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1. INTRODUCTION worked out (Knight, 1972b; Sakai, 1992; Wright et al., 1996). Even

Brain functions rely on complex dynamics both at the microscopic
level of neurons and synapses and at the “mesoscopic” resolution of
local cell assemblies, eventually expressed as the concerted activity
of macroscopic cortical and sub-cortical areas (Nunez, 2000; Deco
etal., 2008). Understanding computational capabilities of this ner-
vous system means to “identify” its emergent multiscale dynamics,
possibly starting from the properties of its building blocks and
following a bottom-up approach. Knowledge about the mecha-
nisms underlying such dynamics, could in turn suggest innovative
approaches to probe the intact brain at work.

A natural choice of microscopic computational unit is the sin-
gle nervous cell described as a “black box,” whose output is the
discharge rate of spikes or the neuron membrane potential in
response to an incoming ionic current induced by the synaptic
bombardment. Complexity reduction in single-neuron modeling
is the result of a trade-off between the tractability of the descrip-
tion and the capability of mimicking almost all the behaviors
exhibited by isolated nervous cells (in particular the rich firing
patterns; Herz et al., 2006). Administering a suited input, such as
stepwise or noisy currents, the linear response properties can be

though neurons described as linear systems might seem a rather
rude approximation, a reliable non-linear response to an arbitrary
incoming current can be obtained by simply rectifying the input
and/or the output of the linear black box with a threshold-linear
function in cascade (Sakai, 1992; Poliakov et al., 1997; Kondgen
et al., 2008). Direct identification of the non-linear relationship
between afferent currents and the membrane voltage has been also
proposed, further improving the prediction ability of the detailed
timing of emitted spikes by in vitro maintained neurons (Badel
etal., 2008).

Nevertheless, inferring detailed single-neuron dynamics from
the experiments is not the only obstacle in the challenge of
a bottom-up approach aiming at understanding the emergent
dynamics of neuronal networks. The connectivity structure and
the heterogeneities of both composing nodes and coupling typolo-
gies are among the key elements which ultimately determine the
ongoing multiscale activity observed through different neuro-
physiology approaches (Sporns et al., 2004; Deco et al., 2008).
The experimentally detailed probing of these network features is
still in its infancy (Markram, 2006; Field et al., 2010) and strong
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limitations come from the unavoidable measure uncertainties.
A possible way out is to consider as the basic scale for identi-
fication the mesoscopic one, in which computational building
blocks are relatively small populations of neurons anatomically
and/or functionally homogeneous. To this aim, the Volterra—
Wiener theory of non-linear system identification has been often
applied (Marmarelis and Naka, 1972; Marmarelis, 1993), also to
model multiscale neuronal systems (Song et al., 2009). Alterna-
tive dimensional reductions have been phenomenologically intro-
duced (Curto et al., 2009), or derived from the continuity equation
for the probability density of the membrane potentials of the neu-
rons in the modeled population (Knight, 1972a,b; Deco et al,
2009).

These population models effectively describe the relationship
between input and output firing rates, even under regimes of spon-
taneous activity in the absence of external stimuli. Nevertheless,
they fail to provide an interpretation in which cellular and network
mechanisms are responsible for the activity regimes observed and
modeled. Here we propose a “middle-out” approach (Noble, 2002)
to overcome this drawback: in this approach, besides a bottom-up
paradigm to deal with macroscopic scales, links are made avail-
able toward the microscopic domain at the cellular level, whose
details will be inferred in a top-down manner from the mesoscopic
description of pooled neurons.

We pursue such objective by adopting a model-driven iden-
tification, which we test on a sparsely connected population of
excitatory integrate-and-fire (IF) neurons. Model neurons incor-
porate a fatigue mechanism underlying the spike frequency adap-
tation (SFA) to lower discharge rates that follow a transient and
sustained depolarization of the cell membrane potential (Koch,
1999; Herz et al., 2006). Networks of such “two-dimensional” IF
neurons have a rich repertoire of dynamical regimes, including
asynchronous stationary states and limit cycles of almost periodi-
cal population bursts of activity (Latham et al., 2000; van Vreeswijk
and Hansel, 2001; Fuhrmann et al., 2002). Our model-driven
identification relies on a dimensional reduction of the network
dynamics derived in Gigante et al. (2007), which uses both a mean-
field approximation (Amit and Tsodyks, 1991; Amit and Brunel,
1997) to describe the synaptic currents as a linear combination
of the population discharge rates, and a continuity equation for
the dynamics of the population density of the membrane poten-
tials (Knight, 1972a, 2000; Brunel and Hakim, 1999; Nykamp and
Tranchina, 2000; Mattia and Del Giudice, 2002). We deliver to the
network supra-threshold stimuli capable to elicit non-linear reac-
tions of the firing activity. From the transient responses we work
out the vector field of the reduced dynamics, and, based on the
adopted modeling description, we extract a current-to-rate gain
function for the neuronal population along with other properties.
We finally exploit the relationship between such network functions
and single-neuron features to extract microscopic parameters like
the average synaptic conductance between coupled cells.

2. MATERIALS AND METHODS

2.1. LOW-DIMENSIONAL POPULATION DYNAMICS

Even when considering as basic component of a network the leaky
IF (LIF) neuron (one of the simplest models of spiking neurons),
the dynamic trajectories of such assemblies might be drawn only

on a blackboard (the phase space) with a large enough number of
dimensions, at least as large as the number of neurons. Besides, the
network connectivity is intrinsically heterogeneous such that the
matrix of synaptic couplings is often modeled by a random and
sparse selection of neuronal contacts with distributed efficacies.
The theoretical description of these high-dimensional complex
systems is a formidable challenge. A strategy to tackle this problem
is to adopt a mean-field approximation (Amit and Tsodyks, 1991;
Amit and Brunel, 1997; Brunel and Wang, 2001; Deco et al., 2008),
which allows to lump together the plethora of available degrees
of freedom by assuming the same statistics for the input currents
to different neurons of the same pool. What might be thought of
as a rather rough hypothesis has been proved to be a direct con-
sequence of the central limit theorem (Amit and Tsodyks, 1991),
which well applies to the large number of connections on the den-
dritic trees of cortical neurons (Braitenberg and Schiiz, 1998). As
a result, the membrane potential dynamics of a generic neuron
in a statistically homogeneous population is driven by a fluctu-
ating synaptic current modeled as a Gaussian stochastic process
whose instantaneous mean E[Isyn(#)] and variance Var([Igyn(t)]
are, respectively:

P pre

u(@) =E [Isyn(t)] = } Co Ja v (1)
a=1
1

Py pre

o2 (t) = Var [Iyn()] = Y CoJ3 va(t)
a=1

where Ppe is the number of pre-synaptic homogenous popula-
tions projecting onto the investigated neuronal pool, C, is the
average number of synaptic contacts per neuron from population
o, J o is the mean post-synaptic current delivered to the membrane
potential after the arrival of a pre-synaptic spike from population
a (the average synaptic efficacy), and JoAJy is the SD of these
randomly distributed synaptic efficacies. The instantaneous pop-
ulation discharge rate v, (t) (i.e., the population emission rate)
is the number of spikes N (t,dt) emitted in an infinitesimal time
interval dt by the whole pool of N, neurons, per unit time and
cell: vy (1) =limy; _, (N (t,dt)/(Ngat)-

The dynamics of populations composed of “identical” neurons,
driven by fluctuating currents with moments 1 and o2, can be
described by tracking the density p(v,t) of cells with membrane
potentials around v at time #. The density p(v,t) obeys a continuity
equation where the population discharge rate v is the probability
flow crossing a spike emission threshold, which in turn re-enters
as an additional probability at the membrane voltage following
an action potential. Such “population density” approach has been
fruitfully used to work out the detailed dynamics of the population
emission rate under mean-field approximation (Knight, 1972a,
2000; Abbott and van Vreeswijk, 1993; Treves, 1993; Brunel and
Hakim, 1999; Nykamp and Tranchina, 2000; Mattia and Del Giu-
dice, 2002), finally reducing the phase space to few dimensions:
the vy ’s.

Furthermore, the population density approach allows to take
into account also multi-compartment neuron models character-
ized not only by the somatic membrane potential, but also by other
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ionic mechanisms widely observed in neurobiology (Knight, 2000;
Casti et al., 2002; Brunel et al., 2003; Gigante et al., 2007). Dimen-
sional reductions of the network phase space have been obtained
also for these model extensions, by assuming separate timescales
for different degrees of freedom or narrow marginal distributions
for the ionic-related variables. Among these, the reduction derived
in Gigante et al. (2007) provides a mean-field dynamics for v(t)
coupled to the dynamical equation for the average concentration
c(t) of ions impinging on the membrane potential, like K*. For a
single population (we therefore omit the index o) of a quite gen-
eral class of IF neurons incorporating SFA, the reduced dynamics
is described by the following set of ordinary differential equations:

dv _ oEDyy—y

E o Ty (c,v) = G(C’ U) 2
“ )
= et

where, in addition to the population emission rate v, there is a
second state variable ¢ representing the average ionic concentra-
tion affecting K™ conductances and determining the mechanism
responsible for the SFA phenomenon. In the absence of firing
activity, ¢ relaxes to its equilibrium concentration with a decay
time 7, ranging from hundreds of milliseconds to seconds (Bhat-
tacharjee and Kaczmarek, 2005). G is the vector field component
for the emission rate, a combination of two functions: ®¢f) is the
“effective gain function,” which returns the output discharge rate
of a single-neuron receiving a fluctuating current with moments x4
and o2 for a fixed concentration c. It extends the usually adopted
single-neuron response function including the effects of an addi-
tional inhibitory current implementing the SFA. The gain function
) is not only rigidly shifted in proportion to ¢ rather it is
“effectively” modulated in an activity-dependent manner which
takes into account the distribution of membrane potentials in the
neuronal pool (Gigante et al., 2007). The second function, t,,
provides the “relaxation timescales” of the network.

Both &) and 7, depend on the infinitesimal moments of the
input current:

(e, V) = Crec Jrec V =+ Jext Vext — & €

3)
02 (V) = Crec Jac(1+ AJEO v + T2 (1 + ATAD) Vext »

where Cpec is the average number of recurrent synaptic contacts,
Jrec 1s the average recurrent synaptic efficacy, Jex: is the average effi-
cacy of synapses with external neurons, Jrec AJrec and Jext AJext
are the SD of the randomly sampled recurrent and external synap-
tic efficacies, respectively, vey is the average frequency of external
spikes, and g is the strength of the self-inhibition responsible for
the SFA. Equation 3 is a particular instance of Eq. 1, where only
two populations of neurons have been considered, the local one
providing the recurrent spikes and the external one delivering the
barrage of synaptic events originated by remote populations of
neurons.

Equation 2 has been proved to reliably predict different non-
linear activity regimes and trajectories in the phase space for a
network of simplified IF neurons, the VIF model introduced in
Fusiand Mattia, 1999; see Section 2.2), although the developed the-
ory applies to a wide class of spiking neuron models. Furthermore,

Eq. 2 is an ideal representation of the network dynamics for our
middle-out approach providing a low-dimensional mesoscopic
description of a population of neurons which in turn depends on
microscopic elements like the average recurrent synaptic efficacy

Jrec and the single-neuron gain function @leff)

2.2. IN SILICO EXPERIMENTS

We evaluated the effectiveness of the identification approach by
applying it to in silico experiments: model networks composed of
N =20,000 excitatory IF spiking neurons. Two types of neuron
models have been considered with the following dynamics of the
membrane potential V' (t):

av

== W)+ lyn(0) + L (), (4)

where Igyn(t) is the synaptic incoming current and Ianp(f) is
the activity-dependent afterhyperpolarizing K current acting as
adaptation mechanism for single cell spiking activity. Neuron
models differ for the relaxation dynamics: (i) AV) =V (¢)/t for
the standard LIF neuron with exponential decay and time con-
stant T =20 ms; (ii) AV) = B for the simplified IF neuron often
adopted in VLSI implementations (VIF neuron; see Fusi and Mat-
tia, 1999) with a constant decay set here to g =50.96/s, where 0
is the emission threshold used in this case as unit. In the absence
of incoming spikes, V() reaches the resting potential we set to 0.
For VIF neurons the resting potential is also the minimum value
of V, a reflecting barrier constraining V'(¢) to non-negative values
even in the presence of the negative drift — 8. Point-like spikes are
emitted when V (t) crosses the threshold value 6 (set to 20 mV and
1 for LIF and VIF, respectively). After spike emission, V(t) instan-
taneously drops to a reset potential H (15mV and 0 for LIF and
VIE respectively), for an absolute refractory period of 79 =2 ms.

The synaptic current Iy, (t) is a linear superposition of post-
synaptic potentials induced by instantaneous synaptic transmis-
sion of pre-synaptic spikes:

Ln() =Y Ji > 8t —tx—8) + Y Jextk 8(t — te).
j k k

The k-th spike, emitted at = #; by the local pre-synaptic neu-
ron j, affects the post-synaptic membrane potential with a synaptic
efficacy J; after a transmission delay §;. Synaptic efficacies are ran-
domly chosen from a Gaussian distribution with mean J. and
SD AJtec =0.25 Jrec. If not otherwise specified, Jrec = 0.101 mV
for LIF and Jy.. = 0.006976 for VIF.

The afterhyperpolarizing current Iayp(t) = —g.C(#) models
somatic K* influx modulated by the intracellular concentration
C(t) of Nat and/or Ca?* ions and proportional to the firing
activity of the neuron:

dcC C
—=_= s(r—1),
I Tc+2k: (t—t)

where 7. =250 ms is the decay time and g, =21 mV/s for LIF and
gc=1.10/s for VIE. §(t—ty) are the spikes emitted by the neuron
receiving the potassium current. We remark that the single-neuron
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ionic concentration C(t) should not be confused with the adapta-
tion variable at the mesoscopic level ¢(t), introduced in Eq. 2,
which in turn characterizes the effective state of the neuronal
population. In the Section 3 we will always refer to the latter.

The network connectivity is sparse so that two neurons are
synaptically connected with a probability yielding an average
number of synaptic contacts Crec =100 and Cyec =200 for LIF
and VIF networks, respectively. Transmission delays §; are ran-
domly chosen from an exponential distribution aiming to mimic
the timescales of post-synaptic potential due to the conductance
changes of glutamatergic receptors, by setting the average delay to
3 ms.

Spike trains {#;} incoming from outside the network are
modeled by a Poisson process with average spike frequency
Vext = 8.67 kHz and vy = 1.15 kHz for LIF and VIF, respectively.
Synapses with external neurons have efficacies J ¢y x randomly cho-
sen from a Gaussian distribution with the same mean and SD as
the recurrent synaptic efficacies. Additional external stimulations
intended to model an exogenous and temporary increase of the
excitability of the tissue, for instance due to an electric pulse stim-
ulation, are implemented by increasing the frequency vey by a
fraction Avey, as detailed later.

The above parameter values set the networks to have dynamics
with global oscillations (GO) that alternate periods of population
bursts at high-firing rate and intervals of silent, almost quies-
cent population activity: an example is shown in Figure 1A. In
particular, the networks of excitatory VIF neurons have the same

parameters as those used in Gigante et al. (2007). An event-based
approach described in Mattia and Del Giudice (2000) has been
used to numerically integrate the network dynamics.

During the simulation we estimate the population firing rate
v(t) by sampling every At = 10 ms the spikes emitted by the whole
network and dividing this value by NA«.

2.3. STIMULATION PROTOCOL

The stimulation consists of varying the frequency vy of the exter-
nally applied current: by varying its magnitude, the duration of
the perturbation and the interval between subsequent stimuli, it is
possible to reach almost all significant regions of the phase plane
(¢v). An example of a simple stimulation protocol is shown in
Figure 1A: here, two stimuli have been applied each one consist-
ing of two brief stimulations depicted as vertical dashed lines.
During the stimulation, the frequency vey of the external cur-
rent is increased by Avey and the state of the system at the end
of the stimulation is taken as a new initial condition. The stim-
ulation protocol we applied comes in two “flavors”: the first one
(depicted for example in Figure 1A) consists of applying single
stimuli separated by a fixed time interval T, with intensities ran-
domly extracted from a Gaussian distribution with given mean
and SD. The second one consists of applying a couple of “pulses”
separated by a relatively short time period dt; subsequent stimuli
doublets are again separated by a time T. In this case, while the
first pulse is always excitatory (i.e., the mean of Avey is positive),
the second one may be either excitatory or inhibitory. In Table Al

>

80

v(t) (Hz)
3

7, =100 ms

v (Hz)

c(a.u.)

FIGURE 1 | Vector field probing by external stimulation. (A) Population
firing rate v(t) from the simulation of a VIF neuron network (top, black trace)
following sudden changes of Av,, (vertical dashed lines, see text for details).
Bottom gray curve: adaptation variable c(t) numerically integrated from Eq. 2
using the above v(t) and assuming a value of T, =250ms. (B) Integrated

c(a.u.)

7, =250 ms

T, =400 ms

c(a.u.)

network trajectories in the phase plane (c,v) for three different values of ..
The 20 colored trajectories are given by 20 different initial conditions
determined by the duration and intensity of the external stimulations. Dashed
black lines are the ¢ = 0 nullclines. All trajectories approach the equilibrium
point at v=5Hz.
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in Appendix we summarize the values of the parameters used for
the different in silico experiments.

2.4. ADAPTATION DYNAMICS RECONSTRUCTION

Given a fixed value of 7, the time course of ¢ at population level
can be obtained by numerically integrating Eq. 2. We used for-
ward Euler’s method for all our simulations, resulting in an update
formula that reads

c(t+dt) = (1 - ?) c(t) + v(t) dt (5)

c

where dt = 10 ms is the integration step corresponding to the sam-
pling period of population discharge rate in the simulations. An
example is shown in the lower part of Figure 1A.

25. GENERATION OF THE FITTING DATA

For a given 7, starting from a set of trajectories composed of the
measured discharge rate v and the reconstructed adaptation vari-
able ¢, we want to estimate the vector field of Eq. 2. By applying
the finite difference method to the trajectories, we obtain val-
ues of G on an irregularly distributed set of points in the plane
(¢v). The reason for using a variable stimulation protocol — not
only in terms of magnitude or duration of the perturbation, but
also in terms of the interval between subsequent stimuli — lies
in the fact that our final goal is to obtain trajectories that are
as spread as possible over the phase plane: indeed, by uniformly
covering the phase plane with trajectories, we can obtain an accu-
rate estimation of the vector field of Eq. 2 (De Feo and Storace,
2007).

2.6. USAGE OF SPLINES FOR INTERPOLATION

In this work, we have used the MaTLAB Spline Toolbox (The Math-
Works Inc., Natick, MA, USA) to represent the functions that we
want to estimate — namely, G, ) and 7, — on the whole phase
plane. In particular, we have used “thin-plate smoothing” splines
(Wahba, 1990) since they are capable of fitting and smoothing
irregularly spaced grid of data. The resulting approximated sur-
faces are shaped by a smoothing factor, i.e., a value in the range [0,
1]: 0 corresponds to the least-squares approximation of the data by
a flat surface, whereas 1 corresponds to a spline which interpolates
the data. This parameter is critical especially in the estimation of
G(gv), since too high values would lead to a very noisy vector field
that in turn leads to numerical instability during the integration of
Eq. 2. On the other hand, very low values of the smoothing factor
correspond to extremely smooth G(¢,v) functions that are unable
to replicate the oscillating behavior characteristic of the network,
since the only attracting state is the equilibrium located at low fre-
quencies. We have set the smoothing factor to 0.01 and 0.025 for
networks composed of LIF and VIF neurons, respectively. We also
remark that other values in the neighborhood of the ones we chose
provide qualitatively analogous results, in terms of the behaviors
that Eq. 2 can reproduce.

2.1. HTOF THE NULLCLINE IN THE DRIFT- AND NOISE-DOMINATED
REGIONS

To evaluate coefficients in Eq. 10 (see Section 3.3.1), which shape

the nullcline ¥ = 0 at drift-dominated regime, we used the

Optimization Toolbox included in MATLAB in order to fit the
experimentally estimated curves by minimizing the following
error measure:

np
b= Je ()~ of
i=1

, (6)

where (Cf , Uf ) are the raw points that describe the nullcline and the

sum runs over a certain number np of points. The optimization
was repeated for 100 trials with different random initial guesses
for the coefficients, in order to avoid local minima in which the
optimization algorithm might be trapped: the best set of coeffi-
cients was then computed as the mean value of the coefficients
resulting from the 10 optimization runs that gave lower error val-
ues. We have verified that, in the specific case under consideration,
the lowest error values are associated to sets of coefficients that
are very close to each other. As a consequence, our optimization
procedure gives consistently the same results, indicating that the
computed coefficients indeed correspond to a global minimum of
the cost function.

On the v =0 axis, the field component G decays exponentially,
i.e., the curve G(c0) can be well described by an expression of
the form Gy exp(—c/y). To obtain the values of the coefficients
Gy and y we have first uniformly sampled the function G(c,0)
using the spline representation of G — obtained with the proce-
dure described in the previous section — and then fitted the values
log(G(c,0)) with a first degree polynomial of the form a + bc. Con-
sequently, the coefficients Gy and y are given by exp(a) and —1/b,
respectively. The results of this simple fitting procedure are shown
in Figure 4C.

2.8. CONSTRUCTION OF THE BIFURCATION DIAGRAM

To characterize the dynamical phases accessible to the used neu-
ronal networks, we computed the bifurcation diagram reported
in Figure 7 as follows. We first sampled the parameter plane
(Jrec>gc) on an irregular grid composed of 669 points: we chose this
approach, instead of using a regularly spaced grid as commonly
used practice in the bifurcation analysis of dynamical systems, both
for the relative simplicity of this particular diagram and because
of the prohibitive times that would be required to perform a more
exhaustive analysis. Moreover, an irregular sampling of the para-
meter plane allowed us to increase the density of points across
the bifurcation curves, such as those that mark the borders of the
low-rate asynchronous state (LAS) & GO region. For each pair of
parameters (Jyec,g:) we simulated a network of LIF neurons for
50s, as detailed previously. For the classification of the steady-
state behavior, we discarded the first 10s of simulation, during
which vex was exponentially increased to its steady-state value.
The time course of v is classified as asynchronous when no pop-
ulation bursts are present: in this case, it is possible to distinguish
between low-rate and high-rate asynchronous attractor states by
simply computing the mean of the instantaneous firing rate. If
population bursts are present, the trace is classified as oscillating:
in this case, we must distinguish whether the parameter pair is in
the region where the limit cycle is the only stable attractor or in
the region of coexistence between a stable limit cycle and a stable
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low-frequency equilibrium point. To do so, we compute the SD
of the inter-burst intervals (IBIs): if such quantity is less than 0.2
times the mean of the IBIs, then we classify the parameter pair as
in the region with only the stable limit cycle.

3. RESULTS
The whole identification procedure is depicted in Figure 2: in the
following, we shall discuss in greater detail each block present in
the flow chart.

3.1. VECTOR FIELD RECONSTRUCTION THROUGH STIMULATION
We pursue the identification of network parameters following an
opposite approach to the linear response to small perturbations.

{Avext}

i 1:c(guess)

Supra-threshold V(i)»[ Reconstruction of the

oint-like stimulation : ;
%f the neuronal pool adaptation variable

< c(t)
)
Is c-v
anticorrelation >——
optimal?
yes
IC
Vector field estimate
as time derivative of v
Gain function fit by
TPS spline from: {G(c.v)}
* Nulicline G(c,v) =0
* Approxim. at strong | G(c,v) Vector field fit by
“drift-" and “noise-" thin-plate smoothing
dominated regimes (TPS) spline
of(c,v)
A
Network relaxation
timescale fit by
TPS spline
7,(C,V)
A 4 A 4

FIGURE 2 | Flow chart of the identification algorithm. The procedure
starts (top left corner) with the stimulation of the neuronal network through
the protocol ({Av.}) described in the Section 2. From the resulting
instantaneous firing rate v(t), the time course of the adaptation dynamics
c(t) is carried out for different guess values of 7. The estimated 7, is
satisfying an optimality criterium based on the anti-correlation between ¢
and v. The trajectories (c(t),v(t)) are then employed in the generation of the
fitting data for the vector field component of interest ({G(c,v)} on the phase
plane). These sparsely distributed values are subsequently interpolated
using a thin-plate smoothing spline. The resulting function G(c,v) defined
over the whole phase plane, together with various reference values and a
fitting model for ®©", allow to reconstruct both the effective gain function
def(c,v) and the network relaxation timescale t,(c,v).

Here, we exploit the non-linearity of the network dynamics in
order to have a phase space widely and spontaneously covered by
trajectories, without driving it by means of an exogenous and con-
tinuous stimulation. As shown in Figure 1A, we deliver at random
times (see Section 2 for details) brief “aspecific” stimulations to
the network (vertical dashed lines). Depending on the state of the
system, stimuli may or may not elicit a population burst, or more
generally a large deviation from its equilibrium condition. This
allows to overcome an obvious experimental constraint: since we
are dealing with networks of neurons, we can not set their initial
conditions at will. Here the state of the neuronal pool at the end
of the stimulation is taken as starting point of a new relaxation
dynamics for the system.

Besides, we assume that the population dynamics is effectively
described by trajectories in the two-dimensional phase space ().
Such dynamics is expected to follow the autonomous system in
Eq. 2 for a wide class of spiking neuron networks, as detailed in
the Section 2. We consider as the only experimentally accessible
information the instantaneous firing rate v(t). The adaptation
dynamics ¢(¢) can be reconstructed from it, by using the second
equation in system 2 (see Figure 1A, bottom plot and see Section
2 for details) for a chosen adaptation time constant 7.

Figure 1B clearly shows how relaxation trajectories following a
stimulation critically depend on the chosen 7 .. Furthermore, it is
also apparent how the non-linear dynamics of the network react to
similar external stimulations in a state-dependent manner, bring-
ing the system each time to a different initial condition (colored
circles at the beginning of each trajectory in Figure 1B). From
this point of view the complexity of the system helps the “explo-
ration” of its phase space without resorting to complex stimulation
strategies.

Starting from these effective trajectories, a two-dimensional
vector field (¢, V) can be estimated. This is the first step toward the
identification of the recovery time 7, the gain function o ()
and the neuronal relaxation timescale t,(cV), that characterize
the network dynamics at different levels of description.

3.2. SEARCHING FOR THE OPTIMAL VECTOR FIELD
By further inspecting the trajectories reconstructed for different
values of 7., we can observe that curve intersections mainly occur
for small or long adaptation timescales. This is apparent looking
at cyan-green and dark-red trajectories in the left and right panels
of Figure 1B. Since system 2 describes a smooth vector field com-
posed of ordinary differential equations, multiple solutions are not
allowed, and this means that only one trajectory is expected to go
through one point in the phase plane. Intersections are then not
allowed and if they appear, it might be due to an incorrect value
of 7. or to an inadequate modeling of the system, for instance
because more than two state variables are needed. Although the
latter motivation seems the most likely due to the huge number of
degrees of freedom (i.e., the number N = 20,000 of VIF neurons
in the network here used), intersections practically disappear by
setting 7, =250 ms (central panel of Figure 1B). Unsurprisingly,
this is the exact value of 7. set in the example simulations.
Starting from this qualitative intuition, we looked for an opti-
mality measure of the adaptation timescale by inspecting the
cross-correlation between the available population firing v(#) and
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the reconstructed c¢(t). After a population burst, either sponta-
neous or induced by stimulation, adaptation is expected to reach
a maximum level making almost quiescent the following firing
activity of the network. This is the beginning of a recovery phase
in which discharge rate increases as c(f) relaxes to its resting
level ¢ =0. During this period c(t) and v(t) are expected to be
anti-correlated. We tested such relationship by computing the cor-
relation degree between the measured population discharge rate
and the reconstructed adaptation level for a wide range of values of
7.. For each 7, we averaged c(¢) and v(¢) in the 100 ms windows
at fixed time lag At from the stimulation times. In Figure 3A, such
correlation degrees are plotted for a set of At and each of them
displays a maximum anti-correlation occurring at different 7,
as highlighted by the black circles. Interestingly, the largest anti-
correlation is obtained for an optimal Af = 0.391 s, pointed out by
the vertical dashed line in Figure 3B and roughly corresponding to
the average duration of the elicited population bursts. The correla-
tion degree for this optimal time lag has an absolute minimum for
7. =257 ms (see inset in Figure 3B). This value closely matches
the parameter set in the simulation (7. =250 ms), confirming the
reliability of the optimality criterion here described.

The estimate of 7., together with aspecific stimulations, allows
for the reconstruction of a rich repertoire of trajectories filling
the (¢v) phase plane, as shown in Figure 1B. The time deriva-
tives of such trajectories computed by applying a finite difference
method provide a sparse estimate of the v = G(c, v) component
of the vector field of system 2. In Figure 3C we illustrate the results
of this step in the identification of the population dynamics. We
smoothed the extracted field by a least square fit with a third-order
spline surface (see Section 2.6 for details), eventually plotted as a
color map. From the identified field components, we can work out
the nullclines v = G(¢c,v) = 0and ¢ = ¢/t — v = 0, depicted
as solid and dashed black curves in Figure 3C, respectively, which
provide direct information on the accessible dynamical regime of
the system.

3.3. EXTRACTING ®¥) FROM THE VECTOR FIELD

Unfortunately, the availability of the vector field does not provide
enough information to unambiguously identify the mean-field
functions ®¢) and 7 ,,. In principle, an infinite set of functions can
satisfy the expression for G(¢v) in Eq. 2. To remove such degener-
ation, we resorted to some general model-independent hypotheses
applicable to particular dynamical regimes of the neurons. Indeed,
in strongly drift- and noise-dominated regimes we can extract
some sparse information about the effective gain function, whereas
no hints are available for intermediate regimes between the drift-
and noise-dominated ones.

3.3.1. Hints from strongly “drift-dominated” regimes

In the presence of an intense barrage of excitatory synaptic events,
the spike emission process is almost completely driven by the infin-
itesimal mean of the incoming current (cv) of Eq. 3. The gener-
ated spike trains are rather regular and at high frequency, because
the membrane potential rapidly reaches the emission thresh-
old following a constant refractory period 7. In this strongly
“drift-dominated” regime with large u(cv), inter-spike intervals
(ISIs) are only mildly modulated by fluctuations of the input
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FIGURE 3 | Optimal adaptation timescale and vector field estimate. (A)
Dependence on 7, of the correlation degree between average v(t) and c(t)
in the 100 ms periods at fixed time lag At from the beginning of
reconstructed trajectories. Each curve correspond to a different At in the
range [0.3, 0.8] s color coded from blue to red, respectively. Circles point
out the maximum anti-correlation for each At. (B) Maximum anti-correlation
versus At. Circles are the same as in (A) The dashed line at At=0.391s
marks the minimum correlation degree. Inset: correlation degree versus 7.
for the optimal At. A circle marks the minimum at the optimal 7,=257 ms.
(C) Estimated Gl(c,v) in the phase plane (c,v) setting t. to its optimal value:
solid curve, nullcline v = 0; dashed line, nullcline ¢ = 0. Simulated network
parameters as in Figure 1.

current (Tuckwell, 1988; Fusi and Mattia, 1999; Mattia and Del
Giudice, 2002), and the membrane potential dynamics in Eq. 4
reduces to that of a perfect integrator V = ju. The leakage cur-
rent f{V) is neglected and the spike emission process becomes
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model-independent, and hence well suited also for biologically
detailed descriptions. The time needed to reach the threshold
0 starting from the reset potential H, together with 7, simply
determine the average ISI and the corresponding output firing
rate:

T PO — (7)

wSh  nt L

From the mean-field theory summarized in Eq. 3, u(cv) is a lin-
ear combination of the synaptic event rate v and the adaptation
level c:

u(e,v) = o — e €+ Uy V. (8)

The coefficients g, i and w,, are unknown in our idealized in sil-
ico experiments, together with tg and 6 — H in Eq. 7. Nevertheless,
we can estimate some of their ratios in the “drift-dominated”
regime, relying on the extracted nullclines (see Figure 3C). Start-
ing from the two previous expressions, ®P (cv) =v (which is
valid on the nullcline U = 0) implies the following relationship:

0 —H v
l1—vr’

c(v) = “o + Hv,
He M e

)

where ¢(v) is the implicit function solving the nullcline definition
equation G(c(v),v) =0.
For clarity, Eq. 9 can be rewritten as

cwW)=A+Bv—-C (10)

v
1—Dv’
where v and ¢ are the independent and dependent variables,
respectively, and A= puo/ite, B=pypte, C=(0—H)/p. and
D =1 are the parameters to be estimated. Such coefficients can
be obtained with a standard non-linear fit procedure detailed in
Section 2.7. Figure 4A shows the best non-linear fit (red curve)
of the data from the field identification (black curve, the same as
that in Figure 3C), based on Eq. 9. Only the nullcline points above
the top knee have been considered, because there the high out-
put firing is expected to correspond to a strongly drift-dominated
regime. Interestingly, the fit has reliably returned the theoretical
refractory period 9 =2 ms and a ratio /.= 1.12s, very close
to the expected p,/pu.=1.27s. Although ¢ is estimated at drift-
dominated regime, it is assumed that its value does not change
for different (¢v), accordingly to the theoretical description
adopted.

The assumption of an effective gain function depending only on
the mean current pu given by the linear combination in Eq. 8, yields
a simple geometric property: ®(¢f) is constant when computed on
a straight line parallel to v = (¢, )¢ in the plane (c,v) (see Eqgs.
7 and 8). From the previous non-linear fit we know the slope of
those lines. Besides, the red nullcline branch shown in Figure 4A
provides the reference values in this drift-dominated regime for
the effective gain function, being there @) =1 Both these con-
siderations allow us to extract ) (¢v) in the wide range of the
phase plane depicted in Figure 4B. The colored region codes for
the identified output firing rate, while the remaining white area is

where no hints are available for ®(ff),
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FIGURE 4 | Extraction of reference values for ®'. (A) Fit of the nullcline
v = 0 (black curve and dots, the same as Figure 3C) with a theoretical
guess (red curve) obtained from a general expression valid at
drift-dominated regimes of firing activity for a wide class of spiking neurons
(see text for details). (B) ®°(c,v) extracted starting from theoretical fit in B.
Colors code output firing rates. White region is where ®©" has no
reference values. Below the blue dashed line ®©" = 0. Black curve as in
(A,B). (C) G(c,v) at v = 0 (black) and its fit G, exp(— c/y) (red, G, = 140/s?
and y =0.94). Simulated network parameters as in Figure 1.

332 Hints from strongly “noise-dominated” regimes

On the other hand, Figure 4C shows that the identified field com-
ponent G on the v =0 axis (black curve) well fits the exponential
Go exp(—c/y) (red curve; see Section 2.7). Furthermore, from
Eq. 2 the gain function on the same axis is @) — 7 G, such that
@) = 0 when G(,0) = 0. The exponential decay of the output
discharge rate for increasing adaptation level is a general feature
and can be explained noticing that the spike emission process
mainly due to large random fluctuations of incoming synaptic

Frontiers in Computational Neuroscience

www.frontiersin.org

October 2011 | Volume 5 | Article 43 | 8


http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Linaro et al.

Network dynamics identification

current: a “noise-driven” firing regime (Fusi and Mattia, 1999).
In the absence of a recurrent feedback (v =0), synaptic activity
is elicited by spikes from neurons outside the local network. The
superposition of enough excitatory events in a small time window
may overcome the self-inhibition current dependent on c. The
larger c, the lower the likelihood of having a strong enough depo-
larization capable of causing the emission of a spike. Similarly to
the escape problem of a Brownian particle from a potential well
(Risken, 1989), the output discharge rate depends exponentially
on the distance of the membrane potential from the emission
threshold, which is in turn proportional to the current drift u
(Tuckwell, 1988). Conservatively, we then can say that for ¢ > 6y,
&) (,0) 0. The same approximation holds for the points of
the phase plane where u(cv) < p(6y,0). The top boundary of
such region is the blue dashed line in Figure 4B: its slope is ft/ 4y,
as previously estimated.

333 Extracting the whole ®'*" surface

The two regions of the phase plane that provide an estimate of
the effective gain function, together with the nullcline ®¢f) = v,
provide a sparse representation of the whole ®(¢f) surface because
no hints are available for intermediate regimes between the drift-
and noise-dominated ones. Besides, the gain function at fixed ¢
is expected to be regular and with a sigmoidal shape. Indeed,

randomness of the input current grants the smoothness of the sur-
face even for drifts u(cv) close to a rheobase, when the neurons
stop firing and ®¢) shows a discontinuity of the derivative (see
for instance Gerstner and Kistler, 2002; La Camera et al., 2008).
Under noise-driven spiking regimes such discontinuity disappears,
because current fluctuations allow the emission of spikes even for
values of u lower than the rheobase (for review, see Burkitt, 2006;
La Camera et al., 2008). Hence, assuming fluctuating synaptic cur-
rents usually observed both in vivo and in vitro, we model the
whole @) surface as a “thin-plate smoothing spline” (Wahba,
1990) with a rigidity parameter minimizing the difference between
the model and the available estimates of the gain function (see
Section 2.6 for details). The fitting result is shown in Figure 5A. In
Figure 5B @) () sections at different adaptation levels show
the almost threshold-linear behavior of the VIF neurons (Fusi and
Mattia, 1999) and the smoothness around the rheobase current,
where output rate approaches the “no firing” region. It is also
apparent the effect of the self-inhibition due to the considered
adaptation mechanism: for increasing values of ¢, the gain func-
tion is almost rigidly shifted to the right, thus reducing the output
discharge rate in response to the same input v.

The reliability of the identification is proved by the close resem-
blance between the estimated ®¢) and the theoretically expected
surface shown in Figures 5A,C, respectively. A deeper inspection
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FIGURE 5 | Identification of the gain function ®®". (A) Contour plot
of the identified gain function ®*®(c,v) starting from the reference
values extracted in Figure 4 (white region, ®*" < 0.5 Hz). Solid and
dashed black curves, the same nullclines of the vector field as in
Figures 3 and 4. (B) Identified ®°" sections at different ¢ (see inset for
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matching the nullclines &) (¢v) = v emphasizes the existence
of a significant discrepancy at high output discharge rates, where
in Figure 5D theoretical and identified nullclines (red and black
curves, respectively) slightly diverge. Such mild difference should
not be attributed to a failure of the identification process, but
rather to the limitations of the mean-field theory. Indeed, the
diffusion approximation requires small post-synaptic potentials
and large input spike rates. At drift-dominated regimes, such
constraints are more stringent to accurately describe the prob-
ability distribution of the membrane potentials of the neuronal
pool (Sirovich et al., 2000). Another possible source of error is
the quenched disorder (van Vreeswijk and Sompolinsky, 1996),
which we have not taken into account in our dimensional reduc-
tion. The variability in the number of synaptic contacts among
the neurons in the network induces a distribution of firing rates,
which in turn affects the moments of the input current. Such addi-
tional variability may have a potential role at noise-dominated
regime. Fortunately, in this region of the phase plane in Figure 5D
theoretical and identified nullclines match well.

3.4. IDENTIFICATION OF THE NETWORK TIMESCALE <,

Now that we have a reliable gain function ®f) over the whole
phase plane (¢,v), we can directly obtain the timescale function 7,
from Eq. 2 with the identified field G:

O vy — v
(V) = ——/————
G(c,v)

Because in this expression small values of G yield large uncer-
tainties in 7,,, we avoid to consider the above estimate in the region
of the phase plane where |Gl < 800/s?, around the nullcline v = 0.
Also in this case, the missing values of 7, are recovered using a
thin-plate smoothing spline fitting of the available edges of the
surface (see Section 2 for details). The resulting 7, (V) is plotted
in Figure 6A. Interestingly, the sections of this surface at increasing
adaptation level ¢ show the existence of t,, maxima for increasing
output rate v, as shown in Figure 6B. A plateau at high frequencies
is also apparent. At least qualitatively, both these features con-
firm the theoretical predictions in Gigante et al. (2007), where
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FIGURE 6 | Identification of the network timescale function z,. (A) exponential decays in approaching the unperturbed condition after
Contour plot of the identified 7,(c,v), obtained from the gain function @®® stimulation. Red curve: best fit y = 3.1 exp(6.6x) 4+ 20 for the decay time
in Figure 5A and the field component G in Figure 3C. The black curves are versus stimulus time. (D) Trajectories resulting from the numerical
the same nullclines as in the previous figures. (B) Sections of the integration of Eq. 2 with ¥ component given by the reconstructed and
identified ¢, for different values of ¢ (see inset for color code). (C) Network smoothed G in Figure 3C (solid blue line) and by (®©" —v)/z, with
activity response to the same external stimulation (vertical color bars) at identified functions shown in (A) and in Figure 5A (dashed red line),
different times. Simulations start from the same initial condition. Black respectively. Black dot: common initial condition. Arrow: direction of
trace: network activity without stimulation. Inset: time constants of the increasing time.
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an activity-dependent relaxation timescale has been reported for
spiking neuron networks (see Section 4).

The estimated relaxation timescale (less than 10 ms) highlights
how fast the network dynamics is compared to the average dura-
tion of the population bursts (hundreds of milliseconds) and to
the IBIs (seconds). We stress this because the non-linear network
dynamics is a complex combination of the state of the system, the
network properties and the neuronal and synaptic microscopic
parameters. Simplylooking at the activity decay following an exter-
nal stimulation does not directly provide an easy way to infer such
network timescales, as shown in Figure 6C. The asymptotic value
of the time constant of the exponential activity decay following
stimulations just after the last population burst gives only a rough
indication (see inset of Figure 6C).

Eventually, we complete the identification process by testing
the dynamics of the system following Eq. 2 by using the estimated
&) 7 and .. The numerical integration of such system returns
orbits in the phase plane in a remarkable agreement with those
obtained using the field component G resulting from the in silico
experiments (see Figure 6D).

3.5. THE MICROSCOPIC LEVEL ACROSS BIFURCATIONS

So far, we introduced our middle-out and model-driven identi-
fication approach probing its effectiveness on a relatively simple
in silico experiment, i.e., a network of homogeneous VIF neurons.
Nevertheless, the theoretical bases of the method are rather gen-
eral, and make it suited also for more detailed and sophisticated
spiking neuron models, and eventually to controlled biological
preparations like in vitro brain slices and cultured neuronal net-
works. Furthermore, the dimensional reduction of the network
dynamics in Gigante et al. (2007), on which the method presented
here relies, is independent on the dynamical activity regime, even
in the presence of a rich repertoire of collective behaviors in the
phase diagram.

3.5.1. Bifurcation diagram of LIF neuron networks
Here, we exploit such potential by devising an in silico experiment
in which a network of excitatory LIF neurons changes its dynam-
ical behavior after modulation of some microscopic parameters.
As in an in vitro experiment, we probe in simulation the sponta-
neous activity of the neuronal pool when some “virtual” glutamate
receptor agonist and/or antagonist modulates the strength Jy of
the recurrent synaptic couplings. Besides the regulation of the
excitability of the network, we simultaneously change the intensity
of the self-inhibition responsible for the SFA, by varying g..
Hence, we carry out a bifurcation analysis of the network activ-
ity sampling intensively the plane (Jrec, g-) (see Section 2.8 for
details). The result of this bifurcation analysis is summarized
in Figure 7A, where different colors denote different asymptotic
dynamical behaviors. In the LAS (green region), the only stable
attractor is an equilibrium point, corresponding to low-frequency
network activity (example in Figure 7B: Ji..=0.102mV and
g-=21mV/s). The GO region (cyan region) is where the only sta-
ble attractor is a limit cycle corresponding to periodic population
bursts (example in Figure 7D: J;.c =0.112mV and g, =21 mV/s).
In the thin orange region (labeled as LAS & GO), two stable attrac-
tors coexist, namely a low-frequency equilibrium and a limit cycle
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FIGURE 7 | Bifurcation diagram of a simulated network of excitatory
LIF neurons. (A) Section of the bifurcation diagram in the plane (J.c.,9.)
displaying the different dynamical regimes observed in the simulations:
LAS, single attractor low-firing asynchronous state (green); LAS & GO,
coexistence of LAS and a metastable limit cycle where the network shows
global oscillations (orange); GO, only periodic population bursts occur; HAS,
single attractor high-firing asynchronous state. Red dashed line, region
explored in Figure 8. (B-E) Examples of population activity from
simulations in the different dynamical regimes of the bifurcation diagram
[see respectively labeled black dots in (A)]. Simulated networks are
composed of 20,000 excitatory LIF neurons.

(Figure 7C: Jrec = 0.106 mV and g. =21 mV/s). Finally, the high-
rate asynchronous state (HAS, pink region) is where the only stable
attractor is an equilibrium point, corresponding to high-frequency
network activity (Figure 7E: J.c =0.086 mV and g, =21 mV/s).
The only bistable state — at least for the considered parameter
sets —is LAS & GO: in the deterministic infinite-size limit, the sys-
tem would end up on one of the two stable attractors depending
on the initial condition and would switch only after the applica-
tion of an external stimulation; in the case of realistic neuronal
networks, finite-size fluctuations due to endogenous noise sources
can induce spontaneous switches between states. We point out
that in Figures 7B,E, simulations display also the initial tran-
sient evolution of the population discharge rate v(t), during which
the externally applied current vy exponentially adapt, increasing
from 0 to its steady-state value.

It is interesting to note the similarities of the carried out bifur-
cation analysis with an analogous bifurcation diagram reported
in Gigante et al. (2007) for excitatory VIF networks. At least
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qualitatively, similar dynamical states are situated in the same rel-
ative positions. HAS regimes have been found for relatively mild
SFA, whereas for higher values of g increasing synaptic strength
yields successively to single asynchronous states (LAS), then to
coexistence of two stable states (LAS & GO) and eventually to
periodic population bursting regimes (GO).

352 Microscopic features from mesoscopic identification
Taking into account the information provided by the diagram in
Figure 7, we exploit the robustness of our identification method
with respect to the crossing of bifurcation boundaries. To this end,
we fix g.=20mV in order to span a reasonably large interval of
LAS & GO behavior and sweep Jrec in the range [0.096, 0.108|mV
(red dashed line in panel A of Figure 7). For each value of J;ec, we
apply the method described in the previous sections to estimate
G, 1, @) and Ty.

The results are presented in Figure 8: the top panel shows the
shape of the nullcline v = G = 0 as a function of Jyec. In partic-
ular, as Jrec is increased, the shape of the nullcline v = 0 changes
and the equilibrium point corresponding to the intersection with
the nullcline ¢ = 0 (black dashed line in panel A) loses its sta-
bility at the frontier between the LAS & GO and GO regions (see
Figure 7). The limit cycle that appears by crossing this (subcritical)
Hopf bifurcation is unstable and exists in the LAS & GO region. At
the border between the LAS and LAS & GO regions the unstable
cycle collides, through a fold bifurcation of cycles, with the stable
limit cycle that describes the oscillatory behavior of the network
shown in both the LAS & GO and GO regions. This kind of behav-
ior is quite standard in many neuron models and is related to the
presence of a Generalized Hopf bifurcation at the tip of the LAS &
GO region.

The approximation at drift-dominated regime for the nullcline
in Eq. 9 is also well suited for networks of LIF neurons, as testified
by the remarkable match between dotted and solid nullclines in
Figure 8A, which extends well below their top knees. This confirms
the expected wide applicability of the functional expression for the
nullcline to a wide class of spiking neuron models. The identifica-
tion of the adaptation timescale 7 . provides also for these networks
values very close to the corresponding parameters set in the sim-
ulations, providing a further confirmation of the reliability of our
approach for different models and dynamical regimes.

At this point, having identified the field component G(c¢v)
and the functions ®f) and 7, for a set of different values of
Jrec» We investigate the relationship between the mesoscopic and
the microscopic description levels of the system. We focus on
the Hopf bifurcation described above. The mean-field theory for
the dynamics of spiking neuron networks (Mattia and Del Giu-
dice, 2002; Gigante et al., 2007) establishes a direct relationship
between the Jacobian’s eigenvalues As for Eq. 2 and the slope of
the gain function @) around equilibrium points. If Im(A) # 0,
the linearized dynamics for Eq. 2 yields

T+ Ty

1
+ — 3,0¢0
2T, 1Ty

Re(A) = — 7
Vv

(11)

where 9, @ and 7, are computed in (c*,v*), an equilibrium
point for Eq. 2. Since Jyec always multiplies v in the expression 1

A
140
120 4
IR 9,
E 2H 9000068
1001 = |y >
0
80 0.096 0.102 0.108 <y
Jrec (mV) Q‘b&
N N
<
> 60 ~1
40 -
20
olk=
0 2 4 6 8 10 12 14
c(a.u.)
4.5
B 5, ‘ Y
i 4 -
2 > Q'OZ -
3.5 / P
~ 0 2 4 P
% Time (s) . /,6/
— FT o 6
14 7 ¢ ’Jrs:T 5
5. o~ X T4
AN 3
207 0 2 4
e Time (s)
0.096 0.100 0.104 0.108
Jrec (mv)
C
750
700 9»”"’“‘0
S /
< 650 /g)
E
. 600 /
R P arey
~o0—
550
0.096 0.100 0.104 0.108
Jrec (mV)
FIGURE 8 | Extracting microscopic features from mesoscopic
identification. (A) Nullclines v = 0 of the identified field component G from
LIF network simulations at different levels of recurrent synaptic excitation
Jee, SPanning the red dashed line in Figure 7A (see colored labels, J,.
sampled at steps of 1 mV). Adaptation level fixed at g. =20 mV/s. Dotted
colored curves: fitted nulicline approximations at drift-dominated regime as
in Figure 4A. Black dashed line: nullcline ¢ = 0. Inset: estimated absolute
refractory period t, versus J,.; dashed red line, expected value. (B)
Correlation between J,.. and the real part of the eigenvalues A of the Eq. 2
Jacobian, using the identified G(c,v) around the equilibrium point ~(1,4 Hz).
Red dashed line: linear regression (p < 1072, t-test). Green vertical line: Hopf
bifurcation predicted by the linear fit. Insets: examples of v(t) dynamics for
Re(x) < 0 (top left) and Re(A) > 0 (bottom right) close to the equilibrium
point. (C) Oscillation periods of v(t) given by inverse Im(x). Oscillations are
damped only at the left of the Hopf bifurcation (green vertical line).

for the moments of the input current, for small changes of Jyec
as in the case under investigation, the slope of ®) in the v
direction will be proportional to the average synaptic efficacy, i.e.,
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8, @M o J.... Hence, Re(1) is expected to linearly depend on Jec
according to Eq. 11, as we found numerically from the identifica-
tion in Figure 8B (gray curve). In this case, the equilibrium point is
atlow-v and ¢, where the nullclines ¢ = 0 and v = 0 intersect. The
system undergoes the Hopf bifurcation (vertical green line) where
the linear fit (red dashed line) crosses x-axis in Figure 8B. This
occurs at a critical Jyec = 0.1015 mV very close to the theoretically
expected value Jyec =0.1048 mV, provided by Eq. 11. Imaginary
part of s (see Figure 8C) further confirms the complex relation-
ship between the period of the population oscillations (gray curve)
and 7, and hence the need for ad hoc identification strategies for
7., like the one we proposed.

Another example of microscopic extraction is provided by the
nullcline approximation at drift-dominated regime in Eq. 9. One
of the fitted parameters is the absolute refractory period 7, which
in our simulations is set to 2ms. The inset in Figure 8A clearly
shows the accuracy of its identification, which only mildly fluctu-
ates for different Jec, even if the network is crossing a bifurcation
boundary.

We conclude this section remarking the relevance of these
results. Although we started inspecting an intact network of spik-
ing neurons, the devised model-driven approach provides tools
to estimate microscopic features like synaptic coupling Jec and
absolute refractory period 7. This simply relying on the meso-
scopic description of the system given by the identified functions
&M and 1, of the neuronal pool.

4. DISCUSSION

In this study, we presented a method to identify the network
dynamics of a homogenous pool of interacting spiking neurons
with SFA. We analyze the spontaneous relaxation time course of
the population discharge rate without considering any lineariza-
tion. The non-linearity of the activity dynamics is exploited by
supra-threshold stimulations in order to have a complete descrip-
tion of the system. Furthermore, the network is investigated as
a whole, as opposed to a bottom-up approach characterizing
the system starting from its microscopic elements. This meso-
scopic description projects the network dynamics in the low-
dimensional state space of the instantaneous discharge rate v(t)
and the adaptation level of the adaptation mechanism c(t), as
suggested by a recent mean-field theory development (Gigante
etal.,2007). This model-driven approach allows us to make direct
links to the microscopic level available. Indeed, we show how
the timescale 7. of the SFA together with the absolute refractory
period 7 and the average synaptic efficacy Jyec can be faithfully
extracted.

41. A NEW WAY TO PROBE THE SYSTEM DYNAMICS

Networks are probed by eliciting strong reactions. To this aim,
aspecific and supra-threshold stimulations are delivered, following
an approach that significantly differs from those used to study the
linear response properties of biological systems (Knight, 1972b;
Sakai, 1992; Wright et al., 1996). Networks are then driven in
“uncommon” dynamic conditions in order to exploit the non-
linear activity relaxation outside the stimulation period. This “out-
of-stimulation” identification evidences the bona fide network
dynamics, by avoiding any artifacts due to artificial inputs, like

sinusoidal or randomly fluctuating intra- or extracellular electric
field changes (Chance et al., 2002; Rauch et al., 2003; Giugliano
et al., 2004; Higgs et al., 2006; Arsiero et al., 2007). Besides, we
have shown how the system reaction is state-dependent, so that
the same stimulation may elicit very different responses. This is an
added value, yielding to a reduced complexity of the stimulation
protocol in order to have a dense coverage of the phase plane. Such
complexity is in turn delegated to the non-linear dynamics of the
network activity.

Aspecific stimulations involving a whole pool of neurons
clearly resemble the well known electrical microstimulation often
adopted in neurophysiology to probe and understand how the
nervous tissue works (see for review Cohen and Newsome, 2004;
Tehovnik et al., 2006). This is one of the main reasons why we have
resorted to this approach, envisaging a wide applicability even in
less controlled experimental conditions, such as those where the
intact tissue is investigated.

To this aim, it is apparent why we have chosen to watch the
system dynamics only through the “keyhole” of the population dis-
charge rate, without resorting to other microscopic information
available in our in silico experiments. We assumed to have access
only to multi-unit spiking activity (MUA) from local field poten-
tials (LFP), together with electrical microstimulation, in order to
coherently investigate the network as a whole adopting a pure
“extracellular” approach.

4.2. ROBUSTNESS OF THE IDENTIFICATION TO PHASE TRANSITIONS
A major improvement provided by our model-driven approach
in the identification of neuronal network dynamics is not only
its ability to deal with and exploit the intrinsic non-linearities of
a system with feedback and adaptation, but also its capability to
faithfully extract the features of the system in a manner which is
almost independent of the particular dynamical phase expressed,
as we have shown in Figure 8. This is a novelty with respect to
other modeling approaches that rely on input linear filtering and
non-linear input—output relationships with feedback like gener-
alized linear models (Paninski et al., 2007) and linear-non-linear
cascade models (Sakai, 1992; Marmarelis, 1993). Such theoretical
frameworks, although well suited to describe non-linear biologi-
cal systems, to the best of our knowledge have never proved their
applicability across phase transitions between dynamical regimes.
The robustness with respect to the crossing of bifurcation
boundaries may result to be of great interest in understanding
the neuronal mechanisms behind the activity changes of the ner-
vous tissue under controlled experimental conditions. Developing
neuronal cultures in vitro provides an ideal experimental setup
because different patterns of collective activity stand out, depend-
ing on the developmental stage (Segev et al., 2003; van Pelt et al.,
2005; Chiappalone et al., 2006; Soriano et al., 2008). Pharmaco-
logical manipulations are also appealing because they are capable
to drive neuronal cultures in different dynamical states by selec-
tively modulating synaptic and somatic ionic conductances (see for
instance Marom and Shahaf, 2002). Brain slices in vitro may pro-
vide another applicability domain for our identification approach,
for instance to investigate the neuronal substrate of epilepsy
onset (Gutnick et al., 1982; Sanchez-Vives and McCormick, 2000;
Sanchez-Vives et al., 2010), even though the structure of the tissue
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and the cell type heterogeneity may force the assumptions our
method relies on, limiting its effectiveness.

4.3. ACTIVITY-DEPENDENT GAIN FUNCTION AND RELAXATION
TIMESCALE

As shown in Figure 5, our model-driven identification makes the
input-output gain function ®f) of the neurons in a network
available. This function characterizes the capability of the neurons
to modulate and transmit the input activity from other com-
putational nodes, conveying sensorial or other information. The
relevance of this response function is evidenced by the experimen-
tal effort put into extracting it, typically by injecting into neurons
suited input currents and measuring the output discharge rates
(Chance et al., 2002; Rauch et al., 2003; Giugliano et al., 2004;
Higgs et al., 2006; Arsiero et al., 2007; see La Camera et al., 2008
for a review). The input to ®) is the instantaneous frequency
of the spikes bombarding the dendritic tree of the neurons and
not the synaptic current, as often considered. This yields to a clear
advantage: it makes homogeneous the input and the output, incor-
porating the possible unknown relationship between pre-synaptic
firing rate and input synaptic current. A simplification which helps
to deal with closed loops, where the neuronal network output is
fed-back as input.

Besides, the firing rate v is not the only input to ®(f): because
of the SFA mechanism, ®(¢f) depends also on the average adapta-
tion level c¢. As summarized in the Section 2, ¢ affects the average
input current as an additional inhibitory current, which in turn
rigidly shifts the neural gain function. This is still a rather rough
approximation, and the “effective” gain function ® ) improves it,
by introducing a further activity-dependent modulation (Gigante
et al., 2007): a perturbation that accounts for the distribution of
membrane potentials in the neuronal pool, consistently to what
has been previously argued for isolated neuron models (Benda
and Herz, 2003).

Moreover, the system identification allowed us to verify the
existence of an activity-dependent relaxation timescale 7, (¢,v) for
the network dynamics, as expected from recent theoretical devel-
opments (Gigante et al., 2007). Interestingly, a similar activity-
dependent timescale has been recently introduced in a linear—
non-linear cascade modeling framework as a phenomenological
way out to obtain a more accurate description of the output firing
of neurons to time-varying synaptic input (Ostojic and Brunel,
2011). The ability of the network to exhibit state-dependent reac-
tion times may be of direct biological relevance (Marom, 2010),
and further extend the standard rate model framework a la Wilson
and Cowan (1972).

44. LIMITATIONS AND PERSPECTIVES

We tested the robustness and generality of our methodology on
relatively simple and well controlled i silico experiments, report-
ing remarkably good agreement between theoretically expected
and identified dynamics. In particular, we found a slight differ-
ence in the nullcline @M (cv) = v (see Figure 5D) likely due to a
failure of the diffusion approximation at strong “drift-dominated”
regimes of spiking activity, usually those corresponding to high
discharge rates. Furthermore, we obtained a 7, (¢,v) with a shape
qualitatively similar to what is predicted by the theory (see Figure

1 in Gigante et al., 2007), showing a maximum timescale and a
plateau at very high frequencies. The maxima of the theoretical
7, are located along the nullcline v = ¢/t ., whereas the identified
maxima seem to stand on a straight line on which the average input
current remains constant: v = @./{tyc. Such a difference may be
attributed to the failure of the assumption to have a small enough
acceleration of the firing rate. Indeed, acceleration has its maxi-
mum value close to the nullcline ¢ = 0, where the onset and the
offset of the population bursts take place (Gigante et al., 2007).
Paradoxically, should this be confirmed, the model-driven identi-
fication would provide a more reliable system description than the
theoretical one.

But how much do the assumptions underlying the theoreti-
cal framework constrain the applicability of our method to more
complex and realistic scenarios? Provided that the mean-field and
diffusion approximations are well suited to describe the biological
system under investigation, the dimensional reduction we adopted
is expected to have a wide applicability. Indeed, the requirements
of having a large number of synaptic inputs on the neuronal den-
dritic trees and small enough post-synaptic potentials compared
to the neuronal emission threshold well fit the characteristics of the
cerebral cortex (Amit and Tsodyks, 1991; Braitenberg and Schiiz,
1998). The expressions for the gain function ® () at strongly drift-
and noise-dominated regimes, introduced and used in Figure 4,
are rather general. Besides, we assumed the infinitesimal mean
() of the synaptic current to be a linear combination of v and
¢, but even this constraint can be replaced by other non-linear
expressions (Brunel and Wang, 2001), if more consistent with the
biological background.

Also, our theoretical framework does not consider realis-
tic synaptic transmissions: in particular, an instantaneous post-
synaptic potential occurs at the arrival of a pre-synaptic spike,
neglecting the typically observed ionic channel kinetics. Never-
theless, recent advances in the study of the input—output linear
response of the IF neurons have proved that realistic synap-
tic transmission brings neurons to have fast responses to input
changes (Brunel et al., 2001; Fourcaud and Brunel, 2002). Hence,
we expect only a mild perturbation of the functions ®¢f) and 7,
due to synaptic filtering, at least for relatively fast synapses like
AMPA and GABA,. For such gating variables with slower kinet-
ics like NMDA receptors, we can include an additional dynamic
variable that describes synaptic integration on time scales longer
than 7, (Wong and Wang, 2006). This additional degree of free-
dom can be handled similarly to the dynamics of ¢ in Eq. 2, by
extending the optimization strategy summarized in Figure 3 to a
multi-dimensional space of the decay constants.

Such a generalization to multiple timescales of the synaptic
input could in principle be used to relax the constraint in mod-
eling the fatigue variable c(t) with a simple first-order dynamics.
More complex fatigue phenomena could be embodied as a cascade
of first-order differential equations mimicking the wide repertoire
of ionic channel kinetics (Millhauser et al., 1988; Marom, 2009),
including also additional adaptation and recovery mechanisms
(La Camera et al., 2006; Lundstrom et al., 2008). Furthermore,
we adopted a simplified spike-driven model for c-dependent self-
inhibition, assuming in particular a coupling term g, independent
from the neuron membrane potential. More biologically inspired
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voltage-dependent ionic conductances would yield the moments
of the input current to be non-linear functions of ¢ and v. Such
non-linearities could in turn be “absorbed” in the expressions for
@) and 7 ,, hence making our identification approach yet usable.

The identification strategy and the in silico experiments
reported here do not take into account networks composed of
different neuronal pools: we have considered only a homogenous
population of excitatory IF neurons. Hence, a question arises: can
our method be extended to deal with more than one interact-
ing neuronal pool? Depending on the experimental accessibility
to the separate firing rates, for instance of the inhibitory and
excitatory populations, different strategies can be adopted. If a
mix of discharge frequencies is available, the identification should
rely on a generalized theory resorting to a kind of “adiabatic”
approximation such that inhibitory activity rapidly adapts to time-
varying excitatory firing rates (Mascaro and Amit, 1999; Wong
and Wang, 2006). On the other hand, if experimental probes

are available to measure separately the firing rates and to deliver
independent stimulations, the identification could be managed
extending our approach to cope with a high-dimensional phase
space and thus more than one ®¢f) and r, functions. A dif-
ferent approach, if experimentally viable, could be to isolate the
subnetworks and identify them using the original method, and
eventually inferring the restored inter-population connectivity. To
this aim, correlation-based approaches originally applied to small
neuronal networks (Schneidman et al., 2006; Pillow et al., 2008),
could be successfully used in this context by considering as basic
computational node the identified neuronal pools.
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APPENDIX
STIMULATION DETAILS

Table A1 | Details of the stimulation protocols.

E[Avext1] (%) E[Avext2] (%) S[Avext1] (%) S[Avextz] (%) T (s) t (ms) dt (ms)
VIF
Single E rnd 12.8 - 3.5 - 7 [1, 100] -
Double E 12.8 12.8 - - 7 30 [1, 250]
Double E rnd 12.8 12.8 3.5 8.7 7 [30, 40] [1, 250]
E/l 30.1 —-30.6 - - 7 30 [1, 250]
E/l rnd 30.1 -30.6 3.5 5.2 7 30 [1, 250]
LIF
Single E rnd 19.6 - 19.6 - 7 [10, 70] -
Double E 29.4 58.8 - - 7 20 [5, 500]
Double E rnd 19.6 39.2 9.8 19.6 7 20 [5, 500]
E/l 294 —58.8 - - 7 20 [5, 500]
E/l rnd 19.6 —-39.2 9.8 19.6 7 20 [5, 500]

The first four columns indicate the means (columns 1 and 2) and SD (columns 3 and 4) of the magnitude of the variations of the external input expressed in percentage

of ve. The columns labeled T, t, and dt indicate, respectively, the time interval between successive applications of the stimulus, the duration of the stimulus and the
interval between couples of stimuli. WWhen an interval is indicated, such as in the column labeled dt, the sampling steps are 1 and 5 ms for the VIF and LIF neurons,

respectively.
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