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The growing use of multi-channel neural recording techniques in behaving animals has pro-
duced rich datasets that hold immense potential for advancing our understanding of how
the brain mediates behavior. One limitation of these techniques is they do not provide
important information about the underlying anatomical connections among the recorded
neurons within an ensemble. Inferring these connections is often intractable because the
set of possible interactions grows exponentially with ensemble size.This is a fundamental
challenge one confronts when interpreting these data. Unfortunately, the combination of
expert knowledge and ensemble data is often insufficient for selecting a unique model
of these interactions. Our approach shifts away from modeling the network diagram of
the ensemble toward analyzing changes in the dynamics of the ensemble as they relate
to behavior. Our contribution consists of adapting techniques from signal processing and
Bayesian statistics to track the dynamics of ensemble data on time-scales comparable
with behavior. We employ a Bayesian estimator to weigh prior information against the
available ensemble data, and use an adaptive quantization technique to aggregate poorly
estimated regions of the ensemble data space. Importantly, our method is capable of
detecting changes in both the magnitude and structure of correlations among neurons
missed by firing rate metrics. We show that this method is scalable across a wide range of
time-scales and ensemble sizes. Lastly, the performance of this method on both simulated
and real ensemble data is used to demonstrate its utility.
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INTRODUCTION
The growing use of multi-channel neural recording techniques
in behaving animals has opened up new possibilities for under-
standing how the brain mediates behavior. These techniques are
generating datasets that record the output of ever increasing num-
bers of neurons (Nicolelis et al., 2003; Suner et al., 2005; Nicolelis,
2008). Unfortunately, current recording techniques do not pro-
vide information about the underlying anatomical connections
between the recorded neurons. Without these anatomical con-
straints, the set of possible network diagrams grows exponentially
with increasing ensemble size. This limitation poses formidable
challenges to the analysis and interpretation of these datasets (Palm
et al., 1988; Averbeck et al., 2006). Several groups have focused
upon the challenging inverse problem of inferring the connec-
tivity among the individual neurons from ensemble data (Brown
et al., 2001; Truccolo et al., 2005; Eldawlatly et al., 2009). How-
ever, the combination of expert knowledge and ensemble data is
generally insufficient to select a unique model from the vast space
of possible network diagrams. Thus, analysts are often faced with
an intractable model selection problem (Sivia, 1996; Ghahramani,
1998).

A promising alternative comes from the field of statistical
mechanics (Jaynes, 1957). This approach endeavors to estimate
macro properties of a system, for example its entropy, from
observations of its constituent parts. Recent applications of this
approach in neuroscience have modeled the neural ensemble by

maximizing its entropy subject to constraints imposed by esti-
mated features of the neural ensemble. Importantly, these max-
imum entropy models do not require a priori specification of
hidden variables or interactions between variables, unlike para-
metric methods such as Hidden Markov (Abeles et al., 1995; Jones
et al., 2007) or point process models (Brown et al., 2001; Truccolo
et al., 2005; Eldawlatly et al., 2009). These maximum entropy mod-
els have shown that by including only estimates of neural firing
rates and pairwise interactions as parameters, one may generate
a surprisingly good estimate of the frequency of observing any
ensemble pattern (Schneidman et al., 2006; Tang et al., 2008). This
suggests that tracking changes in these features over time provides
a good approximation of the dynamics of the neural ensemble.

Our goal is to leverage these insights to provide experimental-
ists with a set of tools to aid in the exploratory data analysis (Tukey,
1962; Mallows, 2006) of neural ensemble datasets. Currently,
investigators utilizing the techniques of statistical mechanics in
neuroscience have used long segments of continuous ensemble
data to describe the state of the brain in equilibrium (Schneidman
et al., 2006; Shlens et al., 2009). To describe the dynamics of neural
ensembles we must estimate changes in neural firing rates and pair-
wise interactions on shorter time-scales, which is not as established
as analyzing time-varying changes in neural firing rates (Abeles,
1982b). We address this issue by using a Bayesian approach to
estimating ensemble correlations on time-scales comparable with
behavior. This estimator offers an answer to the question: how
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does one keep the use of prior information to a minimum while
still producing sound estimates?

An additional motivation for our work comes from the realiza-
tion that the large datasets generated by multi-channel ensemble
recordings often go underutilized because they are cumbersome
to load and tedious to scan. Here we leverage unsupervised learn-
ing algorithms, which work well at detecting well defined features
and are tireless, to aid experimentalists, who are excellent at a wide
range of pattern recognition tasks but fatigue easily. The method
described below may be thought of as providing an answer to the
question, “When are the dynamics of my neural ensemble data
changing?”

Our contribution consists of adapting techniques from sig-
nal processing (Dasu et al., 2006, 2009) and Bayesian statistics
(Wolpert and Wolf, 1995) to track changes in the dynamics of
neural ensemble data on time-scales comparable with behavior.
This is achieved by expanding the statistical description of ensem-
bles provided by Schneidman et al. (2006) into a framework
allowing for the use of smaller sample sizes, thereby providing
the temporal resolution required for comparison with behavior.
Of course decreasing the number of samples may increase both
the bias and variance of any estimate from the data. Moreover,
many of the possible ensemble patterns may not be represented in
the dataset. This results in the need to address the influence of low
sample density upon our estimates. The method detailed below
addresses this issue, and is scalable across a wide range of ensem-
ble sizes. Importantly, it is capable of detecting changes in the
correlation structure of ensemble data missed by firing rate met-
rics, allowing one to disassociate changes in ensemble correlations
from changes in neural firing rates.

METHOD
OVERVIEW
The proposed method combines a spatial data-clustering tech-
nique (Dasu et al., 2006, 2009) with a Bayesian estimator of
the KL-divergence (Kullback, 1959) between discrete distributions
over neural ensemble patterns (Wolpert and Wolf, 1995). The KL-
divergence is calculated between pairs of probability distributions
which share the same domain. Its output is a positive quantity with
values greater than zero indicating the distributions compared are
not the same. The efficiency of the KL-divergence for hypothesis
testing and classification has been studied extensively (Kullback,
1959; Cover and Thomas, 1991). Here the KL-divergence is used
to generate a one-dimensional time-series for tracking changes in
the dynamics of the ensemble, relative to statistical null hypotheses
about the underlying neural firing rates and pairwise interactions.

To calculate the KL-divergence one must provide a method for
transforming the neural ensemble data into a probability mass
function. Like others (Schneidman et al., 2006; Tang et al., 2008;
Marre et al., 2009), we define a discrete joint distribution over pos-
sible ensemble patterns. One consequence of this formalism is that
unobserved, but possible, ensemble patterns must be assigned a
probability through the use of a prior distribution. The choice of a
prior distribution will be expounded below. To keep the prior from
unduly influencing our estimates, we use an adaptive quantization
scheme to compress the complete set of ensemble patterns into
a smaller set of multinomial categories. The data structure used

to achieve this compression is the kdq-tree. Originally developed
by Dasu et al. (2006) for detecting changes in multi-dimensional,
streaming telecommunications data, this data structure aggregates
regions of low sample density, and may be thought of as a data-
driven binning scheme. Importantly, the kdq-tree was originally
developed specifically for cases where the distribution generating
the dataset is unknown.

First, samples of ensemble data of equal size, representing the
null hypothesis and test data, are filtered through the kdq-tree.
Next, the multinomial samples output by the kdq-tree are input to a
routine that calculates the Bayesian estimator of the KL-divergence
to determine whether the test data conform to the null hypoth-
esis. The time-series of KL-divergence values are then examined
for significant deviations from the null hypothesis. Since the null
hypothesis is defined by features of the neural ensemble estimated
within a previous epoch, significant deviations demarcate changes
in these features across time, and therefore changes in the dynam-
ics of the neural ensemble. The processing of ensemble data by
this method is schematized in Figure 1A, from conversion of
the dataset via the kdq-tree through examining the time-series
of KL-divergence values to test the null hypothesis.

We next provide a detailed exposition of the method. We
demonstrate its application and performance upon simulated
ensemble data. Furthermore, it will be shown to be capable of
detecting changes in the correlation structure of ensemble data
missed by firing rate metrics. We conclude by demonstrating its
utility upon neural ensemble data collected from awake behaving
rodents.

EXPOSITION
TRANSFORMING ENSEMBLE DATA INTO A PROBABILITY MASS
FUNCTION
Figure 1 provides an overview of the method and an example of the
phenomenon of interest to us. These data were collected from the
somatosensory barrel cortex (S1bf) of a behaving rat (unpublished
data). Figure 1 shows both local field potential (LFP; Figure 1B)
and ensemble data (Figure 1C) collected from a rat’s S1bf. Here we
are interested in examining whether the dynamics of the ensemble
reflect changes in the LFP. Halfway through the time-series, there
is a clear change in the LFP data. This feature is the so-called μ-
rhythm commonly observed in idle rats (Semba et al., 1980; Wiest
and Nicolelis, 2003; Tort et al., 2010). Figure 1D demonstrates the
ability of our method to detect this change in the dynamics of the
ensemble data. Subpanels 1 and 2 zoom in on a few cycles of the
μ-rhythm to illustrate that this change in the LFP is correlated
with a change in the patterns of activity emitted by the ensemble.
In particular, the negativity of the μ-rhythm coincides with an
increase in the probability of correlated firing among the neurons.
The role played by the LFP might just as easily have been a stim-
ulus presentation, a basic motor response, a response signaling a
decision or any other variable of interest.

We next illustrate the details of the transformation from ensem-
ble data to probability mass functions. This is done in the context
of checking if the results of Schneidman et al. (2006) hold for our
ensemble data from S1bf. Here the generalized iterative scaling
algorithm (Darroch and Ratcliff, 1972) is used to fit the maxi-
mum entropy pairwise model to the transformed ensemble data.
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FIGURE 1 | Schematic of method and phenomenon of interest. (A) The
components of the method are: the kdq-tree for transforming the
ensemble data into multinomial samples; the expected value of the
KL-divergence under the Dirichlet posterior distributions on the two
multinomial distributions; and the evaluation of the time-series of
KL-divergence values to test the null hypothesis. (B) A local field potential
recording from the rat somatosensory barrel field (S1bf) exhibiting the
μ-rhythm. (C) A simultaneously recorded neural ensemble of 10 units from

S1bf. (D) The KL-divergence output of this method, which uses only the
ensemble data as input. The shaded gray area indicates the mean±SD,
respectively, of the KL-divergence under the null hypothesis of
independence among the neurons. Subpanel 1: A zoomed in example of
the background LFP, ensemble activity, and KL-divergence. Subpanel 2: The
onset of the μ-rhythm, ensemble data and KL-divergence at higher
resolutions. Note the correlations in the ensemble data during the
negative phase of the μ-rhythm.

Figure 2A shows a typical example of the weak pairwise cross-
correlations observed between units within S1bf. For this dataset,
the cross-correlation peaks were centered at approximately zero lag
and were 20–40 ms wide (the inset of Figure 2A shows the details
of an example peak). This is an important piece of experimental
information used to set a bin width parameter used to simplify the
cross-correlation structure (set to 20 ms here). An alternative is to
assume a Markov order and fit a Markov model to the sequence of
ensemble patterns (see Marre et al., 2009). This was not done here
because the Markov order is a free parameter that vastly increases
the complexity of the model. We will show that it is possible to
detect subtle changes in the correlation structure of ensemble data
using this binning scheme.

Another feature of this transformation is the designation of
any neural activity within a bin as either active (1) or inactive (0),
as opposed to integer spike counts. This simplification loses the

information individual neurons transmit via brief bursts of activ-
ity, but it allows for a complete description of the distribution of
ensemble patterns based solely on the number of recorded neu-
rons. Furthermore, we will show that the information conveyed
by these bursts is recoverable by tracking the ensemble firing rate
in parallel.

This processing of the ensemble data results in a series of row
vectors, one for each time bin, ranging over all possible ensem-
ble patterns, from completely inactive (all 0’s) to maximally active
(all 1’s; Figure 2B). The resulting data object is an N ×M matrix
where N is the number of time bins and M is the number of
neurons (For M neurons there are 2M possible ensemble pat-
terns.). The dataset is now a sequence of binary vectors from a
discrete M -dimensional space, Y. Let e= {y1, y2,..., yN} be a sam-
ple of ensemble data with each yi ε Y. The maximum likelihood
estimate (MLE) of the probability of observing a given pattern,
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FIGURE 2 |The statistical mechanics description of neural ensemble

data. (A) An example of the cross-correlation width observed between
neurons recorded from the S1bf. Inset : The peak examined prior to setting
a spike bin parameter (20 ms). (B) The 14 most frequent ensemble patterns,
from left to right, derived from the 10 unit ensemble. (C) The maximum
likelihood estimate distribution of ensemble patterns based upon 2 h of
continuous recording. Inset : The amount of missing data for this 1024
pattern system and the entropy of the distribution in bits. (D) The
independent (P1) and maximum entropy pairwise model (P2) fits to the
dataset in terms of the predicted and actual rate of ensemble patterns.

yi is then:

Pe(yi) =
C(

yi
e )

N

The operator C(yi/e) counts the number of times ensemble
pattern yi appears in the sample. Normalizing these counts to one
and ranking them in descending MLE probability determines the
probability mass function (Figure 2C).

We now fit maximum entropy models to the MLE probability
distribution to test whether these provide a good fit to the ensem-
ble data. First, we fit the independent model, which assumes the
probability of observing any ensemble pattern is the product of the
probabilities of the individual active and inactive neurons within
a pattern. The independent model is calculated as:

Pe(yi) =
M∏

j=1

P(Xj = yji)

Here the Xj designates one of the M neurons in the ensem-
ble and yji indicates the jth component of ensemble pattern,
yi. We then fit the pairwise model, which also incorporates the

simultaneously observed pairwise correlations. Fitting the maxi-
mum entropy pairwise model consists of maximizing the Shannon
entropy subject to the constraints that it must be consistent with
the expected firing rates and pairwise correlations measured from
the dataset:

Q = max
pi

[
−

∑
i

pi log pi + λ0

[
1−

∑
i

pi

]

+
∑

r

λr

[
〈fr (pi)〉 −

∑
i

pi fr (pi)

]]

The probability the model assigns to each ensemble pattern is
simplified here as pi. The first term on the right of the equals sign
is the Shannon Entropy. The first constraint, with parameter λ0, is
a normalization constraint and the subsequent sum of constraints,
with parameters λr, require the model output match the expec-
tations of these measured quantities, 〈fr(p)〉 (Jaynes, 1957). The
form of the resulting model is obtained by setting ∂Q/∂pi= 0 and
solving for pi:

pi = e−
∑

r λr fr (pi )∑
i e−

∑
r λr fr (pi )

The denominator satisfies the normalization constraint, mak-
ing this model a probability mass function. Figure 2D shows the
improved fit of the pairwise model (P2) compared against the
independent model (P1) for this, on average, weakly correlated
ensemble. This analysis validates the result of Schneidman et al.
(2006): a model incorporating the firing rates and pairwise inter-
actions within a neural ensemble does provide a good fit to these
ensemble data. Consequently, tracking changes in these features
over time provides a good approximation to the dynamics of the
ensemble.

To increase our temporal resolution of the dynamics of the
ensemble we must make estimates using fewer samples. This intro-
duces a host of issues that must be taken into account. For instance,
to our knowledge all analyses of the joint distribution of ensemble
patterns (Schneidman et al., 2006; Tang et al., 2008), including our
own, observe that the low firing rates of neurons and weak corre-
lations between them result in ensembles rarely if ever producing
many of the possible patterns (Figure 2C). Low sample density and
outright missing data pose a challenge to any statistical analysis of
ensemble data at higher temporal resolutions, because a proba-
bility mass must be assigned to all yi ∈Y. Our solution is to first
compress these data into multinomial samples via the kdq-tree and
then multiple these by a prior distribution when calculating the
Bayesian estimate of the KL-Divergence.

COMPRESSION VIA THE kdq-tree
The kdq-tree is used to compress the ensemble data before multi-
plying it by a prior distribution. Otherwise maximum-a posteriori
estimates of the KL-divergence are liable to be more a reflection of
the prior distribution than the dataset (Skilling, 1985). Therefore,
to aggregate regions of low sample density, and thereby reduce the
influence of the prior distribution, we employ the kdq-tree (Dasu
et al., 2006).
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FIGURE 3 |The kdq-tree. The kdq-tree as a binary tree: (A) A simulated
ensemble of five variables with sufficient data density to generate the
complete tree representing all of the 32 (25) possible ensemble patterns.
(B) A simulated ensemble of five variables with insufficient data density,
resulting in a pruned tree wherein ensemble patterns with low sample
density are aggregated. (C) The maximum-a posteriori probabilities of
ensemble patterns for a 10 neuron ensemble recorded in the rat
somatosensory cortex. (D) The same data after compression via the
kdq-tree. Note there is no longer any missing data.

The kdq-tree data structure provides a data-driven approach
to compressing regions of low sample density that scales linearly
in the number of dimensions and data points (Dasu et al., 2006).
This makes its use computationally efficient for a wide range of
ensemble and sample sizes. The general principle followed by the
kdq-tree is to bin finely where data density is high and coarsely
where it is low. The parameters of the kdq-tree are an integer that
sets the minimum number of data points a bin must contain before
it is subdivided, and a real number that sets a constraint upon the
width of any bin along any dimension. For ensemble patterns the
latter parameter is always set to 1/2 since all dimensions consist
of the values 0 and 1. The intuition behind the kdq-tree may be
apprehended by representing it as a binary tree data structure
(Figures 3A,B).

In Figures 3A,B each fork represents a splitting of a parent node
(bin) along a single dimension, and the K leaves of the binary tree
are the terminal nodes (the resulting bins). Each node contains
the boundaries of a bin and the number of samples contained
therein. As one moves down the tree, from top to bottom, the
bins get smaller (see Algorithm 1). Figure 3A shows the binary
tree representation of a kdq-tree fit to a simulated ensemble of
five neurons. In this case, all of the possible 25= 32 ensemble pat-
terns were visited with sufficient frequency to generate the entire
tree (Depth= 5, Terminal Nodes= 32). Figure 3B details a similar
binary tree structure, but in this case not all of the ensemble

patterns contain enough samples to generate the complete tree,
resulting in a pruned tree (Depth= 5, Terminal Nodes= 15). In
both examples, this binary tree is constructed iteratively by cycling
through each of the five variables in the ensemble and at each step
determining whether to split the parent node into two children
nodes. This process continues until no node meets the criteria for
subdivision set by the parameters. This compression into multin-
omial samples eliminates missing data, with only a slight loss of
empirical entropy (Figures 3C,D: data from an ensemble of 10
recorded neurons). This transformation allows us to track differ-
ences in samples of ensemble data as differences in the posterior
distributions using the Bayesian estimator of the KL-divergence.

TRACKING THE KL-DIVERGENCE
The KL-divergence is defined as:

KL(p1||p2) =
m∑

i=1

p1(i) log
p1(i)

p2(i)

It is a convex function between probability density functions
and is bound between 0, indicating no difference between the
distributions, and +∞. It is only defined for the case where the
domains of p1 and p2 are the same. We interpret the KL-divergence
as the information for discriminating p1 from p2. In general, the
KL-divergence from p2 to p1 is not equal to that from p1 to p2.
With this in mind, it is important to note that our calculations of
the KL-divergence are always relative to a null hypothesis, with the
distribution of this null represented by p2.

The Bayesian estimator for the KL-divergence is derived accord-
ing to the Laplace convolution method (Wolpert and Wolf, 1995),
which requires the specification of a prior distribution. Based upon
Figure 2C, we know that many of our ensemble states are unlikely
to be observed. What we want then is a prior distribution that
is minimally informative while being responsive to updates from
sparse data. To achieve this end, we chose the conjugate prior for
multinomial likelihoods functions, the Dirichlet distribution, and
set all the parameters of the distribution equal to 0.5 (Krichevsky
and Trofimov, 1981). The first moment of Bayesian estimator of
the KL-divergence according to the posterior distributions of p1

and p2 is calculated, and derived in the Appendix (see also Berkes
et al., 2011).

Figure 4 details the behavior of the kdq-tree, our choice of prior,
and the estimator of the KL-divergence when applied to the output
of two simulated 10 unit ensembles. In this case the null hypothesis
was that the test samples were all drawn from the same distribu-
tion that generated the first 500 samples (note the zero values in
Figures 4C,F, which are the samples used for the null hypothesis).
The test window of 500 samples was slid one sample at a time, for-
ward in time, over the entire dataset. At each step the test data was
processed as described above and the KL-divergence was estimated
between the null and test data.

These simulations were designed to undergo either a change
in firing rates (Figure 4A) or pairwise correlations (Figure 4D)
beginning at sample 2001 and persisting through sample 4000.
Specifically, in Figure 4B all variables were assigned an initial fir-
ing rate and, at sample 2001, each underwent a random change
in firing rate (All firing rates were drawn from a distribution
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Algorithm 1: Construct Binary kdq-tree (data, splitmin)

data should be a binary array of [Ndatapoints by Nvariables];
axis ← 1, the first of Nvariables;
currentnode ← 1;
unused ← 2;
assignednode ← an array of 1’s the size of Ndatapoints;
INITIALIZE a tree data structure T;
T.Addnode( );
T.parent(currentnode) ← 0;
T.axis(currentnode) ← axis;
while currentnode < unused do
if T.axis(currentnode) > Nvariables then

noderows ← indices of assignednode that equal currentnode;
T.nodesize(currentnode) ← size of noderows;
INITIALIZE T.children as the array [0,0];
INCREMENT currentnode;
continue

end if
noderows ← indices of assignednode that equal currentnode;
T.nodesize(currentnode) ← size of noderows;
if T.nodesize(currentnode) > splitmin then

ω ← indices of data equal to 0 at T.axis(currentnode);
α ← indices of data equal to 1 at T.axis(currentnode);
if ω is empty or α is empty then

INITIALIZE T.children as the array [0,0];
INCREMENT currentnode;
continue

end if
T.children(currentnode) ← [unused, unused+1];
T.Addnode( );
T.Addnode( );
INCREMENT axis;
T.axis([unused, unused+1)) ← axis;
T.parent([unused, unused+1]) ← currentnode;
assignednode(ω) ← unused;
assignednode(α) ← unused+1;
unused ← unused+2;

end if
INCREMENT currentnode;

end while
return T;

derived from unit activity recorded within the S1bf of five behaving
rats. All unit waveforms had a signal-to-noise ratio of 4:1 relative
to each channel’s background voltage fluctuations, unpublished
data.). In Figure 4E, initial firing rates were drawn as in Figure 4B,
but here at sample 2001 all variables underwent an increase in
pairwise correlations [from correlation(xi, xj) ∼ N (0.005, 0.05) to
∼N (0.8, 0.05)] while firing rates remained the same (the sim-
ulation engine of Macke et al., 2009 was used to generate these
example data). Figures 4C,F show that the Bayesian estimator of
the KL-divergence is able to signal both of these changes.

An examination of Figure 4 illustrates that before applying
this method to real data we must derive for the time-series of
KL-divergence values a rejection threshold for ruling out the null
hypothesis. Specifically, we must provide a means for rejecting the
null hypothesis that the KL-divergence matches what one would
expect if repeated finite samples were drawn from the null dis-
tribution. In Figure 4, this variability is manifest in the behavior
of the KL-divergence time-series between samples 1000 and 2000
and again after sample 2501. The magnitude of this variance is
a function of the ensemble size, the number of samples within a

window, and the null hypothesis considered. We next examine the
variance of the null hypothesis en route to defining a rejection
threshold for the time-series of the KL-divergence values. We then
validate the method’s behavior and performance upon simulated
ensemble data for a variety of null hypotheses.

CHECKING INTUITIONS AND ESTIMATING A REJECTION THRESHOLD
To evaluate the behavior of our method, we calculated the expected
variance of the resulting KL-divergence for a range of ensemble
sizes, sample sizes, and neural features. This was achieved by draw-
ing samples from simulated ensembles generated by stationary
distributions. Before estimating the SD of the posterior distribu-
tion of the KL-divergence, for multinomial likelihood functions,
we derived the second moment of this distribution according to
the posteriors of p1 and p2 (see Appendix for details).

The simulation engine of Macke et al. (2009) was then used to
generate ensembles of binary variables with mean firing rates and
pairwise correlations matched to those observed experimentally.
The simulated ensemble data was then binned at 20 ms and the
sample size parameter of the kdq-tree was set to five samples. The
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FIGURE 4 | A basic demonstration of the method. (A) Schematic
representation of a simulated unit changing its firing rate at sample 2001.
(B) A simulated ensemble of 10 variables which all change their firing rates
at sample 2001. Firing rates before and after the change were drawn from a
distribution generated from ensemble data recorded in the S1bf of five rats.
(C) The application of the method to the simulated ensemble. The null
hypothesis for the KL-divergence was that these data were all drawn from
the distribution that generated the first 500 samples (note the zero values
indicate the samples used for the null hypothesis). (D) Schematic
representation of three simulated units increasing their pairwise
interactions. (E) A simulated ensemble of 10 units that all change their
pairwise interactions at sample 2001, while their firing rates remain the
same. (F) The method is also able to signal this change in correlations.

details of these simulations for varying ensemble and window sizes
are shown in Figure 5. Each data point represents the mean± SD
of the KL-divergence. Several important intuitions are apparent
from these simulations.

First, the mean and SD of the KL-divergence is inversely pro-
portional to the window size. Second, the mean is directly propor-
tional to the number of variables in the ensemble (Figure 5A). This
means that as the ensemble size increases, relative to the sample
size, the likelihood of mistaking pairs of samples from a single
distribution for samples from different distributions increases.
Alternatively, stationary systems appear more variable if brief
observations are made instead longer ones. Third, the mean of
our estimates of the KL-divergence are inversely proportional to
the degree of correlation among the variables (Figure 5B). In the
extreme, if the variables within a system are completely correlated,
the distribution reduces to a binomial distribution, greatly reduc-
ing the expected KL-divergence. These intuitions are important

FIGURE 5 |The method preserves intuitions about ensemble data. (A)

The variance for draws from a stationary distribution decreases as a
function of the size of the sample and the bias increases as a function of
the number of neurons within the ensemble. (B) The bias for draws from a
stationary distribution decreases with increasing correlations among the
variables. Both subplots are mean±SD of the Bayesian estimator of the
KL-divergence.

if we are to differentiate interesting features of the dataset from
expected fluctuations in its activity.

It is important to emphasis that the Bayesian estimator of the
KL-divergence is positively biased, especially for large ensembles.
This is in line with observations made by others about the calcu-
lation of Shannon Entropy from ensemble data (Paninski, 2003).
This bias is less of a concern for us because we are interested in
tracking differences in the time-series of the KL-divergence val-
ues, not their absolute values. With these observations in hand, we
now estimate the rejection threshold relative to the null hypothesis
upon the time-series of KL-divergence values.

Our general goal is to detect epochs in which the dynamics of
the ensemble move away from the distribution of the null hypoth-
esis. The calculation of the rejection threshold will depend upon
the null hypothesis under consideration. For example, for the null
hypothesis of homogeneity among adjacent samples, a surrogate
dataset is created by time shuffling the ensemble patterns to break
up any temporal structure in the sequence of ensemble data. These
surrogate data are then processed according to the method and the
mean and SD of the resulting time-series of KL-divergence values
are used to set the rejection threshold (see Algorithm 2 for a test
of homogeneity among adjacent samples).

When considering the null hypothesis of independence among
the neurons within an ensemble we generate pairs of surrogate
independent samples by shuffling the time indices of each neuron
within each window. This preserves the firing rates of all the neu-
rons within the window while disrupting any correlations among
them. These data are then processed and the rejection threshold is
calculated as above.

Figure 6 details our method’s ability to detect changes in the
dynamics of the ensemble data missed by the commonly used
population, or ensemble, firing rate metric (Laubach et al., 2000;
Friedrich and Laurent, 2001; Dorris and Glimcher, 2004) as well
as changes in the correlation structure of an ensemble.

In Figure 6A, a simulated ensemble of 10 variables was gener-
ated so that the column sum for each sample was constant (five
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Algorithm 2: kdq bayes KL (for homogeneity of adjacent windows)

data: a binary array of [Ndatapoints by Nvariables];
data.sh ← a time-shuffled copy of data (null distribution);
γ: sets the number of data points within a window;
stepsize: sets the number of data points between comparisons;
α sets the value of the parameters of the Dirichlet prior;
T ← Construct Binary kdq-tree (data, splitmin);
i ← 1;
while not at the end of the data do

Load adjacent samples W1 and W2 of γ samples from data;
Likewise load W1.sh and W2.sh from data.sh;
n1 ← multinomial sample generated by filtering W1 through T;
n2 ← multinomial sample generated by filtering W2 through T;
n1.sh ← multinomial sample generated by filtering W1.sh through T;
n2.sh ← multinomial sample generated by filtering W2.sh through T;
KLs[i+γ-1] ← bayes KL(n1, n2, α);
KLs.sh[i+γ-1] ← bayes KL(n1.sh, n2.sh, α);
Slide windows W1, W2, W1.sh and W2.sh by stepsize;
i ← i+1;

end while
null.mode ← mode(KLs.sh[γ to end- γ by stepsize]);
null.std ← standard deviation(KLs.sh[γ to end- γ by stepsize]);

FIGURE 6 |The method detects changes in both the strength and

structure of ensemble correlations. (A) A subset of the dataset from a
2600 sample simulated ensemble of 10 units wherein each column sum is
equal to 5. In the complete simulation from samples 1251–1350 there is the
alternating pattern seen in the middle panel. (B) The resulting KL-divergence
after the method was applied to the simulated ensemble. The null
hypothesis was stationarity relative to the initial window’s 100 samples. (C)

The ensemble firing rate output with a 100 sample running average. (D) A
simulated ensemble exhibiting a change in correlation structure. The four
subpanels show subsets of 20 samples from epochs of 1000 samples.
These epochs were independence, correlation among variables 1–5,
correlation among variables 6–10, and independence, respectively. (E) The
resulting KL-divergence after evaluating the null hypothesis of
independence among the variables. (F) The resulting KL-divergence after
evaluating the null hypothesis of homogeneity between adjacent samples.
Vertical black lines indicate the beginning and end of sample epochs. The
horizontal black line and gray shaded areas indicate the mode and the SD,
respectively, of the time-series of the analyses.

samples). From samples 1251–1350, 100 samples exhibit a stereo-
typed correlation structure (Figure 6A, middle panel : a subset).
This was done to provide an example of a disassociation of a
change in ensemble firing rate from a change in ensemble corre-
lations. Our method and the ensemble firing rate were calculated
from these simulated data. For both analyses a 1 sample bin and
a 100 sample window were used. For the ensemble firing rate
this 100 sample window was used to calculate a running average.
This matched the time-scales of the analyses. For the kdq-tree,
the sample density parameter was set at 5. The null hypothesis
tested was homogeneity among samples. The KL-divergence was
able to detect this change in the correlation structure (Figure 6B),
and by design the ensemble firing rate could not (Figure 6C).
In Figure 6D, a simulated ensemble of 10 variables was gener-
ated such that they were independent from samples 1–1000, from
samples 1001–2000 variables 1–5 were correlated, from samples
2001–3000 variables 6–10 were correlated, and they were all inde-
pendent again from samples 3001–4000. Here we used a window
size of 500 samples. To detect this change in correlation structure
using our method, we evaluated two null hypotheses. The first null
hypothesis was that the variables were independent (Figure 6E).
The second null hypothesis was that adjacent samples were homo-
geneous (Figure 6F). Figure 6E shows that our method was able to
reject the null of independence between samples 1000 and 3000.
Figure 6F shows a rejection of the null of homogeneity almost
immediately as the leading edge enters the first epoch of corre-
lated data. It then decreases as both windows enter this epoch
before increasing again and reaching a maximum around sample
2500, as each of the adjacent windows occupies one of the two dif-
ferently correlated epochs. Taken together, this demonstrates the
ability of our method to detect a change in the structure of neural
ensemble correlations.

To demonstrate the performance of our method under diffi-
cult conditions, Table 1 details the performance of the complete
method at detecting small changes in the degree of correlation
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Table 1 | Results from simulations designed to evaluate the method’s ability to detect 100 changes in ensemble correlations over a range of

parameter values.

N Window δ α ΔCorr(Xi, Xj) Detected Late False Miss

10 100 5 0.05 0.1 7 70 25 23

10 100 20 0.05 0.1 3 74 21 23

10 100 5 0.001 0.1 0 19 0 81

10 100 20 0.001 0.1 0 14 0 86

10 500 5 0.05 0.1 65 9 7 26

10 500 20 0.05 0.1 54 17 2 29

10 500 5 0.001 0.1 23 3 0 74

10 500 20 0.001 0.1 25 2 0 73

100 100 5 0.05 0.1 28 56 46 16

100 100 20 0.05 0.1 18 67 61 15

100 100 5 0.001 0.1 27 40 1 33

100 100 20 0.001 0.1 10 38 0 52

100 500 5 0.05 0.1 79 3 0 18

100 500 20 0.05 0.1 79 5 2 16

100 500 5 0.001 0.1 55 0 0 45

100 500 20 0.001 0.1 55 0 0 45

N=number of variables, δ= kdq-tree sample density parameter, α= significance threshold.

among variables. Again, the firing rates of the variables within the
simulated ensembles were drawn from an empirical distribution
derived from chronic extracellular recordings in five behaving rats
(unpublished data). The parameters considered were the number
of variables in the ensemble, the window size, the significance level
for detection, and the sample density parameter for the kdq-tree.
In all cases, 100 epochs of 5500 samples each were generated, and
an increase in ensemble correlations from 0 to 0.1 occurred from
samples 4501 to 5000. The null hypothesis evaluated was that the
samples all came from the same distribution that generated the
samples within the first window. The significance level was set
relative to the rejection threshold of the null distribution calcu-
lated as described above. The confidence interval method of Dasu
et al. (2009) was used to mark detections. Detections were marked
when the number of significant KL-divergence values within a 100
sample window exceeded the proportion expected by chance. Per-
formance was classified as “Detected,”“Late,”“False,” and “Miss.”A
change was logged as“Detected”if the time of detection was within
two window lengths of the actual change. Otherwise, any detection
outside this interval but before another simulated change in these
data was marked “Late.” If the number of detections was greater
than the number of epochs, then this excess was logged as “False,”
indicating false alarms. If no detection was signaled between two
changes, it was logged as a “Miss.”

The most important result of these simulations is that it is
far easier to detect small, widespread changes in the correlations
among units within large ensembles than within smaller ensem-
bles. This implies that if small, widespread changes in ensemble
correlations are coincident with behavior, then increasing the
number of recorded units in combination with this method should
increase the ability of experimenters to detect this feature. This
point will be considered further in the discussion. From the sim-
ulations, it was also clear that matching the window size to the

duration of the change increased the number of detections, which
recommends considering multiple time-scales when investigating
ensemble correlations. As might be expected, increasing the signif-
icance level for detection decreased the number of false alarms but
increased the number of false negatives. The threshold upon sam-
ple density was found to have only a small effect upon detection
performance for the range of values considered.

APPLICATION TO REAL DATA
Having explicated our method, we now demonstrate its applica-
tion to real neural ensemble data (Figure 7). Our goal was to detect
the occurrence of the μ-rhythm apparent in the LFP using only the
ensemble data (Figures 7A,B). To begin, the bin width parameter
was set to 20 ms and a window of 200 binned samples was used. For
comparison against a comparable estimate of ensemble firing rate,
the ensemble data was binned as both binary activations and spike
counts. The KL-divergence was set to evaluate the null hypothesis
that the neurons within the ensemble fire independently of one
another. The kdq-tree was constructed using the complete data
sorted in descending order by firing rate (Figure 7B). For the kdq-
tree, the integer threshold upon data density was set at five samples.
After compression, the resulting multinomial samples were then
used to estimate the KL-divergence. The mode± the SD of the
time-series of surrogate KL-divergence values representing the null
hypothesis is plotted to mark when the null is rejected (Figure 7D).
The mode± the SD of the ensemble firing rate time-series set the
rejection threshold for this estimator (Figure 7C).

The most apparent difference between these analyses is that
the KL-divergence was capable of signaling the sustained epoch of
increased ensemble correlations (Figure 7D), whereas the ensem-
ble firing rate only clearly signals the tail end of the second bout of
the μ-rhythm (Figure 7C). These epochs are of particular inter-
est because they signal a disassociation of changes in pairwise
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FIGURE 7 | Application of the complete method to the rodent

μ-rhythm. (A) One channel of local field potential activity recorded
simultaneously from rat S1bf exhibiting two large amplitude bouts of the
μ-rhythm. (B) The simultaneously recorded ensemble of 10 units. (C) The
ensemble firing rate calculated in a 200 sample window of spike counts
binned at 20 ms and slid one sample at a time. (D) The resulting
KL-divergence after evaluating the null hypothesis of independence.

Subpanels 1: A period at the beginning the μ-rhythm when the correlations
among units began to increase. The KL-divergence clearly signals this
change while the ensemble firing rate does not. Subpanel 2: A period at
the end of μ-rhythm when the correlations among the units reached a
plateau followed by a burst of activity. The ensemble firing rate signals the
burst of activity. The horizontal black line and gray shaded area indicate the
mode and the SD, respectively, of the time-series of the analyses.

interactions from changes in neural firing rates. Both features
detect a decrease in ensemble activity prior to the initiation of the
μ-rhythm, but then the KL-divergence signals an increase in cor-
related activity missed by the ensemble firing (Figure 7, subpanel
1). Interestingly, the cadence of the μ-rhythms coincides with a
plateau and subsequent decrease in the KL-divergence, while the
ensemble firing rate signals a burst of activity (Figure 7, subpanel
2). An examination of the ensemble rasters validates the descrip-
tion of the dataset provided by these features. The initiation of the
μ-rhythm begins with a decrease in ensemble activity followed
by an increase in ensemble correlations without an appreciable
change in unit firing rates. The bouts of μ-rhythms are then ter-
minated by a burst of activity, which is detected by the ensemble
firing rate.

The ability of the proposed method to detect changes in ensem-
ble correlations, in conjunction with the population firing rate’s
sensitivity to bursts of activity, paints a rich picture of these data.
Moreover, by augmenting this method with the calculation of
the ensemble firing rate, the spike count information lost when
transforming the ensemble data to generate the joint distribution
is recovered. This example shows that tracking both the KL-
divergence (Figure 7D) and the ensemble firing rate (Figure 7C)
makes it straightforward to disassociate changes in firing rates
from changes in the higher order moments of ensemble data. Alto-
gether, our method provides an automated process for generating
a succinct summary of neural ensembles dynamics.

DISCUSSION
Contemporary neurophysiological techniques for recording from
behaving subjects track the output of ensembles of neurons.
Put simply, the ensemble is the set of recorded neurons. This
is done with minimal knowledge about the anatomical connec-
tions among the recorded neurons or any unobserved inputs that
drive them. Until the advent of technology capable of detailing
the relevant neural networks in vivo, progress will depend upon
the ability of neuroscientists to make sound inferences about the
structure and influences upon neural ensemble activity. This is to
say, the impressive parametric models that have been developed
for describing ensemble interactions (Brown et al., 2001; Truccolo
et al., 2005; Eldawlatly et al., 2009) are only as convincing as the
experimental evidence which supports them. While the body of
work demonstrating some relationship between the structure of
ensemble data and behavior is growing (Deadwyler and Hampson,
1997; Durstewitz et al., 2010; Truccolo et al., 2010), the functional
significance of transient fluctuations in the dynamics of neural
ensembles remains an open question. This led us to develop a
computational method that utilizes unsupervised learning algo-
rithms for the purpose of tracking changes in the dynamics of
neural ensembles on time-scales comparable with behavior.

Our approach was to synthesize the non-parametric method of
Dasu et al. (2006, 2009) with the statistical mechanics descrip-
tion of ensemble data provided by Schneidman et al. (2006).
These components were chosen to match well the practice of
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exploratory data analysis (Tukey, 1962; Mallows, 2006). As such,
they are non-parametric and unsupervised, reflecting the fact that
the mechanisms generating ensemble data are largely unknown
and their covariance with behavior remains to be investigated. The
kdq-tree was chosen for its ability to aggregate poorly estimated
regions of the data space (Figure 2D). Moreover, because it scales
linearly in the number of variables and data points, it is appropriate
for a wide range of ensemble and window sizes (Figure 5). Fur-
thermore, the use of the Bayesian estimator of the KL-divergence
(Kullback,1959;Wolpert and Wolf,1995) provided us with a sound
framework for evaluating possible differences between ensemble
data sampled over intervals short enough for making compar-
isons with behavior. Moreover, the Bayesian estimator allowed us
to incorporate prior information about the dataset. In particu-
lar, the use of the Dirichlet prior with parameters all set to 0.5
biased us toward a sparse posterior over ensemble patterns, in
accordance with experimental observations (Figure 2). Together,
this allowed us to track changes in the dynamics of ensemble data
by inspecting the time-series of the KL-divergence values relative
to the corresponding expected variance of the null distribution
(Figure 7).

Methods such as principal component analysis (Jolliffe, 2002)
and factor analysis (Yu et al., 2009) were not used to reduce the
dimensionality of the dataset because of their reliance upon the
assumption that these data come from a Gaussian distribution.
Because the set of ensemble patterns is unordered, smoothing
methods such as kernel density estimation (Rosenblatt, 1956;
Botev et al., 2010) would only be appropriate after first selecting an
arbitrary ordering of the ensemble patterns. It is worth noting that
the order in which the kdq-tree evaluates variables is arbitrary, and
other data compression schemes are worth considering if they are
well suited to the peculiarities of ensemble data. Moreover, simu-
lations demonstrated the free parameter upon sample density to
be rather robust (Table 1). Lastly, the choice to leave the spike bin
and window size as user-specified free parameters reflects the view
that these require expert knowledge for their specification, and will
depend upon the experimental preparation under observation.

The exposition and demonstrations provided herein illustrate
our method’s efficacy for evaluating a range of hypotheses about
the dynamics of ensemble data. These include detecting changes
in the structure of pairwise interactions among neurons within an
ensemble, distinct from changes in neural firing rates (Figure 6).
Throughout, we made the assumption that the features of interest
would manifest as transient changes in the dynamics of the ensem-
ble activity. This reflects that general observation that changes
in the dynamics of neural ensembles are observable as transient
modulations of neural firing rates and pairwise interactions. On
the contrary, one might imagine an ensemble could shift from
one sustained equilibrium state to another. Such a change would
be clear from an inspection of the times-series of KL-divergence
values under the null hypothesis of stationarity and would recom-
mend a partitioning of the time-series of these data prior to further
analysis. An alternative to this unsupervised approach would be
a supervised learning scheme in which a classifier is built using
training data to validate whether some ensemble data carries infor-
mation about a behavior of interest (Churchward et al., 1997).
The KL-divergence has been used extensively for classification

(Kullback, 1959) and our method could easily be adapted to
such a framework by an appropriate partitioning of the dataset
to generate training data for each presumed class.

There are a few differences between our method and those
of others, which are both principled and methodological. For
instance, analyses such as the ISI distance method of Kreuz et al.
(2007) or the gravity method of Lindsey and Gerstein (2006) are
designed to detect synchronous events involving subsets of neu-
rons within an ensemble. We did not take this approach for three
reasons. First, we wished to avoid treating the recorded ensem-
ble as a neural network, because of the experimental limitations
listed above. Therefore, we adopted a framework that is agnostic to
whether changes are caused by interactions between the recorded
neurons or by unobserved inputs. Second, sets of neurons do not
appear to fire in rigid patterns, i.e., sync-fire chains (Abeles, 1982a),
but in a stochastic manner amenable to statistical analysis. Third,
outside of a few areas within the brain which do show a high degree
of synchrony, e.g., CA1 of the hippocampus, there is a paucity of
experimental evidence for widespread, strong correlations among
neurons in most brain areas. The norm is the observation of weak
pairwise correlations (Schneidman et al., 2006; Tang et al., 2008;
Shlens et al., 2009). It remains unclear why these periodic synchro-
nizations are not observed at their downstream targets. Is it a due
to random delays between the neural oscillator and its target(s)?
If so, our method is capable of detecting the influence of such an
upstream neural oscillator without having to model the explicit
neuron-to-neuron interactions. This could be done by first apply-
ing our method to neural ensemble data from the downstream area
under the null hypothesis of independence and then comparing
the resulting time-series of KL-divergence values to the time-series
of the neural oscillator.

Methodologically, by being grounded within the framework
of statistical hypothesis testing, our method captures a notion
of prior expectation many ad hoc methods lack. Some form of
a prior expectation is important when analyzing complex sys-
tems, because simple changes in variance can result in incredible
variability, producing myriad red herrings. This being said, other
methods may be more sensitive to novel patterns of interest in the
dataset, and in future work we will extend the set of null hypothe-
ses to include a wider range of neural features. Ultimately, which
method will most clearly illustrate the relationship between neural
ensemble activity and behavior is an empirical question. In partic-
ular, the use of maximum entropy models in neuroscience has been
extended to include both temporal interactions among ensemble
patterns (Marre et al., 2009) and to argue for higher order corre-
lations in ensemble data (Ohiorhenuan et al., 2010). In addition,
a forthcoming extension will calculate the inverse from significant
changes in the ensemble dynamics to the best estimate of the set
of neurons that contributed to the change.

In conclusion, we presented a flexible method for signaling
changes in the dynamics of neural ensemble data on time-scales
comparable with behavior. We demonstrated the validity and
utility of this method and recommend its use to complement
existing analyses. This method is particularly sensitive to wide-
spread, transient fluctuations in the correlations among neurons
within an ensemble (Table 1). Importantly, it is capable of disasso-
ciating changes in ensemble correlation structure from changes in
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ensemble firing rate (Figure 6). This makes it an excellent candi-
date for mining ensemble data in search of evidence for hypotheses
ranging from the reader mechanisms governing neural computa-
tion (Buzsaki, 2010) to the role of oscillations in the brain (Fries,
2005).

The application left to experimentalists is to observe the
covariance between large values of the KL-divergence and other
variables of interest. A MATLAB® implementation of this
method, along with an addition visualization tool, is available at:
http://code.google.com/p/kdq-bayes-kl
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APPENDIX
In this appendix the Bayesian estimator for the first and second moments of the KL-divergence over discrete distributions is derived
according to the method of Wolpert and Wolf (1995). This appendix is meant to stand alone and so some of the results of Wolpert and
Wolf (1995) are recapitulated. The interested reader should consult the original work of Wolpert and Wolf (1995).

The original result of Wolpert and Wolf (1995) was derived for a single, discrete distribution. When applying this method to derive
the Bayesian estimator for the KL-divergence it is necessary to consider two discrete distributions, which share the same domain.
This extension has been demonstrated for a quadratic loss function in “Determining Whether Two Data Sets Are From The Same
Distribution” by Wolpert (1996).

PRELIMINARIES
We are interested in using a data set n to estimate some function of a probability distribution Q(p). To estimate Q(p) from the data n
we must first determine the probability density function P(p|n). We know that we are working with multinomial samples here, so by
Bayes’s theorem P(p|n) is given by

P(p|n) = P(n|p)P(p)

P(n)

P(n|p) = N !
m∏

i=1

[pni/ni
i !]

P(n) =
∫

dp P(n|p) P(p).

Note that because of cancelation, the constant N !/(∏m
i=1 ni !) does not appear in P(p|n). Thus, P(p|n) ∝ ∏m

i=1 pni
i P(p). Therefore,

the kth order moment of Q(p) given n is (∫dpQk(p) P(p|n). If we define

qk ≡
∫

dp Qk(p)P(p)

m∏
i=1

pni
i ,

then the kth moment of Qk(p) may be expressed as qk/q0.
In the following, for simplicity P(p) will be assumed to be uniform, i.e., P(p)∝
 (p)Θ(p), where Θ(p)=Πiθ(pi), the Heaviside

theta function, Δ(p)≡ δ(Σi pi− 1), and the proportionality constant is set by the normalization condition ∫dpP(p)= 1.

When deriving the Bayesian estimator for the KL-divergence we utilize a Dirichlet prior, P(p) ∝∑m
i=1 pαi−1

i for Re(αi) > 0.
Lastly, to be consistent with the notation of Wolpert and Wolf (1995) we define

I [Q(p), n] ≡
∫

dp Q(p) Δ(p) Θ(p)
m∏

i=1

pni
i .

I[,] is a functional of its first argument and a function of its second argument.

RECAPITULATION OF DERIVATIONS BY WOLPERT AND WOLF (1995)
In Theorem 1 it is shown that if a function H (p) factors as H (p) =∏m

i=1 hi(pi), then the general form of the integral∫(dp H (p)Δ(p)Θ(p)
is that of a convolution product of m terms.

Define the Laplace convolution operator⊗ by

(f ⊗ g )(τ) ≡
τ∫

0

dx f (x) g (τ− x).

Theorem 1. If H (p) =∏m
i=1 hi(pi), then

∫
dp Δ(p) Θ(p) H (p) = (⊗m

i=1hi(pi))(τ)|τ=1.
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Proof. The pi may not be independently integrated since the constraint
∑m

i=1 pi = 1 exists. This constraint is crucial for deriving the
closed form solution, and is reflected in the explicit definition of the integral

∫
dp Δ(p) Θ(p) H (p) =

∞∫
0

dp1 . . .

∞∫
0

dpm
{

h1(p1) × · · · × hm(pm)
}

δ

[
1−

m∑
i=1

pi

]
=

1∫
0

dp1h1(p1)

1−p1∫
0

dp2h2(p2) . . .

×
1−(p1+...+pm−2)∫

0

dpm−1hm−1(pm−1)hm−1(1− (p1 + . . .+ pm−1)).

Define the m variables τk, k= 1,. . ., m, recursively by τ1 ≡ ∑m
i=1 pi = 1 and τk≡ τk− 1− pk− 1. Since τk = τ1 −∑k−1

i=1 pi , our
integral may be rewritten as

∫
dp Δ(p) Θ(p) H (p) =

τ1∫
0

dp1h1(p1)

τ2∫
0

dp2h2(p2) . . .

τm−1∫
0

dpm−1hm−1(pm−1)hm(τm−1 − pm−1).

Now, with the definition of the convolution, the integral can be rewritten as

∫
dp Δ(p) Θ(p) H (p) =

τ1∫
0

dp1h1(p1) . . .

τm−2∫
0

dpm−2hm−2(pm−2)(hm−1 ⊗ hm)(τm−2 − pm−2).

Since the convolution operator is both commutative and associative, we can repeat this procedure and write the integral above as∫
dp Δ(p) Θ(p) H (p) = (⊗m

i=1hi(pi))(τ)|τ=1.

Q.E.D.
Theorem 2 restates the important Laplace Convolution Theorem. The Laplace transform operator L is defined as L[h](s) =

∫∞0 h(t )e−st dt .
Theorem 2. If L[hi(pi)] exists for i= 1,. . ., m, then L[⊗m

i=1hi(pi)] =∏m
i=1 L[hi(pi)].

Theorems 1 and 2 allow for the calculation of integrals of the form I [Qk(p), n] for functions Q(p) that may be factored as∑k
j=1

∏m
i=1 L[hji(pi)]. Both the Shannon entropy and the KL-divergence may be factored in this manner.

Theorem 1 and 2 may be used in concert to calculate the normalization constant I [1, n]. It will be shown that manipulating I [1, n]
provides the base for deriving the Bayesian estimator for the KL-divergence. The derivations require the Gamma function Γ(z) given
by Γ(z)= ∫∞0 t z−1e−t dt for Re(z) >−1.

Theorem 3. If Re(ni) >−1 ∀i= 1, . . ., m, then I [1, n] =∏m
i=1 Γ(ni + 1)/Γ[N +m].

Proof. For the integral I [1,n] = ∫ dpΔ(p)Θ(p)
∏m

i=1 pni
i , the hi(pi) are given by hi(pi) = pni

i .
Since

L[pn](s) = Γ(n + 1)

sn+1
for n > −1,

we have, by Theorems 1 and 2

I [1, n] = L−1

[
m∏

i=1

L[pni
i ](s)

]
(τ)|τ=1 = L−1

[
m∏

i=1

Γ[ni + 1](s)−(ni+1)

]
(τ)|τ=1 =

m∏
i=1

Γ(ni + 1)

Γ(N +m)
.

Q.E.D.
When deriving the Bayesian estimator for the KL-divergence we will need to calculate variants of integrals of the form

I [pq1
1 lnr1(p1) . . . p

qm
m lnrm (pm), n]. The key to these derivations is the fact that ∂r

npn = pn lnr (p), which immediately leads to the
following.

Theorem 4. For Re(ni) >−1 ∀i,

I [lnr1(p1) . . . lnrm (pm), n] = ∂r1
n1

. . . ∂rm
nm

I [1,n].
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The justification for the interchange of the derivative and integral is provided in Appendix C of Wolpert and Wolf (1995). In using
Theorem 4, note that since N =∑m

i=1 ni , we have ∂ni N = 1.
Following the notation of Wolpert and Wolf (1995) we define Φ(n)(z)=Ψ(n− 1)(z) and
Φ(n)(z1, z2)≡Φ(n)(z1)−Φ(n)(z2), where

Ψ(n)(z) is the polygamma function ψ(n)(z) = ∂
(n+1)
z ln[Γ(z)] and Φ(n)(z) = ∂n

z ln[Γ(z)].
Theorem 5. For Re(ni) >−1 ∀i,

I [ln(pu), n] =
∏m

i=1 Γ(ni + 1)

Γ(N +m)
ΔΦ(1)(nu + 1, N +m).

Proof. I [ln(pu), n] = ∂nu I [1, n] (by Theorem 4). Substituting the result from Theorem 3 for I [1,n] above we have

∂nu

∏m
i=1 Γ(ni + 1)

Γ(N +m)
=

∏
i =u

Γ(ni + 1)∂nu

Γ(nu + 1)

Γ(N +m)
=

∏
i =u

Γ(ni + 1)
Γ(nu + 1)

Γ(N +m)
ΔΦ(1)(nu + 1, N +m)

=
∏m

i=1 Γ(ni + 1)

Γ(N +m)
ΔΦ(1)(nu + 1, N +m)

Q.E.D.
Theorem 6. For Re(ni) >−1 ∀i,

I [ln(pu) ln(pv ), n] =
[

m∏
i=1

Γ(ni + 1)

]/
Γ(N +m)

× {ΔΦ(1)(nu + 1, N +m)ΔΦ(1)(nv + 1, N +m)−Φ(2)(N +m)}, u = v

I [ln2(pu), n] =
[

m∏
i=1

Γ(ni + 1)

]/
Γ(N +m)

× {[ΔΦ(1)(nu + 1, N +m)]2 +ΔΦ(2)(nu + 1, N +m)}.
Proof. Similar to, but far more laborious than, the proof of Theorem 5. This proof is not detailed here.

NOVEL DERIVATION OF THE BAYESIAN ESTIMATOR FOR THE KL-DIVERGENCE
The derivation of the first and second moments for the KL-Divergence according to the Laplace Convolution method of Wolpert and
Wolf (1995). We consider a system of m possible states and an associated vector of m probabilities for those states p = (pi), 1 � i �
m,

∑m
i=1 pi = 1. For two multinomial samples, let the total number of count across states be N for each sample and denote the vectors

of state counts by nj= (nj(i)), 1≤ i≤m, j= {1,2} and
∑m

i=1 nj(i) = Nj , N1 = N2 = N . Here we define the KL-divergence as:

KL(p1(i)||p2(i)) =
m∑

i=1

p1(i) log
p1(i)

p2(i)

The derivation requires the evaluation of the following integrals:

E[KL] =
∫

dp1dp2KL(p1(i)||p2(i))
m∏

i=1

[p1(i)n1(i)p2(i)n2(i)]P(p1, p2) and

E[KL2] =
∫

dp1dp2KL2(p1(i)||p2(i))
m∏

i=1

[p1(i)n1(i)p2(i)n2(i)]P(p1, p2)

P(p1, p2) =
Γ(

∑m
i=1 α1(i)) Γ(

∑m
i=1 α2(i))∏m

i=1 Γ(α1(i))
∏m

i=1 Γ(α2(i))

m∏
i=1

p1(i)α1(i)−1p2(i)α2(i)−1,

αj(i), 1 � i � m, Re(αi) � 0 ∀i, j = {1, 2}
As above, the derivation follows from modifying an analogously defined I [1, n1, n2] term through the repeated application of

Theorem 6. Here

I [1, n1, n2] =
∫

dp1dp2

m∏
i=1

[p1(i)n1(i)p2(i)n2(i)]P(p1, p2).
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One notable difference here is the fact that we don’t just consider uniform priors. The α parameters reflect our choice of a Dirichlet
prior, which is simply incorporated into this framework as “pseudo-counts” upon the states.

Below is for the case α1(i)= α2(i)= α, ∀i. Since p1 and p2 are independent, Theorem 3 above allows us to calculate the integral of
I [1,n1, n2] as

I [1, n1, n2] =
m∏

i=1

Γ(n1(i)+ α) Γ(n2(i)+ α)

Γ(N1 +m · α)Γ(N2 +m · α)

The
Φ(i) and Φ(i) functions are defined as in Wolpert and Wolf (1995).

E[KL] = I [KL, n1, n2]
I [1, n1, n2] =

∑m
i=1 I [ln p1(i)

p2(i) , n1 + ei , n2]
I [1, n1, n2] , ei adds a count to the indexed p1(i)

=
∑m

i=1 ∂n1(i)I [1, n1 + ei , n2] − ∂n2(i)I [1, n1 + ei , n2]
I [1, n1, n2] by Theorems 3, 4, and 5

=
m∑

i=1

(n1(i)+ α)

(n1 + α ·m)
ΔΦ(1)(n1(i)+ α+ 1, N1 + α ·m + 1)−

m∑
i=1

(n1(i)+ α)

(n1 + α ·m)
ΔΦ(1)(n2(i)+ α, N1 + α ·m)

The second moment requires the repeated application of Theorems 5 and 6. This is clear from the expansion of the square of the
KL-divergence.

KL2 =
[

m∑
i=1

p1(i) ln(p1(i))−
m∑

i=1

p1(i) ln(p2(i))

]2

=
m∑

i=1

p1(i) ln(p1(i))
m∑

i=1

p1(i) ln(p1(i))

− 2

[
m∑

i=1

p1(i) ln(p1(i))
m∑

i=1

p1(i) ln(p2(i))

]
+

m∑
i=1

p1(i) ln(p2(i))
m∑

i=1

p1(i) ln(p2(i))

Now we can calculate the integral for the individual components of this expansion as

E[KL]2 =
m∑

i=1

(n1(i)+ α) (n1(i)+ α+ 1)

(N1 + α ·m)(N1 + α ·m + 1)

× {[ΔΦ(1)(n1(i)+ α+ 2, N1 + α ·m + 2)]2 +ΔΦ(2)(n1(i)+ α+ 2, N1 + α ·m + 2)}

+
m∑

i =1

(n1(i)+ α) (n1(j)+ α)

(N1 + α ·m)(N1 + α ·m + 1)

× {ΔΦ(1)(n1(i)+ α+ 1, N1 + α ·m + 2)ΔΦ(1)(n1(j)+ α+ 1, N1 + α ·m + 2) . . .−Φ(2)(n1 + α ·m + 2)}

− 2
m∑

i=1

(n1(i)+ α) (n1(i)+ α+ 1)

(N1 + α ·m)(N1 + α ·m + 1)
×ΔΦ(1)(n1(i)+ α+ 2, N1 + α ·m + 2)ΔΦ(1)(n2(j)+ α, N2 + α ·m)

− 2
m∑

i =1

(n1(i)+ α) (n1(i)+ α)

(N1 + α ·m)(N1 + α ·m + 1)
×ΔΦ(1)(n1(i)+ α+ 1, N1 + α ·m + 2)ΔΦ(1)(n2(j)+ α, N2 + α ·m)

+
m∑

i=1

(n1(i)+ α) (n1(i)+ α+ 1)

(N1 + α ·m)(N1 + α ·m + 1)
× {[ΔΦ(1)(n2(i)+ α, N2 + α ·m + 2)]2 +ΔΦ(2)(n2(i)+ α, N2 + α ·m)}

+
m∑

i =j

(n1(i)+ α) (n1(j)+ α)

(N1 + α ·m)(N1 + α ·m + 1)

× {ΔΦ(1)(n2(i)+ α, N2 + α ·m)ΔΦ(1)(n2(j)+ α, N2 + α ·m)−Φ(2)( N2 + α ·m)}.
Q.E.D.
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