frontiers in

COMPUTATIONAL NEUROSCIENCE

ORIGINAL RESEARCH ARTICLE
published: 10 January 2012
doi: 10.3389/fncom.2011.00050

=

Derivation of a novel efficient supervised learning
algorithm from cortical-subcortical loops

Ashok Chandrashekar’* and Richard Granger?

" Department of Computer Science, Dartmouth College, Hanover, NH, USA
2 Psychological and Brain Sciences, Thayer School of Engineering and Computer Science, Dartmouth College, Hanover, NH, USA

Edited by:
Hava T Siegelmann, Rutgers
University, USA

Reviewed by:

Thomas Boraud, Universite de
Bordeaux, fFrance

Taro Toyoizumi, RIKEN/BSI, Japan

*Correspondence:

Ashok Chandrashekar, Department of
Computer Science, Dartmouth
College, Hinman Box 6211, Hanover,
NH 03775, USA.

e-mail: ashok.chandrashekar@

Although brain circuits presumably carry out powerful perceptual algorithms, few instances
of derived biological methods have been found to compete favorably against algorithms
that have been engineered for specific applications. We forward a novel analysis of a subset
of functions of cortical-subcortical loops, which constitute more than 80% of the human
brain, thus likely underlying a broad range of cognitive functions. We describe a family of
operations performed by the derived method, including a non-standard method for super-
vised classification, which may underlie some forms of cortically dependent associative
learning. The novel supervised classifier is compared against widely used algorithms for
classification, including support vector machines (SVM) and k-nearest neighbor methods,
achieving corresponding classification rates — at a fraction of the time and space costs.
This represents an instance of a biologically derived algorithm comparing favorably against

dartmouth.edu

widely used machine learning methods on well-studied tasks.

Keywords: biological classifier, hierarchical, hybrid model, reinforcement, unsupervised

1. INTRODUCTION

Distinct brain circuit designs exhibit different functions in human
(and other animal) brains. Particularly notable are studies of the
basal ganglia (striatal complex), which have arrived at closely-
related hypotheses, from independent laboratories, that the system
carries out a form of reinforcement learning (Sutton and Barto,
1990; Schultz et al., 1997; Schultz, 2002; Daw, 2003; O’Doherty
et al., 2003; Daw and Doya, 2006); despite ongoing differences
in the particulars of these approaches, their overall findings are
surprisingly concordant, corresponding to a still-rare instance of
convergent hypotheses of the computations produced by a partic-
ular brain circuit. Models of thalamocortical circuitry have not yet
converged to functional hypotheses that are as widely agreed-on,
but several different approaches nonetheless hypothesize the abil-
ity of thalamocortical circuits to perform unsupervised learning,
discovering structure in data (Lee and Mumford, 2003; Rodriguez
et al., 2004; Granger, 2006; George and Hawkins, 2009). Yet thal-
amocortical and striatal systems do not typically act in isolation;
they are tightly connected in cortico-striatal loops such that virtu-
ally each cortical area interacts with corresponding striatal regions
(Kemp and Powell, 1971; Alexander and DeLong, 1985; McGeorge
and Faull, 1988). The resulting cortico-striatal loops constitute
more than 80% of human brain circuitry (Stephan et al., 1970,
1981; Stephan, 1972), suggesting that their operation provides the
underpinnings of a very broad range of cognitive functions.

We forward a new hypothesis of the interaction between cor-
tical and striatal circuits, carrying out a hybrid of unsupervised
hierarchical learning and reinforcement, together achieving a
cortico-striatal loop algorithm that performs a number of dis-
tinct operations of computational utility, including supervised
and unsupervised classification, search, object and feature local-
ization, and hierarchical memory organization. For purposes of

the present paper we focus predominantly on the particular task
of supervised learning.

Traditional supervised learning methods typically identify class
boundaries by focusing primarily on the class labels, whereas unsu-
pervised methods discover similarity structure occurring within a
dataset; two distinct tasks with separate goals, typically carried out
by distinct algorithmic approaches.

Widely used supervised classifiers such as support vector
machines (Vapnik, 1995), supervised neural networks (Bishop,
1996), and decision trees (Breiman et al., 1984; Buntine, 1992), are
so-called discriminative models, which learn separators between
categories of sample data without learning the data itself, and with-
out illuminating the similarity structure within the data set being
classified.

The cortico-striatal loop (CSL) algorithm presented here is
“generative,”i.e., it is in the category of algorithms that models data
occurring within each presented class, rather than seeking solely
to identify differences between the classes (as would a “discrimi-
native” method). Generative models are often taken as performing
excessive work in cases where the only point is to distinguish
among labeled classes (Ng and Jordan, 2002). The CSL method
may thus be taken as carrying out more tasks than classification,
which we indeed will see it does. Nonetheless, we observe the
behavior of the algorithm in the task of classification, and com-
pare it against discriminative classifiers such as support vectors,
and find that even in this restricted (though very widely used)
domain of application, the CSL method achieves comparable clas-
sification as discriminative models, and uses far less computational
cost to do so, despite carrying out the additional work entailed in
generative learning.

The approach combines the two distinct tasks of unsupervised
classification and reinforcement, producing a novel method for yet

www.frontiersin.org

January 2012 | Volume 5 | Article 50 | 1

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/about
http://www.frontiersin.org/Iterative_computations_of_cortico-striatal_loops/10.3389/fncom.2011.00050/abstract
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=32923&d=1&sname=AshokChandrashekar&name=Science
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=2512&d=1&sname=RichardGranger&name=Science
mailto:ashok.chandrashekar@{\penalty -\@M }dartmouth.edu
http://www.frontiersin.org
http://www.frontiersin.org/Iterative_computations_of_cortico-striatal_loops/archive

Chandrashekar and Granger

Iterative computations of cortico-striatal loops

another task: that of supervised learning. The new method iden-
tifies supervised class boundaries, as a byproduct of uncovering
structure in the input space that is independent of the super-
vised labels. It performs solely unsupervised splits of the data into
similarity-based clusters. The constituents of each subcluster are
checked to see whether or not they all belong to the same intended
supervised category. If not, the algorithm makes another unsu-
pervised split of the cluster into subclusters, iteratively deepening
the class tree. The process repeats until all clusters contain only (or
largely) members of a single supervised class. The result is the con-
struction of a hierarchy of mostly mixed classes, with the leaves of
the tree being “pure” categories, i.e., those whose members contain
only (or mostly) a single shared supervised class label.
Some key characteristics of the method are worth noting.

e Only unsupervised splits are performed, so clusters always
contain only members that are similar to each other.

o In the case of similar-looking data that belong to distinct super-
vised categories (e.g., similar-looking terrains, one leading to
danger and one to safety), these data will constitute a diffi-
cult discrimination; i.e., they will reside near the boundary that
partitions the space into supervised classes.

e In cases of similar data with different class labels, i.e., difficult
discriminations, the method will likely perform a succession
of unsupervised splits before happening on one that splits the
dangerous terrains into a separate category from the safe ones.

In other words, the method will expend more effort in cases of
difficult discriminations. (This characteristic is reminiscent of the
mechanism of support vectors, which identify those vectors near
the intended partition boundary, attempting to place the boundary
so as to maximize the distance from those vectors to the bound-
ary.) Moreover, in contrast to supervised methods that provide
expensive, detailed error feedback at each training step (instruct-
ing the method as to which supervised category the input should
have been placed in), the present method uses feedback that is
comparatively far more inexpensive, consisting of a single bit at
each training step, telling the method whether or not an unsuper-
vised cluster is yet “pure”; if so, the method stops for that node; if
not, the method performs further unsupervised splits.

This deceptively simple mechanism not only produces a super-
vised classifier, but also uncovers the similarity structure embed-
ded in the dataset, which competing supervised methods do not.
Despite the fact that competing algorithms (such as SVM and Knn)
were designed expressly to obtain maximum accuracy at super-
vised classification, we present findings indicating that even on
this task, the CSL algorithm achieves comparable accuracy, while
requiring significantly less computational resource cost.

In sum, the CSL algorithm, derived from the interaction of
cortico-striatal loops, performs an unorthodox method that rivals
the best standard methods in classification efficacy, yet does so in
a fraction of the time and space required by competing methods.

2. CORTICO-STRIATAL LOOPS

The basal ganglia (striatal complex), present in reptiles as well as
in mammals, is thought to carry out some form of reinforcement
learning, a hypothesis shared across a number of laboratories (Sut-
ton and Barto, 1990; Schultz et al., 1997; Schultz, 2002; Daw, 2003;

O’Doherty et al., 2003; Daw and Doya, 2006). The actual neural
mechanisms proposed involve action selection through a maxi-
mization of the corresponding reward estimate for the action on
the task (see Brown et al., 1999; Gurney et al., 2001; Daw and Doya,
2006; Leblois et al., 2006; Houk et al., 2007 for a range of views on
action selection). This reward estimation occurs in most models
of the striatum through the regulation of the output of the neuro-
transmitter dopamine. Therefore, in computational terms we can
characterize the functionality of the striatum as an abstract search
through the space of possible actions, guided by dopaminergic
feedback.

The neocortex and thalamocortical loops are thought to hier-
archically organize complex fact and event information, a hypoth-
esis shared by multiple researchers (Lee and Mumford, 2003;
Rodriguez et al., 2004; Granger, 2006; George and Hawkins, 2009).
For instance, in Rodriguez et al. (2004) the anatomically recog-
nized “core” and “matrix” subcircuits are hypothesized to carry
out forms of unsupervised hierarchical categorization of static
and time-varying signals; and in Lee and Mumford (2003), George
and Hawkins (2009), Riesenhuber and Poggio (1999), and Ullman
(2006) and many others, hypotheses are forwarded of how corti-
cal circuits may construct computational hierarchies; these studies
from different labs propose related hypotheses of thalamocortical
circuits performing hierarchical categorization.

It is widely accepted that these two primary telencephalic struc-
tures, cortex and striatum, do not act in isolation in the brain;
they work in tight coordination with each other (Kemp and Pow-
ell, 1971; Alexander and DeLong, 1985; McGeorge and Faull,
1988). The ubiquity of this repeated architecture (Stephan et al,,
1970, 1981; Stephan, 1972) suggests that cortico-striatal circuitry
underlies a very broad range of cognitive functions. In particular,
it is of interest to determine how semantic cortical informa-
tion could provide top-down constraints on otherwise too-broad
search during (striatal) reinforcement learning (Granger, 2011).
In the present paper we study this interaction in terms of subsets
of the leading extant computational hypotheses of the two com-
ponents: thalamocortical circuits for unsupervised learning and
the basal ganglia/striatal complex for reinforcement of matches
and mismatches. If these bottom-up analyses of cortical and stri-
atal function are taken seriously, it is of interest to study what
mechanisms may emerge from the interaction of the two mech-
anisms when engaged in (anatomically prevalent) cortico-striatal
loops.. We adopt straightforward and tractable simplifications of
these models, to study the operations that arise when the two
are interacting. Figure 1 illustrates a hypothesis of the func-
tional interaction between unsupervised hierarchical clustering
(uhc; cortex) and match-mismatch reinforcement (mm; striatal
complex), constituting the integrated mechanism proposed here.

The interactions in the simplified algorithm are modeled in
part on mechanisms outlined in Granger (2006): a simplified
model of thalamocortical circuits produces unsupervised clus-
ters of the input data; then, in the CSL model, the result of the
clustering, along with the corresponding supervised labels, are
examined by a simplified model of the striatal complex. The full
computational models of the thalamocortical hierarchical clus-
tering and sequencing circuit and striatal reinforcement-learning
circuit yield interactions that are under ongoing study, and will, it
is hoped, lead to further derivation of additional algorithms. For

Frontiers in Computational Neuroscience | Iterative computations of cortico-striatal loops

January 2012 | Volume 5 | Article 50 | 2

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Iterative_computations_of_cortico-striatal_loops
http://www.frontiersin.org/Iterative_computations_of_cortico-striatal_loops/archive

Chandrashekar and Granger

Iterative computations of cortico-striatal loops

FIGURE 1 | Simplified hypothesis of the computations of
cortico-striatal interaction. (Left) Inputs (e.g., images) arrive together with
associated labels (A, B, etc.). (Top right) Unsupervised hierarchical
clustering (uhc) categorizes the inputs by their similarity, without initial
regard to labels. (Far right) The match—-mismatch mechanism (mm) matches
the class membership labels within each of these unsupervised categories.
If the members of a category all have the same (matching) labels, a “+" is
returned; if there are mismatches, a “—" is returned. (Bottom right) In the
latter case, the clustering mechanism iteratively deepens the hierarchical
tree by creating subclusters (e.g., central node in the diagram); these in
turn are checked for label consistency, as before. The process iterates until
the leaf nodes of the unsupervised tree contain only category members of
a single label. (See text).

the present paper, we use just small subsets of the hypothesized
functions of these structures: solely the hypothesized hierarchical
clustering function of the thalamocortical circuit, and a very-
reduced subset of the reinforcement-learning capabilities of the
striatal complex, such that it does nothing more than compare
(match / mismatch) the contents of a proposed category, and
return a single bit corresponding to whether the contents all have
been labeled as "matching" each other (1) or not (0). This very-
reduced RL mechanism can be thought of simply as rewarding
or punishing a category based on its constituents. In particu-
lar the proposed simplified striatal mechanism returns a single
bit (correct/incorrect) denoting whether the members of a given
unsupervised cluster all correspond to the same supervised “label.”
If not, the system returns a “no” (“~”) to the unsupervised cluster-
ing mechanism, which in turn iterates over the cluster producing
another, still unsupervised, set of subclusters of the “impure”
cluster. The process continues until each unsupervised subcluster
contains members only (or mostly, in a variant of the algorithm)
of a single category label.

In sum, the mechanism uses only unsupervised categorization
operations, together with category membership tests. These two
mechanisms result in the eventual iterative arrival at categories
whose members can be considered in terms of supervised classes.

Since only unsupervised splits are performed, categories (clus-
ters) always contain only members that are similar to each other.
The tree may generate multiple terminal leaves corresponding to
a given class label; in such cases, the distinct leaves correspond
to dissimilar class subcategories, eventually partitioned into dis-
tinct leaf nodes. The mechanism can halt rapidly if all supervised
classes correspond to similarity-based clusters; i.e., if class labels

are readily predictable from their appearance. This corresponds
to an “easy” discrimination task. When this is not the case, i.e., in
instances where similar-looking data belong to different labeled
categories (e.g., similar mushrooms, some edible and some poiso-
nous), the mechanism will be triggered to successively subdivide
clusters into subclusters, as though searching for the characteristics
that effectively separate the members of different labels.

In other words, less work is done for “easy” discriminations;
and only when there are difficult discriminations will the mech-
anism perform additional steps. The tree becomes intrinsically
unbalanced as a function of the lumpiness of the data: branches
of the tree are only deepened in regions of the space where the
discriminations are difficult, i.e., where members of two or more
distinct supervised categories are close to each other in the input
space. This property is reminiscent of support vectors, which iden-
tify boundaries in the region where two categories are closest (and
thus where the most difficult discriminations occur).

A final salient feature of the mechanism is its cost. In con-
trast to supervised methods, which provide detailed, expensive,
error feedback at each training step (telling the system not only
when a misclassification has been made but also exactly which class
should have occurred), the present method uses feedback that by
comparison is extremely inexpensive, consisting of a single bit, cor-
responding to either “pure” or “impure” clusters. For pure clusters,
the method halts; for impure clusters, the mechanism proceeds to
deepen the hierarchical tree.

As mentioned, the method is generative, and arrives at rich
models of the learned input data. It also produces multiclass
partitioning as a natural consequence of its operation, unlike
discriminative supervised methods which are inherently binary,
requiring extra mechanisms to operate on multiple classes.

Overall, this deceptively simple mechanism not only produces
a supervised classifier, but also uncovers the similarity structure
embedded in the dataset, which competing supervised methods do
not. The terminal leaves of the tree provide final class information,
whereas the internal nodes provide further information: they are
mixed categories corresponding to meta labels (e.g., superordinate
categories; these also can provide information about which classes
are likely to become confused with one another during testing.

In the next section we provide an algorithm that retains func-
tional equivalence with the biological model for supervised learn-
ing described above while abstracting out the implementation
details of the thalamocortical and striatal circuitry. Simplifying
the implementation enables investigation of the algorithmic prop-
erties of the model independent of its implementation details
(Marr, 1980). It also, importantly, allows us to test our model on
real-world data and compare directly against standard machine
learning methods. Using actual thalamocortical circuitry to per-
form the unsupervised data clustering and the mechanism for
the basal ganglia to provide reinforcement feedback, would be
an interesting task for the distinct goal of investigating potential
implementation-level predictions; this holds substantial potential
for future research.

We emphasize that our focus is to use existing hypotheses of
telencephalic component function already posited in the literature;
these mechanisms lead us to specifically propose a novel method
by which supervised learning is achieved by the unlikely route of

www.frontiersin.org

January 2012 | Volume 5 | Article 50 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Iterative_computations_of_cortico-striatal_loops/archive

Chandrashekar and Granger

Iterative computations of cortico-striatal loops

combining unsupervised learning with reinforcement. This kind
of computational-level abstraction and analysis of biological enti-
ties continues in the tradition of many prior works, including
Suri and Schultz (2001), Schultz (2002), Daw and Doya (2006),
Lee and Mumford (2003), Rodriguez et al. (2004), George and
Hawkins (2009), Marr (1980), Riesenhuber and Poggio (1999),
Ullman (2006), and many others.

3. SIMPLIFIED ALGORITHM

In our simplified algorithm, we refer to a method which we
term PARTITION, corresponding to any of a family of cluster-
ing methods, intended to capture the clustering functionality of
thalamocortical loops as described in the previous sections; and
we refer to a method we term SUBDIVIDE, corresponding to
any of a family of simple reinforcement methods, intended to
capture the reinforcement-learning functionality of the basal gan-
glia/striatal complex as described in the previous sections. These
operate together in an iterative loop corresponding to cortico-
striatial (cluster—reinforcement) interaction: SUBDIVIDE checks
for the “terminating” conditions of the iterative loop by examin-
ing the labels of the constituents of a given cluster and returning
a true or false response. The resulting training method builds a
tree of categories which, as will be seen, has the effect of per-
forming supervised learning of the classes. The leaves of the tree
contain class labels; the intermediate nodes may contain members
of classes with different labels. During testing, the tree is traversed
to obtain the label prediction for the new samples. Each data sam-
ple (belonging to one of K labeled classes) is represented as a vector
x € R™. During training, each such vector x; has a corresponding
label y; € 1, ... K. (The subsequent “Experiments” section below
describes the methods used to transform raw data such as nat-
ural images into vector representations in a domain-dependent
fashion.)

3.1. TRAINING

The input to the training procedure is the training dataset consist-
ing of (x;, y;) pairs where x; is an input vector and y; is its intended
class label, as in all supervised learning methods. The output is a
tree that is built by performing a succession of unsupervised splits
of the data. The data corresponding to any given node in the tree
is a subset of the original training dataset with the full dataset cor-
responding to the root of the tree. The action performed with the
data at a node in the tree is an unsupervised split, thereby generat-
ing similarity-based clusters (subclusters) of the data within that
tree node. The unsupervised split results in expansion (deepening)
of the tree at that node, with the child nodes corresponding to the
newly created unsupervised data clusters. The cluster represen-
tations corresponding to the children are recorded in the current
node. These representations are used to determine the local branch
that will be taken from this node during testing, in order to obtain
a class prediction on a new sample. For each of the new children
nodes, the labels of the samples within the cluster are examined,
and if they are deemed to be sufficiently pure, i.e., a sufficient per-
centage of the data belong to the same class, then the child node
becomes a (terminal) leaf in the tree. If not, the node is added
to a queue which will be subjected to further processing, growing
the tree. This queue is initialized with the root of the tree. The

procedure (sketched in Algorithm 1 below) proceeds until the
queue becomes empty.

To summarize the mechanism, the algorithm attempts to find
clusters based on appearance similarity, and when these clusters
don’t match with the intended (supervised) categories, reinforce-
ment simply gives the algorithm the binary command to either
split or not split the errant cluster. The behavior of the algorithm
on sample data is illustrated in Figure 2. The input space of images
is partitioned by successively splitting the corresponding training
samples into subclusters at each step.

3.1.1. Picking the right branch factor

Since the main free parameter in the algorithm is the number
of unsupervised clusters to be spawned from any given node in
the hierarchy, the impact of that parameter on the performance
of the algorithm should be studied. This quantity corresponds
to the branching factor for the class tree. We initially propose a
single parameter as an upper bound for the branch factor: K#,
which fixes the largest number of branches that can be spawned
from any node in the tree. Through experimentation (discussed
in the Results section) we have determined that (i) very small val-
ues for this parameter result in slightly lower prediction accuracy;

Input: Dataset: X = {z; € RM} with labels
Y = {y; € {1,2,3.K}}
Output: Class Tree: A tree rooted at the node
TRoot
Init: TRoot.X = X, TRoot.Y = Y; TRoot.Labels =
LABELSET(Y)
Q = [I; Add(Q, TRoot);
while Q is not empty do
qn = First node in Q
if SUBDIVIDE(X,,,, Yyn) = true then
[Centroids, Clusters] = PARTITION (X4,
K*)
foreach Cluster C), do
Node T
T.X = Clusters[k]
T.Labels = LABELSET(Y(T.X))
gn.Branches[k] = Centroids[k]
qn.Children[k] = T
Add(Q, T)
end
end
end

Algorithm 1 | A sketch of the CSL learning algorithm. The method
constructs a meta class tree, which records unsupervised structure within
the data, as well as providing a means to perform class prediction on novel
samples. The function termed PARTITION denotes an unsupervised
clustering algorithm, which can in principle be any of a family of clustering
routines; selections for this algorithm are described later in the text. The
subroutine SUBDIVIDE determines if the data at a tree node gn all belong
to the same class or not. If the data come from multiple classes,
SUBDIVIDE returns true and otherwise, false. See text for further
description of the derivation of the algorithm.

Frontiers in Computational Neuroscience | lterative computations of cortico-striatal loops

January 2012 | Volume 5 | Article 50 | 4

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Iterative_computations_of_cortico-striatal_loops
http://www.frontiersin.org/Iterative_computations_of_cortico-striatal_loops/archive

Chandrashekar and Granger

Iterative computations of cortico-striatal loops

Motorbikes

Bicycles

Cougars

FIGURE 2 | A simplified illustration of the iterative learning process with
labeled data. Images are successively split into two partitions in an
unsupervised fashion (i.e., by similarity). The partitioning of data proceeds

iteratively until the clusters formed are pure with respect to their labels. For
each split, on either side of the dividing hyperplane, the means are shown as
an overlay of the images that fall on the corresponding side of the hyperplane.

(ii) for sufficiently large values, the parameter setting has no sig-
nificant impact on the performance efficacy of the classifier; and
(iii) larger values of the parameter modestly increase the memory

requirements of the clustering algorithm and thus the runtime of
the learning stage (see the Results section below for further detail).
(It is worth noting that selection of the best branch factor value

www.frontiersin.org

January 2012 | Volume 5 | Article 50 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Iterative_computations_of_cortico-striatal_loops/archive

Chandrashekar and Granger

Iterative computations of cortico-striatal loops

may be obtained by examination of the distribution of the data
to be partitioned in the input space, enabling automatic selection
of the ideal number of unsupervised clusters without reference
to the number of distinct labeled classes that occur in the space.
Future work may entail the study of existing methods for this
approach, Baron and Cover, 1991; Teh et al., 2004, as potential
adjunct improvements to the CSL method.)

3.2. TREE PRUNING

Categorization algorithms are often subject to overfitting the data.
Aspects of the CSL algorithm can be formally compared to those
of decision trees, which are subject to overfitting.

Unlike decision trees, the classes represented at the leaves of the
CSL tree need not be regarded as conjunctions of attribute values
on the path from the root, and can be treated as fully represented
classes by themselves. (We refer to this as the “leaf independence”
property of the tree; this property will be used when we describe
testing of the algorithm in the next section.) Also, since the splits
are unsupervised and based on multidimensional similarity (also
unlike decision trees), they exhibit robustness w.r.t. variances in
small subsets of features within a class.

Both of these characteristics (leaf independence and unsuper-
vised splitting) theoretically lead to predictions of less overfitting
of the method.

In addition to these formal observations, we studied overfit-
ting in the CSL method empirically. Analogously to decision trees,
we could choose either to stop growing the tree before all leaves
were perfectly pure (and potentially overfit), or to build a full
tree and then somewhat prune it back. Both methods improve
the overfitting problem observed in decision trees. Experiments
with both methods in the CSL algorithm found that neither one
had a significant effect on prediction accuracy. Thus, surprisingly,
both theoretical and empirical studies find that the CSL class trees
generalize well without overfitting; the method is unexpectedly
resistant to overfitting.

33. TESTING

During testing, the algorithm is presented with previously unseen
data samples whose class we wish to predict. The training
phase created an appearance-based class hierarchy. Since the
tree, including the “pure class” leaves, is generative in nature,
there are two alternative procedures for class prediction. One
is that of descending the tree, as is done in decision trees.
However, in addition, the “leaf independence” property of the
CSL tree, as described in the previous section (which does
not hold for decision trees), enables another testing method,
which we refer to as KNN-on-leaves, in which we only attend
to the leaf nodes of the tree, as described in the second sub-
section below. (This property does not hold for decision trees,
and thus this additional testing method cannot be applied to
decision trees). The two test methods have somewhat different
memory and computation costs and slightly different prediction
accuracies.

33.1. Tree descent
This approach starts at the root of the class tree, and descends. At
every node, the test datum is compared to the cluster centroids

stored at the node to determine the branch to take. The branch
taken corresponds to the closest centroid to the test datum; i.e.,
a decision is made locally at the node. This provides us a unique
path from the root of the class hierarchy to a single leaf; the stored
category label at that leaf is used to predict the label of the input.
Due to tree pruning (described above), the leaves may not be com-
pletely pure. As a result, instead of relying on any given class being
present in the leaves, the posterior probabilities for all the cate-
gories represented at the leaf are used to predict the class label for
the sample.

332, KNN-on-leaves

In this approach, we make a note of all the leaves in the tree,
along with the cluster representation in the parent of the leaf node
corresponding to the branch which leads to the leaf. We then do K-
nearest neighbor matching of the test sample with all these cluster
centroids that correspond to the leaves. The final label predicted
corresponds to the label of the leaf with the closest centroid. This
approach implies that only the leaves of the tree need to be stored,
resulting in a significant reduction in the memory required to
store the learned model. However, a penalty is paid in recognition
time, which in this case is proportional to the number of leaves in
the tree.

The memory required to store the model in the tree descent
approach is higher than that for the KNN-on-leaves approach.
However, tree descent offers a substantial speedup in recognition,
as comparisons need to be performed only along a single path
through the tree from the root to the final leaf. The algorithm is
sketched below in Algorithm 2.

We expect that the KNN-on-leaves variant will yield better pre-
diction accuracy as the decision is made at the end of the tree and

Input: » € RM , Class tree: TRoot
Output: y € 1,2, .. K
Init: Tree Node T = TRoot
while T is not leaf do
mostSim =0
for k =1: |T.Children| do
sim = SIMILARITY(x, T.Centroids[k])
if sim > mostSim then
mostSim = sim

branch = k
en

end

T = T.Children[branch]
end

y = T.LabelSet

Algorithm 2 | A sketch of the tree descent algorithm for classifying a new
data sample. The method starts at the root node and descends, testing the
sample datum against each node encountered to determine the branch to
select for further descent. The result is a unique path from the root to a
single leaf; the stored category at that leaf is the prediction of the label of
the input. In the event of impure leaves, the posterior probabilities for all
categories in the leaf are used to predict the class label of the sample. See
text for further description.

Frontiers in Computational Neuroscience | Iterative computations of cortico-striatal loops

January 2012 | Volume 5 | Article 50 | 6

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Iterative_computations_of_cortico-striatal_loops
http://www.frontiersin.org/Iterative_computations_of_cortico-striatal_loops/archive

Chandrashekar and Granger

Iterative computations of cortico-striatal loops

hence the partitioning of the input space is expected to exhibit
better generalization. In the case of tree descent, since decisions
are made locally within the tree, if the dataset has high variance,
then it is possible that a wrong branch will be taken early on in the
tree, leading to inaccurate prediction. This problem is common to
alarge family of algorithms, including decision trees. We have per-
formed experiments to compare the two test methods; the results
confirm that the KNN-on-leaves method exhibits marginally bet-
ter prediction than the tree-descent method. The behavior of the
two methods is illustrated in Figure 3.

4. CLUSTERING METHODS

The only remaining design choice is which unsupervised clus-
tering algorithm to employ for successively partitioning the data
during training, and the corresponding similarity measure. The
choice can change depending on the type of data to be classified,
while the overall framework remains the same, yielding a poten-
tial family of closely related variants of the CSL algorithm. This
enables flexibility in selecting a particular unsupervised clustering
algorithm for a given domain and dataset, without modifying any-
thing else in the algorithm. (Using different clustering algorithms
within the same class tree is also feasible as all decisions are made
locally in the tree.)

There are numerous clustering algorithms from the simple and
efficientk-means (Lloyd, 1982), self organizing maps (SOM; Kaski,
1997) and competitive networks (Kosko, 1991), to the more elabo-
rate and expensive probabilistic generative algorithms like mixture
of Gaussians, Probabilistic latent semantic analysis (PLSA; Hoff-
man, 1999) and Latent Dirichlet Allocation (LDA; Blei et al., 2003);
each has merits and costs. Given the biological derivation of the
system, we began by choosing k-means, a simple and inexpen-
sive clustering method that has been discussed previously as a
candidate system for biological clustering (Darken and Moody,
1990); the method could instead use SOM or competitive learn-
ing, two highly related systems. (It remains quite possible that more
robust (and expensive) algorithms such as PLSA and LDA could
provide improved prediction accuracy. Improvements might also
arise by treating the data at every node as a mixture of Gaus-
sians, and estimating the mixture parameters using the expectation
maximization (EM) algorithm.)

41. k-MEANS

k-Means is one of the most popular algorithms to cluster n vec-
tors based on distance measure into k partitions, where k< n. It
attempts to find the centers of natural clusters in the data. The
objective that k-means tries to minimize is the total intra cluster

Leopards

— — — — —

\ Leopards

FIGURE 3 | Two methods by which the CSL algorithm predicts
category membership at test time. (Left) Class prediction via
hierarchical descent. At each step, a new (unknown) sample will fall
on one or the other side of a classification hyperplane. The decision
provides a path through the class tree at each node. At the leaves, the

class prediction is obtained. The numbering gives the order in which
the hyperplanes are probed. (Right) Class prediction using only leaves
of class tree. All leaves are considered simultaneously; the test
sample is compared to each leaf and the class prediction is obtained
using KNN.

www.frontiersin.org

January 2012 | Volume 5 | Article 50 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Iterative_computations_of_cortico-striatal_loops/archive

Chandrashekar and Granger

Iterative computations of cortico-striatal loops

variance, or, the squared error function:

K
CDZZ Z (xj—/u)2

i=1 xjeC,-

where there are K clusters S;, i=1, 2, ..., K and u; is the centroid
or mean point of all the points x; € C;.

When k-means is used for the unsupervised appearance-based
clustering at the nodes of the class tree, the actual means obtained
are stored at each node, and the similarity measure is inversely
proportional to the Euclidean distance.

4.1.1. Initializing clusters

In general, unsupervised methods are sensitive to initialization.
We initialize the clustering algorithm at every node in the class
tree as follows.

If we are at node [, with samples having one of Kj labels, we first
determine the class averages of the Kj categories. (For every class,
we remove the samples which are at least 2 standard deviations
away from the mean of the class for the initialization These sam-
ples are considered for the subsequent unsupervised clustering.)
If the number of clusters (branches), K* = min (Kj, K™*) turns
out to be equal to Kj, then the averages are used as the seeds for
the clustering algorithm. If however K* < Kj, then we use a simple
and efficient method for obtaining the initial clusters by using an
initial run of k-means on the Kj averages in order to obtain the
K* initial centroids. The data samples are assigned to the clus-
ters using nearest neighbor mapping, and the averages of these K*
clusters are used as seeds for a subsequent run of the unsuper-
vised clustering algorithm. (In our empirical experiments we have

used the k-means++ variant of the popular clustering algorithm
to obtain the initial cluster seeds; Arthur and Vassilvitskii, 2007.)
Figure 4 illustrates the initialization method. (While the method
works relatively well, further studies indicate that other meth-
ods, which directly utilize the semantic structure of the labeled
dataset, can result in even better performance. These alternate
approaches are not discussed in this paper in order to keep the
focus on introducing the core algorithm.) It is worth noting that
the initialization method can be thought of in terms of a logically
prior “developmental” period, in which no data is actually stored,
but instead sampling of the environment is used to set parameters
of the method; those parameters, once fixed, are then used in the
subsequent performance of the then-“adult” algorithm (Felch and
Granger, 2008).

5. EXPERIMENTS
The proposed algorithm performs a number of operations on
its input, including the unsupervised discovery of structure in
the data. However, since the method, despite being composed
only of unsupervised clustering and reinforcement learning, can
nonetheless perform supervised learning, we have run tests that
involve using the CSL method solely as a supervised classifier.
In addition to these tests of supervised learning alone, we then
briefly describe some additional findings illustrating the CSL algo-
rithm’s power at tasks beyond the classification task (including the
tasks of identifying structure in data, and localizing objects within
images).

When viewed solely as a supervised classifier, the CSL method
bears resemblances to two well-studied methods in machine learn-
ing and statistics, and we rigorously compare these. We compared

Data to be classified at a given node in the class tree with branch factor = 2

FIGURE 4 | Initialization of the unsupervised partitioning for a set of
labeled training examples. The illustration depicts the process when
working with image datasets. The method needs to be applied only when the

Means: [| |
k-means, k=2
Centroids:
Initializing seeds
: k-means, k=2
Samples:

desired number of clusters (in this example, 2) is less than the actual number
of labeled classes represented in the dataset (in this example, 4) to be
clustered.

Frontiers in Computational Neuroscience | lterative computations of cortico-striatal loops

January 2012 | Volume 5 | Article 50 | 8

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Iterative_computations_of_cortico-striatal_loops
http://www.frontiersin.org/Iterative_computations_of_cortico-striatal_loops/archive

Chandrashekar and Granger

Iterative computations of cortico-striatal loops

the accuracy, and the time and space costs, of the CSL algo-
rithm as a supervised classifier, against the support vector machine
(SVM) and k-nearest neighbor (KNN) algorithms. Performance
was examined on two well-studied public datasets.

For SVM, we have used the popular LibSVM implementation
that is publicly available (Chang and Lin, 2001). This package
implements the “one vs one” flavor of multiclass classification,
rather than “one vs rest” variant based on the findings reported
in Hsu and Lin (2002). After experimenting with a few kernels,
we chose the linear kernel since it was the most efficient and
especially since it provided the best SVM results for the high-
dimensional datasets we tested. It is known that for the linear
kernel a weight vector can be computed and hence the support
vectors need not be kept in memory, resulting in low memory
requirements and fast recognition time. However, this is not true
for non-linear kernels where support vectors need to be kept
in memory to get the class predictions at run time. Since we
wish to compare the classifiers in the general setting and it is
likely that the kernel trick may need to be employed to separate
non-linear input space, we have retained the implementation of
LibSVM as it is (where the support vectors are retained in mem-
ory and used during testing to get class prediction). We realize
this may not be the fairest comparison for the current set of
experiments, however, we believe that this setting is more reflec-
tive of the typical use case scenario where the algorithms will be
employed.

For KNN we have hand coded the implementation and set
the parameter K =1 for maximum efficiency. (For the CSL algo-
rithm with KNN-on-leaves, we use K =1 as well.) The test bed is
a machine running windows XP 64 with 8GB memory. We have
not used hardware acceleration for any of the algorithms to keep
the comparison fair.

We have used two popular datasets from different domains
with very different characteristics (including dimensionality of
the data) to fully explore the strengths and weaknesses of the algo-
rithm. One is a subset of the Caltech-256 image set, and the other is
a very high-dimensional dataset of neuroimaging data from fMRI
experiments, that has been widely studied.

For both experiments, we performed multiple runs, differently
splitting the samples from each class into training and testing sets
(roughly equal in number). The results shown indicate the means
and standard deviations of all runs.

5.1. OBJECT RECOGNITION

Our first experiment tests the algorithm for object recognition
in natural still image datasets. The task is to predict the label
for an image, having learned the various classes of objects in
images through a training phase. We report empirical findings
for prediction accuracy and computational resources required.

5.1.1. Dataset

The dataset used consists of a subset of the Caltech-256 dataset
(Griffin et al., 2007) using 39 categories, each with roughly 100
instances. The categories were specifically chosen to exhibit very
high between-category similarity, intentionally selected as a very
challenging task, with high potential confusion among classes. The
categories are:

e Mammals: bear, chimp, dog, elephant, goat, gorilla, kangaroo,
leopard, raccoon, zebra

e Winged: duck, goose, hummingbird, ostrich, owl, penguin,
swan, bat, cormorant, butterfly

e Crawlers (reptiles/insects/arthropods/amphibians): iguana,
cockroach, grasshopper, housefly, praying mantis, scorpion,
snail, spider, toad

e Inanimate objects: backpack, baseball glove, binoculars, bull-
dozer, chandeliers, computer monitor, grand piano, ipod,
laptop, microwave.

We have chosen an extremely simple (and very standard) method
for representing images in order to maintain focus on the descrip-
tion of the proposed classifier. First a feature vocabulary consisting
of SIFT features (Lowe, 2004) is constructed by running k-means
on a random set of images containing examples from all classes of
interest; each image is then represented as a histogram of these fea-
tures. The positions of the features and their geometry is ignored,
simplifying the process and reducing computational costs. Thus
each image is a vector x € R, where m is the size of the acquired
vocabulary. Each dimension of the vector is a count of the number
of times the particular feature occurred in the image. This rep-
resentation, known as the “Bag of Words,” has been successfully
applied before in several domains including object recognition in
images (Sivic and Zisserman, 2003).

We ran a total of 8 trials, corresponding to 8 different random
partitionings of the Caltech-256 data into training and testing sets.
In each trial, we ran the test for each of a range of K.« values, to
test this free parameter of the CSL model.

5.1.2. Prediction accuracy

The graph in top left of Figure 5 compares the classifier pre-
diction accuracy of the proposed algorithm with that of SVMs
on the 39 subsets of Caltech-256 described earlier. As expected,
the simplistic image representation scheme, and the readily con-
fused category members, renders the task extremely difficult. It
will be seen that all classifiers perform at a very modest success
rate with this data, indicating the difficulty of the dataset and
the considerable room for potential improvement in classification
techniques.

The two variants of the CSL algorithm are competitive with
SVM: SVM has an average accuracy of 23.9%; CSL with tree
descent has an average accuracy of 19.4%; and CSL with KNN-
on-leaves has an average prediction accuracy of 21.3%. The KNN
algorithm alone performs relatively poorly, with an average predic-
tion accuracy of 13.6%. Chance probability of correctly predicting
a class is 1 out of 39 (2.56%).

It can be seen that the branch factor does not have a signif-
icant impact on error rates. This is possibly because the class
tree grows until the leaves are pure, and the resulting internal
structure, though different across choices of K"*%*, does not signif-
icantly impact the ultimate classifier performance as the hierarchy
adapts its shape. Different internal structure could significantly
affect the performance of the algorithm on tasks that depended
on the similarity structure of the data, but for the sole task of
supervised classification, the tree’s internal nodes have little effect
on prediction accuracy.

www.frontiersin.org

January 2012 | Volume 5 | Article 50 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Iterative_computations_of_cortico-striatal_loops/archive

Chandrashekar and Granger

Iterative computations of cortico-striatal loops

2500
A
40 _
@ 2000
35 5
1]
R, 4
z]
g £ 1500
525 = EKNN o
&320_,[171111111 ITIIzTIIITImSVM s i
> L = -~
8 mCSL:T T = =
el NN R S csL:T
3 csL:K = :
a0 EEBENEEE ® 500 CSL:K
Q.
v
5 npnynyyl
0 0
19 24 29 34 39 19 24 29 34 39
Bound on branch factor Bound on branch factor
20
18 10000
@
16
- o
o 1 1000
§ 12 -
AL o ~-KNN
o 10 S
.§ 5 - Y100 =—=SVM
_% CsL g e = = xR R)
f s =
= £ csL:K
4 E 10
isarageth £
2 EI+IJLLLI 4 717 ,I,I;L I ;
. L ki
19 24 29 34 39 2
Bound on branch factor * o # . *
oun
Bound on branch factor

FIGURE 5 | Comparison of CSL and other standard classifiers. (Top left)
Prediction accuracy of the CSL classifier on the Caltech-256 subsets. The
scores in blue are the rates achieved by the CSL classifier. Scores in pink are
from standard multiclass SVM (see text). (Top right) Memory requirements for
CSL with respect to the branch factor parameter. The figure shows that the
parameter does not significantly impact the size of the tree. Also, we can see

a clear difference between the memory usage of CSL and the other
supervised classifiers after training. (Bottom left) Run times for the training
stage. CSL (red) requires roughly an order of magnitude less training run time
than SVM (blue). (Bottom right) Average time to recognize a new image after
training for the different algorithms. The y axis (logarithmic scale) shows CSL
outperforming SVM and KNN by an order of magnitude.

5.1.3. Memory usage

The graph in top right of Figure 5 shows the relationship between
the overall number of nodes in the tree to be retained (and hence
vectors of dimensionality M) and the branch factor for CSL clas-
sifier. CSL with tree descent had to store an average of 1036.25
vectors, while the knn-on-leaves variant had to store 902.21 vec-
tors. SVM required 2286 vectors while the vanilla KNN method
(with k =1) requires storage of the entire training corpus of 2322
vectors. Thus, the number of vectors retained in memory by the
CSL variants is roughly half the number retained by the SVM and
KNN algorithms. Further, the memory needed to store the trained
model when we predict using the KNN-on-leaves approach is
smaller than when we use tree descent, as we expected and dis-
cussed earlier. As can be seen, there is not much variation in CSL
performance across different branch factor values. This suggests
that after a few initial splits, most of the sub trees have very few

categories represented within them and hence the upper bound
on the branch factor does not play a significant role in ongoing
performance.

5.1.4. Classifier run times

The runtime costs of the algorithms paint an even more startling
picture. The graph in bottom left of Figure 5 shows the plots
comparing the training times of the CSL and SVM algorithms.
The two variants of CSL have the same training procedure and
hence require the same time to train. (KNN has no explicit train-
ing stage.) As can be seen, the training time of the new algorithm
(average of 2.42s) is roughly an order of magnitude smaller than
that of the SVM (average of 18.54s). It should be clearly noted
that comparisons between implementations of algorithms will not
necessarily reflect underlying computational costs inherent to the
algorithms, for which further analysis and formal treatment will be

Frontiers in Computational Neuroscience | lterative computations of cortico-striatal loops

January 2012 | Volume 5 | Article 50 | 10

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Iterative_computations_of_cortico-striatal_loops
http://www.frontiersin.org/Iterative_computations_of_cortico-striatal_loops/archive

Chandrashekar and Granger

Iterative computations of cortico-striatal loops

required. Nonetheless, in the present experiments, the empirical
costs were radically different despite efforts to show the SVM in
its best light.

As indicated earlier, the choice of branch factor does not have a
large impact on the training time needed. We also found that the
working memory requirements of our algorithm were very small
compared to that of the SVM. In the extreme, when large represen-
tations were used for images, the memory requirements for SVMs
rendered the task entirely impracticable. In such circumstances,
the CSL method still performed effectively. The working amount
of memory we need is proportional to the largest clustering job
that needs to be performed. By choosing low values of K™, we
empirically find that we can keep this requirement low without
loss of classifier performance.

The bottom right plot of Figure 5 shows how the average
time for recognizing a new image varies with branch factor.
The times are shown in logarithmic scale. The CSL variants are
an order of magnitude faster than KNN and SVM algorithms
with the tree descent variant being the fastest. This shows the
proposed algorithm in its best light. Once training is complete,
recognition can be extremely rapid by doing hierarchical descent,
making the CSL method unusually well suited for real-time
applications.

5.2. HAXBY fMRI DATASET, 2001

52.1. Dataset

Having demonstrated the CSL system on image data, we selected
a very different dataset to test: neuroimaging data collected from
the brain activity of human subjects who were viewing pictures.
As with the Caltech-256 data, we selected a very well-studied set
of fMRI data, from a 2001 study by Haxby et al. (2001).

Six healthy human volunteers entered an fMRI neuroimaging
apparatus and viewed a set of pictures while their brain activity
(blood oxygen-level dependent measures) was recorded. In each
run, the subjects passively viewed gray scale images of eight object
categories, grouped in 24 s blocks separated by rest periods. Each
image was shown for 500 ms and was followed by a 1500-ms inter-
stimulus interval. Each subject carried out twelve of these runs.
The stimuli viewed by the subjects consisted of images from the
following eight classes: Faces, Cats, Chairs, Scissors, Houses, Bot-
tles, Shoes, and random scrambled pictures. Full-brain fMRI data
were recorded with a volume repetition time of 2.5 s, thus, a stim-
ulus block was covered by roughly 9 volumes. For a complete
description of the experimental design and fMRI acquisition para-
meters, see Haxby et al. (2001). (The dataset is publicly available.)
Each fMRI recording corresponding to lvolume in a block for
a given input image can be thought of as a vector with 163840
dimensions. The recordings for all the subjects have the same vec-
tor length. (In the original work, “masks” for individual brain
areas were provided, retaining only those voxels that were hypoth-
esized by the experimenters to play a significant role in object
recognition. Using these masks reduces the data dimensional-
ity by a large factor. However, the masks are of different lengths
for different subjects, thus preventing meaningful aggregation of
recordings across subjects. Thus, we have not used the masks and
instead trained the classifiers in the original high dimensional
space.)

5.22. Testing on individual subjects

For each subject who participated in the experiment, we have neu-
roimaging data collected as that subject viewed images from each
of the eight classes. The task was to see whether, from the brain data
alone, the algorithms could predict what type of picture the subject
was viewing. Top left in Figure 6 shows the prediction accuracy
of the various classifiers we tried. On the whole, all the classifiers
exhibit similar performance with SVM performing slightly better
on a couple of the subjects.

Top right of Figure 6 shows the memory requirements for all
the algorithms. The CSL variants require significantly less mem-
ory to store the model learned during training compared to SVM
and KNN. SVM requires a large number of support vectors to
fully differentiate the data from different classes leading to large
memory consumption, whereas KNN needs to store all the train-
ing data in memory. For CSL, if the testing method is tree descent,
then the entire hierarchy needs to be kept in memory. For the
KNN-on-leaves testing method, only the leaves of the tree are
retained, rendering even a smaller memory requirement for the
stored model.

Bottom left of Figure 6 shows the training time for the CSL
algorithm being an order of magnitude smaller than that of SVM.
KNN does not have any explicit training stage. Finally, bottom
right of Figure 6 compares the recognition time for the differ-
ent algorithms, again on a log scale. The average recognition time
on a new sample for the CSL tree descent variant is a couple of
orders of magnitude smaller than both KNN and SVM. For the
KNN-on-leaves variant of the CSL method, the recognition time
grows larger (while still being significantly smaller than KNN or
SVM). Therefore the fastest approach is performing a tree descent
(paying a penalty in terms of memory requirements for storing
the model).

5.23. Aggregating data across subjects

Since the recordings from all the subjects have the same dimen-
sionality, we can merge all the data from the different subjects
into 1 large dataset and partition it into the training and test-
ing datasets. This way we can study the performance trends with
increasing datasets. The SVM system, unfortunately, was unable
to run on pools containing more than two subjects, due to the
SVM system’s high memory requirements. Nonetheless, the two
variants of the CSL algorithm, and the KNN algorithm, ran suc-
cessfully on collections containing up to five subjects’ aggregated
data.

The subplot on the left of Figure 7 shows that the classification
prediction accuracy of the different classifiers remain competitive
with each other as we increase the pool. The subplot on the right
of Figure 7 shows the trend of memory consumption by the dif-
ferent algorithms as we increase the number of subjects included.
Compared to standard KNN, the increase in memory consump-
tion is much slower (sub linear) for the CSL algorithm, with the
KNN-on-leaves variant of the CSL algorithm growing very slowly.

Finally, in Figure 8, we examine the growth in the average recog-
nition time with increasing pool size. The costs of adding data
cause the recognition time to grow for the KNN algorithm more
than for either variant of the CSL algorithm (either tree descent
or KNN-on-leaves versions).

www.frontiersin.org

January 2012 | Volume 5 | Article 50 | 11

http://www.frontiersin.org
http://www.frontiersin.org/Iterative_computations_of_cortico-striatal_loops/archive

Chandrashekar and Granger

Iterative computations of cortico-striatal loops

ESvM

20

EKNN
80

BcsL: T

70 |

60

50

40 |

Prediction Accuracy %

30 |

20

10

ot E

52 56

250

200

150

Training Time (seconds)

100

50

§3 s4
S3 sS4

Subject

52

S6

FIGURE 6 | Comparison of classifiers. The task was to determine,
from neuroimaging data alone, what type of image the subject was
viewing. The classifiers tested were SVM, KNN, CSL:KNN-on-leaves
and CSL:Tree descent. Each test was run on the data from an individual
subject in the fMRI experiment (see text). (Top left) Accuracy of
classifier predictions. All classifiers have similar prediction accuracy for
four of the subjects, while SVM performs slightly better on two
subjects (S3, S6). (Top right) Memory usage across different algorithms.

Test Time (milliseconds)

Space Cost (# of vectors stored)

400 |

350

300 |

250 |

200 |

150

100 |

50 |

s1 s2 S3 s4 S5 S6

1000

s1

s2 s3

Subject

s4 S5 S6

CSL variants exhibit significantly lower memory usage than the other
two methods. (Bottom left) Time required to train classifiers (CSL vs.
SVM; the two CSL variants are tested differently but trained identically;
KNN algorithms are not trained). CSL requires roughly an order of
magnitude less time to train than SVM. (Bottom right) Average time to
recognize a new input after training. The y axis (a logarithmic scale)
shows clearly that CSL with tree descent outperforms the other
classifiers by an order of magnitude.

Between these two CSL algorithm variants, the latter exhibits
some modest time growth as data is added, whereas the former
(tree descent) version of CSL exhibits no significant increase in
recognition time whatsoever as more data is added to the task.
It is notable that the reason for this is that the tree depth has
not increased with increasing size of the dataset; that is, as more
data is added, the learned CSL tree arrives at the ability to suc-
cessfully classify the data early on, and adding new data does
not require the method to add more to the tree. Interestingly,
the trees become better balanced as we increase the number of
subjects, but their sizes do not increase. The results suggest that
the CSL algorithm is better suited to scale to extremely large

data sets than either of the competing standard SVM or KNN
methods.

6. ANALYSES AND EXTENSIONS

6.1. ALGORITHM COMPLEXITY

When k-means is used for clustering, the time complexity for
each partitioning is O(NtK), where N is the number of samples,
K is the number of partitions and t is the number of itera-
tions. If we fix ¢ to be a constant (by putting an upper limit
on it), then each split takes O(NK). Since we also put a bound
on K (Kjzx), we can assume that each split is O(N). Further

Frontiers in Computational Neuroscience | lterative computations of cortico-striatal loops

January 2012 | Volume 5 | Article 50 | 12

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Iterative_computations_of_cortico-striatal_loops
http://www.frontiersin.org/Iterative_computations_of_cortico-striatal_loops/archive

Chandrashekar and Granger

Iterative computations of cortico-striatal loops

B KNN
esL:T
CSL: K

40 H

w
o

Prediction Accuracy %

N
o

1 2 3 4 5

Number of subjects used in training

2500
E 2000 P i
©
7]
i
<]
g 1500
g
% ——KNN
-*é.- 1000 -B=-CSL: T
S CSL: K
3
@ 500
o
wy
0
1 2 3 4 5
Number of subjects

FIGURE 7 | (Left) Accuracy of classifier predictions on split tests.
The accuracy of the different algorithms remain competitive as we
increase the subject pool. (The memory usage by the LibSVM
implementation of SVM was too large for testing on subject pools

larger than 2). (Right) Tracks the trend of memory consumption with
increasing size of the subject pool for the classifiers. KNN's memory
usage grows linearly, whereas the CSL variants grow at a lower rate,
illustrating their scalability.

06

; Z

=

'g 04

o

o

3 /

‘;’a.s == KNN
E CSL: T
Bo2 —=-CSL: K
-

//
o1 :/./.,/"'/'

Number of subjects

FIGURE 8 | Average recognition time required for a new test sample, as
a function of the amount of data trained. As expected, KNN grows
linearly. CSL with KNN-on-leaves grows more slowly. Interestingly, CSL
with tree descent hardly shows any increase, suggesting its scalability to
extremely large datasets.

can be further treated in parallel. However, in the experiments
reported here, we have as yet made no attempt to parallelize the
code, seeking instead to compare the algorithm directly against

current standard SVM implementations.

6.2. COMPARISON WITH OTHER HIERARCHICAL LEARNING

analysis is needed on the total number of paths and their con-
tribution to runtime. The maximum amount of memory needed
is for the first unsupervised partitioning. This is proportional
to O(NK). When we have small K, the amount of memory is
directly proportional to the number of data elements being used

in training.

As mentioned earlier, the algorithm is intrinsically highly par-
allel. After every unsupervised partitioning, each of the partitions

TECHNIQUES

The structure of the algorithm makes it very similar to CART (and
in particular, decision trees; Buntine, 1992) since both families of
algorithms partition the non-linear input space into discontinuous
regions such that the individual sub regions themselves provide
effective class boundaries. However, there are several significant
differences.

e Perhaps the most substantial difference is that decision trees

use the labels of the data to perform splits, whereas the CSL
algorithm partitions based on unsupervised similarity.

The CSL algorithm splits in a multivariate fashion, taking into
account all the dimensions of the data samples, as opposed
to decision trees where most often, a single dimension which
results in the largest demixing of the data, is used to make splits.
The path from the root to a leaf in a decision tree is a con-
junction of local decisions on feature values and as a result
is prone to over fitting. As discussed before, the CSL tends to
exhibit little overfitting, and we can understand why this is the
case (see Discussion in the Simplified Algorithm section ear-
lier). The leaves can be treated independently of the rest of
the tree and KNN can be used on them to obtain the class
predictions.

Decision trees are by nature a 2 class discriminative approach
(multiclass problems can be handled using binary decision trees;
Lee and Oh, 2003) whereas the CSL algorithm is a natural
multiclass generative algorithm.

www.frontiersin.org

January 2012 | Volume 5 | Article 50 | 13

http://www.frontiersin.org
http://www.frontiersin.org/Iterative_computations_of_cortico-striatal_loops/archive

Chandrashekar and Granger

Iterative computations of cortico-striatal loops

Most importantly, the goals of these systems differ. The primary
goal of the CSL algorithm is to uncover natural structure within the
data. The fact that the label-based impurity of classes is reduced,
resulting in the ability to classify labeled data, falls out as a (very
valuable) side effect of the procedure. The CSL algorithm thus will
carry out a range of additional tasks, beyond supervised classifi-
cation, that use deeper analysis of the underlying structure of the
data, not apparent through supervised labeling alone.

6.3. DISCOVERY OF STRUCTURE

For purposes of this paper we have focused solely on the classifica-
tion abilities of the algorithm, though the algorithm can perform
many other tasks outside the purview of classification. Here we
will briefly cover two illustrative additional abilities: (i) uncover-
ing secondary structure of data, and (ii) localization of objects
within images.

6.3.1. Haxby dataset

Once a model is trained, for each training sample if we do hier-
archical descent and aggregate the posterior probabilities of the
nodes along the path, we get a representation for the sample.
When we do an agglomerative clustering on that representation, we
uncover secondary structure suggesting meta classes occurring in
the dataset. Figure 9 captures the output of such an agglomerative

clustering for the recordings of one subject (S1). Here we can see
extensive structure relations among the responses to various pic-
tures; perhaps most prominent is a clear separation of the data
into animate and inanimate classes. The tree suggests the struc-
ture of information that is present in the neuroimaging data; the
subjects’ brain responses distinguish among the different types of
pictures that they viewed. Related results were shown by Hanson
et al. (2004); these were arrived at by analysis of the hidden node
activity of a back propagation network trained on the same data.
In contrast, it is worth noting that the CSL classifier obtains this
structure as a natural byproduct of the tree-building process.

6.3.2. Image localization

A task quite outside the realm of supervised classification is
that of localizing, i.e., finding an object of interest within an
image. This task is useful to illustrate additional capabilities of the
algorithm beyond just classification, making use of the internal
representations it constructs.

We assume for this example that the clustering component of
the algorithm is carried out by a generative method such as PLSA
(Sivic et al., 2005); we then can assume that the features specific
to the object class will contribute to the way in which an image
becomes clustered, and that those features will contribute more
than will random background features in the image.

12
1
08—
06—
04—
—
02— J~
Qs EEEERREE BhG ARG B s e S R R R R Ry i bu na an s
R R R RR R R GG E oo hhnl =% PR R R R L L
EEEE R EEEEE 3
= Coooo (=
@ Trmmo @
=3 2
= EheReReRs =
= R =
FIGURE 9 | Agglomerative clustering of tree node activity for all the data from Subject 1. The hierarchy shows extensive internal structure in the
responses, including a clear separation of animate and inanimate stimuli. See text for further discussion.

Frontiers in Computational Neuroscience | Iterative computations of cortico-striatal loops

January 2012 | Volume 5 | Article 50 | 14

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Iterative_computations_of_cortico-striatal_loops
http://www.frontiersin.org/Iterative_computations_of_cortico-striatal_loops/archive

Chandrashekar and Granger Iterative computations of cortico-striatal loops

clustering and for determining the cluster membership of a previ-
ously unseen image x. For every cluster z, we can obtain the pos-
terior probability p(zlx, w), for every feature w in the vocabulary.

Figure 10 shows an example of localization of a face within
an image. The initial task was to classify images of faces, cars,
motorcycles, and airplanes (from Caltech 4). PLSA was used for

Points in green indicate feature scores above threshold and those in red
indicate below-threshold scores. Note that although green dots occur in
multiple regions, the presence of red dots (negative features) is limited only
to regions outside the face region.

FIGURE 10 | An illustration of object localization on an image from
Caltech-256. (A) The original image. (B-E) Positive, neutral, and negative
features (green, blue, red, respectively) shown at levels 1 through 4 along the
path in the CSL tree. (F) A thresholded map of the aggregate feature scores.

www.frontiersin.org January 2012 | Volume 5 | Article 50 | 15

http://www.frontiersin.org
http://www.frontiersin.org/Iterative_computations_of_cortico-striatal_loops/archive

Chandrashekar and Granger

Iterative computations of cortico-striatal loops

Thus, we can test all features in the image to see which ones max-
imize the posterior, indicating strong influence on the eventual
cluster membership. The location of those features can then be
used to identify the vicinity of the object.

As the path from root to leaf in the CSL hierarchy is traversed
for a particular test image, the posterior at a given node determines
the contribution of the feature to the branch selected. Let y be the
final object label prediction for image x.

Consider feature f; from the vocabulary. At any given node at
height I along the path leading to prediction of y for x, let dil be
the branch predicted by feature f;, i.e., among all branches at node
I, the posterior for that branch is highest for that feature. dil is
actually a set of labels that can be reached at various leaves using
the branch and finally let the overall branch taken at [be b.

Atlevel [, f;, can be classified as positive if l(d,-l == b!), neutral
if l(df # b') and 1(y € df), and finally, negative if l(dl-l #* b') and
I(y ¢ df). The overall score for f; is a weighted sum S; of all the
scores (negative features getting a negative score) along the path.
Since we know the locations of the features, we can transfer the
scores to actual locations on the images (more than one location
may map to the same feature in the vocabulary). When a simple
threshold is applied, we get the map seen in the final image. The
window most likely to contain the object can then be obtained by
optimization of the scores on the map using branch and bound
techniques.

7. CONCLUSION

We have introduced a novel, biologically derived algorithm that
carries out similarity-based hierarchical clustering combined with
simple matching, thus determining when nodes in the tree are to
be iteratively deepened. The clustering mechanism is a reduced
subset of published hypotheses of thalamocortical function; the
match/mismatch operation is a reduced subset of proposed basal
ganglia operation; both are described in Granger (2006). The
resulting algorithm performs a range of tasks, including identify-
ing natural underlying structure among object in the dataset; these
abilities of the algorithm confer a range of application capabilities
beyond traditional classifiers. In the present paper we described
in detail just one circumscribed behavior of the algorithm: its
ability to use its combination of unsupervised clustering and rein-
forcement to carry out the task of supervised classification. The
experiments reported here suggest the algorithm’s performance
is comparable to that of SVMs on this task, yet requires only a
fraction of the resources of SVM or KNN methods.

It is worth briefly noting that the intent of the research
described here has not been to design novel algorithms, but rather
to educe algorithms that may be at play in brain circuitry. The
two brain structures referenced here, neocortex and basal gan-
glia, when studied in isolation, have given rise to hypothesized
operations of hierarchical clustering and of reinforcement learn-
ing, respectively (e.g., Sutton and Barto, 1998; Rodriguez et al.,

REFERENCES

Alexander, G., and DeLong, M. (1985).
Microstimulation of the primate
neostriatum. I. Physiological prop-
erties of striatal microexcitable

zones. J. Neurophysiol. 53,
1401-1416.

Arthur, D., and Vassilvitskii, S. (2007).
“k-Means++: the advantages of

careful seeding,” in SODA ’07:

2004). These structures are connected in a loop, such that (striatal)
reinforcement learning can be hypothesized to selectively interact
with (thalamocortical) hierarchies being constructed. We conjec-
ture that the result is a novel composite algorithm (CSL), which
can be thought of as iteratively constructing rich representations
of sampled data.

Though the algorithm was conceived and derived from analysis
of cortico-striatal circuitry, the next aim was to responsibly analyze
its efficacy and costs and compare it appropriately against other
competing algorithms in various domains. Thus we intention-
ally produced very general algorithmic statements of the derived
cortico-striatal operations, precisely so that (1) we can retain func-
tional equivalency with the referenced prior literature (Schultz
et al., 1997; Suri and Schultz, 2001; Schultz, 2002; Rodriguez et al.,
2004; Daw and Doya, 2006); and (2) the derived algorithm can
be responsibly compared directly against other algorithms. The
algorithm can be applied to a number of tasks; for purposes of
the present paper we have focused on supervised classification
(though we also briefly demonstrated the utility of the method for
different tasks, including identification of structure in data, and
localization of objects in an image).

It is not yet known what tasks or algorithms are actually being
carried out by brain structures. Brain circuits may represent com-
promises among multiple functions, and thus may not outperform
engineering approaches to particular specialized tasks (such as
classification). In the present instance, individual components are
hypothesized to perform distinct algorithms, hierarchical clus-
tering and reinforcement learning, and the interactions between
those components perform still another composite algorithm, the
CSL method presented here. (And, as mentioned, the studied
operations are very-reduced subsets of the larger hypothesized
operations of these thalamocortical and basal ganglia systems; it
is hoped that ongoing study will yield further algorithms arising
from richer interactions of these cortical and striatal structures,
beyond the reduced simplifications studied in the present paper.)
As might be expected of a method that has been selectively devel-
oped in biological systems over evolutionary time, these compo-
nent operations may represent compromises among differential
selectional pressures for a range of competing tasks, carried out
by combined efforts of multiple distinct engines of the brain. This
represents an instance in which models of a biological system lead
to derivation of tractable algorithms for real-world tasks. Since
the biologically derived method studied here substantially outper-
forms extant engineering methods in terms of efficacy per time
or space cost, we forward the conjecture that brain circuitry may
continue to provide a valuable resource from which to mine novel
algorithms for challenging computational tasks.

ACKNOWLEDGMENTS
This work was supported in part by grants from the Office of Naval
Research and the Defense Advanced Research Projects Agency.

Proceedings of the Eighteenth Annual
ACM-SIAM Symposium on Discrete
Algorithms, New Orleans.
Baron, A., and Cover, T.
Minimum

estimation. IEEE Trans. Inf. Theory
4,1034-1054.

Bishop, C. (1996). Neural Networks
for Pattern Recognition. New York:
Oxford University Press.

(1991).

complexity density

Frontiers in Computational Neuroscience | Iterative computations of cortico-striatal loops

January 2012 | Volume 5 | Article 50 | 16

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Iterative_computations_of_cortico-striatal_loops
http://www.frontiersin.org/Iterative_computations_of_cortico-striatal_loops/archive

Chandrashekar and Granger

Iterative computations of cortico-striatal loops

Blei, D., Ng, A., and Jordan, M. (2003).
Latent Dirichlet allocation. J. Mach.
Learn. Res. 3,993-1022.

Breiman, L., Friedman, J., Olshen, R,
and Stone, C. (1984). Classification
and Regression Trees. Belmont, CA:
Wadsworth.

Brown, J., Bullock, D., and Grossberg,
S. (1999). How the basal ganglia
use parallel excitatory and inhibitory
learning pathways to selectively
respond to unexpected reward. J.
Neurosci. 19, 10502—-10511.

Buntine, W. (1992). Learning classifica-
tion trees. Stat. Comput. 2, 63-73.

Chang, C., and Lin, C. (2001). Lib-
svm: A Library for Support Vector
Machines. Available at: http://www.
csie.ntu.edu.tw/cjlin/libsvm

Darken, C., and Moody, J. (1990). “Fast,
adaptive k-means clustering: some
empirical results,” in Proceedings of
the IEEE IJCNN Conference (San
Diego: IEEE Press).

Daw, N. (2003). Reinforcement Learning
Models of the Dopamine System and
Their Behavioral Implications. Ph.D.
Thesis, Carnegie Mellon University,
Pittsburgh, PA.

Daw, N., and Doya, K. (2006). The com-
putational neurobiology of learning
and reward. Curr. Opin. Neurobiol.
16, 199-204.

Felch, A., and Granger, R. (2008).
The hypergeometric connectivity
hypothesis: divergent performance
of brain circuits with different
synaptic connectivity distributions.
Brain Res. 1202, 3—13.

George, D., and Hawkins, J. (2009).
Towards a mathematical theory of
cortical microcircuits. PLoS Comput.
Biol. 5, €1000532. doi:10.1371/jour-
nal.pcbi. 1000532

Granger, R. (2006). Engines of the brain:
the computational instruction set
of human cognition. AI Mag. 27,
15-32.

Granger, R. (2011). How Brains are
Built: Principles of Computational
Neuroscience. Cerebrum; The Dana
Foundation, Available at: http://
dana.org/news/cerebrum/detail.as
px?id=30356.

Griffin, G., Holub, A., and Perona, P.
(2007). Caltech-256 Object Category
Dataset. California Institute of Tech-
nology.

Gurney, K., Prescott, T., and Redgrave,
P. (2001). A computational model of
action selection in the basal ganglia:

I. a new functional anatomy. Biol.
Cybern. 84, 401-410.

Hanson, S., Matsuka, T., and Haxby, J.
(2004). Combinatorial codes in ven-
tral temporal lobe for object recog-
nition: Haxby (2001). Revisited: is
there a face area? Neuroimage 23,
156-166.

Haxby, J., Gobbini, M., Furey, M., Ishai,
A., Schouten, J., and Pietrini, P.
(2001). Distributed and overlapping
representations of faces and objects
in ventral temporal cortex. Science
293, 2425-2430.

Hoffman, T. (1999). “Probabilistic latent
semantic indexing,” in SIGIR ’99:
Proceedings of the 22nd Annual
International ACM SIGIR Confer-
ence on Research and Development
in Information Retrieval, Berkeley,
50-57.

Houk, J., Bastianen, C., Fansler, D., Fish-
bach, A,, Fraser, D., Reber, P., Roy, S.,
and Simo, L. (2007). Action selection
and refinement in subcortical loops
through basal ganglia and cerebel-
lum. Philos. Trans. R. Soc. Lond. B
Biol. Sci. 362, 1573-1583.

Hsu, C., and Lin, C. (2002). A compari-
son of methods for multi-class sup-
port vector machines. IEEE Trans.
Neural Netw. 13, 415-425.

Kaski, S. (1997). Data exploration using
self-organizing maps. Acta Polytech-
nica Scand. Math. Comput. Manag.
Eng. Ser. 82.

Kemp,J.,and Powell, T. (1971). The con-
nexions of the striatum and globus
pallidus: synthesis and speculation.
Philos. Trans. R. Soc. Lond. B Biol.
Sci. 262, 441-445.

Kosko, B. (1991). Stochastic competitive
learning. IEEE Trans. Neural Netw. 2,
522-529.

Leblois, A., Boraud, T., Meissner,
W., Bergman, H., and Hansel,
D. (2006). Competition between
feedback loops underlies normal
and pathological dynamics in the
basal ganglia. J. Neurosci. 26,
3567-3583.

Lee, J., and Oh, I. (2003). “Binary classi-
fication trees for multi-class classifi-
cation problems” in ICDAR 03 Pro-
ceedings of the Seventh International
Conference on Document Analysis
and Recognition, Edinburgh.

Lee, T., and Mumford, D. (2003). Hier-
archical Bayesian inference in the
visual cortex. Opt. Soc. Am. 20,
1434-1448.

Lloyd, S. (1982). Least squares quantiza-
tion in pcm. IEEE Trans. Inf. Theory
28, 129-136.

Lowe, D. (2004). Distinctive image fea-
tures from scale-invariant keypoints.
Int. J. Comput. Vis. 60, 91-110.

Marr, D. (1980). Vision. MIT press.

McGeorge, A., and Faull, R. (1988). The
organization of the projection from
the cerebral cortex to the striatum in
the rat. Neuroscience 29, 503-537.

Ng, A., and Jordan, M. (2002). On dis-
criminative vs. generative classifiers.
a comparison of logistic regression
and naive Bayes. Neural Inf. Process.
Syst. 2, 841-848.

O’Doherty, J., Dayan, P, Friston,
K., Critchley, H., and Dolan, R.
(2003). Temporal difference mod-
els and reward-related learning
in the human brain. Neuron 38,
329-337.

Riesenhuber, M., and Poggio, T. (1999).
Hierarchical models of object recog-
nition in cortex. Nat. Neurosci. 2,
1019-1025.

Rodriguez, A., Whitson, J., and
Granger, R. (2004). Derivation and
analysis of basic computational

operations of thalamocortical
circuits. J. Cogn. Neurosci. 16,
856-877.

Schultz, W. (2002). Getting formal with
dopamine and reward. Neuron 36,
241-263.

Schultz, W., Dayan, P., and Montague,
R. (1997). A neural substrate of
prediction and reward. Science 175,
1593-1599.

Sivic, J., Russell, B., Efros, A., Zisserman,
A., and Freeman, W. (2005). Discov-
ering objects and their location in
images. IEEE Int. Conf. Comput. Vis.
1,370-377.

Sivic, J., and Zisserman, A. (2003).
“Video Google: a text retrieval
approach to object matching in
videos,” in ICCV ’03: Proceedings of
the Ninth IEEE International Confer-
ence on Computer Vision, Nice.

Stephan, H. (1972). “Evolution of pri-
mate brains: a comparative anatomi-
cal approach,”in Functional and Evo-
lutionary Biology of Primates, ed. R.
Tuttle (Chicago: Aldine-Atherton),
155-174.

Stephan, H., Bauchot, R., and Andy, O.
(1970). Data on size of the brain and
of various brain parts in insectivores
and primates. Advances in Primatol-
0gy, 289-297.

Stephan, H., Frahm, H., and Baron, G.
(1981). New and revised data on vol-
umes of brain structures in insecti-
vores and primates. Folia Primatol.
35, 1-29.

Suri, R., and Schultz, W. (2001). Tem-
poral difference model reproduces
anticipatory neural activity. Neural
Comput. 13, 841-862.

Sutton, R., and Barto, A. (1990).
“Time derivative models of Pavlov-
ian reinforcement,” in Learning and
Computational Neuroscience: Foun-
dations of Adaptive Networks, eds. M.
Gabriel, and J. Moore (MIT Press),
497-537.

Sutton, R., and Barto, A. (1998). Rein-
forcement Learning: An Introduction.
MIT press.

Teh, Y., Jordan, M., Beal, M., and Blei,
D. (2004). “Sharing clusters among
related groups: hierarchical dirichlet
processes,” in Proceedings of Neural
Information Processing Systems, Van-
couver.

Ullman, S. (2006). Object recognition
and segmentation by a fragment-
based hierarchy. Trends Cogn. Sci.
(Regul. Ed.) 11, 58—64.

Vapnik, V. (1995). The Nature of Sta-
tistical Learning Theory. New York:
Springer.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 27 May 2011; accepted: 28
October 2011; published online: 10 Jan-
uary 2012.

Citation: ~ Chandrashekar A and
Granger R (2012) Derivation of a
novel efficient supervised learning algo-
rithm from cortical-subcortical loops.
Front. Comput. Neurosci. 5:50. doi:
10.3389/fncom.2011.00050

This article was submitted to Frontiers in
Iterative computations of cortico-striatal
loops, a specialty of Frontiers in Compu-
tational Neuroscience.

Copyright © 2012 Chandrashekar and
Granger. This is an open-access arti-
cle distributed under the terms of
the Creative Commons Attribution Non
Commercial License, which permits non-
commercial use, distribution, and repro-
duction in other forums, provided the
original authors and source are credited.

www.frontiersin.org

January 2012 | Volume 5 | Article 50 | 17

http://www.csie.ntu.edu.tw/cjlin/libsvm
http://dx.doi.org/10.1371/journal.pcbi.1000532
http://dana.org/news/cerebrum/detail.aspx?id=30356
http://dx.doi.org/10.3389/fncom.2011.00050
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Iterative_computations_of_cortico-striatal_loops/archive

	Derivation of a novel efficient supervised learning algorithm from cortical-subcortical loops
	Introduction
	Cortico-striatal loops
	Simplified algorithm
	Training
	Picking the right branch factor

	Tree Pruning
	Testing
	Tree descent
	KNN-on-leaves

	Clustering methods
	k-means
	Initializing clusters

	Experiments
	Object recognition
	Dataset
	Prediction accuracy
	Memory usage
	Classifier run times

	Haxby fMRI dataset, 2001
	Dataset
	Testing on individual subjects
	Aggregating data across subjects

	Analyses and extensions
	Algorithm complexity
	Comparison with other hierarchical learning techniques
	Discovery of structure
	Haxby dataset
	Image localization

	7. Conclusion
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

