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Synaptic scaling is a slow process that modifies synapses, keeping the firing rate of neural
circuits in specific regimes. Together with other processes, such as conventional synaptic
plasticity in the form of long term depression and potentiation, synaptic scaling changes
the synaptic patterns in a network, ensuring diverse, functionally relevant, stable, and input-
dependent connectivity. How synaptic patterns are generated and stabilized, however, is
largely unknown. Here we formally describe and analyze synaptic scaling based on results
from experimental studies and demonstrate that the combination of different conventional
plasticity mechanisms and synaptic scaling provides a powerful general framework for reg-
ulating network connectivity. In addition, we design several simple models that reproduce
experimentally observed synaptic distributions as well as the observed synaptic modifi-
cations during sustained activity changes. These models predict that the combination of
plasticity with scaling generates globally stable, input-controlled synaptic patterns, also in
recurrent networks. Thus, in combination with other forms of plasticity, synaptic scaling
can robustly yield neuronal circuits with high synaptic diversity, which potentially enables
robust dynamic storage of complex activation patterns. This mechanism is even more pro-
nounced when considering networks with a realistic degree of inhibition. Synaptic scaling
combined with plasticity could thus be the basis for learning structured behavior even in
initially random networks.
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1. INTRODUCTION
Neural systems regulate synaptic plasticity avoiding overly strong
growth or shrinkage of the connections, thereby keeping the circuit
architecture operational. Accordingly, experimental studies have
shown that synaptic weights increase only in direct relation to their
current value, resulting in reduced growth for stronger synapses
(Bi and Poo, 1998; Sjöström et al., 2001; Frömke et al., 2005). It
is, however, difficult to extract unequivocal evidence about the
underlying biophysical mechanisms that control weight growth.

The theoretical neurosciences have addressed this problem by
exploring mechanisms for synaptic weight change that contain
limiting factors to regulate growth. Most basic limiting mech-
anisms act subtractively or multiplicatively (Bienenstock et al.,
1982; Oja, 1982; Miller and MacKay, 1994) such that individual
weight growth decreases with the total synaptic weight in a net-
work. Other mechanisms, such as additional thresholds in input or
output (Sejnowski and Tesauro, 1989; Gerstner and Kistler, 2002),
yield a similar weight-limiting effect. The effectiveness of such
mechanisms notwithstanding, some are difficult to justify from
a biophysical perspective, in particular those that require knowl-
edge of global network status (e.g., knowledge of the “sum of all
weights”) for normalization.

The discovery of spike-timing dependent plasticity (STDP; Ger-
stner et al., 1996; Magee and Johnston, 1997; Markram et al., 1997)

enabling weight growth as well as shrinkage, has offered a poten-
tial alternative solution to the problem because STDP can stabilize
synaptic weight distributions (Song et al., 2000; Van Rossum et al.,
2000; Gütig et al., 2003; Clopath et al., 2010). However, stabil-
ity is not always guaranteed by STDP because various types of
plasticity exist across different neurons and even at the same neu-
ron, depending on the location of the synapses (Frömke et al.,
2005; Bender and Feldman, 2006; Sjöström and Häusser, 2006).
Weight dependent STDP has been introduced to solve this issue
(Van Rossum et al., 2000; Gütig et al., 2003).

In 1998, a series of studies initiated by Turrigiano augmented
this discussion by demonstrating that network activity is homeo-
statically regulated (Turrigiano et al., 1998; Turrigiano and Nelson,
2004; Stellwagen and Malenka, 2006), where overly active net-
works will down-scale their activity and vice versa. This results
from synaptic scaling suggesting that weights w are regulated by
the difference between actual and target activity (≈v − vT).

Here we suggest that synaptic scaling is combined with differ-
ent types of plasticity mechanisms in the same circuit or even at
the same neuron and regulates synaptic diversity across the cir-
cuit. Our study demonstrates that synapses are stabilized strictly
in an input-determined way thereby capturing characteristic fea-
tures of the inputs to the network. As an interesting result, we
show that such systems are capable of representing a given input
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pattern via stably changed weights along several stages of signal
propagation. This holds even in circuits containing a substan-
tial number of random recurrent connections but no particular
additional architecture.

2. MATERIALS AND METHODS
We will first describe the mathematical framework which leads
to the analytical as well as numerical observations in the Results
Section, a few important equations are repeated there, too. In the
second part we will present all parameters and other constraints
used.

2.1. GENERAL DERIVATION OF NORMAL FORM, FIXED POINTS, AND
STABILITY

As scaling co-acts with plasticity, such a combined mechanism is
mathematically characterized in its most general additive form by
a weight change:

dw

dt
= μ G + γ H (1)

where w is the synaptic weight. Here μ and γ define the rates of
change of conventional synaptic plasticity and scaling, γ �μ� 1,
and G and H represent the specific types of plasticity and scaling
(Abbott and Nelson, 2000; Turrigiano and Nelson, 2000), respec-
tively. For example, G is different for plain Hebbian plasticity
(Hebb, 1949) and for STDP.

Experimental results suggest that synaptic scaling compares
output activity v against a desired target activity vT of each indi-
vidual neuron. Most straightforwardly, such a local weight change
is defined by:

dw

dt
= γ H (vT − v). (2)

The output v is written in a more general way by defining F as
the neuronal activation function of the neuron, with u its input,
giving us v = F(u) and:

dw

dt
= μ G (u, F(u, w), w)+ γ H (vT − F(u, w)) . (3)

This equation describes the basic, general dynamics that combines
conventional plasticity G and synaptic scaling H, which we first
define in a weight-dependent way, as suggested by others (Abbott
and Nelson, 2000; Turrigiano and Nelson, 2004):

H = (vT − F(u, w)) wn . (4)

We insert this into Eq. 3 and obtain

ẇ = μ G (u, F(u, w), w)+ γ (vT − F(u, w)) wn , (5)

where ẇ = dw
dt .

The output dynamics at typical neuronal operating points are
naturally proportional to the synaptic strength for given inputs;
we thus take F(u,w) to be arbitrarily non-linear in the input but

proportional to the synaptic weight F(u, w) ≈ w F̃(u). Therefore,
Eq. 5 simplifies to

ẇ = μ G
(
u, F̃(u), w

)+ γ
(
vT − wF̃(u)

)
wn . (6)

One goal of the current study is to show that synaptic scaling can
stabilize a wide variety of learning rules. Thus, in the next step we
consider basic plasticity rules, hence, rules that are initially unsta-
ble as they do not contain additional stabilization terms. These
are for example plain Hebbian and Anti-Hebbian learning, BCM
without sliding threshold, plain spike-timing dependent plasticity,
and others. All these rules strictly obey a second order polynomial
of the weight of the following kind.

G
(
u, F̃(u), w

) = a w2 + b w + c (7)

where a, b, and c are functions of the activities u and F̃ . The w-
independent term is taken to be c = 0, because biophysically the
weight of a non-existing synapse naturally cannot grow (w = 0⇒
ẇ = 0). Thus,

G
(
u, F̃(u), w

) = a w2 + b w . (8)

This second order equation (Eq. 8) acts as the normal form for
many learning rules G and captures not only Hebbian but also
BCM (constant-threshold!) plasticity (see section Introducing the
Framework and Appendix) as well as all other possible learning
rules that have at most a second order weight dependence. Higher
order dependencies occur with rules which contain stabilization
terms. As we will show that synaptic scaling generically performs
stabilization, additional terms are not required and we can restrict
ourselves to second order dependencies here.

Inserting Eq. 8 into Eq. 6 we obtain the final form of the
combined scaling and plasticity mechanisms

ẇ ≈ μ(aw2 + bw)+ γ
(
vT − wF̃(u)

)
wn . (9)

This implies mathematically that weights could become nega-
tive and, therefore, the output activity F̃(u) can be negative, too,
which is, however, just a technicality.

2.2. GENERAL FIXED POINT ANALYSIS
Fixed points of Eq. 9 are analyzed for weight-independent synaptic
scaling (n= 0) as well as for linear (n= 1) and non-linear (n > 1)
weight dependency. This analysis is based on standard methods for
a given set of differential equations dw

dt = ẇ = ϒ(w) determining
the dynamics of w and its fixed points w∗, where ẇ = 0. To assess
the stability of these fixed points, we analytically computed the
Jacobian J ϒ (w) of ϒ ; a fixed point w∗ is stable if all eigenvalues at
w =w∗ are smaller than zero, and unstable otherwise.

Specific instantiations of synaptic plasticity mechanisms,
parameters, and time axes
As neuron model most often we consider generic rate process-
ing F = uw, but spiking neuron models yield similar results (see
Figures 2C–F).
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The Hebbian mechanism is defined by dw
dt = ẇ = μuv , with

neuronal output v = F(u, w).
The constant-threshold Bienenstock-Cooper-Munro [BCM,

Bienenstock et al. (1982)] rule is given by ẇ = μuv(v−�), where
� is a constant-threshold. This rule shows comparable dynam-
ics as spike-timing dependent plasticity [STDP; Markram et al.
(1997); Bi and Poo (1998)] as discussed in the Discussion. Thus,
we will many times treat BCM and STDP in a similar way in this
paper.

The synaptic scaling mechanism H uses two parameters: γ , the
scaling rate, and vT, the target firing rate of the neuron, which can
be different for every neuron [e.g., Izhikevich (2004)]. Addition-
ally, other mechanisms [e.g., intrinsic plasticity; Triesch (2007)]
could dynamically adapt vT over time. However, in our numerical
experiments we keep vT constant over the whole network. Assess-
ing the influence of a dynamical vT could be part of future work.
However, the reader should note that the activity of a neuron never
reaches the target firing rate as long as synaptic plasticity influences
the synapses (see Table 1 and Appendix).

All constants (μ, γ , vT) are kept unit-free, and the resulting
synaptic dynamics (Eq. 11) only depends on the ratio of time
scales μ/γ . In general, we use a smaller ratio as found in experi-
ments (see below) to speed up simulations; this mainly shortens
the relaxation times toward fixed points but does not qualitatively
change the phase space structure, in particular the existence and
stability of fixed points.

The time scale of synaptic dynamics μ and γ is difficult to deter-
mine as different experiments show different time scales [e.g., for
LTP the synaptic plasticity rate 1/μ ranges from min to h (Bliss
and Lomo, 1973; Dudek and Bear, 1993) and for synaptic scaling
from h to days (Turrigiano et al., 1998; Turrigiano and Nelson,
2004)]. Thus, time axes in all plots (cf. Figures 2 and 4) are scaled
by simulation units.

With these definitions it is possible to analytically calculate fixed
points for one or two synapses for most basic learning rules. Results
are shown in Table 1 and the calculations are in the Appendix.

Table 1 | Fixed points and stability.

n Fixed points Stability terms

0 w ∗,1n=0 = 1
2μa

(
−μb + γ F̃ (u)+ �0

)
+�0

w ∗,2n=0 = 1
2μa

(
−μb + γ F̃ (u)− �0

)
−�0

with �0 =
√(

μb − γ F̃ (u)
)2 − 4μγ avT

1 w ∗,1n=1 = 0 +�1

w ∗,2n=1 = 1
γ F̃ (u)−μa

�1 −�1

with �1=μb+ γ vT

2 w ∗,1n=2 = 0 μb

w ∗,2n=2 = 1
2γ F̃ (u)

(μa + γ vT + �2) − �2
2γ F̃ (u)

(μa + γ vT + �2)

w ∗,3n=2 = 1
2γ F̃ (u)

(μa + γ vT − �2) + �2
2γ F̃ (u)

(μa + γ vT − �2)

with �2 =
√

(μa + γ vT )2 + 4μγ bF̃ (u)

The stability term is the derivative of the differential equation according to w at

the fixed point. Therefore, a positive stability term indicates an instable and a

negative a stable fixed point. vT, μ, γ , F̃ > 0 . For further explanation see text.

3. RESULTS
We will first present some general mathematical results concerning
the stability of combined plasticity and scaling mechanisms. This
is supplemented by numerical experiments showing how simple
single- or multi-synapse systems behave. In the next section we
will reproduce some biological findings and finally we will show
some predictions that arise from using plasticity and scaling in
recurrent networks.

3.1. INTRODUCING THE FRAMEWORK
How do combined plasticity and scaling mechanisms affect synap-
tic weight changes? To understand this, we analyze the dynamics
of weight changes dw/dt in dependence of neuronal inputs and
current synaptic weights.

In its most general additive form (see Method Section), plas-
ticity and scaling mechanisms change synaptic weights according
to

dw

dt
= μ G(u, F(u, w), w)+ γ H (vT − F(u, w)) , (10)

where u is the input to a neuron, the function F characterizes its
output given an arbitrary neural dynamics v = F(u,w), the func-
tion G specifies any generic plasticity mechanism, and H mediates
synaptic scaling determined by its target firing rate (vT > 0) as
introduced above.

Turrigiano and Nelson discuss that synaptic scaling should be
dependent on the actual synaptic weight [see Figure 4 in Tur-
rigiano and Nelson (2004), see also Abbott and Nelson (2000)].
It remains unknown, however, what form this dependence takes.
We therefore analyze three classes of synaptic scaling mechanisms:
weight-independent scaling, linear weight dependence, and non-
linear weight dependence of the scaling. For the dynamics of
weight changes, such scaling is expressed via a weight depen-
dence wn, where n= 0 represents weight independence, n= 1 the
linear, and n > 1 the higher order, non-linear dependence. Fur-
thermore, experimental work by Turrigiano and Nelson (2004)
suggests that the output rates of the neurons in the circuit tend
toward some target rate vT. This results in the specific form of
H = [vT− F(u,w)]wn. Inserting H into Eq. 10, we obtain (see
Materials and Methods Section):

dw

dt
≈ μ (aw2 + bw)︸ ︷︷ ︸

G

+γ
(
vT − wF̃(u)

)
wn︸ ︷︷ ︸

H

. (11)

where F̃(u) ≈ F(u, w)/w and parameters a and b define the spe-
cific type of the plasticity mechanism G. For example, they will
be different for plain Hebbian plasticity (a= 0; b = u F̃ ) and for
BCM (a �= 0, see below).

Synaptic scaling generically stabilizes synapses
The combined synaptic dynamics (Eq. 11) exhibit certain overar-
ching convergence properties reflected in the structure of the phase
space, as can be seen by the existence and stability of fixed points.
Stable fixed points define synaptic values toward which the weights
converge over time. As a central observation we find that whereas
weight-independent synaptic scaling does not stabilize synapses,
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a convex, non-linear weight dependence generically does stabilize
them. In this case stable fixed points are generated regardless of
the underlying specific plasticity mechanism G and independent
of the neuronal dynamics F̃ (see Materials and Methods Section
for a detailed derivation).

These specific results are presented in Table 1. One can see that
for n= 0 and n= 1 one unstable and one stable fixed point exist.

For n= 2 existence and stability of fixed points depend on the
parameters given that the firing rate F̃ and the time scales γ and
μ are positive.

For b > 0 we find that �2 > μa+ γ vT and thus w∗,1 is unstable,
whereas w∗,2 and w∗,3 are stable, independent of the sign of a. For
plain Hebbian plasticity, we indeed have b > 0.

For b < 0, we find that w∗,1 is stable. The stability of the two
other fixed point now depends on a. For a >− (γ /μ)vT, w∗,2 is
stable and w∗,3 unstable and vice versa for a <− (γ /μ)vT. For the

BCM rule we indeed have b > 0 (a = uF̃
2
(u), b = −� u F̃(u)).

The central result of this analysis is that, for n= 2, independent
of the parameters and the actual plasticity rule, two fixed points
are stable and one fixed point is unstable, leading to global sta-
bility, which is not the case for n < 2. In other words: synaptic
scaling will globally stabilize all second order plasticity rules when
scaling has a second order weight dependence (w2). This covers
a very large class of experimentally observed plasticity rules such
as plain Hebbian learning, BCM without sliding threshold, plain
spike-timing dependent plasticity, and others.

Stabilization of systems with one or two synapses
The way synaptic scaling co-acts with synaptic plasticity relies on
whether and how synaptic scaling is weight-dependent. For Heb-
bian plasticity, G= uv, Figure 1 illustrates a typical example for
the simplest neuronal activation function F̃ = u. Already single
synapses (Figures 1A–C) follow the basic principles underlying
the combined dynamics of conventional plasticity and synaptic
scaling.

For weight-independent scaling (n= 0, Figure 1A), the dyna-
mics are dominated by just one unstable fixed point for all but very
small input activities. Synaptic weights typically grow unbound-
edly and diverge to either large positive or large negative val-
ues. Thus, combining Hebbian plasticity with weight-independent
scaling does not yield a globally stable system. The same holds for
other forms of plasticity, for example the Bienenstock-Cooper-
Munro mechanism [BCM, Bienenstock et al. (1982), not shown].
Taken together, synaptic changes due to conventional synaptic
plasticity are generically not stabilized by weight-independent
synaptic scaling.

Does weight-dependent synaptic scaling stabilize? Not neces-
sarily. Linearly weight-dependent synaptic scaling (n= 1) com-
bined with plasticity leads to stable synapses only under cer-
tain conditions. For Hebbian plasticity we observe stability only
for excitatory synapses (Figure 1B), whereas for BCM plasticity
(Figure 1E) we obtain large unstable regions for both inhibitory
and excitatory synapses.

By contrast, synaptic scaling with a convex non-linear weight
dependence n= 2 generically stabilizes globally for both, excita-
tory and inhibitory synapses. As we had shown analytically (see
Table 1) for arbitrary neuronal activation function F̃ this holds

independent of the used second order plasticity mechanisms. Fur-
thermore, one can analytically show that this result also holds for
higher order convex non-linearities (n ∈ {2, 4, 6. . .}) and that non-
integer exponents yield instabilities for negative synapses, but these
technical aspects are omitted here. Higher order exponents appear
unlikely anyhow as the fixed point characteristic becomes more
and more independent of the actual neuronal activation (input
activity).

Any synaptic scaling with convex non-linear weight depen-
dence, i.e., n= 2k, k ∈N implies globally stable synaptic fixed
points. We note below why such higher order non-linearities likely
play no major role in biological neural system.

The weight dynamics and its derivative for even values of n (i.e.,
n= 2k) in general read as follows:

ẇ = μ(aw2 + bw)+ γ w2k − γ F̃w2k+1

The highest order term γ F̃w2k+1 (with γ > 0 and F̃ > 0 ) is
negative for w→∞ and positive for w→−∞. As a result, the
derivative at the largest absolute value of the roots is negative for
both negative and positive values. Thus synapses do not strengthen
unboundedly because |w | remains bounded.

Exponents larger than 2 are, however, likely much less essen-
tial to the description of biophysical synaptic dynamics than
exponents n≤ 2. The reasoning is as follows: Large parts of the
dynamics (Figure 1C) are dominated by almost straight, tilted
lines of fixed points (the exact form depends on the used neuron
model; see Table 1) that occur above a certain, small neuronal acti-
vation value, e.g., u > 0.2. Similar features are also found for BCM
plasticity (Figure 1F, u > 0.6). For n≥ 4 the tilt of these lines is
strongly reduced and they become more and more vertical. This
results in the unrealistic situation where plasticity is almost inde-
pendent of the input. Specifically, different noisy inputs will not
lead to different, distinguishable weights anymore. We, thus, con-
sider exponents substantially larger than 2 unlikely in biophysical
systems.

Finally, we discuss the fixed point properties for non-integer
exponents. We analyzed these systems analytically and numeri-
cally and found that for all non-integer exponents there are no
real-valued fixed points in the range w < 0. For the positive range
w > 0, fixed points exist and are stable for plain Hebbian plasticity
and n > 0 and for BCM plasticity and n > 1. This confirms that
stability is not a singular event but that it is insensitive, existing
continuously within the positive weight range, even extending into
the negative weight range for integer exponents.

The phenomenon of global stabilization is moreover robust to
changes in time scales and works in a broad range of target activ-
ities vT as will be demonstrated by several numerical experiments
below. Systems with multiple synapses exhibit qualitatively the
same features of global stability, cf. Figure 1D for a two-synapse
system.

Thus synaptic scaling with a convex second order weight depen-
dence robustly stabilizes synapses, regardless of the underlying
second order synaptic plasticity mechanism G (Figure 1), the type
of synapse (inhibitory or excitatory), the absolute time scales of
synaptic changes, the target activity of scaling, and the type of
neuronal activation function (Figures 2C–F).
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FIGURE 1 | Combined conventional plasticity and weight-dependent

scaling yields stable synapses. Phase space diagrams for synaptic scaling
w n with different weight-dependencies (n=0: weight-independent scaling,
n=1: linear weight dependence, n=2: non-linear weight dependence) and
plasticity rule [Hebbian (A–D); BCM (E,F)]. Small insets (top-left of each panel)
show the connectivity. White arrows indicate convergent weights, magenta
arrows divergent weights. (A–C), (E,F) Weight changes in dependence of the
input activity for a single input synapse. Colors indicate weight change dw /dt
(blue: decrease, red: increase). White and magenta curves indicate stable and

unstable fixed points of the weights, resp. (D) Simultaneous weight changes
for two synapses showing one cross section through the (w 1,w 2,u1,u2)-phase
space of a two-synapse system, fixing u1 =u2 =1.0. Stable fixed points
indicated by white disks, unstable fixed point at zero weights indicated by
magenta disk. (A) one input, n=0; (B,E) one input n=1; (C,F) one input
n=0; (D) two inputs, n=2, colors here indicate squared rate of change
(dw /dt )2 = (dw 1/dt )2 + (dw 2/dt )2. Parameters: (A–F) Relative time scales
between conventional plasticity and scaling μ/γ =10, target activity vT =0.3,
(D) input activity u1 =u2 =1.0, (E,F) �=0.5.

Generic stabilization of multi-synapse systems
To make a network operational, many synapses need to be stabi-
lized. It is, thus, central to understand how the effects observed
above generalize to multi-synapse systems. This is non-trivial, as
for two or more synapses projecting onto the same neuron, synap-
tic changes influence each other because all inputs determine the
relation between the actual neural output v and target vT, which –
in turn – regulates synaptic growth. Neural inputs u have only slow
influence on the synapses, characterized by small changing rates μ

and γ . Thus, we focus in the following on constant inputs and treat
variations separately. An analysis similar to that for single-synapse

systems (cf. Materials and Methods Section) demonstrates the
generic existence of stable fixed points and numerical simulations
confirm this view. For instance, Hebbian plasticity combined with
non-linearly weight-dependent synaptic scaling in a multi-synapse
system equally yields synapses that are both diverse and stable. This
holds both for constant inputs (Figure 2B) as well as for inputs
that exhibit strong variations such as noise (Figure 2A). The result-
ing synaptic pattern faithfully reflects the distribution of the input
signals.

In general, we observe that all synapses quickly stabilize even if
different plasticity mechanisms co-act and if different time scales
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FIGURE 2 | Stabilization of synaptic weights follows the input

pattern for different neuron models and are not affected by the

neuron model. (A) System stabilization with one neuron that receives
ten noisy inputs. Although the signal to noise distance of the input
activities (shown for the two strongest inputs in the bottom inset) is very
small and, therefore, the signals overlap to a large degree, the system
maps them on distinguishable weights. (B) Neuron with 20 inputs, 10
following a plain Hebb rule, the other 10 the BCM rule using also different
learning rates μ as indicated. (C–F) Weights stabilize also when using
non-linear (spiking) activation functions F. Two neurons provide input to

one target neuron. Inputs were Poisson spike trains with 2 (green) and 3
(blue) spikes per 100 simulations steps. The used neuron models are
Integrate and Fire (firing threshold=0.5) with (C) plain Hebb and (D) BCM
and Izhikevich [“RS” neuron; Izhikevich (2003)] with (E) plain Hebb and (F)

BCM. Parameters: Time axes in simulation steps. (A) relative time scales
of plasticity and scaling μ/γ =10, vT =0.5, (B) μ1 =0.1, μ2 =0.01,
γ =0.001 resulting in a ratio of μ/γ of 100 or 10, resp., vT =0.5, for BCM:
�=0.3. Each group of five inputs receives: u {1, 2, 3, 4, 5} = {0.015,0.018,
0.020, 0.022, 0.025}, (C–F) μ/γ =10, vT =0.1, (E,F) �=0.5. For a detailed
description of the used neuron models see Appendix.

of plasticity are involved at the same neuron (Figure 2B). Fur-
thermore, we find that synaptic diversity stabilizes independent of
the neuronal dynamics, for rate-coded neuron as well as spiking
neurons (Figures 2C–F). To some degree remarkable one should
note that some of these activation functions are quite non-linear,
but stability is not affected.

Here, the reader should be reminded that the dynamics of the
constant-threshold BCM rule are, as already mentioned in the
Methods, comparable to the dynamic of STDP. This fact will be
further discussed in the Discussion.

In the introduction we pointed out that neural systems are
capable of stabilizing different synapse types which coexist in the
network. The results shown in Figure 2 demonstrate that this
is possible when combining plasticity with non-linear scaling:
Synapses are stabilized at the same neuron even when different
rates and different plasticity mechanisms coexist. Synaptic scal-
ing combined with any type of plasticity thus provides a joint
mechanism capable of maintaining synaptic diversity in a neural
circuit.

3.2. EXPERIMENTAL PREDICTIONS
Existing reports that the change of a synaptic weight is inversely
related to its initial size (Abraham and Bear, 1996; Bi and Poo,
1998) are confirmed by plotting dw/dt over w (Figures 3A–D,
dashed curves). In this Figure, we investigate a single-synapse with
Hebbian or BCM plasticity, similar to the setup in Figures 1B,C,F.
If synaptic scaling is linear (n= 1), the dependency results in

straight lines; for a second order characteristic (n= 2), a curved
behavior is observed (compare Figures 3A,B). Curvature for a
BCM rule, with n= 2 (hence, for an STDP-like behavior) is less
pronounced than for a Hebb rule, though (compare Figure 3B
with Figures 3C,D). The data shown in Bi and Poo (1998) had
been fitted by a straight line [see Figure 5 in Bi and Poo (1998)],
but the widely varying distribution of the data points would be
compatible with a curved fit with small curvatures, too, such as
the ones found in Figures 3C,D.

A pronounced LTD/LTP characteristic is observed in Figure 3C
(parts of the curves are below zero), which results from a BCM rule
with high threshold �. Such a behavior is also observed for STDP
with nearly equally strong LTP and LTD parts of the learning win-
dow. Here our analysis predicts that for initially strong synapses
and a high post-synaptic depolarization level, the learning win-
dow will revert. In this case, a situation which normally leads to
LTP would result in LTD and vice versa (right parts of curves).
Thus, synaptic scaling can lead to an inversion of the normally
expected synaptic change, depending on the neuron’s output.
Figure 3D shows an LTP-dominated case, where this inversion
is less pronounced.

In general, for small output values v, hence low levels of post-
synaptic depolarization, theoretically one should expect a different
behavior resulting in weight increase even for relatively large
weights (Figures 3A–D, solid curves). This will be difficult to
measure experimentally though as for small depolarization levels,
plasticity would be very small to begin with.
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FIGURE 3 | Weight change depends on initial weight and on

post-synaptic depolarization level. (A–D) Weight change dw /dt plotted
against initial weight w 0 for different plasticity mechanisms and different
degrees of scaling. Output activity was increased as indicted by the arrows
on the right. In (A,B) the horizontal line at dw /dt =0.01 reflects no scaling
as v = vT.(E,F) Replotting the data from (C,B) now showing weight change
dw /dt plotted against output activity v. Initial weight was increased as
indicted by the arrow on the right. Parameters: vT =0.5, μ=0.1, u=0.2,
(A,B,F) μ/γ =2, (C-E) μ/γ =10.

A clear differentiation between Hebbian versus BCM (or
STDP) plasticity is also visible when replotting the data from
Figures 3B,C now showing the weight change dw/dt plotted
against v (Figures 3F,E).

The results from Figure 3 represent an ideal situation but effects
similar to the ones shown here should be measurable when statis-
tically evaluating plasticity at many synapses under different levels
of depolarization of the post-synaptic neuron and with differently
strong initial synaptic weights.

3.3. SYNAPTIC STABILIZATION IN RECURRENT CIRCUITS
In the final sections we investigate properties that arise from the
combination of plasticity with scaling and which might have influ-
ence on information processing in neural structures, especially in
recurrently wired networks.

The analysis of the combined scaling+ plasticity rule in recur-
rent networks relates to the problem of how to establish cell assem-
blies. While it is generally acknowledged that assembly formation
ought to be an important process for network function, little is
known how this could be achieved in a stable and reliable way.

Here we will show that recurrent networks, where conven-
tional plasticity mechanisms combine with scaling, are capable of

FIGURE 4 | Stabilization of bi-directional, recurrent connections. (A,B)

Input synapses (dashed lines) are fixed. (A) displays synaptic dynamics for
dissimilar inputs, (B) for similar inputs. (C,D) Input synapses are also
allowed to change. (C) displays synaptic dynamics for dissimilar inputs, (D)

for similar inputs. (E) as (D) but with one inhibitory neuron. Parameters:
(A–D) relation between plasticity and scaling μ/γ =10, vT =0.007. (A)

u {1, 2} = {0.01, 0.001} (B) u {1, 2} = {0.002, 0.001} (C) u {1, 2} = {0.01, 0.001} (D,E)

u {1, 2} = {0.002, 0.001}. (E) vT =0.05, excitatory-to-inhibitory connections are
set to w 3,1 =w 3,2 =0.15, and inhibitory-to-excitatory connections are
w 1,3 =w 2,3 =1.0, all unchanging.

mirroring their inputs at the synapses such that these systems can
learn to embed an input pattern in their connectivity. This happens
even in recurrent networks that are random and not specifically
pre-structured.

Analyzing small circuits helps understanding the basics of these
features. Figure 4 displays a reciprocally connected pair of neurons
with one external input each, where either the reciprocal synapses
only (Figures 4A,B) or all synapses (Figures 4C,D) may change.
Depending on the input differences, strong or weak synapses are
stabilized and more or less bi-directionality of this neuron pair is
achieved. As pointed out earlier, such systems stabilize regardless
of the precise rates of change γ , and insensitive to the values of
vT. There may still occur an initial overshoot of some weights if vT

is too large. Purely excitatory, especially recurrent, networks with
substantially lower vT avoid such overshoots. Whether or not such
overshoot may occur in biological circuits needs to be experimen-
tally tested. Perhaps, avoiding overshoot requires unrealistically
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small vT. This requirement, however, immediately disappears in
the presence of inhibition. As Figure 4E illustrates, the same cir-
cuit with an additional inhibitory neuron yields stable weights
without overshoot at approximately the same values as the origi-
nal circuit (Figure 4D). Thus, inhibition has the capability to yield
stable synapses for a range of reasonable target activities and, fur-
thermore, minimize the emergence of divergent weights. Here we
have vT= 0.5, similar to the values used for purely feed-forward
systems (Figures 1 and 2). This finding sheds a new light on the
role of inhibition in neural circuits and suggests that inhibition
may help stabilizing synaptic weights in conjunction with synaptic
scaling.

3.4. WEIGHT PREDICTIONS AGREE WITH EXPERIMENTS
The system introduced above in a recurrent network repro-
duces key qualitative features of synapses observed in experiments
(Figure 5). The theoretical model with Hebbian plasticity and
synaptic scaling with n= 2 (used parameters as for Figures 1C,D)
correctly predicts both, the roughly linear increase or decrease of
synaptic weights with circuit activity (Figure 5A) and the overall
synaptic weight distribution (Figure 5B) found experimentally.

The model predicts a roughly linear relation between input
activity and synaptic weights, where an activity change by some
factor induces a change in the weights by some smaller factor
(main panel of Figure 5A). The prediction is consistent with exper-
imental findings (inset of Figure 5A). This is a non-trivial result,
which holds only due to the specific, roughly linear dependence
of the synaptic fixed points on activity (cf. Figures 1B,C). Increas-
ing neural activity thus implies a shift of the synaptic weights
proportional to their control values.

Further, the weight distribution in the presence of synaptic
scaling was measured (Song et al., 2005) to roughly follow a log-
normal distribution (inset of Figure 5B). Direct numerical simu-
lations of our model system in a recurrent network qualitatively
reproduce the reported distribution (main panel of Figure 5B) for
a large parameter space of μ, γ , and vT. The external input has

the largest influence on the weight distribution, which can be seen
from Figure 5A.

3.5. REPRESENTATION OF INPUT SIGNALS IN RANDOM CIRCUITS
WITH GLOBAL INHIBITION

The structure of the input signals is represented by the distribution
of the weights – at least in the simplest example of feed-forward
connectivity (Figure 2). The question remains how inputs are
reflected in larger circuits. As illustrated by a moderate-size exam-
ple network with 100 randomly connected neurons with global
inhibition, such systems represent their inputs, after a learning
phase, by a trace of stronger synapses (Figure 6).

For instance, if some specific neurons (cf. those labeled a, b,
and c in Figure 6A) receive strong external input signals, while
all others only receive weak random inputs, these specific neurons
initiate a sequence of increased post-synaptic connections that
emerge after a learning phase (Figure 6B). This is different for all
other neurons (cf. neurons labeled i, j, k, which serve as controls).
For those and their post-synaptic targets, connectivity remains low
and random along several connection stages.

Stimulating neurons thus initiates an activity trace propagating
from the stimulated neurons to their post-synaptic targets, which
in turn transmit the activity to their own post-synaptic neurons
and so on, across several stages of post-synaptic connectivity. In
our example of a moderately large, purely random circuit, neural
activity is significantly enhanced up to the third stage of con-
nectivity, compared to the same stages descending from initially
un-stimulated control neurons. By changing the average connec-
tivity in the network the number of enhanced stages changes, too.
If the connectivity is larger than in the here shown example the
external stimulus need less stages to reach the whole network and,
therefore, less stages are significantly different from the control
cases.

As the details of overall circuit connectivity are strongly ran-
dom, a propagating signal may appear more than once at the same
neuron. This leads to some exceptions from reliable transmission,

FIGURE 5 | Model predictions are consistent with experimental

findings. (A) Decrease or increase of network activity proportionally
changes synaptic weights. In experiment, Tetrodotoxin (TTX) inhibits
network activity, whereas Bicuculline (BIC) disinhibits it. A recurrent
network with random connectivity and plastic synapses behaves
comparable to the experimental data. Here, each neuron receives an
external input which is decreased (red) or increased (blue) compared to a
control case (black line). [inset, modified from Turrigiano et al. (1998)].

(B) The same network can be used to predict synaptic weight distribution
(main panel) qualitative consistent with weight distribution experimental
found in a cortical network [inset, modified from Song et al. (2005)]
Parameters: (A) vT =5×10−4, the input is Gaussian distributed around
3×10−4, relative time scales of plasticity and scaling μ/γ =5, Red line is
1% of the control activity (black), and the blue line 200%. (B) Network
size N =100, relation between plasticity and scaling μ/γ =5, vT =5×10−4,
10% random connectivity, u uniformly drawn from (0, 0.001).
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FIGURE 6 | Neuron-specific inputs robustly yield stable synaptic

enhancement along several connection stages. (A) Schematic of
post-synaptic connectivity of selected neurons up to stage four. Three
neurons labeled a, b, c (pink) receive external inputs, neurons i, j, k serve as
controls. Connectivity is only shown for neuron a. Red arrows depict the
first connection stage, green second, blue third, and black the fourth. In this
scheme, each neuron has three post-synaptic connections. As these are
randomly drawn, neurons at all stages may connect to each other. (B)

Neural activities (left column) and synaptic weights (right column) found for
the first stages of post-synaptic connectivity. Three inputs, to a, b, c, are
compared to three controls i, j, and k. Same color code as in (A). Values are
rank ordered as this provides a clearer picture than a histogram, which is
distorted by the binning. Weights descending from input neurons are
significantly different from those descending from the control neurons up
to the third-connection stage (Kolmogorov-Smirnov test, p < 0.01,
asterisks), activities are different up to the second stage. Total number of
connections when starting with three neurons are 9, 27, 81, and 243 along
the first four stages (right). Parameters: Network size N =100, connectivity
3%, initial activation of controls on average u=0.005 and of inputs
u=0.05, vT =0.1, time scale of conventional plasticity relative to scaling
μ/γ =5, 20% global inhibition is performed by decreasing activity of each
neuron according to 20% of the mean activity of the network.

if – due to overlapping post-synaptic connectivity – some neurons
in the post-synaptic stages of control neurons are also located in a
post-synaptic stage of a stimulated neuron. In Figure 6, this effect
is illustrated on purpose for the control neuron j, Figure 6A.

Taken together, these results demonstrate that combining con-
ventional plasticity with non-linearly weight-dependent synaptic
scaling enables a neural circuit to faithfully represent a spe-
cific input pattern, across several stages even if the wiring is
unstructured and randomly.

This may appear remarkable because at later post-synaptic
stages already a large fraction of the entire network may be active
(79 out of 100 neurons at the third post-synaptic stage in our exam-
ple). Thus, the information contained in the inputs has spread over
almost the entire circuit. In spite of this, synapses may still show
a statistically significant trace of the input (Kolmogorov-Smirnov
test, asterisk, p < 0.01). Such specific propagation robustly occurs
across several orders of magnitude of the input and control activ-
ities and also systematically changes with varying vT. The same
signal propagation behavior occurs also without inhibition, albeit
requiring small values for vT (data not shown).

Table 2 shows mean values at the different connectivity stages
averaged over ten numerical experiments. The Kolmogorov-
Smirnov test was used to assess whether input- and control-
distributions are different, which is confirmed at p < 0.01 for all
but the last stages (see asterisk markers in figure and table). This
general picture is expected because at the forth stage the input
activity has been dispersed over about 98 neurons. Dispersion
depends on the relation between connectivity and network size.
Tests for different networks confirm that – as expected – inputs
are represented across more stages in large networks with low con-
nectivity and vice versa (data not shown). Thus, synaptic scaling
combined with conventional forms of plasticity enables random
neural circuits to represent input patterns at specific neurons
across several of their post-synaptic connection stages.

These results suggest using such networks also in behaving sys-
tems. The simultaneous stabilization of synapses and behavior is
a very difficult problem as the behavior creates an ongoing non-
steady state situation reflected at the inputs of the network. It
is, however, possible to embed an initially randomly wired net-
work in a sensori-motor loop and demonstrate that synapses
self-organize into stable input-driven patterns and that the agent
learns appropriate behavior.

4. DISCUSSION
The tendency of real neural networks to achieve firing rate home-
ostasis by synaptic scaling (Turrigiano et al., 1998; Abbott and
Nelson, 2000; Turrigiano and Nelson, 2000, 2004; Stellwagen and
Malenka, 2006) has been discussed by these authors as a potential
solution to the problem of regulating synaptic weight growth. The
current study has shown that plasticity mechanisms augmented by
an additive scaling term will lead to synaptic stability but maintain
synaptic diversity. Conventionally, plasticity rules are extended
by stabilization terms (for example subtractive or multiplicative
terms) to assure limited weight growth (Sejnowski and Tesauro,
1989; Miller and MacKay, 1994; Gerstner and Kistler, 2002). Dif-
ferent biophysical mechanisms exist, which achieve this (Desai
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Table 2 | Statistical evaluation of the storage of an input representation from three inputs (Inputs) compared to three randomly chosen controls

(Controls).

Stage – 1 2 3 4

Activity Inputs 0.0532 0.0218* 0.0074* 0.0045 –

Controls 0.0030 0.0050 0.0048 0.0051 –

Weight Inputs – 0.3304* 0.2159* 0.1572* 0.1383

Controls – 0.1257 0.1425 0.1412 0.1374

This has been done in a recurrent network with 100 neurons with 3% random connectivity along the connections stages (Stage) as defined on the right side of

Figure 6B. Ten experiments were averaged. Asterisk markers depict a significant difference between Inputs and Controls (Kolmogorov-Smirnov Test, p < 0.01).

et al., 1999). In this article we identified the broad and general
stabilizing properties of synaptic scaling. Scaling can stabilize a
network either independently or in conjunction with other weight
regularization mechanisms.

All conventional, correlation-based plasticity rules without
additional stabilization terms (e.g., Hebb, Anti-Hebb, STDP, BCM,
and others) are limited to a second order weight dependence
(G ∼ w2). Thus, the second order form G= aw2+ bw charac-
terizes all generic plasticity mechanisms considered in this work.
Other plasticity rules have been formulated to explicitly include
weight stabilization terms [for example Oja’s rule (Oja, 1982), or
rules with subtractive weight normalization (Miller and MacKay,
1994)]. Those rules by construction contain higher order terms
that may be stabilizing, even without synaptic scaling. At this point
the literature provides a diverse and non-congruent picture about
the mathematical form of such terms. In general, one finds that
stable fixed points arise for all “correctly constructed” plasticity
rules which contain a third order weight dependency. There, the
third order needs to be introduced a compensatory, convergent
(e.g., negative, divisive) term. Some more recent approaches [e.g.,
Clopath et al. (2010)] successfully make use of this fixed point
behavior implicitly.

The situation becomes even more diverse when considering
STDP. The weight stabilization properties of this mechanism have
been discussed in many studies and different additional mecha-
nisms have been suggested to improve on this intrinsic property
[like weight dependent STDP (Van Rossum et al., 2000) or hard
boundaries (Song et al., 2000)]. The current study does not pro-
duce any conflict with these results as scaling can co-act with any
plain or extended STDP rule. Whether or not such an interac-
tion indeed exists could be measured as suggested in Figure 3. In
particular, the strong link between STDP and BCM as discussed
next should be considered here. The long time-scale of scaling
might indeed remove the distinction between STDP and BCM
rules.

Izhikevich and Desai showed in 2003 that BCM and STDP are
strongly related (Izhikevich and Desai, 2003). This can be under-
stood if we consider the mean firing rate v of the post-synaptic
neuron over a long time interval and distribute the spikes equidis-
tantly in time. This leads to a situation where a high post-synaptic
firing rate results in LTP (v > �) and a low rate in LTD (v < �).
This relation holds only for nearest-neighbor STDP (spike-to-
spike association), but Pfister and Gerstner (2006) showed that
STDP with triplets (three spikes leading to a weight change) is
under some conditions equal to BCM, too. In the context of this

study one must consider that synaptic scaling is a rather slow
process. Thus, immediate effects of STDP, which happen on a
much shorter time scale are expected to average out. As a con-
sequence, we expect that on the time scale of synaptic scaling an
existing STDP characteristic may indeed be represented by a BCM
rule.

Conventionally the BCM rule is endowed with a sliding thresh-
old � (Bienenstock et al., 1982). By this the rule is stabilized. We
have omitted this aspect and investigate the constant-threshold
BCM rule instead. The reason for this is that such a sliding � cor-
responds to a shift of the LTP and/or LTD windows along the �T
axis in STDP. For wSTDP [weight-dependent STDP, Van Rossum
et al. (2000)] the problem is comparable to the sliding thresh-
old scheme. Here the LTD part is weight dependent, resulting in
stronger depression for larger synapses. Therefore, again the LTP
and LTD windows are changed over time. There is however no
clear-cut experimental evidence existing for temporal shifts of the
STDP window over long time scales. Thus, the constant-threshold
BCM rule may well represent the most generic STDP-compatible
rule when considering scaling mechanisms.

Our study indicates that synaptic scaling with sufficiently strong,
convex non-linear weight dependence yields stabilization in the
presence of all forms of conventional plasticity. This offers a uni-
fying alternative to the currently existing manifold of theories of
how synaptic plasticity may be stabilized in neural systems.

Earlier studies have suspected a general dependence of scaling
on the current synaptic weight w itself (Abbott and Nelson, 2000;
Turrigiano and Nelson, 2004). Our analysis suggests that synaptic
scaling actually needs to be weight-dependent and must increase
with weight to ensure stability and diversity, a prediction that may
be tested experimentally. For plain Hebbian plasticity, positive
synapses globally stabilize if scaling is linearly weight dependent
(Figure 1B). Generic stabilization also for other plasticity mech-
anisms is observed for non-linear convex scaling (Figures 1C,D).
Little is known to what degree Hebbian mechanisms would also
apply to inhibitory synapses (Kullmann and Lamsa, 2007). The
analysis also shows that the BCM rule together with synaptic
scaling excludes inhibitory synapses as they tend to converge to
zero. Thus, stabilization of Hebbian plasticity by a linear synaptic
scaling mechanism may indeed represent the most prevalent con-
stellation in real networks. The dependency on w makes scaling
a synapse-dependent mechanism as suggested earlier (Rabinow-
itch and Segev, 2006, 2008). Future experimental studies could
address this question by measuring the exponent in H ∼ wn.
Currently there are several mechanisms discussed how synaptic
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scaling might be biophysically realized in neural systems, most
of which favor changes in AMPA receptor accumulation at the
synaptic site (Turrigiano and Nelson, 1998, 2004). It remains,
thus, an interesting question whether and how such an accumu-
lation process would depend on the actual status of the synaptic
weight.

Another experimentally measurable parameter is the target fir-
ing rate vT. As mentioned in the “Materials and Methods Section,”
the mean firing rate of a neuron will normally not be equal to vT

as synaptic plasticity shifts the synaptic weights and, therefore, the
activity to higher values. Thus, only by switching off all synaptic
plasticity without influencing the biological mechanisms of synap-
tic scaling would lead to activities equal to the target firing rate of
the synaptic scaling term.

For small groups of neurons (e.g., two or three cells), embed-
ded in the large cortical network, some local connectivity patterns
(called “synaptic motifs”) are over-represented as compared to
their expected occurrence frequency (Sporns and Kötter, 2004;
Bullmore and Sporns, 2009). Our results suggest that plasticity
combined with synaptic scaling may naturally stabilize motifs. For
instance, in Figure 4 we show that the simplest, bi-directional
motif is stabilized depending on the input activity that arrives at
the synapses. We conjecture that the synaptic scaling may stabilize
more complex motifs, too.

Synaptic patterns (e.g., motifs) are, thus, related to activity
patterns (Timme, 2007). The representation of activity patterns
and their storage by learning mechanisms is a long-standing
problem in neural network theory. In early studies storage has
been robustly achieved for static patterns in time-discrete sys-
tems [e.g., Hopfield network, Hopfield (1982)]. Such approaches
for static pattern representation are still dominating because so
far it has been exceedingly difficult to achieve stable represen-
tations of spatial-temporal patterns in time-continuous systems.
This is problematic, because the dynamic behavioral stability of
animals but also of artificial agents (Steingrube et al., 2010) fun-
damentally relies on the stability of activation patterns, which
need to be acquired and stabilized by learning. With spike-
timing dependent plasticity it is possible to learn and stabilize
weights (Song et al., 2000; Van Rossum et al., 2000). As a con-
sequence STDP has been discussed as a potential mechanism to
store input patterns in a network in a stable way thereby cre-
ating cell assemblies (Izhikevich, 2006). These assemblies would
then activate as soon as the respective input is present (Hebb,
1949; Harris, 2005; Izhikevich, 2006). While promising, only a
few studies have actually achieved pattern representation in such
STDP-regulated networks. These studies, however, make rather
strong, sometimes biophysically questionable assumptions about
network topology (Bienenstock, 1995; Hertz and Prügel-Bennett,
1996; Diesmann et al., 1999; Jun and Jin, 2007), and plastic-
ity mechanisms (Sougné, 2001; Matsumoto and Okada, 2002).
The analysis here suggests that this is due to intrinsically insta-
ble fixed points in systems that change their synaptic weights
with STDP without additional mechanisms [see also Kunkel et al.
(2010)].

The current study shows that such a storage process is easily
achieved by combining plasticity and scaling (Liu and Buono-
mano, 2009; Rossi Pool and Mato, 2010; Savin et al., 2010). Here,

we have specifically addressed the hard problem of a randomly
connected network, where recurrent connections in conjunction
with synaptic dynamics are often assumed to imply instability
(Rossi Pool and Mato, 2010). Contrary to this expectation, we
found that a representation trace of the input emerges along sev-
eral connection stages due to synaptic scaling (Figure 6). This
phenomenon is highly robust against variations of the only three
existing parameters (μ, γ , and vT) suggesting that plasticity com-
bined with scaling may solve the problem of pattern representation
in dynamic networks.

In the numerical experiments shown, network size and con-
nectivity has been kept small to limit input dispersion and reduce
simulation times. Note that already with 1% (Holmgren et al.,
2003) to 10% connectivity, similar to that suggested for cortical
networks, input dispersion is bounded such that in a micro-circuit
of about 106 neurons, a single input may distribute across the
entire network in only 2 stages. This estimate clearly shows that the
formation of long (multi-stage) input traces by plasticity requires
additional, biophysically justifiable developmental constraints on
the network topology.

Experimental and theoretical studies have indeed shown that
real networks follow certain spatial and topological constraints,
which influence the formation of activity patterns (Eguiluz et al.,
2005; Bonifazi et al., 2009; Bullmore and Sporns, 2009). It has been
discussed (Bullmore and Sporns, 2009) that more complex, non-
random topological features can be achieved in a generic way by
structural plasticity (Poirazi and Mel, 2001; Chklovskii et al., 2004;
Holtmaat and Svoboda, 2009), by which axons and dendrites are
anatomically and, thus, functionally rearranged, sometimes over
very long time scales.

As shown above, combining plasticity and scaling mechanisms
allows generating and storing certain basic assembly structures
and creating simple synaptic motifs. Structural plasticity might
provide the additionally required mechanisms for obtaining topo-
logically correct, more complex networks that exhibit functionally
relevant activity patterns across many more network stages (Tet-
zlaff et al., 2010). Thus, the dynamic interaction between plasticity,
synaptic scaling, and structural plasticity will be a highly relevant
topic for future investigations. This study indicates that the stable
formation of diverse synaptic patterns may well be possible in this
case. This can lead to systems in which synapses and behavioral
patterns are stabilized at the same time.
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APPENDIX
USED NEURON MODELS
In the following the equations and parameters of the different neuronal models used in the main text are presented. Fi activity of
neuron i, wij weight connecting neuron i with j, Ii external input to neuron i.

Linear neuron model:

Fi =
∑

j

Fj · wij + Ii

Integrate and Fire model:

Fi =
{

1, if
∑

j
Fj · ωij + Ii � �

0, else

Izhikevich “RS” neuron model:

ẋi = 0.04 x2
i + 5 xi + 140− yi +

∑
j

Fj · ωij + Ii

ẏi = 0.02
(
0.2 xi − yi

)
Fi =

{
1, if xi � 30
0, else

If Fi = 1, then set xi ←−65, and yi ← yi + 8.

SPECIFIC FIXED POINT CALCULATIONS
With the definitions from the “Materials and Methods Section” it is possible to explicitly calculate fixed points for the specific cases.
Thus, we show the final form of the fixed points for n= 2 for one synapse (Figure 1C), plain Hebbian plasticity (i.e., a= 0 and b= u2)
and the simple neuronal activation function F̃ = u. The conjoint plasticity and scaling mechanisms considered throughout the main
text, then takes following form:

ẇ = μ u v + γ (vT − v) w2 = −γ u w3 + γ vT w2 + μ u2w (A1)

and the fixed points are (for plots see Figure 1C):

w∗,1n=2 = 0; w∗,2n=2 =
vT

2 u
+

√
μ u

γ
+

( vT

2 u

)2
; w∗,3n=2 =

vT

2 u
−

√
μ u

γ
+

( vT

2 u

)2
. (A2)

Standard linear stability analysis (calculations not shown) demonstrates that w∗,1 is unstable, w∗,2 is stable, and w∗,3 is stable
if 4 μ u3

(
4 μ u3 + γ vT

) + γ 2 v2
T (1 − v2

T ) > 0 ; the latter generally holds because synaptic scaling acts substantially slower than
conventional plasticity such that μ γ .

In the following, this analysis is expanded to a two synaptic system with plain Hebbian plasticity and a one and a two synaptic system
with BCM.

HEBB-2: TWO SYNAPSES, FEED-FORWARD SYSTEM WITH PLAIN HEBBIAN PLASTICITY
An example is shown in Figure 1D. The dynamical equations are given by:

ẇ1 = μu1 (u1w1 + u2w2)+ γ (vT − u1w1 − u2w2) w2
1

ẇ2 = μu2 (u1w1 + u2w2)+ γ (vT − u1w1 − u2w2) w2
2

Fixed points are calculated as:

w∗,01 = 0, w∗,02 = 0

w∗,11 =
√

u1
2

(
�+ +	+

)
, w∗,12 =

√
u2
2

(
�+ +	+

)
w∗,21 =

√
u1
2

(
�+ −	+

)
, w∗,22 =

√
u2
2

(
�+ −	+

)
w∗,31 =

√
u1
2

(
�−1 −	−

)
, w∗,32 =

√
u2
2

(
�−2 −	−

)
w∗,41 =

√
u1
2

(
�−1 +	−

)
, ω

∗,4
2 =

√
u2
2

(
�−2 +	−

)
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with 	± =
√

v2
T(

u3/2
1 ±u3/2

2

)2 + 4 μ
γ

, �+ = vT

u3/2
1 +u3/2

2

, �−1 = vT

u3/2
1 −u3/2

2

, and �−2 = vT

−u3/2
1 +u3/2

2

. If u1= u2 the denominators of �−1 and �−2

become zero and
(

w∗,31 , w∗,32

)
and

(
w∗,41 , w∗,42

)
do not exist.

BCM-1: ONE SYNAPSE, FEED-FORWARD SYSTEM WITH BCM PLASTICITY
Note, for brevity we do not calculate here the rather simple fixed points for n= 0 or n= 1 for the BCM rule. For n= 1 we only show
the resulting plot in Figure 1E. The results of the following computations for n= 2 are illustrated in Figure 1F. The main equation is
given by:

ẇ = μ u v (v −�)+ γ (vT − v) w2 = −γ u w3 + (
μ u3 + γ vT

)
w2 − μ � u2w

Fixed points are calculated as:

w∗,0n=2 = 0

w∗,1n=2 =
μ u3 + γ vT

2 γ u
+

√(
μ u3 + γ vT

2 γ u

)2

− μ � u

γ

w∗,2n=2 =
μ u3 + γ vT

2 γ u
−

√(
μ u3 + γ vT

2 γ u

)2

− μ � u

γ

BCM-2: TWO SYNAPSES, FEED-FORWARD SYSTEM WITH BCM PLASTICITY
The main equations are given by:

ẇ1 = μu1 (u1w1 + u2w2) (u1w1 + u2w2 −�)+ γ (vT − u1w1 − u2w2) w2
1

ẇ2 = μu2 (u1w1 + u2w2) (u1w1 + u2w2 −�)+ γ (vT − u1w1 − u2w2) w2
2

Fixed points are calculated as:

w∗,01 = 0, w∗,02 = 0

w∗,11 =
√

u1
2

(
	+ − �+

)
, w∗,12 =

√
u2
2

(
	+ − �+

)
w∗,21 =

√
u1
2

(
	+ + �+

)
, w∗,22 =

√
u2
2

(
	+ + �+

)
w∗,31 =

√
u1
2

(
	−1 − �−

)
, w∗,32 =

√
u2
2

(
	−2 + �−

)
w∗,41 =

√
u1
2

(
	−1 + �−

)
, w∗,42 =

√
u2
2

(
	−2 − �−

)

with �± =
√√√√ v2

T(
u3/2

1 ±u3/2
2

)2 − 2 μ (2 �−vT )
γ

+ μ2
(

u3/2
1 ±u3/2

2

)2

γ 2 and 	+ =
(

μ
(

u3/2
1 +u3/2

2

)2+γ vT

)
γ

(
u3/2

1 +u3/2
2

) , 	−1 =
(

μ
(

u3/2
1 −u3/2

2

)2+γ vT

)
γ

(
u3/2

1 −u3/2
2

) and

	−2 =
(

μ
(
−u3/2

1 +u3/2
2

)2+γ vT

)
γ

(
−u3/2

1 +u3/2
2

) .
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