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The geometry of natural branching systems generally reflects functional optimization. A
common property is that their bifurcations are planar and that daughter segments do not
turn back in the direction of the parent segment. The present study investigates whether
this also applies to bifurcations in 3D dendritic arborizations. This question was earlier
addressed in a first study of flatness of 3D dendritic bifurcations by Uylings and Smit
(1975), who used the apex angle of the right circular cone as flatness measure.The present
study was inspired by recent renewed interest in this measure. Because we encountered
ourselves shortcomings of this cone angle measure, the search for an optimal measure
for flatness of 3D bifurcation was the second aim of our study. Therefore, a number of
measures has been developed in order to quantify flatness and orientation properties of
spatial bifurcations. All these measures have been expressed mathematically in terms of
the three bifurcation angles between the three pairs of segments in the bifurcation. The
flatness measures have been applied and evaluated to bifurcations in rat cortical pyramidal
cell basal and apical dendritic trees, and to random spatial bifurcations. Dendritic and ran-
dom bifurcations show significant different flatness measure distributions, supporting the
conclusion that dendritic bifurcations are significantly more flat than random bifurcations.
Basal dendritic bifurcations also show the property that their parent segments are gen-
erally aligned oppositely to the bisector of the angle between their daughter segments,
resulting in “symmetrical” configurations. Such geometries may arise when during neu-
ronal development the segments at a newly formed bifurcation are subjected to elastic
tensions, which force the bifurcation into an equilibrium planar shape. Apical bifurcations,
however, have parent segments oppositely aligned with one of the daughter segments.
These geometries arise in the case of side branching from an existing apical main stem.The
aligned “apical” parent and “apical” daughter segment form together with the side branch
daughter segment already geometrically a flat configuration. These properties are clearly
reflected in the flatness measure distributions. Comparison of the different flatness mea-
sures made clear that they all capture flatness properties in a different way. Selection of the
most appropriate measure thus depends on the question of research. For our purpose of
quantifying flatness and orientation of the segments, the dihedral angle β was found to be
the most discriminative and applicable single measure. Alternatively, the parent elevation
and azimuth angle formed an orthogonal pair of measures most clearly demonstrating the
dendritic bifurcation “symmetry” properties.

Keywords: random spatial bifurcation, flatness measure, cone angle, solid angle right circular cone, solid angle

triangular pyramid, dihedral angle, trihedral angle, symmetrical bifurcation

INTRODUCTION
Branching patterns appear to be one of the most prevalent struc-
tures in nature. They occur at different scales and in a wide range
of natural structures, e.g., wooden trees, rivers, bronchial trees,
blood vessels, plant roots, and neurons. Irrespective of these dif-
ferent scales and natural structures, a general feature common to
branching patterns is that they are flow conductive and recep-
tive or transmissive. These functions can be optimally performed
by branching structures because of their structural properties. In

comparison with non-branched structures, they show (a) a shorter
conductive pathway and (b) a large interface between the structure
itself and its surrounding environment (e.g., Dittmer, 1937, 1948;
Haug, 1972, 1986; Uylings, 1977b).

The final shape of a branching pattern is a reflection of the
interaction between its function, environmental conditions, mode
of growth, and its intrinsic physical constraints (D’Arcy, 1966;
McMahon and Kronauer, 1976; Uylings, 1977b; van Veen and van
Pelt, 1992; van Pelt and Uylings, 2002; Kaandorp et al., 2008).
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Different optimality principles can govern the shape of a branch-
ing system, like optimal power/energy dissipation (e.g., Uylings,
1977a; Bejan and Lorente, 2008; Wen and Chklovskii, 2008), min-
imal mass or volume (e.g., Cherniak, 1992; Williams et al., 2008),
minimal length (e.g., Rosen, 1967; Bejan and Lorente, 2008), opti-
mal flow (e.g., Uylings, 1977a; Bejan and Lorente, 2008; van Elburg
and van Ooyen, 2010), and optimal configuration for elastic ten-
sions exerted (e.g., van Veen and van Pelt, 1992). Each optimality
model may have its specific configuration, but they all have in
common that the subsystem of bifurcations share the following
intrinsic optimal conditions: (a) daughter segments are non-
recurrent, i.e., they do not turn back in the opposite direction
of the parent segment at the bifurcation point, (b) the segments
forming a spatial bifurcation have a planar arrangement, and (c)
the daughter segments are at both sides of the (extrapolated) par-
ent segment, thus both daughter segments are not ipsilateral, i.e.,
not both at one side. Condition (a) can easily be tested by deter-
mining the side-angle values of a bifurcation (e.g., σ and τ in
Figure 1B), both have to be between π/2 and π. Condition (b)
has to be determined by an appropriate measure for flatness of a
spatial bifurcation.

The present study aimed at investigating whether these optimal
conditions also apply to neuronal arborizations, in particular to
the bifurcations in basal and apical dendritic branching patterns;
thus answering the question whether these bifurcations are planar
and how parent and daughter segments are oriented with respect
to each other.

For practical application, it is convenient to express the mea-
sure(s) for flatness of a spatial bifurcation as a function of the
three angles determining the bifurcation. We have proposed ear-
lier a measure for flatness, i.e., the cone angle of a bifurcation with
only the three bifurcation angles as parameters (Uylings and Velt-
man, 1975; Uylings and Van Pelt, 2002) and have reported cone
angle results for some cortical pyramidal neurons (e.g., Uylings

and Smit, 1975), but so far we did not publish formally the
derivation of this cone angle. Because of recent renewed interest
in this spatial measure by other research groups (Kim et al., 2009),
we provide in this paper the derivation in terms of the bifurcation
angles. We discovered, however, some shortcomings in the cone
angle as measure of flatness of 3D bifurcations (see Discussion)
and as, to our knowledge, flatness measure studies have not been
published in the past, we developed additional measures and eval-
uated their properties for quantifying flatness and orientation of
3D bifurcations.

In order to evaluate the various measures for their ability to
capture the flatness of 3D bifurcations, they have been applied to
sets of random 3D bifurcations and to sets of bifurcations from
rat cortical pyramidal cell basal and apical dendrites. Distributions
of flatness measures for random and dendritic bifurcations were
compared with each other and tested for their differences by means
of the Kolmogorov–Smirnov (KS) test. Dendritic and random
bifurcations appear to have significant different flatness measure
distributions, resulting in the conclusion that dendritic bifurca-
tions do not have randomly oriented parent and daughter seg-
ments, and are significantly more flat than random bifurcations.
Apical dendritic bifurcations have even more strict planar geome-
tries than basal dendritic bifurcations. This was expected since
apical bifurcations are typically “side-branching bifurcations,” a
subset of bifurcations with one daughter segment to be a contin-
uation of the parent segment and the other daughter segment
to be a side-branch (e.g., by a postponed bifurcation during
development). “Side-branching bifurcations” have theoretically a
planar configuration, since a plane is defined by two non-identical
lines.

The dihedral angle β, i.e., the angle between the daughters’ half-
plane (Figure 1C) and the plane formed by the parent segment
and the boundary line of the daughters’ half-plane (Figure 1C),
appeared to be the most discriminative and interpretable flatness

FIGURE 1 | (A) A schematic 3D bifurcation with DA a parent segment
and AB and AC the daughter segments. The points G, E, and F on these
segments are at unit distance from A. A right circular cone is wrapped
around the bifurcation DABC with a circular cross section through G, E,
and F. (B) A spatial bifurcation with unit lengths segments, the
intermediate angle ρ between the daughter segments, and the side

angles σ and τ, between the parent and each of the daughter segments,
respectively. (C) An aligned bifurcation with the daughter segments
defining the daughter plane (X –Y plane) and the daughters’ bisector
coinciding with the positive X -axis. The daughter half-plane contains the
daughter segments and is bounded by the Y -axis. (D–E) Two examples of
flat bifurcations.

Frontiers in Computational Neuroscience www.frontiersin.org January 2012 | Volume 5 | Article 54 | 2

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


van Pelt and Uylings Flatness of 3D dendritic bifurcations

measure and is, therefore, proposed as the first choice for quan-
tifying the flatness of spatial bifurcations. The distributions of
the parent azimuth angle and the parent stretch angle show
that in basal dendritic bifurcations the parent segment has
a strong tendency to be oppositely aligned to the daughters’
bisector.

MATERIALS AND METHODS
CHARACTERISTICS OF A 3D BIFURCATION
A 3D bifurcation DABC is defined by three segments DA, BA,
and CA connected at a bifurcation point (apex A; Figure 1A).
Without restricting generality we will study spatial bifurcations
with equal segment lengths AE = AF = AG (Figure 1B) and dis-
tinguish GA as the parent segment and AE and AF as the daughter
segments. The tips on the parent and daughter segments are, look-
ing from the inside of the bifurcation, assigned in the order G,
E, F. The spatial configuration is determined by the three bifurca-
tion angles between the segments and we distinguish (Figure 1B)
the intermediate angle ρ between the daughter segments AE and
AF, the side angle σ between daughter segment AF and parent
segment AG, and the side angle τ between daughter segment AE
and parent segment AG. The bifurcation angles ρ, σ, and τ are
then ordered in a clockwise rotation seen from the inside of the
bifurcation.

Both daughter segments define the daughters’ plane
(Figure 1C). The bisector of the intermediate angle will be called
the daughters’ bisector. The daughters’ half-plane is the part of the
daughters’ plane containing the daughter segments and bounded
by the line through the bifurcation point perpendicular to the
daughters’ bisector (Figure 1C). The chosen coordinate system has
its X -axis aligned with the daughters’ bisector, its Y -axis aligned
with the boundary line of the daughters’ half-plane and its Z -axis
orthogonal to the daughters’ plane.

MEASURES OF FLATNESS OF A 3D BIFURCATION
Various measures of flatness of 3D bifurcations have been devel-
oped for their quantification. For practical application, we have
expressed these measures mathematically in terms of the bifurca-
tion angles ρ, σ, and τ, or in terms of the quantities r = 1 − cos ρ,
s = 1 − cos σ, and t = 1 − cos τ. A summary of these measures
and their expressions is given in Figure 2, together with illustra-
tive pictures. Full derivations of the expressions are presented in
the Section “Appendix.” A short description of the measures is
given in the next paragraphs.

Sum of the three bifurcation angles
A measure for flatness of a 3D bifurcation is the sum of the three
bifurcation angles (Figure 2A), S = ρ + σ + τ. The value domain
of the angle sum S ∈ [0, 2π]. When the angle sum is equal to 2π,
then the bifurcation is planar (Figure 1D). When one of the bifur-
cation angles is equal to 180˚, the bifurcation is planar, since a
plane is defined by two non-identical lines (Figure 1E).

Cone angle α of right circular cone
The right circular cone circumscribing a 3D bifurcation is obtained
by constructing a circle through the tips G, E, and F which are at
equal distances from the bifurcation point A (Figure 1A). The apex

angle of the right circular cone is called cone angle α (Figure 2A).
Its expression in terms of the bifurcation angles is given in“Deriva-
tion of Cone Angle, i.e., Apex Angle of the Right Circular Cone
Circumscribing a 3D Bifurcation” in Appendix. The cone angle α

has a value domain α ∈ [0˚, 180˚]. The bifurcation is planar for
α = 180˚ (Figure 2B).

Solid angle ΩC of right circular cone
Its expression in terms of the bifurcation angles is given in “Solid
Angle of a Right Circular Cone Enwrapping a 3D Bifurcation” in
Appendix. The solid angle ΩC of a right circular cone has as value
domain ΩC ∈ [0˚, 360˚]. The bifurcation is planar for ΩC = 360˚
(Figure 2C).

Solid angle ΩP of triangular pyramid
A 3D bifurcation defines a triangular pyramid with the bifurca-
tion point as apex and the tips of its segments defining the planar
base triangle (Figure 4). The solid angle ΩP is expressed in terms
of the bifurcation angles in “Solid Angle of a Triangular Pyramid
Formed by a 3D Bifurcation” in Appendix. The solid angle ΩP of
the triangular pyramid has as value domain ΩC ∈ [0˚, 360˚]. The
bifurcation is planar for ΩP = 360˚ (Figure 2D).

Volume VP of the triangular pyramid
The volume of a triangular pyramid is expressed in terms of
the bifurcation angles in “Volume of the Triangular Pyramid” in
Appendix. The volume of the triangular pyramid with unit length
segments has as value domain V P ∈ [0, 1/6]. The bifurcation is
planar for V P = 0 (Figure 2D).

Parent stretch angle η

The stretch angle η is defined as the angle between the parent seg-
ment and the bisector of the intermediate angle, i.e., daughters’
bisector. The stretch angle η is expressed in terms of the bifurca-
tion angles in “Stretch Angle η, i.e., Angle Between Parent Segment
and Bisector of the Intermediate Angle” in Appendix. The stretch
angle η has as value domain η ∈ [0˚, 180˚]. The bifurcation is pla-
nar for η = 180˚, when the parent segment is oppositely aligned
to the daughters’ bisector. For values η �= 180˚, the parent segment
may attain an infinite number of rotational positions around the
X -axis (daughters’ bisector). In only two of these positions the
parent is in the daughter’s plane, making the bifurcation planar
(see also Discussion; Figure 2E).

Parent azimuth angle ϕ and elevation angle θ

The spherical coordinates (θ, ϕ) of the parent segment are taken
in an aligned 3D bifurcation, with the daughter segments in the
X–Y plane, the daughters’ bisector aligned to the positive X -axis,
and the parent segment pointing in positive Z -direction. Both
coordinates (θ, ϕ) can be expressed in terms of the bifurcation
angles as given in “Parent Azimuth Angle ϕ, Elevation Angle θ and
Fold Angle κ” in Appendix. The parent elevation angle θ has as
value domain θ ∈ [0˚, 90˚]. The azimuth angle has as value domain
ϕ ∈ [0˚, 360˚]. The bifurcation is planar for θ = 0˚. For ϕ = 180˚ the
extrapolation of the parent’s projection coincides with daughters’
bisector making the bifurcation a symmetrical one, i.e., the both
side angles are equal (Figure 2F).
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FIGURE 2 | Summary of measures used for quantifying the flatness of 3D

bifurcations. The measures are named in the second column with illustrative
pictures of how they are defined in the first column. The third column
presents the mathematical expressions of the flatness measures in terms of
the bifurcation angles ρ, σ, and τ (A) or in terms of the quantities r = 1 − cos ρ,
s = 1 − cos σ, and t = 1 − cos τ. (A) A 3D bifurcation with parent segment GA
bifurcating at node A into two daughter segments AE and AF. The Angle Sum
sums the three bifurcation angles between the segments, denoted by ρ, σ,
and τ, (B) Cone angle α as the apex angle of the right circular cone
enwrapping a 3D bifurcation, (C) Solid angle ΩC of the right circular cone, (D)

Solid angle ΩP and Volume VP of the triangular pyramid, (E) Parent stretch
angle η between the parent segment and the bisector of the daughter
segments, (F) Azimuth angle ϕ and Elevation angle θ of the Parent segment in
an aligned bifurcation, (G) Parent fold angle κ between parent segment and
(the extension of) its projection in the daughter’s half-plane, (H) Dihedral angle
λ between the planes formed by the parent segments and each of its
daughter segments, and (I) Dihedral angle β between the daughter’s halfplane
and the plane formed by the parent segments and the perpendicular to the
daughter’s bisector in the daughters halfplane. This dihedral angle β was
found to be the preferred measure of flatness of 3D dendritic bifurcations.
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Parent fold angle κ

The parent fold angle κ is introduced as a single measure derived
from the parent azimuth and elevation angle, in order to com-
bine both flatness and orientation information. It measures the
angle between the parent segment and (the extension of) its pro-
jection in the daughters’ half-plane as given in “Parent Azimuth
Angle ϕ, Elevation Angle θ, and Fold Angle κ” in Appendix. The
fold angle κ is equal to the elevation angle θ when the parents
projection is in the daughter’s half-plane, thus when cos ϕ > 0
(Figure A7) (Expression of the Azimuth Angle ϕ in Terms of the
Bifurcation Angles ρ, σ, and τ). The fold angle κ is equal to the
supplement 180˚ − θ when the parents projection is outside the
daughter’s half-plane, thus when cos ϕ < 0 (Figure A7) (Expres-
sion of the Azimuth Angle ϕ in Terms of the Bifurcation Angles
ρ, σ, and τ). The fold angle κ has as value domain κ ∈ [0˚, 180˚].
The bifurcation is planar for κ = 0˚ and for κ = 180˚. For ϕ = 180˚
the extrapolation of parent’s projection coincides with daughters’
bisector and the bifurcation is a symmetrical one, i.e., the both
side angles are equal (Figure 2G).

Dihedral angle λ

The dihedral angle λ measures the angle between the planes
formed by the parent segment and each of the daughter segments.
The dihedral angle λ is derived in “Dihedral Angle λ Between
the Planes Formed by the Parent and Each of the Daughter Seg-
ments” in Appendix. The dihedral angle λ has as value domain
λ ∈ [0˚, 180˚]. The bifurcation is planar for λ = 0˚ when both
planes are folded in, and for λ = 180˚ when both planes are folded
out (Figure 2H).

Dihedral angle β

The dihedral angle β is the angle between the daughters’ half-plane
and the plane formed by the parent segment and the line perpen-
dicular to the daughters’ bisector through the bifurcation point A
in the daughters’ plane. The dihedral angle β is derived in “Dihe-
dral Angle β Between the Daughters’ Half-plane and the Plane
Determined by the Parent Segment and the Line Perpendicular
to the Daughters’ Bisector at the Bifurcation Point” in Appendix,
and expressed in terms of the bifurcation angles through (A31)
and (A34). The dihedral angle β has as value domain β ∈ [0˚,
180˚]. The bifurcation is planar for β = 0˚ when both planes are
“folded in,” and for β = 180˚ when both planes are “folded out”
(Figure 2I).

RESULTS
Important for the evaluation of the different flatness measures are
their distributions for random bifurcations, which will be used as
templates for comparison with the distributions of these measures
in natural 3D dendritic bifurcations.

DISTRIBUTIONS OF MEASURES OF FLATNESS OF RANDOM 3D
BIFURCATIONS
Random 3D bifurcations are bifurcations composed of three inde-
pendent spatially random vectors from a given bifurcation point,
with one vector assigned as parent segment and the other two
assigned as daughter segments. Random oriented vectors in 3D
from a given point can be obtained by taking a vector to a randomly

selected point on a sphere centered at that point or, alternatively,
by taking random spherical coordinates (θ, ϕ). For random ori-
entations the azimuth angle ϕ is uniformly distributed over the
interval [0, 2π], and a random azimuth angle is obtained by
ϕrand = x.2π with x a uniform random number on the interval
[0, 1]. The elevation angle θ of random oriented vectors is dis-
tributed as 0.5 cos θ (see Probability Distribution of the Elevation
Angle θ of Random Bifurcations with θ ∈ [−π

2 , π
2

]
, and with

a cumulative distribution
∫ θ

−π/2
cos t

2 dt = 1
2 (1 + sin θ). A ran-

dom elevation angle is obtained by taking 1
2 (1 + sin θrand) = x

with x a uniform random number on the interval [0, 1]. Then,
sin θrand = 2x − 1, and

θrand = arcsin (2x − 1) . (1)

For most of the flatness measures, analytical expressions for
the shape of the distributions for random 3D bifurcations were
obtained, except for the measures “angle sum” and “solid angle
triangular pyramid.” In addition, distributions for 3D random
bifurcations of all the flatness measures were obtained by applying
them to large sets of generated 3D random bifurcations.

Probability distribution of the bifurcation angles
Without restriction of generality we may align a pair of two ran-
dom vectors such that one of them coincides with a given direction,
say the Z -axis. The question of the angle distribution between two
random vectors is then similar to the question of the angle dis-
tribution between a random vector and the positive Z -axis. The
endpoints of random vectors with length R are uniformly distrib-
uted on a sphere with radius R. All the vectors with a given angle δ

with respect to the Z -axis have their end points on a certain circle
of that sphere (see Figure 3).

The probability of having a random point on the sphere
being positioned on the circle with radius r is proportional to
its circumference, thus

ppoint - on - circle ≈ 2πr = 2πR sin δ (2)

FIGURE 3 | Angle δ between a random vector OP and a given vector

OQ. All random vectors with an angle δ with respect to OQ end at the

circle with radius r.
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FIGURE 4 | All triangles with points on the circle with radius r define

the same right circular cone with cone angle α.

Probability of having a random point on the sphere is
proportional to the integral

ppoint - on - sphere ≈
π∫

0

2πR sinδdδ = 2πR [− cos δ]π0 = 4πR (3)

Thus the probability of an angle δ between two random vectors
is equal to

p(δ) = ppoint - on - circle

ppoint - on - sphere
= sin δ

2
, with δ ∈ [0, π] . (4)

The three bifurcation angles ρ, σ, and τ are thus distributed
according to p(δ), with

p(ρ) = sin ρ

2
, p(σ) = sin σ

2
, and p(τ) = sin τ

2
(5)

Probability distribution of the sum of the three bifurcation angles in
a random 3D bifurcation
Bifurcation angles in 3D bifurcations as well as their sum S have
restrictions in the values they can adopt: (i) bifurcation angles
are each smaller than or equal to 180˚, (ii) the largest bifurca-
tion angle is smaller than or equal to the sum of the other two
bifurcation angles, and (iii) the sum S of the three bifurcation
angles is smaller than or equal to 360˚. In order to obtain the
distribution function for the sum of the three bifurcation angles,
we first derived the one for the sum v of two bifurcation angles
resulting in

p2(v|v ≤ π) = 1

8
(sin v − v cos v)

p2(v|v > π) = −1

8
(sin v + (2π − v) cos v)

(6)

with v the sum of two bifurcation angles, say ν = σ + τ, with σ ∈ [0,
π], τ ∈ [0, π], and ν ∈ [0, 2π]. It is easy verified that for positive x,

p2(π − x) = p2(π + x), showing the symmetry of the distribution
p2(v) around angle v = π. The distribution function for the sum
of the three bifurcation angles could, however, not be obtained in
a closed expression. We arrived at the final convolution integral
equation

p3(S) =
S∫

0

⎛

⎝
v∫

0

p1(x).p1(v − x)p2(S − v)dx

⎞

⎠dv

= 1

4π

S∫

0

sin(S − v)

×

⎛

⎜
⎜
⎜
⎜
⎝

v∫

0

sin x sin(v − x)
√

− cos(2x − v) cos v − cos2(S − v)

+2 cos(S − v) cos x cos(v − x)

dx

⎞

⎟
⎟
⎟
⎟
⎠

dv

(7)

with S the sum of the three bifurcation angles S = ρ + σ + τ = ρ + v,
with ρ ∈ [0, π], σ ∈ [0, π], τ ∈ [0, π], v ∈ [0, 2π], S ∈ [0, 2π],
and p1(x) = 0.5 sin x . Rather than solving Eq. 7 numerically, the
distribution for the bifurcation angle sum has been obtained by
generating 1000000 random bifurcations as described in Section
“Distributions of Measures of Flatness of Random 3D Bifurca-
tions,” and calculating the sum of the three bifurcation angles. The
derivation of the expressions for both distributions is accessible
as supplementary material at http://www.bio.vu.nl/enf/vanpelt/
papers/VanPelt_Uylings_2012_Supplementary_Material.pdf.

Probability distribution of the cone angle α of random bifurcations
The cone angle α is defined as the angle of the right circular cone
circumscribing the 3D bifurcation (Figure 2B), with α ∈ [0, π].
The shape of the cone angle probability distribution has recently
been derived by Kim et al. (2010) to be

p(α) = 3

4
sin3 α

2
. (8)

A short route to this distribution equation follows from the fact
that any triangle with its three points on the circle with radius r
(Figure 4) results in a cone with the same cone angle α.

The probability that a random vector has an angle α/2 with
a given line OQ is equal to pV(α/2|OQ) = 0.5 sin(α/2) (Eq. 4).
The probability of having three points on the circle with radius
r is thus equal to the probability of having three random vec-
tors with an angle α/2 with respect to OQ (Figure 4), and thus
equal to pV

3(α/2|OQ). The probability of a cone angle α is thus
proportional to

p(α|OQ) ≈ pV
3
(α

2
|OQ

)
=
(

sin α/2

2

)3

= 1

8
sin3 α

2
(9)

To obtain a normalized probability distribution for α ∈ [0, π]
we use the identity

∫
sinncxdx = − sinn−1cx . cos cx

nc
+ n − 1

n

∫
sinn−2cxdx
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(e.g., Bartsch, 1985) to calculate
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,

giving us the normalized probability for the cone angle α of

p(α|OQ) = 6.
1

8
sin3 α

2
= 3

4
sin3 α

2
.

This probability is independent of the orientation of OQ and
thus proving (8).

Probability distribution of the solid angle of right circular cone ΩC

of random bifurcations
The solid angle ΩC is defined as the solid angle of the right cir-
cular cone circumscribing the 3D bifurcation (Figure 2C), with
ΩC ∈ [0, 2π]. The solid angle of a right circular cone ΩC relates
to the cone angle α via (see Solid Angle of a Right Circular Cone
Enwrapping a 3D Bifurcation)

ΩC = 2π
(

1 − cos
α

2

)
, (10)

and is on the interval α = [0, π] a monotone increasing function
of α. The probability distribution of ΩC directly relates to the
probability distribution of the cone angle α, given by (8), via

ΩC2∫

ΩC1

p(ΩC)dΩC = Pr(ΩC1 < ΩC < ΩC2) = Pr(α1 < α < α2)

=
α2∫

α1
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α2∫

α1

3

4
sin3 α

2
.dα

with ΩC1 = 2π(1 − cos α1/2), and ΩC2 = 2π(1 − cos α2/2). With
the transformation ΩC = 2π(1 − cos α/2) we have
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= π sin

α

2
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π sin α
2
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Thus,

ΩC2∫

ΩC1

p(ΩC)dΩC =
α2∫

α1

3

4
sin3 α

2
dα = 3

4

ΩC2∫

ΩC1

sin3 α

2
.

1

π sin α
2

dΩC

= 3

4π

ΩC2∫

ΩC1

sin2 α

2
dΩC = 3

4π

ΩC2∫

ΩC1

(
1 − cos2 α

2

)
dΩC

= 3

4π

ΩC2∫

ΩC1

(

1 −
(

1 − ΩC

2π

)2
)

dΩC

= 3

4π2

ΩC2∫

ΩC1

(
ΩC − Ω2

C

4π

)
dΩC

Thus, for the probability density function p(ΩC) we obtain

p(ΩC) = 3

4π2

(
ΩC − Ω2

C

4π

)
= 3ΩC

16π3
(4π − ΩC) . (11)

Probability distribution of the solid angle of pyramid ΩP of random
bifurcations
The solid angle ΩP is defined as the solid angle of the triangular
pyramid with apex A and the triangle EFG as basis. It measures
the area of the part of the unit sphere centered in A and bounded
by the base triangle (Figure 2D), with ΩP ∈ [0, 2π]. It was, unfor-
tunately, not yet possible to obtain an analytical expression for
this distribution. Therefore, the distribution has been obtained by
generating 1000000 random bifurcations as described in Section
“Distributions of Measures of Flatness of Random 3D Bifurca-
tions,” and using the equation in Figure 2D for calculating the
solid angle of the triangular pyramid.

Probability distribution of parent stretch angle η of random
bifurcations
The stretch angle η is the angle between the parent segment and
the daughters’ bisector, with η ∈ [0, π], see Figure 2E. For random
bifurcations this angle is also distributed as the angle between two
random vectors, thus

p(η) = sin η

2
. (12)

Probability distribution of the elevation angle θ of random
bifurcations
The elevation angle θ is the angle between the parent segment AG
and its projection onto the daughters’ plane, with θ ∈ [0, π/2]), see
Figure 2F. It is the π/2-complement of the polar angle χ between
the parent segment and the vertical axis

θ = π/2 − χ

The polar angle χ is distributed as the angle of a random vector
with respect to the vertical Z -axis, as derived above. The distri-
bution of the elevation angle θ of a random vector is thus equal
to that of the π/2-complement of the polar angle χ. In the case
of aligned bifurcations with the parent segment pointing upward
with respect to the daughters’ plane the angle interval is restricted
to χ ∈ [0, π/2] and the probabilities multiplied with a factor of 2
such that

p(θ) = 2p(χ = π/2 − θ) = 2
sin(π/2 − θ)

2
= cos θ (13)

with χ ∈ [0, π/2] and θ ∈ [0, π/2].
Note, that without the restriction of positive Z-coordinates the

elevation angle would have been distributed as 0.5 cos θ.

Probability distribution of the parent azimuth angle ϕ of random
bifurcations
The parent azimuth angle ϕ is the angle between the projection
of the parent segment onto the daughters’ plane and the daugh-
ters’ bisector (Figure 2F). As in random bifurcations the parent
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segment may have any orientation from the bifurcation point this
angle is uniformly distributed on the interval ϕ ∈ [0, 2π]

p(ϕ) = 1

2π
. (14)

Probability distribution of the parent fold angle κ of random
bifurcations
The parent fold angle κ is the angle between the parent segment
and the line in the daughters’ half-plane through the projection
of parent onto the daughters’ plane (Figure 2G). The parent fold
angle κ is equal to the parent elevation angle (κ = θ) for cos ϕ > 0
(when the projection of the parent segment falls in the daughters’
half-plane), and equal to the π-complement of the parent eleva-
tion angle (κ = π − θ) for cos ϕ < 0 (when the projection of the
parent segment falls in the complement of the daughters’ half-
plane). The parent fold angle is thus defined on the interval κ ∈ [0,
π]. The probability distribution is a composite one with a cosine
shape for 0 ≤ κ ≤ π/2 and a mirrored one for π/2 < κ ≤ π

p(κ) = 1

2
cos

(
κ + π

2
− sign

(π

2
− κ

) π

2

)
. (15)

Probability distribution of the dihedral angle λ of random
bifurcations
The dihedral angle λ is the angle between the planes formed by the
parent segment and each of the daughter segments (Figure 2H).
While in each of the planes the angle between the parent and the
respective daughter is distributed as the angle between two ran-
dom vectors, the dihedral angle between both planes can still adopt
any value and is uniformly distributed on the interval [0, π] as

p(λ|0 ≤ λ ≤ π) = 1

π
. (16)

Probability distribution of the dihedral angle β of random
bifurcations
The dihedral angle β is the angle between the daughters’ half-plane
and the plane through the parent and the line in the daughters’
plane perpendicular to the daughters’ bisector (Figure 2I). As the
parent segment has a random orientation the angle β is uniformly
distributed on the interval [0, π] as

p(β|0 ≤ β ≤ π) = 1

π
. (17)

Probability distribution of the volume of the triangular pyramid
The volume is calculated for unit lengths of the three segments
AE, AF, and AG in Figure 2D. The probability distribution is
obtained by generating 1000000 random bifurcations as described
in Section “Distributions of Measures of Flatness of Random 3D
Bifurcations,” and using the equation in Figure 2D for the volume
of the triangular pyramid.

Distributions of measures for flatness of random 3D bifurcations
The frequency distributions for the various measures of flatness,
shown in Figure 5, are obtained from the analytical expressions
in Section “Distributions of Measures of Flatness of Random 3D
Bifurcations,” except for those in Figures 5B,E,L, which have been

obtained by simulating 1000000 random bifurcations. Note, that
for the other measures distributions were obtained by simulation
as well, in order to proof consistency between the “analytical” and
“simulated” distributions. The three bifurcation angles at a ran-
dom bifurcation have equal distributions as they are all defined
as angles between two random oriented segments. They are rep-
resented inFigure 5A. The bifurcation angle sum distribution
(Figure 5B, obtained by simulation) has a complex shape, difficult
to interpret from the complex integral Eq. 7. The cone angle distri-
bution (Figure 5C) has a sigmoid-like shape. The solid angle cone
distribution (Figure 5D) reflects the cosine function in its Eq. 10.
The solid angle of the pyramid (Figure 5E) shows a monotonous
decreasing distribution in contrast to the monotonous increas-
ing one for the solid angle of the cone. Both measures thus differ
significantly, which finds its origin in the fact that even for three
segments with about similar orientations (thus with small pyra-
mid solid angle) the solid angle of the cone can still adopt large
values. The parent stretch angle has a sine-shaped distribution
(Figure 5F). The parent azimuth angle (Figure 5G) has a uniform
distribution. The parent elevation angle has a cosine-shaped distri-
bution (Figure 5H). The parent fold angle distribution (Figure 5I)
is a mixture of a cosine-shaped and a mirrored cosine-shaped one.
Both the dihedral angle λ (Figure 5J) and the dihedral angle β

(Figure 5K) have uniform distributions. The volume of the pyra-
mid (Figure 5L) shows a decreasing distribution with a rapid
decline to zero at its maximal volume of 1/6. This value only occurs
when the segments are orthogonal to each other. The flatness mea-
sures with uniform distributions for random bifurcations (i.e.,
dihedral angles λ and β) may be advantageous when comparing
with experimental distributions. The statistics of the distributions
of the various flatness measures for random bifurcations, obtained
from the simulated data, are summarized in Table 1.

DISTRIBUTIONS OF MEASURES OF FLATNESS OF BIFURCATIONS IN
DENDRITES OF PYRAMIDAL NEURONS
A set of 112 pyramidal neurons have been obtained from layer
III in the visual cortex of six rats. The basal dendritic trees and
the apical dendrites have been measured with a semi-automatic
3D tracking system developed by Coleman et al. (1977), see for
a further description of these neurons and their analysis Uylings
et al. (1978a,b). Apical main stem bifurcations are side-branching
bifurcations, in which the side branches are the oblique dendrites.
Parent and daughter segments were defined as the connection
lines between the bifurcation point and the subsequent bifurca-
tion or end points for the daughter segments and the previous
root or bifurcation point for the parent segment. The bifurcation
angles were subsequently calculated on the basis of the Cartesian
3D coordinate measurements (Smit and Uylings, 1975). The fre-
quency distributions of the various measures of flatness of the
3D bifurcations are shown in Figure 6 for the basal dendrites
(n = 1242) and in Figure 7 for the apical main stem (n = 372).
For comparison, the distributions for random 3D bifurcations are
included.

3D bifurcations in pyramidal cell basal dendrites
Bifurcations in basal dendrites have remarkable flat geometries,
reflected by the highly skewed distributions of most of the flatness
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FIGURE 5 | Frequency distributions of the bifurcation angles ρ, σ, and τ in

(A) and various flatness measures of 3D bifurcations with segments

uniform random oriented in space. All the angle distributions have an angle
axis in degrees divided into 180 bins, and are normalized on an angle scale in
radians. The distributions are obtained from the analytical expressions, except
for those in panels (B,E,L) which are obtained by simulating 1000000
bifurcations. The flatness measures used are (B) the sum of the three
bifurcation angles, (C) the right circular cone angle α, (D) the solid angle ΩC of
the right circular cone, (E) the solid angle ΩP of the pyramid, (F) the stretch

angle η of the parent segment with respect to the daughters’ bisector, (G) the
azimuth angle ϕ of the projection of the parent segment onto the daughters’
plane with respect to the daughters’ bisector, (H) the elevation angle θ of the
parent segment with respect to the daughters’ plane, (I) the parent fold angle
κ, (J) the dihedral angle λ between the planes formed by the parent segment
and each of the daughter segments, (K) the dihedral angle β between the
daughters’ plane and the plane through the parent and the line perpendicular
to the daughters’ bisector, and (L) the volume of the triangular pyramid (for
unit length segments).

measures. The dihedral angle β (Figure 6M), the parent fold angle
(Figure 6K), and the cone angle (Figure 6E) display values close
to 180˚. The angle sum (Figure 6D) and the solid angle cone
(Figure 6F) show values close to 360˚. The parent elevation angle
(Figure 6J) and the volume of the pyramid (Figure 6N) show high-
est frequencies at small angles and volumes, respectively. On the
other hand, the values for the solid angle pyramid (Figure 6G) and
the dihedral angle λ (Figure 6L) still remain broadly distributed,
indicating that these measures do not strongly capture the flatness
properties of 3D bifurcations. In addition to a flat geometry, parent
segments also show a strong alignment opposite to the daugh-
ters’ bisector. This can be concluded from the parent azimuth
angle distribution peaking around 180˚ (Figure 6I), and the highly

skewed parent stretch angle distribution peaking toward 180˚. In
addition, bifurcations in basal dendrites have a mean intermediate
angle of 53˚, significantly smaller than the mean side angles of 123˚
and 138˚ (Table 1; Figures 6A–C), respectively. Such geometries
result in so-called “symmetrical” bifurcations (Figure 6O). The
distributions in Figure 6 also illustrate the variation in the vari-
ous measures. For instance, the small angle tails in the side-angle
distributions indicate that backward oriented daughter segments
may occur as well, but with low frequencies. The low frequency
“background” in the azimuth angle distributions indicates a small
contribution of non-aligned bifurcations. Thus we can conclude
that non-optimal backward and ipsilateral bifurcations do occur,
but rarely.
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Table 1 | Means and SD of characteristic angles (degrees) and flatness measures of 3D bifurcations in a data set of random bifurcations

(obtained by simulating 1000000 bifurcations), in rat cortical pyramidal cell basal dendrites (no. of bifurcations 1242), and in apical main stems

(no. of bifurcations 372).

Angles and flatness

measures of 3D bifurcations

Random bifurcations 3D bifurcations in rat cortical pyramidal dendrites

N = 1000000 Basal dendrites, N = 1242 Apical dendrites, N = 372

Mean SD Median Mean SD Median SEM Mean SD Median SEM

Bifurcation angle ρ 90 39.2 90 53.4 27.7 49.3 0.79 64.9 26.6 60.7 1.38

Bifurcation angle σ 90 39.2 90 138 38.7 152.4 1.1 168.8 7.7 170.7 0.4

Bifurcation angle τ 90 39.2 90 122.5 39.2 131.5 1.1 119.4 26.2 123.2 1.4

Angle sum 270 67.8 281 313.9 68 346.6 1.9 353.2 9 357.5 0.5

Cone angle α 133.7 32.8 139.4 159.4 28.2 170.2 0.8 174.4 4.4 175.2 0.2

Solid angle cone ΩC 225 87.7 235 299.4 75.3 329.3 2.1 342.5 13.6 344.9 0.7

Solid angle pyramid ΩP 90 90 56.4 161.2 119 170.4 3.4 222.5 104.2 262.9 5.4

Parent stretch angle η 90 39.2 90 137 39.3 151.6 1.1 150.9 14.2 153.2 0.7

Parent azimuth angle ϕ 180 103 180 166 56.9 166.6 1.6 152.3 15.4 153.7 0.8

Parent elevation angle θ 32.7 21.6 30 13.1 12.8 9 0.4 5.5 4.7 4.7 0.24

Parent fold angle κ 90 61.2 90 146.7 53.5 170 1.5 174.5 4.7 175.4 0.24

Dihedral angle λ 90 52 90 83.4 56.5 89.9 1.6 101.6 55.9 127.8 2.9

Dihedral angle β 90 52 90 146.3 49.6 168.8 1.4 173.4 6.6 174.7 0.34

Volume pyramid 0.065 0.043 0.06 0.026 0.025 0.018 0.001 0.013 0.01 0.011 0.001

The angles are expressed in degrees.

3D bifurcations in pyramidal cell apical dendrites
The bifurcations in the apical dendrites are restricted to the side-
branching ones of the apical main stem, giving rise to the oblique
dendrites. These bifurcations are typically formed by side branch-
ing of the apical main stem and have a geometry in which the
parent segment and one of the daughter segments are part of
the main stem, and the other daughter segment is the root seg-
ment of the oblique dendrite (see Figure 7O). Because one of the
daughter segments is aligned with the parent segment, one of the
side angles (bifurcation angle σ) adopts values close to 180 degrees
(Figure 7B),while the other bifurcation angle τ is about the π com-
plement of the intermediate bifurcation angle ρ (Figures 7A,C).
In such cases, the bifurcation has a flat geometry, making the api-
cal main shaft side-branching bifurcations theoretically planar.
This is reflected in the distributions of the various flatness mea-
sures, as the values of the dihedral angle β (Figure 7M), the parent
fold angle (Figure 7K), and the cone angle (Figure 7E) show a
narrow peak close to 180˚, while the angle sum (Figure 7D) and
solid angle of circular cone (Figure 7F) show values very close to
360º. The parent elevation angle (Figure 7J) and the volume of
the pyramid (Figure 7N) show highest frequencies at the lowest
angles and volumes, respectively. In addition, small angle tails are
lacking in the distributions of the angle sums, cone angle, solid
angle of circular cone, the parent stretch angle, the fold angle, and
the dihedral angle β. Especially the apical main shaft bifurcations
demonstrate that the dihedral angle λ (Figure 7L) and the solid
angle of the triangular pyramid (Figure 7G) lack the sensitivity to
indicate the flatness of planar bifurcations as they maintain even
here broad distributions. The root segments of oblique dendrites
are slightly oblique oriented (Figure 7O) with typical values for

the angle τ of 119˚ (Table 1). The parent azimuth angle shows an
offset of about 28º from the value of 180˚ because the apical main
shaft bifurcations are asymmetrical, i.e., daughters’ bisector is not
aligned to the apical parent segment.

COMPARISON OF 3D BIFURCATIONS IN PYRAMIDAL CELL DENDRITIC
TREES AND OF RANDOM 3D BIFURCATIONS
Figures 6 and 7 include the distributions for random bifurcations,
allowing direct visual comparisons. For most of the flatness mea-
sures it is clearly shown that dendritic and random bifurcations
differ substantially in their distributions, in most cases without
doubt about their significance. In particular, easy visual compar-
isons were made for the azimuth angle ϕ and the dihedral angle
β, which have uniform distributions for random bifurcations, in
contrast to the dendritic ones. Quantitative comparison by means
of the KS test (based on the routine “ksone” from Numerical
Recipes; Press et al., 1992), confirmed that both basal and api-
cal dendritic bifurcations produce frequency distributions which
are significant different from random bifurcations for all the mea-
sures used, except for the dihedral angle λ. The differences make
clear that dendritic bifurcations are not random but have their
branches significantly more oriented in a plane. The various mea-
sures of flatness differed in their ability to distinguish dendritic
from random distributions. The highest discriminative power (i.e.,
the maximal difference between dendritic and random cumulative
frequency distributions in the K–S test) was shown for the dihe-
dral angle β and the fold angle κ. As the dihedral angle β is also
uniformly distributed for random bifurcations, this measure is
proposed as the best one to use for determining the flatness of a
bifurcation.
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FIGURE 6 | Frequency distributions of various measures of flatness of 3D

bifurcations obtained from a data set of 3D reconstructed rat cortical

pyramidal basal dendrites (n = 1242), displayed as hashed histograms,

and from a number of 1000000 random bifurcations, drawn as solid

lines. The horizontal axes display the angles (degrees) of the flatness
measures except for (N), displaying a volume (for unit length segments). The
hashed histograms are made up of 30 bins, except for (J) which has 15 bins
in order to have the same bin width of 6˚ as (K). The solid lines are based on

100 bins. The statistical outcomes of the distributions are summarized in
Table 1. The various panels illustrate the distributions of (A–C) the bifurcation
angles ρ, σ, and τ, (D) the sum of the bifurcation angles, (E) the cone angle α,
(F) the solid angle ΩC of the right circular cone, (G) the solid angle ΩP of the
triangular pyramid, (H) the parent stretch angle η, (I) the parent azimuth angle
ϕ, (J) the parent elevation angle θ, (K) the parent fold angle κ, (L) the dihedral
angle λ, (M) the dihedral angle β and (N) the volume VP of the triangular
pyramid. (O) Illustrates a symmetrical bifurcation.

Correlations between flatness measures – scatterplots
An important property of the different measures for flatness is how
they are related for individual bifurcations. This can be visualized

in 2D scatterplots in which for a number of bifurcations the
values of two flatness measures are plotted against each other.
In Figure 8 the values of various flatness measures are plotted
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FIGURE 7 | Frequency distributions of various measures of flatness of 3D

bifurcations obtained from a data set of 3D reconstructed rat cortical

pyramidal apical main stem dendrites (n = 372), displayed as hashed

histograms, and from a number of 1000000 random bifurcations, drawn

as solid lines. See for (A–N) the legends at Figure 6. (O) Illustrates a side
branching bifurcation.

versus the dihedral angle β for basal dendritic bifurcations and for
random bifurcations.

The scatterplots for the random bifurcations in Figure 8 show
how the value domains of the various measures relate to each other,
how the density of data points varies over these domains, and how
the domain sizes and densities are related.

From the domain boundaries in the scatterplots of Figure 8
can be concluded that (i) the angle sum is generally greater
than or equal to twice the dihedral angle β; (ii) the cone angle
is greater than or equal to the dihedral angle β; (iii) the solid
angle cone is larger than some non-linear function of the dihe-
dral angle β; (iv) the solid angle pyramid is smaller than twice
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FIGURE 8 | Scatter plots of the various measures of flatness versus the

dihedral angle β for the 1242 basal dendritic bifurcations (first and third

column) and for a similar number of random bifurcations (second and

fourth column). Note, that the frequency distributions of data points along

the axes conform to the distributions in Figures 5 and 6 for random and basal
dendritic bifurcations, respectively. The data points along the horizontal axis in
the random bifurcation panels are thus uniformly distributed and in the basal
dendritic bifurcation panels distributed as in Figure 6M.

the dihedral angle β; (v) the parent stretch angle adopts values
in the region bounded by the diagonal and the horizontal line
at 90º for the stretch angle; (vi) the parent azimuth angle and
dihedral angle β adopt values in three different regions, bounded
by vertical line at 90º for the dihedral angle β, and the lines at
90º and 270º for the azimuth angle; (vii) the parent elevation

angle is smaller than or equal to the dihedral angle β or its π-
complement; (viii) the parent fold angle and dihedral angle β

adopt values within areas bounded by the diagonal and the ver-
tical line at 90º for the dihedral angle β; (ix) the dihedral angle
λ and dihedral angle β do not show domain boundaries; and (x)
the volume of the pyramid has its maximum of 1/6 at 90º for the
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dihedral angle β, and decreases steeply for smaller and large angles
of β.

Because the values for the dihedral angle β are uniformly dis-
tributed on the domain [0º, 180º] (Figure 5K), an equal number
of data points within each dihedral angle interval in a scatter-
plot has to be distributed over a varying domain size and in a
specific pattern for the other measure, resulting in complex vari-
ation in densities of data points. The optimality constraints in
basal dendritic bifurcations add additional variation in densities
of data points in these scatter plots, resulting in striking differences
between the random and dendritic panels.

Only the parent elevation angle and azimuth angle are orthog-
onal measures and independent for random bifurcations. This is
shown in Figure 9 (right panel) where the random bifurcation data
points are uniformly distributed along the parent azimuth angle
axis and cosine distributed along the parent elevation angle axis.
The basal dendrite data points (left panel), however, are strongly
clustered at small elevation angles and around 180º azimuth angle.
This Figure most clearly shows how basal dendrite bifurcations
differ from random ones. The small elevation angles of parent
segments versus their daughters’ plane demonstrate the flatness of
the basal dendritic bifurcations. The azimuth angles around 180º
demonstrate the opposite alignment of the parent segment versus
the daughters’ bisector in basal dendritic bifurcations. While most
of the dendritic bifurcation data points are located in the clus-
ter, some have a wider spread, with parent elevation angles still
remaining smaller than about 50º, but with parent azimuth angles
spreading out over their whole domain (see also Figures 6I,J).
Thus a minority of dendritic bifurcations outside the central
cluster show lack of alignment with respect to the daughters’
bisector with for a few of them slightly increased parent elevation
angles.

SUMMARY, DISCUSSION, AND CONCLUSION
FLATNESS OF 3D DENDRITIC BIFURCATIONS
The flatness of 3D bifurcations in neuronal (dendritic) arboriza-
tions was investigated in order to test the hypothesis that these
bifurcations are more planar than random ones, caused by some
optimality principle. A number of different measures of flatness

FIGURE 9 | Scatter plots of the parent azimuth angle versus parent

elevation angle values for basal dendrite bifurcations (left panel) and

random bifurcations (right panel).

have been derived and applied to bifurcations of rat cortical pyra-
midal basal and apical dendrites (Uylings et al., 1978a,b) and
to random bifurcations. The measures have been evaluated for
their ability to optimally describe the flatness properties of 3D
bifurcations.

The various flatness measure distributions showed quite dis-
tinct shapes, ranging from uniform ones to highly skewed, or even
bimodal ones. In particular the flatness measures with uniform
distributions for random bifurcations were interesting for the ease
of comparison with experimental distributions. These were the
parent azimuth angle ϕ, the dihedral angle λ, and the dihedral
angle β.

Almost all flatness measures, except for the dihedral angle λ,
show that parent and daughter branches in dendritic bifurca-
tions have a strong tendency to be oriented in a flat plane. Basal
dendritic flatness measure distributions still show some low fre-
quency background, indicating deviations from strict planarity.
Apical bifurcations, however, do not show such background, indi-
cating that they are much less variable in flatness. The distributions
of the azimuth angle and stretch angle indicate a preference for
basal dendritic bifurcations to be symmetrical, i.e., with the par-
ent segment oppositely aligned with the daughters’ bisector. Apical
bifurcations, however, are not symmetrical as they originate from
side branching from an apical main stem, thus having an api-
cal parent segment oppositely aligned with one of the daughters
(the apical daughter segment). Apical main stem and side branch
thus form already geometrically one plane. Such is not trivial for
basal dendritic bifurcations when both daughter branches still
need to find their orientation after a branching event at the parent
segment.

Among the scatter plots it was the one with the spherical coor-
dinates (θ, ϕ) that displayed the most clearcut information about
the existence of symmetrical bifurcations and thus the opposite
alignment of the parent segment with respect to the daughters’
bisector. The parent fold angle was actually introduced to combine
the information in the spherical coordinates pair into one single
measure. Indeed, together with the dihedral angle β, it was the
most discriminative measure in the K–S test comparison of ran-
dom and dendritic bifurcations. The dihedral angle β measure has
the advantage to be uniformly distributed for random bifurcation,
in contrast to the double cosine-shaped distribution for the parent
fold angle. Therefore, the flatness measure that best described the
difference between dendritic and random distributions is selected
to be the dihedral angle β.

Kim et al. (2009, 2010) used the cone angle to analyze the bifur-
cations in different cell types and found it peaking at 180º. Their
analysis of random bifurcations (obtained by a different approach
than in the present paper) also showed a peak at 180º, making
them to conclude that local planar dendrites are the natural result
of connecting to the closest point in space, i.e., their procedure to
get random bifurcations. The present study has also shown that
both neuronal bifurcations and random ones have cone angle dis-
tributions, with maximal frequencies at 180º. However, both the
experimental and random distributions differ significantly in their
shape (K–S p-value < 0.0001), as is observed in the sharp peak for
the observed ones at high cone angle values, and the sigmoidal
shape of the random curve.
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The intermediate angle between the daughter branches at basal
dendritic bifurcations differs significantly in its left-skewed distri-
bution [Mn(SD; SEM) = 53.4(27.7; 0.79)] from the symmetrical
distribution for random bifurcations [Mn(SD) = 90(39.2)]. In a
detailed study of the architecture of dendritic trees of Cat alpha
motoneurons, Marks and Burke (2007) found a similar left-skewed
distribution for the angle between daughter branches (called dIn-
terDau in their paper). From Figure 6C in their paper we estimated
a mean value 50.7 and a SEM value of 2.2. With the number
of observations of 887 an estimate for the SD was obtained of
29.8. The distribution of intermediate angles thus shows strik-
ing similarity between cat motoneuron dendrites and rat cortical
pyramidal basal dendrites.

Scorcioni et al. (2004) analyzed a large data set of rat hip-
pocampal pyramidal cells and made a systematic analysis of the
differences between CA1 and CA3 neurons and of the differences
between reconstructing laboratories, using an extensive set of 30
morphometric parameters. Among these were the local and the
remote bifurcation angles (intermediate angles in our terminol-
ogy), measuring the angle between the daughter branches up to
their first measured points, or up to their first nodes, respectively.
For the remote intermediate angles mean values for the different
groups were observed in the range of (44–60), thus showing good
agreement with the outcomes of the present report and those of
Marks and Burke (2007). They all significantly differed from the
random bifurcation prediction. For the local intermediate angles,
however, mean values were reported in a much wider range of
(54–89). An important finding of this study was that laboratory-
specific variabilities were of the same order of magnitude as the
cell class-specific ones, and significantly greater than the intrinsic
variabilities, while differences among laboratories were largely due
to local variables such as local bifurcation angles. Apparently, the
choices made during reconstruction close to bifurcation points
introduce much variability, making comparisons harder.

Dendritic segments show curviness and the orientation of the
proximal parts of the segments to the bifurcation point may dif-
fer from their more distal parts. Smit and Uylings (1975) showed,
however, that the orientation distributions of the proximal and
distal parts have equal mean values but differ somewhat in the SD
values.

The opposite alignment of the basal parent segment to
the daughters’ bisector (symmetrical bifurcation) supports the
hypothesis that the local geometry of a bifurcation during its for-
mation is governed by forces in the parent and daughter branches.
The existence of elastic forces in neurons cultured in vitro was
already established in the eighties (e.g., Bray, 1979; Dennerl et al.,
1988, 1989; Lamoureux et al., 1989; Heidemann et al., 1990). Bray
(1979) in particular showed that the angles at bifurcations con-
formed to those expected from force equilibrium. These cultured
neurons, however, grew over flat substrates, thus adopting nat-
urally a flat geometry. The present study has demonstrated that
bifurcations in 3D dendritic arborizations also adopt a highly
flat geometry which is expected when also in 3D elastic tension
in neurites governs local bifurcation geometry. Bifurcations may
develop force equilibrium when the distal parts of the branches are
anchored to the substrate. Such conditions may be present dur-
ing and shortly after a branching event by the tension exerted by

the daughter growth cones and may govern the “local” bifurcation
angles. Further elongation of the daughter branches will go with
fluctuations in outgrowth directions and thus in curviness of the
branches (Katz, 1985). When the daughter branches bifurcate on
their turn or terminate, the “remote” angles between the straight
connection lines may show additional variation superposed on the
“local” bifurcation angles. When this is a major factor we would
expect a higher variability in the values of “remote” or “far” angles.
This is not found by Smit and Uylings (1975) and Scorcioni et al.
(2004). Another source of variation (perhaps the major one) is
the measurement error, which can be assumed to be smaller for
remote bifurcation angles than for local ones. Outgrowing daugh-
ter branches may change their direction of outgrowth, for instance,
when encountering obstacles. The more or less uniform back-
ground in the parent azimuth angle distribution (Figure 6I) may
very well originate from such events. “Local” bifurcation angles
may not show such background in the parent azimuth angle dis-
tribution, and may be expected to result in similar of even stronger
outcomes concerning bifurcation flatness and parent alignment to
the daughters’ bisector.

EVALUATION OF MEASURES OF FLATNESS
Some additional findings of the various measures will be discussed
in the next paragraphs.

Sum of 3 bifurcation angles: a measure for flatness?
The sum of the three bifurcation angles S = ρ + σ + τ (Figure 1B)
may seem a simple measure for flatness of a 3D bifurcation. This
variable varies between 0 and 2π. A planar bifurcation, however,
reaches the 2π value for this variable, when both side angles are
between π/2 and π, and the daughter segments are not ipsilat-
erally from the parent segment (Figures 10A–C). When the side
angles are smaller than π/2, i.e., a recurrent configuration, which
is non-optimal (e.g., Figure 10E), the angle sum is not indicative
for flatness. Adaptations for the angle sum can be made for these
non-optimal cases if the bifurcation is planar. For 3D bifurcations,
however, this is not straightforward. When the extrapolation of
parent branch vector GA and its projection on the daughter plane
lies outside the intermediate angle ρ, the two daughter segments
branch ipsilaterally from the parent segment, which is a non-
optimal configuration (e.g., Figures 10D, Figures A3 and A9 in
Appendix). In such a condition the angle sum S = ρ + σ + τ can-
not reach the value of 2π, even when the bifurcation lies in a flat
plane. Thus, the sum of 3 bifurcation angles is not an appropriate
measure for flatness.

Cone angle α and solid angle ΩC of a right circular cone
A solid angle is the part of space bounded by straight lines extend-
ing from a single point to a subtending closed curve or polygon.
Thus the solid angle is a measure for 3D space from an apex
contained in a 3D object, e.g., a cone apex at the center of a
sphere. The solid angle is usually expressed in steradians (sr) and
is considered to be dimensionless in mathematics and physics, just
like radians or degrees of an angle. For a right circular cone cir-
cumscribing a 3D bifurcation holds, that each cone angle value
corresponds only with one particular value of its solid angle, ΩC,
see Eq. A14. The cone angle and the solid angle of the right cir-
cular cone circumscribing a 3D bifurcation give maximal values
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FIGURE 10 | Spatial configurations for forward and backward, and

ipsilateral bifurcations. Backward and ipsilateral bifurcations are
non-optimal configurations. (A) Viewing from the parent segment: if a side
angle is smaller than 90º, then the pertinent daughter segment runs
backward. Bold lines indicate the parent and daughter segments. The
circular disk displays the plane perpendicular to the parent segment. When
both side angles are equal or larger than 90º then both parent segments
run in the “forward” half-space and they are not-recurrent, see also (C).
(B) This illustrates the situations seen from the daughter segments (bold
lines), thus here the parent segment can vary in any direction. When the
extrapolation of parent segment and its projection is outside the

intermediate angle, the two daughter segments branch ipsilaterally from
the parent segment (B,D), else they branch bilaterally (C,E). The
intermediate angle is the angle between the daughter segments. The size
of the sectors shown depends on the size of the intermediate angle: if:
ipsilateral bifurcation with 2 forward running daughter segments; ifb:
ipsilateral bifurcation with one backward running daughter segment; ib:
ipsilateral bifurcation with 2 backward running daughter segments. (C) A
bilateral forward bifurcation. (D) An ipsilateral bifurcation with one
backward and one forward running daughter segment (indicated by “ifb”).
(E) Both daughter segments run backward, specified by “backward” in
(B), bilateral configuration.

for maximal flatness of a bifurcation, i.e., π radians and 2π stera-
dians, respectively, and reach the minimal value 0 for minimal
flatness. However, bifurcations may have large cone angles or solid
angles, but still have “pathological”/non-optimal configurations.
For instance, Figure A3 in Appendix illustrates a bifurcation with
a large cone angle, but still a non-optimal one with small bifurca-
tion angles (crystal-needle-like structure) and daughter segments
turning back in the direction of the parent segment. Thus as speci-
fied in Introduction we need to take into account the values of side
angles: thus next to the spatial measure of cone angle or solid angle
of right circular cone we need to know whether both side angles
are between π/2 and π, and the projection of the extrapolation of
the parent branch is within the intermediate angle (Figure 10).

Solid angle ΩP of triangular pyramid
The solid angle for a triangular pyramid with apex A (Figure 2C,
Figure A4 in Appendix), also called the trihedral angle (Polyanin
and Manzhirov, 2007), is expressed by van Oosterom and Strac-
kee (1983) as a function of the vector position and the size of
the three edges of the triangular pyramid, e.g., the parent and
daughter segments of a 3D bifurcation. We defined the trihedral
angle in terms of the three planar bifurcation angles, see Eq. A20.
There is no straightforward relation between the trihedral angle
and the solid angle of a circular cone, since one particular solid
angle ΩC contains an infinite number of 3D bifurcations with its
node at the apex having different values for solid angle of triangular
pyramid which range between 0 < ΩP < ΩC. Three-dimensional

bifurcations with a very small trihedral angle can be constructed
close to a flat plane in a right circular cone with a very wide cone
angle close to π radians or a solid angle close to 2π steradians
(e.g., pyramids with a very small intermediate angle and wide side
angles near π). Flatness of a 3D bifurcation is, thus, a different
property than the trihedral angle or a solid angle of triangular
pyramid expresses. This is also shown in the value distribution of
the solid angle of a triangular pyramid for three spatially random
vectors (Figure 5E).

Parent stretch angle η

The stretch angle η varies between 0 and π. It reaches the value
π, only when the parent segment is oppositely aligned to the
daughter’s bisector. Then, the bifurcation lies in a flat plane.
However, there are cases that a bifurcation is planar, but with
a value for the stretch angle is �π. For instance (case 1), the
bifurcation is a side branching, i.e., one side-angle is ∼π and
the other side-angle is π/2 or a little larger. A side branching
is a planar bifurcation, but in this situation is the stretch angle:
∼(π/2 + π/4),i.e., ∼(3/4 π), thus about 25% lower than π; or
(case 2) the bifurcation lies in a flat plane, but the parent seg-
ments’ extrapolation lies outside the intermediate angle ρ, the two
daughter segments branch ipsilaterally from the parent segment
(Figure 10). Then the stretch angle is �π. In fact, the stretch
angle η reaches only the value π, when the extrapolation of the
parent segment coincides with the bisector of the intermediate
angle, thus when both side angles are equal, i.e., a symmetrical
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bifurcation, and between π/2 and π. Thus, stretch angle values
close to π do indicate symmetrical bifurcations with a more or
less planar geometry, making the measure of interest in relation to
symmetrical bifurcations.

Parent fold angle κ

The parent fold angle is derived from the spherical coordinates
pair (θ, ϕ) into a single measure. It is equal to the parent ele-
vation angle θ when the parents projection is in the daughters’
half-plane, but equal to π − θ when its projection is outside
the daughters’ half-plane (Figure A9 in Appendix). The fold
angle κ thus distinguishes forward and backward orientation of
parent segments with respect to the daughter’s half-plane. For
random bifurcations it has shown to generate a symmetrical
distribution around ϕ = π (Figure 5I). For dendritic bifurca-
tions, however, the distribution is highly asymmetric because
of the “forward” alignment of the parent segments. Together
with the dihedral angle β, it was the most discriminative mea-
sure in the K–S test comparison of random and dendritic
bifurcations.

Dihedral angle β

Also the dihedral angle β was introduced in order to combine
flatness and orientation information. While it produced sym-
metric (even uniform) distributions for random bifurcations it
showed highly asymmetric distributions for dendritic bifurca-
tions, also underscoring the forward orientation of parent seg-
ments in the latter ones. An interesting feature was that when the
daughter segments are non-optimal recurrent, thus when the side
angles are small (i.e., <π/2), the dihedral angle β is also small
(i.e., <π/2).

Dihedral angle λ

This measure expresses a different feature of spatial bifurcations
than expressed by the dihedral angle β. For bifurcations with a
small intermediate angle we expect that this measure can have
very small angle λ values even in case of near planar bifurcations.
When the side angles, however, have very small values, thus when
the daughter segments are recurrent and thus the bifurcation is
non-optimal, we can have still values near π. This is not possible
for the dihedral angle β.

SUMMARIZING CONCLUSION
Dendritic bifurcations are significantly more flat than random
bifurcations. Basal dendritic bifurcations also show a significant
alignment of their parent segments oppositely to the bisector
of their daughter segments, resulting in “symmetrical” configu-
rations. Among the different measures of flatness, the dihedral
angle β was most favorable as it integrated flatness and alignment
information and was found to be the most discriminative and
interpretable one and is, therefore, proposed as the first choice for
quantifying the flatness of dendritic spatial bifurcations. Also the
fold angle κ combined flatness and alignment properties, but did
not produced uniform distributions for random bifurcations.

We derived geometric measures as a function of the three
bifurcation angles for specification of the extent of flatness of a
spatial bifurcation. The values of the individual bifurcation angles,
furthermore, are of importance to evaluate particular optimality
models (e.g., Uylings, 1977a).
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APPENDIX
In the Section “Materials and Methods” a number of measures of flatness of 3D bifurcations were introduced and mathematically
expressed in terms of the bifurcation angles ρ, σ, and τ, or in terms of the quantities r = 1 − cos ρ, s = 1 − cos σ, and t = 1 − cos τ of the
3D bifurcation (Figures 1 and 2). In this Appendix the derivation of these expressions will be given. Although most of the mathematics
is straightforward, we have experienced the necessity to describe the derivations explicitly for neuroscientists.

DERIVATION OF CONE ANGLE, I.E., APEX ANGLE OF THE RIGHT CIRCULAR CONE CIRCUMSCRIBING A 3D BIFURCATION
The circumscribing right circular cone is obtained by constructing a circle through G, E, and F which are at equal distances from the
bifurcation point A, i.e., AG = AE = AF = l. This circle and the apex A define a right circular cone (Figure A1A), in which the projection
M, from A onto the circle plane, is the center of the circle with radius R (Figure A1A,B). The apex angle of this right circular cone is
called the cone angle α. With angle GAM equal to α/2, we have,

sin(α/2) = MG/AG = R/l , (A1)

and using the trigonometric function of half argument we obtain

sin2(α/2) = (1 − cos α)/2 = R2/l2, (A2)

thus

cos α = 1 − 2
R2

l2
. (A3)

To express the radius R of the circumscribed circle of triangle GEF in terms of the sides a, b, and c of the triangle (Figure A1B), we
use the sine rule

sin δ = a

2R
. (A4)

and the cosine rule to obtain:

sin δ =
√

1 − cos2δ =
√

1 −
(

b2 + c2 − a2

2bc

)2

= 1

2bc

√
4b2c2 − (b2 + c2 − a2)

2. (A5)

Equating (A4) and (A5) results in:

R = abc
√(

a2 + b2 + c2
)2 − 2

(
a4 + b4 + c4

) . (A6)

By defining the semi-perimeter p as p = (a + b + c)/2, (A6) can be rewritten as

R = abc

4
√

p
(
p − a

) (
p − b

) (
p − c

) . (A7)

FIGURE A1 | (A) Right circular cone circumscribing a bilateral non-recurrent 3D bifurcation GAEF with its circular base through GEF and cone angle α. M is the
projection of the node A onto the circular base, i.e., the center of the circle through GEF. (B) Circumscribed circle of triangle GEF with radius R and center M.
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Thus, using (A4),

√
p
(
p − a

) (
p − b

) (
p − c

) = abc

4R
= 1

2
bc sin δ = AreaGFE (A8)

Equation (A8) is known as Heron’s formula (e.g., Polyanin and Manzhirov, 2007).
Inserting (A6) into (A3) yields:

cos α = 1 − 2

l2

(abc)2

(
a2 + b2 + c2

)2 − 2
(
a4 + b4 + c4

) . (A9)

The sides of the triangle can be expressed in terms of the three bifurcation angles of the 3D bifurcation (Figure A1A) with ρ = ∠EAF,
σ = ∠GAF, τ = ∠GAE, and using the cosine rule:

a2 = 2l2 (1 − cos τ) ; b2 = 2l2 (1 − cos ρ) ; c2 = 2l2 (1 − cos σ) . (A10)

Taking r = 1 − cos ρ, s = 1 − cos σ, t = 1 − cos τ, and thus a2 = 2l2t, b2 = 2l2r, and c2 = 2l2s , we obtain for (A9)

cos α = 1 − 4rst

(r + s + t )2 − 2
(
r2 + s2 + t 2

)

and thus

α = arccos

(

1 − 4rst

(r + s + t )2 − 2
(
r2 + s2 + t 2

)

)

. (A11)

illustrating that the expression for cone angle α is symmetric in r, s, and t, i.e., independent of the order in which r, s, and t are taken. The
equations for the cone angle α, given by Uylings and Van Pelt (2002) and Uylings and Veltman (1975), can be derived by substituting

a = 2l·z, b = 2l·x, and c = 2l·y into (A2) and (A6)
in which x = sin(ρ/2), y = sin(σ/2), and z = sin(τ/2):

1

2
(1 − cos α) = R2

l2
= 1

l2

26l6x2y2z2

4(2l)4x2y2 − (2l)4(x2 + y − z2)
2 =

= 4x2y2z2

4x2y2 − (x2 + y2 − z2)
2 ,

(A12)

and after rewriting

cos α =
(

4x2y2(1 − 2z2) − (x2 + y2 − z2)
2

4x2y2 − (x2 + y2 − z2)
2

)

=
(

1 − 8x2y2z2

4x2y2 − (x2 + y2 − z2)
2

)

. (A13)

SOLID ANGLE OF A RIGHT CIRCULAR CONE ENWRAPPING A 3D BIFURCATION
The solid angle of a right circular cone enwrapping a 3D bifurcation (and its apex at the bifurcation node) ΩC relates to above-mentioned
cone angle α (e.g., Driggers, 2003) as

ΩC = 2π
(

1 − cos
α

2

)
. (A14)

This relation can be derived as follows
The solid angle of a right circular cone ΩC covering a bifurcation (and with its apex at the bifurcation node) is defined as the surface

area of the part of the sphere bounded by the right circular cone divided by the squared radius of the sphere (Figure A2),

ΩC = SurfArea

R2
S

.

Frontiers in Computational Neuroscience www.frontiersin.org January 2012 | Volume 5 | Article 54 | 20

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


van Pelt and Uylings Flatness of 3D dendritic bifurcations

FIGURE A2 | Surface of a sphere viewed from a right circular cone with a cone angle α.

FIGURE A3 |The same circular cone as in Figure A1A, but circumscribing an ipsilateral, recurrent 3D bifurcation, GAEF.

The surface area of this part of the unit sphere can be obtained by integrating the area of a small ring (with radius r) at an angle γ,
dS = 2πrds = 2πR2

S sin γdγ, over the angle interval [0, α/2]. Thus,

ΩC = 1

R2
S

α/2∫

0

dS = 2π

α/2∫

0

sin γdγ = 2π [− cos γ]
α/2
0 = 2π

(
1 − cos

α

2

)
.

Thus, the solid angle of a right circular cone circumscribing a 3D bifurcation can also be expressed by the three angles defining a 3D
bifurcation using (A11) and the trigonometric function of half argument cos2(α/2) = (1 + cos α)/2 as

ΩC = 2π

[

1 −
√

1 − 2rst

(r + s + t )2 − 2(r2 + s2 + t 2)

]

(A15)

Equation A3 shows that the cone angle α is fully determined by the radius R of the circumscribed circle for given length l of the
segments. An infinite number of different triangles can be drawn within this circle, such that an infinite number of bifurcations will
have the same cone angle and solid angle. For instance, Figure A3 illustrates another 3D bifurcation with the same circumscribing right
circular cone as displayed in Figure A1A.

SOLID ANGLE OF A TRIANGULAR PYRAMID FORMED BY A 3D BIFURCATION
A 3D bifurcation defines a triangular pyramid with the bifurcation point as apex and the tips of its branches defining the planar base
triangle. By definition the solid angle of a triangular pyramid equals (Figure A4)

ΩP = ΔGEF

l2
(A16)
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FIGURE A4 |The solid angle of a triangular pyramid formed by equal segments parts l from the node A, of a 3D bifurcation subtends a spherical

triangle GEF with spherical center at the apex of pyramid and radius l. The sides of the spherical triangle are denoted by e, f, and g, and its spherical angles
by γ, μ, and ν.

with ΔEFG equal to the surface area of the spherical triangle on the sphere through the tips and centered at the bifurcation point and l
the radius of the sphere. The surface area of the spherical triangle ΔEFG is equal to ΔEFG = l2ε (e.g., Polyanin and Manzhirov, 2007)
and thus

ΩP = ε (A17)

with ε the spherical excess of the spherical triangle EFG. For a spherical triangle with sides e, f, g and angles γ, μ, ν (Figure A4), we have
the following relations (e.g., Polyanin and Manzhirov, 2007)

0 < e + f + g < 2lπ, π < γ + μ + υ < 3π, and the spherical excess ε = γ + μ + υ − π.

Casey (1889, reprinted 2007) has reported an expression for ε/2 for the unit sphere (l = 1), in his Eq. 359 on p. 87, i.e.,

cos
ε

2
= 1 + cos e + cos f + cos g

4 cos e
2 cos f

2 cos g
2

(A18)

called the Euler’s Formula for one-half of the spherical excess expressed in terms of the sides of the spherical triangle (Donnay, 1945,
reprinted 2009). The angles τ, ρ, and σ relate to the unit circle segments f, g, and e, respectively, as

f = τ, g = ρ, and e = σ. (A19)

This leads to a simple equation for ΩP in terms of the three bifurcation angles

ΩP = 2 arccos

[
1 + cos ρ + cos σ + cos τ

4 cos ρ
2 cos σ

2 cos τ
2

]
(A20)

which shows the symmetry in ρ, σ, and τ in ΩP. Eq. A20 is undefined, when one of the three bifurcation angles is π, in such a condition
the bifurcation is planar and thus ΩP = 2π.

For the derivation of Euler’s Formula (A18), Donnay (1945, reprinted 2011) applied the stereographic projections method in combi-
nation with Cesàro’s method of“Triangles of Elements.”A derivation of Euler’s Formula based on the approach of Donnay (1945) is made
available as supplementary material at http://www.bio.vu.nl/enf/vanpelt/papers/VanPelt_Uylings_2012_Supplementary_Material.pdf.

VOLUME OF THE TRIANGULAR PYRAMID
The volume VP of the triangular pyramid AEFG (Figure A5) is given by

VP = 1

3
AreaΔAEF ∗ Height = 1

6
AF.AE sin ρ × AG sin θ = 1

6
sin ρ sin θ. (A21)

Given that cos2θ = cos2σ+cos2τ−2 cos ρ·cos σ·cos τ

sin2ρ
[see (A33) below],
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FIGURE A5 | A 3D bifurcation with parent segment AG and daughter segments AE and AF. The orientation of the parent segment is defined by its elevation
angle θ with respect to its projection onto the daughter plane and the azimuth angle ϕ between its projection and the bisector of the angle ρ between the
daughter segments.

FIGURE A6 | An aligned spatial bifurcation GAEF with stretch angle η between parent segment and the bisector AH of the intermediate angle ρ.

it follows that sin θ = 1
sin ρ

√
sin2ρ − cos2σ − cos2τ + 2 cos ρ · cos σ · cos τ

and finally

VP = 1

6
sin ρ sin θ = 1

6

√
sin2ρ − cos2σ − cos2τ + 2 cos ρ · cos σ · cos τ. (A22)

STRETCH ANGLE η, I.E., ANGLE BETWEEN PARENT SEGMENT AND BISECTOR OF THE INTERMEDIATE ANGLE
The stretch angle is defined as the angle η between the parent segment and the bisector of the intermediate angle, i.e., daughters’ bisector
(Figure A8). Unit lengths are assumed for both parent segment GA and daughter segments AF and AE, respectively.

With the stretch angle η equal to ∠GAH (Figure A6), and GH the median to EF, we derive from the squared length of median GH
and the law of cosine:

GH2 = (2GF2 + 2GE2 − EF2)
/

4 = GA2 + AH2 − 2GA · AH cos η

in which GF2 = 2(1 − cos σ), GE2 = 2(1 − cos τ), EF2 = 2(1 − cos ρ), and AH = cos ρ/2.
Thus

1 + cos2 ρ

2
− 2 cos

ρ

2
· cos η = (1 − cos σ) + (1 − cos τ) − 1

2
(1 − cos ρ) = 1 + cos2 ρ

2
− cos σ − cos τ

and

cos η = cos σ + cos τ

2 cos ρ
2

, (A23)

resulting in

η = arccos

(
cos σ + cos τ

2 cos ρ
2

)
. (A24)

Equation A24 is not symmetrical in the bifurcation angles ρ, σ, and τ due to the choice of defining the stretch angle between the
parent segment and the bisector of bifurcation angle ρ. Eq. A24 is undefined for intermediate angle ρ = π, but then the bifurcation is
planar and we define η = π.
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FIGURE A7 |The fold angle κ, i.e., angle between parent segment

and the half-plane determined by the two daughter segments, is in

this spatial non-recurrent bifurcation equal to π − θ. The azimuth
angle ϕ is taken from the bisector to the projection of the parent

segment in the plane of the daughter segments. The gray area of the
plane formed by the daughter segments (daughters’ plane) and the line
perpendicular to the daughters’ bisector (i.e., the Y -axis) is called the
daughters’ half-plane.

PARENT AZIMUTH ANGLE ϕ, ELEVATION ANGLE θ, AND FOLD ANGLE κ

The spherical coordinates of the parent segment AG in the aligned bifurcation are given by the parent elevation angle θ, measuring the
angle between the parent segment AG and its projection AG′ onto the daughter plane, and the azimuth angle ϕ between daughter’s
bisector (X -axis) and the parent’s projection AG′ onto the “daughters” plane’ (Figure A7). The fold angle κ is derived from the azimuth
and elevation angle, and combines both flatness and orientation information. It measures the angle between the parent segment and
(the extension of) its projection in the daughters’ half-plane (see Figure A7)

κ = sign(cos ϕ).
(
θ − π

2

)
+ π

2
(A25)

Thus, the fold angle κ is equal to the elevation angle θ when the parents projection is in the daughter’s half-plane (cos ϕ > 0, i.e.,
0 < ϕ < π/2 or 3π/2 < ϕ < 2π), and equal to the supplement π − θ when the parents projection is outside the daughter’s half-plane
(cos ϕ < 0, i.e., π/2 < ϕ < 3π/2; Figure A7).

Expression of the azimuth angle ϕ in terms of the bifurcation angles ρ, σ, and τ.
Referring to Figure A6 we have:

GF2 = 2 (1 − cos σ) , and GE2 = 2 (1 − cos τ) ,

G′E2 = G′A2 + AE2 − 2G′A · AE · cos
(
ϕ − ρ

2

)
= cos2θ + 1 − 2 cos θ · cos

(
ϕ − ρ

2

)

G′F2 = G′A2 + AF2 − 2G′A · AF · cos
(
ϕ + ρ

2

)
= cos2θ + 1 − 2 cos θ · cos

(
ϕ + ρ

2

)

G′G2 = GE2 − G′E2 = 2(1 − cos τ) − cos2θ − 1 + 2 cos θ · cos
(
ϕ − ρ

2

)
= sin2θ − 2 cos τ + 2 cos θ · cos

(
ϕ − ρ

2

)

With G′G = AG·sin θ = sin θ the equation reduces into

cos τ − cos θ · cos
(
ϕ − ρ

2

)
= 0

or

cos τ − cos θ · cos ϕ · cos
ρ

2
− cos θ · sin ϕ · sin

ρ

2
= 0.

(A26)

Similarly,

G′G2 = GF2 − G′F2 = 2(1 − cos σ) − cos2θ − 1 + 2 cos θ · cos
(
ϕ + ρ

2

)
= sin2θ − 2 cos σ + 2 cos θ · cos

(
ϕ + ρ

2

)

and with G′G2 = sin2 θ this equation reduces into

cos σ − cos θ · cos
(
ϕ + ρ

2

)
= 0

or

cos σ − cos θ · cos ϕ · cos
ρ

2
+ cos θ · sin ϕ · sin

ρ

2
= 0

(A27)
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Summation of (A26) and (A27) gives

cos τ + cos σ = 2 cos θ · cos ϕ · cos
ρ

2
. (A28)

Subtraction of (A26) and (A27) results in

cos τ − cos σ = 2 cos θ · sin ϕ · sin
ρ

2
. (A29)

Dividing (A29) by (A28) gives

tgϕ = 1

tg ρ
2

· cos τ − cos σ

cos τ + cos σ
(A30)

and thus

ϕ = arctan

(
1

tg ρ
2

· cos τ − cos σ

cos τ + cos σ

)
. (A31)

Mapping of the solution for the azimuth angle ϕ onto the interval [0, 2π]
The solution of ϕ is given in the interval −π

2 < ϕ < π
2 . This angle has to be mapped on the interval [0, 2π], dependent on the

orientation of the projection of the parent segment onto the daughter plane. The following orientations of the projection of the parent
segment onto the daughter plane (G′A in Figure A8) can be distinguished:

When projection in area I (see Figure A8), then cos σ > 0 and cos τ > 0.
Conditions for projection in area IIa (Figure A8) are cos σ < 0 and cos τ > 0 and |cos σ| < |cos τ|.
Conditions for area IIb are: cos σ < 0 and cos τ > 0 and |cos σ| > |cos τ|.
Conditions for area III are: cos σ < 0 and cos τ < 0.
Conditions for area IVa: cos σ > 0 and cos τ < 0 and |cos σ| < |cos τ|.
Conditions for area IVb: cos σ > 0 and cos τ < 0 and |cos σ| > |cos τ|.
This leads to the following transformation rules:
For projection onto area I, IIa, and IVb: ϕ = ϕ

FIGURE A8 | Areas of projection of parent segment G′A (I, IIa, IIb, III,

IVa, and IVb, respectively) in the daughters’ plane to be distinguished

for the transformation rules of the azimuth angle ϕ (see text). AE and

AF are the daughter segments of a spatial bifurcation. ρ is the
intermediate angle, and σ and τ are the side angles of the spatial
bifurcations, see Figure 1B.
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For projection onto area IIb, III, and IVa: ϕ = ϕ + π

Finally, if ϕ < 0 then ϕ = ϕ + 2π

From (A28) and (A23) it follows, that

cos η = cos θ · cos ϕ (A32)

Expression of the parent elevation angle θ in terms of the bifurcation angles ρ, σ, and τ.
Extracting cos ϕ and sin ϕ from (A28) and (A29), respectively, and summing their squares yields

(cos τ + cos σ)2

4cos2θ · cos2 ρ
2

+ (cos τ − cos σ)2

4cos2θ · sin2 ρ
2

= (cos τ + cos σ)2 · sin2 ρ
2 + (cos τ − cos σ)2 · cos2 ρ

2

4cos2θ · cos2 ρ
2 · sin2 ρ

2

= 1

resulting in

cos2τ + cos2σ − 2 cos τ · cos σ · cos ρ = cos2θ · sin2ρ

or

cos2θ = cos2τ + cos2σ − 2 cos τ · cos σ · cos ρ

sin2ρ
.

(A33)

With cos 2θ = 2.cos2 θ − 1 we obtain

cos 2θ = 2
cos2τ + cos2σ − 2 cos τ · cos σ · cos ρ

sin2ρ
− 1

and finally

θ = 1

2
arccos

(
2

cos2σ + cos2τ − 2 cos ρ · cos σ · cos τ

1 − cos2ρ
− 1

)
(A34)

and

π − θ = π − 1

2
arccos

[
2cos2σ + 2cos2τ − 4 cos ρ cos σ cos τ

1 − cos2ρ
− 1

]
. (A35)

Expression (A34) for the parent elevation angle θ is not symmetric in the bifurcation angles ρ, σ, and τ because of the choice of taking
the spherical coordinates of the parent segments in a coordinate system aligned to the daughters’ plane and the daughters’ bisector. Eq.
A34 is undefined when the intermediate angle ρ = 0, but then there is no bifurcation, or when ρ = π, in which case the bifurcation
collapses into a plane of the parent segment and the oppositely aligned daughters, making θ = 0˚, and also the fold angle κ = 0˚.

DIHEDRAL ANGLE λ BETWEEN THE PLANES FORMED BY THE PARENT AND EACH OF THE DAUGHTER SEGMENTS
The dihedral angle λ measures the angle between the planes formed by the parent segment and each of the daughter segments
(Figure A9). The dihedral angle λ can be expressed in terms of the bifurcation angles ρ, σ, and τ as follows:

IJ2 = AI2 + AJ2 − 2 · AI · AJ · cos ρ = IK2 + JK2 − 2 · IK · JK · cos λ. (A36)

Thus

AI2 − IK2 + AJ2 − JK2 − 2 · AI · AJ · cos ρ = −2 · IK · JK · cos λ

2AK2 − 2.AI.AJ. cos ρ = −2.IK.JK. cos λ

thus

cos λ = cos ρ.AI.AJ − AK2

IK.JK
. (A37)

and substituting the ratios by the sines and cosines we obtain

cos λ = cos ρ − cos σ · cos τ

sin σ · sin τ
(A38)
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FIGURE A9 | A spatial, non-recurrent bifurcation GAEF with dihedral angle λ between the planes formed by the parent segment AG and each of its

daughter segments AE and AF, respectively. Intermediate angle ρ, and side angles σ and τ.

FIGURE A10 | A spatial, non-recurrent bifurcation GAEF with the

dihedral angle β, i.e., the angle between the daughters’ half-plane and

the plane formed by the parent segment and the line in the

daughters’ plane perpendicular to the bisector of the intermediate

angle ρ, coinciding with theY -axis due to alignment of daughters’

bisector with the positive X -axis. The azimuth angle ϕ is taken from the
daughters’ bisector to the projection of the parent segment in the plane of
the daughter segments.

and thus

λ = arccos

(
cos ρ − cos σ cos τ

sin σ sin τ

)
. (A39)

The dihedral angle λ is undefined when one of the side angles, σ or τ, equals zero, i.e., no bifurcation, or when one of the side angles
is equal to 180˚, but in that case the bifurcation is a side-branching bifurcation and thus planar and λ = 180˚.

DIHEDRAL ANGLE β BETWEEN THE DAUGHTERS’ HALF-PLANE AND THE PLANE DETERMINED BY THE PARENT SEGMENT AND THE LINE
PERPENDICULAR TO THE DAUGHTERS’ BISECTOR AT THE BIFURCATION POINT.
The dihedral angle β is the angle between the daughters’ half-plane and the plane formed by the parent segment and the line perpen-
dicular to daughters’ bisector through the bifurcation point A in the daughters’ plane (Y -axis; Figure A10). It can be expressed in terms
of the parent elevation angle θ and azimuth angle ϕ of an aligned 3D bifurcation as follows.

We have GA = 1, G′G = sin θ, and G′A = cos θ, thus

AN = G′A cos ϕ = cos θ cos ϕ

tan β = G′′N
AN

= G′G
AN

= sin θ

cos θ cos ϕ
= tan θ

cos ϕ
.

β = arctan

(
tan θ

cos ϕ

)
.

(A40)

Using (A32) we derive

β = arctan

(
sin θ

cos η

)
. (A41)

When the parent segment is in the daughter plane (i.e., θ = 0, thus tan θ = 0), then β = 0 for cos ϕ > 0, and β = 180˚ for cos ϕ < 0.
The dihedral angle β is undefined, when cos ϕ = 0 or when cos η = 0, in such a condition β = π/2.

Frontiers in Computational Neuroscience www.frontiersin.org January 2012 | Volume 5 | Article 54 | 27

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

	The flatness of bifurcations in 3D dendritic trees: an optimal design
	Introduction
	Materials and Methods
	Characteristics of a 3D bifurcation
	Measures of flatness of a 3D bifurcation
	Sum of the three bifurcation angles
	Cone angle α of right circular cone
	Solid angle ΩC of right circular cone
	Solid angle ΩP of triangular pyramid
	Volume VP of the triangular pyramid
	Parent stretch angle η
	Parent azimuth angle  and elevation angle 
	Parent fold angle κ
	Dihedral angle λ
	Dihedral angle β 


	Results
	Distributions of measures of flatness of random 3D bifurcations
	Probability distribution of the bifurcation angles
	Probability distribution of the sum of the three bifurcation angles in a random 3D bifurcation
	Probability distribution of the cone angle  of random bifurcations
	Probability distribution of the solid angle of right circular cone ΩC of random bifurcations
	Probability distribution of the solid angle of pyramid ΩP of random bifurcations
	Probability distribution of parent stretch angle η of random bifurcations
	Probability distribution of the elevation angle θ of random bifurcations
	Probability distribution of the parent azimuth angle  of random bifurcations
	Probability distribution of the parent fold angle κ of random bifurcations
	Probability distribution of the dihedral angle β of random bifurcations
	Probability distribution of the dihedral angle  of random bifurcations
	Probability distribution of the volume of the triangular pyramid
	Distributions of measures for flatness of random 3D bifurcations

	Distributions of measures of flatness of bifurcations in dendrites of pyramidal neurons
	3D bifurcations in pyramidal cell basal dendrites
	3D bifurcations in pyramidal cell apical dendrites

	Comparison of 3D bifurcations in pyramidal cell dendritic trees and of random 3D bifurcations
	Correlations between flatness measures – scatterplots


	Summary, Discussion, and Conclusion
	Flatness of 3D dendritic bifurcations
	Evaluation of measures of flatness
	Sum of 3 bifurcation angles: a measure for flatness?
	Cone angle  and solid angle ΩC of a right circular cone
	Solid angle ΩP of triangular pyramid


	Parent stretch angle η
	Parent fold angle κ
	Dihedral angle β
	Dihedral angle λ

	Summarizing conclusion
	Acknowledgments
	References
	APPENDIX
	Derivation of cone angle, i.e., apex angle of the right circular cone circumscribing a 3D bifurcation
	Solid angle of a right circular cone enwrapping a 3D bifurcation
	Solid angle of a triangular pyramid formed by a 3D bifurcation
	Volume of the triangular pyramid
	Stretch angle , i.e., angle between parent segment and bisector of the intermediate angle
	Parent azimuth angle , elevation angle , and fold angle 
	Expression of the azimuth angle  in terms of the bifurcation angles , , and .
	Mapping of the solution for the azimuth angle  onto the interval [0, 2]
	Expression of the parent elevation angle  in terms of the bifurcation angles , , and .

	Dihedral angle  between the planes formed by the parent and each of the daughter segments
	Dihedral angle  between the daughters' half-plane and the plane determined by the parent segment and the line perpendicular to the daughters' bisector at the bifurcation point.



