is reset to the leak potential EL = −70 mV.
We solved analytically (Dayan and Abbott, 2001) for the constant
input current I const = 0.206 nA that provides a regular interspike-
interval firing rate of 7 spikes/s. In the control condition, where
the external input current Ie(t ) = 0, the cell fires at regular theta
rhythm (Figure 9A, black trace). In stimulus conditions, ts defines
the timing of stimulus occurrence and the external input follows
a biphasic temporal profile,

Ie(Δt ) =

⎧⎪⎨
⎪⎩

BE (1 + Δt/H ) if − H ≤ Δt ≤ 0

−BI (1 − Δt/H ) if 0 < Δt ≤ H

0 otherwise

(10)

where the stimulus half-window H = 25 ms. This stimulus con-
sists of a leading excitatory phase and a trailing inhibitory phase
with gains of BE = I const and BI = 2BE, respectively. For compu-
tational convenience, the stimulus time ts specifies the mid-point
of these two phases for a given stimulus. A stimulus occurring
halfway through a theta cycle (Figure 9A, red trace) noticeably
draws the spike timing of the oscillator toward the middle of
the reference theta cycle established by the control condition.
The ordering of spikes from four example stimulus simulations
(Figure 9B) matches the order of the stimuli, indicating that the
oscillator is advancing or delaying based on stimulus timing. To
evaluate the PRC (see Section 4), we simulated a series of stimulus
times spanning a single theta cycle (Figure 9B, “Stimulus”) and
measured the phase reset Eq. 12 during a subsequent theta cycle
(Figure 9B, “Response”). Stimulus phase is measured as the phase
difference between ts and the control spike time at the center of the
“Stimulus” theta cycle. The PRC, measured for 25 stimulus phases,
shows that the spike phase response is bidirectional, highly linear,
and discontinuous (Figure 9C). The subtraction used to compute
the phase reset (Eq. 12) means that positive values correspond to
delays in oscillator spike timing, and negative values correspond
to advances in spike timing.

Whereas the slope and shape of the PRC depend on the tempo-
ral profile and magnitude of the stimulus, this particular stimulus
at least serves to demonstrate that the bidirectional and linear
phase reset assumed by our firing-rate model is plausibly imple-
mented using a spiking model of a theta oscillator. The tempo-
ral profile that we chose reflects the hypothetical encoding of
a sensory input sequence using spike timing-dependent plastic-
ity (STDP; Abbott and Nelson, 2000; Kepecs et al., 2002). STDP
can produce predictive coding, inhibitory tuning, and temporal
compression of activity sequences within time-windows of tens
of milliseconds in hippocampus (Abbott and Blum, 1996; Mehta
et al., 2000) and sensory systems (Mu and Poo, 2006; Roberts
and Leen, 2010). As an alternative mechanism, some type-II neu-
ronal oscillators have intrinsic dynamics that allow both phase
advance and phase delay (Hansel et al., 1995; Ermentrout, 1996;
Oprisan et al., 2004; Tateno and Robinson, 2007) without using
a biphasic stimulus. Nonetheless, our abstract firing-rate model,
which may be regarded as a linear approximation to more complex
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FIGURE 9 | Spiking neuron demonstration of a bidirectional linear phase

reset. We simulated a leaky integrate-and-fire model neuron (Eq. 9) spiking at
a regular 7-Hz theta rhythm. Spike times are visualized as vertical lines
superimposed on voltage traces. (A) We compare a control condition with
constant input current (black trace) with a stimulus condition in which a
biphasic sensory stimulus (Ie, Eq. 10) was injected centered at time ts (red
trace). (B) For a series of stimulus times within a theta cycle (“Stimulus”), we

measured the resulting phase reset of the model neuron within a later theta
cycle (“Response”). Voltage traces and spikes for four of these phased stimuli
are shown, demonstrating phase advance or delay depending on the relative
phase of the stimulus. (C) The phase resetting curve of the model neuron is
shown [colored circles correspond to voltage traces in (B)]. Consistent with
our cue-based feedback model (Eq. 5), the phase reset is bidirectional, linear,
and discontinuous.

phase resetting, provides a basis for understanding more detailed
implementations of phase-code feedback.

3. DISCUSSION
3.1. TEMPORAL INTERFERENCE MODEL WITH SENSORY FEEDBACK
We examined a temporal interference model of VMOs with sen-
sory feedback as a way to integrate landmark-based navigation
into path integration. We found that a spatiotemporally extended
reset of the path integrators can provoke realistic partial remap-
ping when familiar cues are put into conflict. There are distinct
subregional differences in the hippocampal response to double
cue rotation (Lee et al., 2004a,b), so several mechanisms may
contribute to the observed mixture of coherent and remapping
responses (Shapiro et al., 1997; Tanila et al., 1997; Knierim, 2002).
We found that partitioning cues into independent sets can simulta-
neously produce coherent cue following in both directions, various
ambiguous responses, and the appearance or disappearance of
place fields. Thus, phase-code competition between conflicting
sets of cues may help explain the heterogeneity of hippocam-
pal response to environmental alteration. While previous models
based on attractor networks (Touretzky et al., 2005) or partial
realignment of MEC grid cells (Fuhs and Touretzky, 2006; Hay-
man and Jeffery, 2008) have been used to demonstrate partial
remapping, theta-phase interference is a general temporal coding

mechanism that may support hippocampal (Blair and Zhang,
2009; Blair et al., 2010) as well as entorhinal (O’Keefe and Burgess,
2005; Burgess et al., 2007; Burgess, 2008; Hasselmo, 2008) spatial
representations.

The biological plausibility of our abstract firing-rate model
requires neural implementations for reading out the interference
of external oscillators. Our model place-units receive oscillatory
inputs as sinusoidal signals that are integrated by linear summa-
tion. For a biological place cell, the inputs are pre-synaptic spikes
that produce changes in post-synaptic transmitter concentrations,
and the output is whether the cell spikes (or bursts). Assuming
that input spike trains are at least theta-rhythmic, they can exhibit
varying degrees of phase coherence. Non-coherent or asynchro-
nous inputs may not produce a sufficient number of inputs within
the integration time-window of the place cell to produce a den-
dritic spike or neuronal action potential. Thus, all else being equal,
asynchronous oscillatory inputs can decrease the firing rate of (or
silence) a place cell. Similarly, highly coherent oscillatory inputs
can produce more spikes impinging on the post-synaptic mem-
brane within the integration time-window, potentially resulting
in suprathreshold excitation and spiking activity. This excita-
tory effect of input spike synchrony has been studied generally
with biophysically detailed cortical neuron models (e.g., Wang
et al., 2010) and integrate-and-fire models illustrating grid-cell
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integration of oscillatory inputs (Burgess, 2008). Thus, the map-
ping of VMO interference patterns to the place-unit firing-rate
output in our model can be neurally implemented by the mapping
of input spike synchrony to place-cell spiking activity. Equiva-
lently, if we consider that the theta oscillators may be inhibitory
cells, then the temporal details of integration may change, but the
mechanism for reading out phase interference holds. Inhibitory
theta-cell inputs would require baseline excitation to balance the
inhibition from asynchronous inputs. Then, phase synchroniza-
tion among the inhibitory inputs would produce a large amplitude
post-synaptic oscillation consisting of alternating strong inhibi-
tion and strong disinhibition. The strong disinhibition coupled
with the baseline excitation would produce theta-related spiking
of the post-synaptic place cell. This form of excitatory–inhibitory
balance has been experimentally and theoretically characterized on
the basis of distinct dendritic and somatic oscillations in place cells
(Kamondi et al., 1998; Magee, 2001; Lengyel et al., 2003; Losonczy
et al., 2010).

A primary criticism of temporal interference models has been
the sensitivity of the phase-code to noise (Welinder et al., 2008;
Zilli et al., 2009). Any model of path integration loses accuracy
with both intrinsic noise and noise in self-motion inputs (Welinder
et al., 2008; Remme et al., 2010; Zilli and Hasselmo, 2010), but the
accuracy of phase-code models additionally depends on temporal
precision of neural activity on the order of tens of milliseconds.
Several factors in the model explored here help to mitigate noise
sensitivity of the positional code. Common-input sources of noise
in the theta rhythm do not affect the positional code because it is
based on relative phases between oscillators. Since our simulated
VMOs are extrinsic to the place cells, they could be modeled sep-
arately as ring attractor networks that naturally maintain internal
phase coherence (Blair et al., 2008) and avoid the potential for
phase-locking between electrotonically coupled dendritic oscilla-
tors (Remme et al., 2010). However, intrinsic neuronal variability
of theta cells and other sources of independent phase noise can
rapidly degrade the positional code. We showed that represent-
ing familiar cues as a phase feedback process can counteract this
type of noise. Multiple cues arrayed across an environment can
continually recalibrate a noisy phase code to provide navigational
stability.

We demonstrated that phase feedback, which addresses the
noise sensitivity of the temporal code, can further act as a retrieval
mechanism. Exposure to familiar cues impels randomly aligned
oscillators to a previously learned point in-phase space represented
as a phase target vector. Since all VMOs in our model are syn-
chronized concurrently, the feedback we study is consistent with
the all-or-none switching of spatial representations that occurs
when animals are moved between distinct but familiar environ-
ments (Wills et al., 2005; Fyhn et al., 2007). However, we only
implemented phase feedback phenomologically (as a wrapped
phase-difference-minimizing term in the phase equation; Eq. 5),
which raises the question of how independent synchronization of
an oscillator population to a target vector may be implemented in
a neural circuit. Phase targets may be learned based on landmark-
related sensory information carried by LEC into the hippocampus
(Hargreaves et al., 2005; Knierim et al., 2006; Kerr et al., 2007;
Lisman, 2007; Monaco et al., 2007; Yoganarasimha et al., 2010).

Since LEC activity is only weakly theta modulated (Deshmukh
et al., 2010), it may be necessary for non-theta cue representa-
tions (Figure 4A) to become associated with specific theta-phase
targets for each VMO. We showed that one way to encode the
phase target is by locking the stimulus timing to the phase tar-
get (Figure 9). While we did not model the learning process that
may perform this phase encoding, previous models have demon-
strated encoding and recall in theta-modulated networks (Jensen
et al., 1996; Wallenstein and Hasselmo, 1997; Hasselmo et al.,
2002; Igarashi et al., 2007) using timing-based learning rules such
as STDP (Lengyel et al., 2005; Câteau et al., 2008; Nolan et al.,
2010). Additionally, our demonstration of stimulus timing-based
phase-code retrieval using a spiking oscillator showed that effec-
tive encoding may rely on producing a stimulus representation
with a trailing hyperpolarization. Further, if VMOs are indepen-
dent, then the same phase-code retrieval process can operate in
parallel so that for each VMO in the input population is concur-
rently synchronized to its specific target. It remains for future work
to develop biologically realistic models of phase-code feedback in
the path integration system.

3.2. INTRINSIC VERSUS EXTRINSIC PATH INTEGRATORS
In oscillatory interference models (O’Keefe and Burgess, 2005;
Burgess et al., 2007; Hasselmo, 2008) of grid-cell activity (Hafting
et al., 2005; Sargolini et al., 2006), grid-cells compute path integra-
tion intrinsically and place-fields instantaneously reset the spatial
phases of co-active grid cells by feedback that temporally synchro-
nizes grid-cell oscillations (O’Keefe and Burgess, 2005; Burgess
et al., 2007; Burgess, 2008; Hasselmo, 2008). The present model
extends previous studies positing a parallel system of theta cells
that project independently to grid cells and place cells (Blair and
Zhang, 2009; Blair et al., 2010). The sensory feedback mechanism
that we investigate here explores how phase reset could both cal-
ibrate path integration and enable various forms of remapping
in this type of common-input and feedforward network. Impor-
tantly, the linear phase feedback that we implemented within the
firing-rate model also emerges within an integrate-and-fire spiking
model (Figure 9). This common-input approach to phase reset in
the entorhinal–hippocampal system is consistent with the tempo-
ral simultaneity of hippocampal remapping and grid realignment
(Fyhn et al., 2007). Further, we showed that phase-code calibra-
tion over behavioral time-scales allows for mixed and incremental
spatial responses to environmental change that depend on the
details of experience. Thus, network structure including extrin-
sic oscillators has potentially greater functional versatility than
intrinsic temporal interference among, for example, dendritically
localized oscillators within place cells. This versatility stems from
the possibility of VMO-specific feedback targets and the synap-
tic integration of larger numbers of VMOs. However, because
path integration in our abstract model allows for phase proces-
sion (delay) as well as precession (advance), theta-phase precession
of spikes across place fields may be better explained by mod-
els of intrinsic dendritic dynamics (Kamondi et al., 1998; Magee,
2001) or by the restriction of VMO firing to preferred directions
(Burgess, 2008).

Several lines of evidence suggest that the hippocampus may not
directly inherit phase-coded information from entorhinal cortex.
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Extra-hippocampal theta sources (Buzsáki, 2002) may support
phase precession within place fields during transient hippocam-
pal silencing (Zugaro et al., 2005). Path integration performed
intrinsically by place-cell phase precession would be disrupted by
such a perturbation. Further, a pair of recent studies that dis-
rupted the medial septal theta source (Koenig et al., 2011; Brandon
et al., 2011) demonstrated the loss of grid-cell periodicity, but the
directional selectivity of the head direction (HD) system (Bran-
don et al., 2011) and spatial modulation of hippocampal place
fields Koenig et al. (2011) were largely preserved. The appearance
of place-fields despite septal lesion indicates, in the context of our
model here, that the VMOs may be located outside of the medial
septum and other areas that depend on septal input for theta
rhythmicity. Additionally, since the model only requires a com-
mon carrier wave, the VMOs could be operating at a non-theta
frequency band. These functional dissociations of the temporal
coding of spatial activity are consistent with the hypothesis of
extra-hippocampal populations of theta cells with separable pro-
jections to hippocampus and entorhinal cortex (Blair et al., 2008;
Blair and Zhang, 2009). These theta sources could be anatomically
and/or functionally analogous to the subcortical ring attractor
networks that have been proposed to explain the strong internal
cohesiveness of the HD system (Skaggs et al., 1995; Zhang, 1996;
Sharp et al., 2001; Yoganarasimha et al., 2006; Hargreaves et al.,
2007; Blair et al., 2008).

3.3. EXPERIMENTAL PREDICTIONS
Oscillatory interference models (Burgess et al., 2007; Hasselmo,
2008; Blair and Zhang, 2009) require theta oscillators whose fre-
quency is modulated by speed and the cosine of movement direc-
tion relative to preferred direction. The existence of such oscillators
as potential inputs to the hippocampal formation has not been
fully established. In freely behaving rats, preliminary recordings
in anteroventral thalamus demonstrated cosine-tuning for move-
ment direction (Blair et al., 2010). More recently, inspired by the
finding that theta rhythmicity emerges in anterodorsal thalamus
from bilateral lesions of lateral mammillary nucleus (Blair et al.,
1999), a substantial population of “HD-by-theta” cells was also
discovered in anteroventral thalamus (Tsanov et al., 2011). These
HD-by-theta cells are characterized by conjunctive theta modu-
lation and directional tuning. If these thalamic regions contain
the VMO populations necessary to our model, then Papez’ cir-
cuit (Vertes et al., 2001) is a likely candidate for the anatomical
substrate of the sensory feedback mechanism investigated here.
Indeed, (Tsanov et al., 2011) found strong in-phase theta coherence
between the local field potentials of hippocampal region CA3 and
theta-rhythmic areas of anteroventral thalamus. This thalamo-
hippocampal synchronization is consistent with the shared clock
signal required for temporal phase coding and phase feedback.

Our findings point to several experimental predictions. The
stability of path integration predicts that simultaneously recorded
theta cells with the same preferred direction are strongly phase
coherent. To account for the orienting of spatial activity based
on global cues, the preferred directions of these cells should be
anchored to distal landmarks; this cue control would be similar
to that observed for HD cells in anterior thalamus (Goodridge
et al., 1998; Yoganarasimha et al., 2006; Hargreaves et al., 2007).

The spatiotemporally extended sensory reset predicts that a salient
cue in a familiar environment elicits a bidirectional phase modula-
tion (Figure 5A, second panel) that occurs simultaneously across
theta cells. This signature could be assessed by removing a salient
cue from a familiar environment and quantifying the difference
in-phase modulation of theta cells. We would further predict
increased phase coherence of spiking activity in simultaneously
recorded theta cells and place cells while the animal is attending
to external landmarks (perhaps during stopping or rearing behav-
iors). In addition, the prevalence of these signatures would be
enhanced in familiar cue-rich environments relative to cue-sparse
environments.

3.4. CONCLUSION
Many network mechanisms, including attractor network dynamics
and temporal phase interference (Giocomo and Hasselmo, 2008;
Burak and Fiete, 2009), may ultimately contribute to the diverse
array of responses observed in hippocampus and entorhinal cor-
tex in unfamiliar contexts. We have shown that one particular
mechanism, an oscillatory interference model with phase-coded
sensory feedback, is able to provide important hippocampal func-
tions such as retrieval, navigational stability, complete remapping,
and realistic partial remapping. Future modeling and experimen-
tal studies are necessary to refine these predictions and provide
support for the various roles of temporal coding in navigation
and spatial representation.

4. MATERIALS AND METHODS
4.1. SOFTWARE
Modeling and analysis code was developed as a custom Python
software package, which is available for download from the Mod-
elDB repository at http://senselab.med.yale.edu/ModelDB/Show
Model.asp?model = 137676.

4.2. MODEL SIMULATION
All simulations presented here used first-order forward Euler inte-
gration of the relevant phase modulation equation (Eqs. 1, 5, or
8) at timesteps of 2 ms (Figure 5) or 10 ms. Whole-session simu-
lations of the circular track were computed for the full duration
of the behavioral trajectory (see below). VMOs are defined at the
simulation start by sampling uniformly random preferred orienta-
tions (φi) on the range [0, 2π) and spatial scales (λi) on the range
[16, 32] cm. Unless otherwise specified, VMOs are randomly ini-
tialized to phase offsets on the range [−π,π). At every timestep, the
current spatial position and instantaneous velocity are computed
from the trajectory data samples by linear interpolation. Based
on the current position, the angular track position is determined
along with, for cue simulations, the closest cue within each cue set
according to track-angle differences. The phase targets associated
with the closest cues become active in the feedback equations.
(Simulations with a single cue have fixed phase targets.) Then,
the current phase offsets of the VMOs are computed relative to
a reference theta wave. During the first lap of a training session,
these offsets are stored as the phase targets of each cue as its cen-
ter position is first crossed by the trajectory. The feedback gain is
computed for each active cue using Eq. 4. The VMO phases are
then updated and the next timestep is simulated.
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4.3. HIPPOCAMPAL DATA
For qualitative comparison with simulated responses, we present
data from earlier studies of the cue double-rotation experimen-
tal paradigm (Figure 8B) consisting of five rats and 173 putative
place-cells recorded from hippocampal regions CA3 and CA1 (J.
Neunuebel, unpublished; Lee et al., 2004b). Within a recording
session, we required single units to have >50 spikes and a spatial
information score of >0.5 bits/spike (Skaggs et al., 1996) to be
included in the analysis.

4.4. BEHAVIORAL TRAJECTORY
Unless specified otherwise, simulations follow the spatiotemporal
trajectory of an animal subject from a double-rotation exper-
iment conducted on a circular track (Lee et al., 2004b). The
track has inner and outer diameters of 56 and 76 cm, respec-
tively. The position data were recorded during a cue-conflict
condition on the first day of testing. The trajectory has a dura-
tion of 324 s and completes 14 clockwise laps with a forward
running speed of 13.3 ± 7.4 cm/s (mean ± SD). To construct the
velocity input for the phase equation (Eq. 1), we computed the
velocity component time-series (Figure 2B) by first smoothing
the 30 Hz head-position video tracking data with a four-sample
boxcar filter. The smoothed tracking data was then differenti-
ated and resampled by linear interpolation for each simulation
timestep.

4.5. PLACE-FIELD ANALYSIS
We considered a simulated place unit to be active for purposes
of computing place-field characteristics if its peak firing rate was
>5% of the maximum rate of the population. We constructed
linearized firing-rate maps by averaging responses across laps
for each 1˚ bin in an angular partition of the track. For hip-
pocampal spiking data (Figure 8B, bottom), we divided the total
number of spikes across laps in each bin by the total occupancy
time in the bin. We smoothed the resultant rate maps by circu-
lar convolution with a Gaussian kernel with a width (SD) of 4.3˚
(cf Lee et al., 2004b). Population response matrices were con-
structed by representing place-units across rows and track bins
across columns. Lap response matrices were similarly constructed,
except that response averages were restricted by lap and then repre-
sented along a third dimension. For simulated activity, a firing-rate
variant of the spatial information score (Skaggs et al., 1996) was
computed as

I =
360∑
i=1

pi
ri

r
log2

( ri

r

)
, (11)

where pi is the occupancy probability and ri is the average rate,
respectively, of the ith angular bin, and r is the average rate across
the simulation. To assess field size, putative place fields were deter-
mined as contiguous segments of the linearized rate maps that
respond at >20% of peak firing rate (Muller and Kubie, 1989). A
place unit is considered active if it has at least one place field; net-
work sparsity is determined as the fraction of inactive place units
in a given simulation.

4.6. CORRELATION ANALYSIS
To assess the effect of continuous phase noise on population
responses (Figure 6),we compute the element-by-element Pearson
correlation between population rate matrices for simulations
of the same VMO-place network. Test condition simulation
responses are compared to the whole-session average responses
from a path-integration simulation with no noise or cue. Correla-
tions for individual laps were computed using separate population
rate matrices for the activity of each complete lap of the track. Cue-
triggered population correlations were computed by averaging the
Pearson correlation of the population rate vectors across laps for
each angular bin around the track and then centering the averages
on the cue position.

4.7. DOUBLE CUE ROTATION
Cues in each set are mechanistically equivalent (Eq. 8) and are
evenly distributed around the track. With the same number of cues
in each set, cues from one set are interleaved with those of the other.
In a mismatch simulation, one set coherently rotates CCW and the
other CW. For the standard (STD, or“familiar”) cue configuration,
CCW rotating cues are initially placed with no offset such that the
first cue will be located at 0˚; the first CW rotating cue is offset by
half of the spacing between distal cues (Figure 7, top). The STD
configuration is learned and simulated with cue feedback. Then,
cue centers are rotated (one set CCW, the other CW) to pro-
duce mismatch (MIS) simulations for a series of mismatch angles:
45 (MIS-45), 90 (MIS-90), 135 (MIS-135), and 180 (MIS-180)
degrees.

4.8. REMAPPING ANALYSIS
To assess remapping due to cue conflict (for both model and hip-
pocampal data), we examine spatial correlations for each place
unit in a double cue-rotation simulation. We compute the lin-
earized rate maps for the STD and MIS conditions. We rotate
the MIS response around the track in 1˚ increments comput-
ing the Pearson correlations with the STD response. We deter-
mine the rotation angle of the response to be the MIS rota-
tion that provides the peak spatial correlation. To categorize
remapping responses, we set thresholds on rotation angle and
peak correlation. If rotation is within ±50% of the cue-rotation
angle of either set of cues and correlation is >0.4, then it
is a cue-following response (either “CCW” or “CW”). Other-
wise, it is “ambiguous.” Place units that are silent in STD but
active in MIS are “on” responses, while the reverse are “off”
responses.

4.9. SPIKING NEURON ANALYSIS
To quantify phase resetting in a spiking neuron model of a theta
oscillator (Figure 9), we simulated 1000-ms responses with a con-
stant current producing a single spike for each theta cycle. For
our purposes, we are interested in the total effect of a stimulus on
spike timing, which we measured relative to the spike timing for
a baseline condition with no stimulus. We define 0/2π phase as
the baseline spike times and consider theta cycles that range from
one half-cycle before (−π) the spike to one half-cycle (+π) after
the spike. We simulated repeated stimulus conditions in which a
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stimulus (Eq. 10) was injected at one of 25 different phases across a
particular theta cycle. The oscillator phase was altered depending
on the stimulus timing. We measured this phase response dur-
ing a subsequent post-stimulus theta cycle, effectively summing
the first and second order resetting (cf Oprisan et al., 2004). Each
stimulus trial elicited a single spike within the theta cycle from
which we derived the phase response. The phase reset values con-
stituting the PRC (Figure 9C) were calculated by subtracting the
baseline spike time t theta from the stimulus-condition spike time
t i
stim,

phase reseti = 2πf (t i
stim − ttheta), (12)

where i indexes the stimulus-condition trials, and f = 7 Hz is the
spiking frequency. Thus, positive phase reset values indicate that
the total effect of a stimulus was to delay spike timing; negative val-
ues indicate advance. To visualize the PRC, we wrapped the curve
around its discontinuity to demonstrate its high degree of linearity.
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