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Biological systems are based on an entirely different concept of construction than human
artifacts. They construct themselves by a process of self-organization that is a systematic
spatio-temporal generation of, and interaction between, various specialized cell types. We
propose a framework for designing gene-like codes for guiding the self-construction of
neural networks. The description of neural development is formalized by defining a set of
primitive actions taken locally by neural precursors during corticogenesis.These primitives
can be combined into networks of instructions similar to biochemical pathways, capable
of reproducing complex developmental sequences in a biologically plausible way. More-
over, the conditional activation and deactivation of these instruction networks can also be
controlled by these primitives, allowing for the design of a “genetic code” containing both
coding and regulating elements. We demonstrate in a simulation of physical cell develop-
ment how this code can be incorporated into a single progenitor, which then by replication
and differentiation, reproduces important aspects of corticogenesis.
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1. INTRODUCTION
Humans have learned to construct complex artifacts using a
method in which the components of the target object, and the
relations between them, are carefully specified in an abstract“blue-
print.” This blueprint is then transformed into instructions that
co-ordinate the actions of human or mechanical constructors as
they assemble the target from a store of supplied components.
Biology, by contrast, has evolved an entirely different approach to
the construction of complex systems. Biological systems construct
and configure themselves by replication and differentiation from a
single progenitor cell; and each cell generates locally its own supply
of construction components. One of the most impressive feats of
biological construction is the mammalian brain, particularly the
neocortex whose information processing is crucial for intelligent
behavior. Understanding the principles whereby these cortical cir-
cuits construct themselves is crucial to understanding how the
nervous system configures itself for function, and these principles
could also offer an entirely new approach to the fabrication of
computing technologies.

There is substantial literature that considers various kinds of
systems that assemble, organize, or construct themselves (Turing,
1952; Von Neumann and Burks, 1966; Whitesides and Grzy-
bowski, 2002; Freitas and Merkle, 2004; Rothemund et al., 2004).
We will be concerned only with self-construction as opposed
to self-assembly. “Self-assembly” and “self-organization” describe
processes through which a disordered system of pre-existing
components form organized structures or patterns as a con-
sequence of specific, local interactions among the components
themselves (Whitesides and Grzybowski, 2002; Cook et al., 2004;
Halley and Winkler, 2008), based on relatively simple construc-
tion information. By contrast, “self-construction” in the sense of
(Von Neumann and Burks, 1966) means that agents engaged in

self-construction use a program-like abstract set of rules to locally
direct their own growth and reproduction in the context of locally
detectable information present in a pre-existing or self-generated
environment. In the biological case, self-construction arises out of
the interplay between agents (cells) that express physical function,
and the information (genome) that encodes their function.

The relationship between genetic encodings and expressed
function has been extensively explored through evolutionary algo-
rithms, which permute abstract code in search of suitable pheno-
typic function (Toffoli, 2000). Recent work shows how such search
methods can be augmented by a more programmatic approach
(Doursat, 2008). However, the principles by which a complex
functional system can be systematically elaborated from a single
precursor cell are much less well understood.

In this paper we strive to simulate directly the self-construction
of a complex neuronal network such as the neocortex. The neocor-
tex arises by a complex process of replication, differentiation, and
migration of cells (Rakic,1988,1995). In this way the initial precur-
sors expand to form a stereotypical laminated plate-like structure
composed of about 1011 neurons intricately wired together using
a limited number of stereotypical connection patterns (Binzegger
et al., 2007).

During the past decades there has been a rapid expansion of the
available data describing various aspects of this process. However,
the many interactions among the replicating and differentiating
cells quickly become intractable to unaided human comprehen-
sion. Computational simulation (van Ooyen, 2011) can be a tool
for extending our comprehension: by casting development into
a simulation, it becomes possible to examine systematically the
relationship between the local behavior and interactions of the
various cell types, and the final architecture; and so to deter-
mine the principles that guide biological self-construction. But the
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biological data available are so numerous, and yet so incomplete,
that they are difficult to comprehend and even simulate fully in
their biological detail. Instead, one requires a suitable abstraction
of the relationship between the instantiated cellular processes and
the genetic information on which these processes depend. This
abstraction should be sparse enough to be theoretically interest-
ing, but detailed enough to capture the nature of the biological
process.

In this paper we propose such a framework. It is based on a set
of primitive instructions, representing basic cellular actions, which
can be combined to form networks of instructions of increasing
complexity. Most of these networks, or as we call them,“machines,”
do not exist initially in an active form. For them to become active,
they have to be instantiated (just like a gene has to be expressed,
to produce a protein which can bring a new functionality to a
cell). Under appropriate conditions, specific machines can instan-
tiate further new machines from their descriptions in the genetic
code, or can remove active machines. These principles allow for
the expression of cell functionalities such as migration or neurite
sprouting, at a specific time in response to specific signals. We call
this instruction language “G-code,” since it corresponds abstractly
to the genetic code of the cells in our simulations.

In the following sections we describe each of these primi-
tives, and explain how they can be combined to form higher-
level functions. We then present examples of typical neuronal
behaviors of increasing complexity (chemo-attraction, axonal, and
dendritic branching, as well as cell division and differentiation).
Finally, we show how to use these neuronal behaviors as building

blocks for the self-construction of a target neural network in
simulation.

To perform the simulations presented in this work we have
implemented a version of the G-code using the software pack-
age CX3D (Zubler and Douglas, 2009), which provides a gen-
eral platform for designing various models of neural develop-
ment. The actual implementation within this specific simulator
are not essential to the presentation of the concepts of the G-
code. Implementation details are listed in Section “Materials and
Methods.”

2. RESULTS
2.1. DEFINING PRIMITIVE ACTIONS
The G-code is based on a set of 11 primitives, each representing an
elementary cell function (Table 1). The list begins with move, the
primitive corresponding to the displacement of a soma or a growth
cone. secrete and detect are also obvious requirements in
the context of biological development; they account for the pro-
duction and detection of signaling molecules. Since a cell must
express many different functions in various combinations during
its lifetime, it needs the ability to recruit new machines (active
intracellular agents) and to destroy existing ones. This flexibility
is provided by the primitives instantiate and kill.

In a bio-inspired scheme, the various machines interact as a
community of agents enclosed within a cell membrane. In order
for these communities to grow in number and specialize in func-
tion, they must be able to trigger cell division (including the
copying of the G-code genome into the newly formed daughter

Table 1 | Primitives of the G-code, representing atomic cellular behaviors, with their input/output ports and parameters.

Primitive Input ports Output ports Parameters

move speed speed

directionv directionv

secrete rate substance_name

substance_type

detect gradientv substance_name

concentration substance_type

attach receptor_expression adhesion_force (static|follow)

morph diameter diameter

tension tension

color color

cell_density

fork probability_to_fork has_forkedb daughter_diameter

directionv machine_name

synapse spine_formation connection_density (excitatory|inhibitory)

bouton_formation

connection_probability

replicate probability_to_replicate has_replicatedb

directionv

die probability_to_die has_diedb

instantiate probability_to_instantiate has_instantiatedb machine_to_instantiate

kill probability_to_kill has_killedb machine_to_kill

v denotes ports with a vectorial value, all other ports have a scalar value; b denotes scalar ports with a boolean value; the parameter “substance_type” in secrete

and detect takes one of the following values: “extracellular,” “intracellular,” or “membrane_bound.”
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cells) and cell death. These two additional primitives we term
replicate and die. Note that die suppresses an entire cell
and destroys the community of agents currently active within this
cell, and so differs from kill, which destroys only specific agents
(machines) within a cell.

Two more primitives are included to enable the whole cell
to interact physically with the environment: morph changes the
mechanical properties of a cell segment (e.g., its diameter, inner
tension, etc.), while attach sets the level of adherence between a
cell and the extracellular matrix, or between two cells. And finally,
there are two primitives that produce neuron-specific behaviors:
fork causes neurite sprouting and branching; and synapse
establishes the pre- and post-synaptic structures required for
specialized intercellular communication.

Most of the primitives take parameters that define the context
of the action to be taken. For instance secrete and detect
take as parameters the name of the substance the actor should
secrete or detect, and also the location of the actor (extracellular,
membrane bound, or intracellular).

To express an action, a cell must instantiate an active instance of
the primitive (or a higher-level machine composed of primitives)
by transcription from the appropriate region of its G-code. The
resulting primitive (or machine) is localized in a specific discrete
cell compartment, such as the soma or a neurite segment. These
arrangements are consistent with observations that different parts
of a neuron can execute different tasks simultaneously (Polleux
et al., 2000), and – at least for a limited amount of time – inde-
pendently (Davis et al., 1992; Campbell and Holt, 2001). Several
instances of the same primitive can co-exist in the same neural
segment (for instance two detect primitives, each one allowing
for the detection of a different signaling molecule).

2.2. COMBINING PRIMITIVES INTO FUNCTIONAL MACHINES
In metabolic pathways, different proteins can act on each other,
performing modifications such as methylation or phosphoryla-
tion. These actions can be abstracted as a directed graph whose
vertices are the various protein types, and whose edges represent

the signal transmission effected by the protein-protein interactions
(Berg et al., 2011). Our primitives can be organized in a similar
manner. Each primitive has one or more input and output ports.
Instances of primitives can be connected by linking an output
port of one to an input port of another. Input ports are used to
induce an action, or modify the modalities of an action, whereas
output ports present information on the current state of the ele-
ment. For instance, the input port “speed” of move, specifies the
speed at which a cell element should move, whereas its output
port “speed” delivers information about its actual speed (these
two values can be different, for example when physical obsta-
cles prevent a desired movement from occurring). Most of the
ports transmit or accept a scalar quantity; a few of them trans-
mit or accept a vector. Scalar output ports connect only to scalar
input ports, and vectorial output ports only to vectorial input
ports.

In biochemical networks, signal propagation is often organized
by scaffolding proteins, which can influence both the intensity and
the duration of a signal (Kolch, 2005; Locasale and Chakraborty,
2008). Similarly, we allow a set of filters and logical functions
that modify the (scalar or vectorial) signals exchanged between
primitives (Table 2).

An assembly of primitive instances providing a complex func-
tion is a G-machine. Machines may also have input and output
ports (which are the ports of elements contained within the
machine that are declared as accessible from outside). These ports
allow machines to be connected to primitives or other machines.
These arrangements permit machines to be embedded within one
another (see below).

As a first example, consider M1, a G-machine that effects
chemo-attraction during axonal elongation (see Figure 1A). For
biological axons, the sequence can be summarized as follows:
membrane receptors detect the presence of specific extracellular
signaling molecules, and activate an intracellular signaling cascade,
which reorganizes the cytoskeleton and results in a growth cone
movement (Wen and Zheng, 2006). To implement this behavior
with our framework the “gradient” output port of detect is

Table 2 | Filters and logical functions implemented in the G-code, with input/output ports and parameters.

Symbol Name Input ports Output ports Parameters

u(a) Step function x y = 1 if x > a; otherwise y = 0 a

m(a) Multiplicative function x y = ax a
�v �w = a · �v

h1 Hill function with coefficient 1 x y = x /(1 + x )

h4 Sigmoid function x y = x4/(1 + x4)

(Hill coefficient 4)

i Inverse function x y = 1/x

s Sum function x1,. . .,xn y = �xi

�v1, . . . , �v1 �w = � �vi

p Perpendicular vector �v �w such that �v · �w = 0

or Or function x1,. . .,xn y = 1 if ∃xi > 0 ; otherwise y = 0

and And function x1,. . .,xn y = 1 if ∀i , xi > 0 ; otherwise y = 0

1 One y = 1

rand Random vector A random �v of length 1

(x, xi, y denote ports with a scalar value; �v , �vi , �w ports with a vectorial value). Functions can be combined to form other more complex functions.
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linked to the “direction” input port of move. The name X and the
type e (extracellular) of the signaling molecule to be detected are
passed todetect as parameters,detect(X,e). In principle, X
will only exist in the extracellular space if somewhere in the space
there is a secretor of X.

This same machine can be converted to perform chemorepul-
sion rather than attraction by inserting a multiplying filter m(a),
which multiplies the vectorial value transmitted between the two
primitives by the scalar value a. If a > 0, the machine moves up
the concentration gradient of X; if a < 0 it avoids the substance.
The machine M1(X,a) contains three elements (two primitive
instances and one filter instance) and two links; it has two para-
meters (X, the name of the signaling molecule it responds to, and
a, the filter parameter):

M1(X,a) = {detect(X,e).gradient→m(a)
→direction.move}.

This “diagrammatic” representation of a machine is used here
to give an intuition of the G-code. (Input ports are written to the
left of primitives, and output ports to their right.) A more formal
definition of a machine is given below.

2.3. GENOME AND FORMAL MACHINE DEFINITION
The “genetic code” (G-code) that is inserted into the precursor
cell consists of a list of machines with their names and descrip-
tions. Similar to gene expression, the expression of a G-machine
consists of the instantiation of an active machine based on its
description in the code. This expression is controlled by the prim-
itive instantiate, which takes the name of the machine to be
instantiated as a parameter. Since multiple instances of the same
machine can be present in the same cell-element, each machine
instance is identified by a unique instance name. Removal of
an existing active machine is achieved by the primitive kill,
which takes as its parameter the name of the machine instance
to be removed. This mechanism resembles the degradation of a
local protein “tagged” by ubiquitin proteins. After destruction, a
machine can always be re-instantiated later, since its description
remains in the G-code.

For their representation in the genome, we define a machine as
the quadruple:

M = {I, O, E , L} , (1)

where I is the set of input ports of M, O is the set of output
ports of M, E is the set of machine elements (primitives, filters,
or machines) of M, and L is the set of links (pairs of input and
output ports of elements of E).

This formal definition of machines offers a way to quantify the
complexity of the genetic code, by counting the elements and links
of each machine listed:

C (M ) = α |E | + β |L| , (2)

where α is the coefficient for elements and β a coefficient for links
(in principle we use α = 1, β = 0.5).

According to the formal definition (1), the machine per-
forming movement based on extracellular cues described

earlier is: M1(X,a)= {{φ}, {φ}, {detect(X),m(a),move},
{(detect(X,e).gradient, m(a)), (m(a), direction.move)}}.
The complexity of M1 is 3 + 2(0.5) = 4.

For brevity we will often use in the remainder of this paper a
less formal machine description, of the type {e1 → e2 → . . . → eN;
d1 → d2 → . . . → dM}, where ei and dj are machine elements
connected in chains, and → indicates a link.

2.4. CHEMO-ATTRACTION AND MIDLINE CROSSING
We now illustrate the removal and instantiation of machines in the
context of more complex models of chemo-attraction. Because it
does not contain a stopping mechanism, the simple machine M1
described above continues its movement indefinitely (Figure 1D).
M2 (Figure 1B) has a slightly more elaborated behavior, in that
movement ceases once the attractor concentration exceeds a given
threshold. M2 combines the displacement principle described in
M1 with a mechanism to deactivate itself based on the signaling
molecule’s concentration. This behavior is achieved by using the
“concentration”port of detect and transmitting this scalar value
to the input port “probability_to_kill” of a kill primitive, which
will remove the machine and so stop the axonal elongation. We
use a threshold filter between these two primitive instances to set
precisely the concentration at which the machine is to be killed.

M2 has an output port o that provides an exit status. It out-
puts the value 1 when the machine deactivates (i.e., removes)
itself, and 0 otherwise. This type of output is useful for sequen-
tial instantiation of machines during complex developmental
sequences.

Note that an equivalent machine M2’ could be constructed,
in which an instance of M1 is embedded as an internal machine
responsible for the movement, and then independently a chain
{detect→ threshold →kill→ o} could be used for the deac-
tivation of the entire M2’, and for signaling that the machine has
been removed.

M1 and M2 can be used to design a simple model of axonal
midline crossing, in which an axon is initially attracted by a sig-
naling molecule and then repelled by the same substance, with the
concentration of the molecule as the trigger for the switch between
these two behaviors (see Figure 1C).

This machine contains an instance of M2 with a positive filter
parameter a, and therefore initially moves toward the highest con-
centration of X. After it has reached the concentration threshold
b, the M2 instance removes itself. When it does so, it activates the
instantiation of an M1 instance with a negative filter parameter.
This results in turning a chemo-attractant signal into a chemo-
repellant signal. The threshold b must be set to an appropriate
level so that the change of machine does not occur too far from
the midline (see Figure 1F). By choosing another parameter for the
internal M1we can also implement the situation where the attract-
ing and repelling signals are mediated through different molecules
(Yang et al., 2009).

2.5. BRANCHING PATTERNS
In addition to elongation and path finding, neurons must regulate
the branching behavior of their neurites to form specific axonal
and dendritic patterns. This behavior is controlled by the primitive
fork. The effect of this primitive depends on its location within
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detect (X,e)
gradient movedirection

detect (X,e)
gradient movedirection

kill (this)
probability

concentration
has_killed

M2 (X,a,b)
o instantiate (M1(X,-a))

probability

o

M1(X,a)

M2(X,a,b)

M3(X,a,b)

(b)

(a)

(a)

A

B

C
F

E

D

FIGURE 1 |Three “G-machines” used for axon guidance. (A) The
machine M1 contains two primitives and one filter, connected by two links:
a detect primitive senses the presence of the chemical “X” in the
extracellular environment and outputs the gradient of concentration of X via
one of its output ports to a filter (which multiplies its input by the scalar
factor a). The modified gradient vector is then fed into a move primitive via
the input port “direction,” influencing the movement’s direction. When
expressed in a cell element, this machine moves the cell element in the
direction of the concentration gradient of the signaling molecule X. (B) The
machine M2 contains all the elements of M1, with in addition a mechanism
to kill (i.e., remove) itself when the concentration level b of the chemical X
is reached. This condition is coded with the output port “concentration” of
the detect primitive linked to a thresholding filter; the removal of the
machine is executed by the primitive kill. M2 has an output port, which

outputs a 1 just before the machine removes itself; this output is crucial for
sequential actions, as illustrated in the next machine. (C) At instantiation
time, the machine M3 contains two elements: an active instance of an M2
machine and an instantiate primitive. Initially M3 acts like its internal M2,
i.e., it moves up the gradient of chemical X. But when the internal M2
removes itself, this triggers the instantiation of an M1 machine in which the
multiplication factor of the internal filter has the opposite sign. (D) Effect of
the machine M1 in simulation when instantiated into an axonal tip
(background color intensity proportional to the concentration of the
signaling substance X). (E) Effect of M2 in simulation. (F) Effect of M3 in
simulation. For illustrative purposes the axon turns red when the internal
M2 is replaced by the negative M1. Depending on the value of the
threshold b, the axon either does or does not cross the barrier formed by
the peak in concentration of chemical X.

the cell: in the soma, it extends a new neurite; in a non-terminal
neurite segment it triggers the extension of new side-branches;
in a terminal segment it triggers the bifurcation of the growth
cone (and thus the creation of two new neurite branches). Each
newly created branch is an autonomous cell compartment, which
requires its own characteristic machine(s) to be instantiated.fork
takes as arguments the machine(s) to be instantiated in each of
the new branches that it creates. Thus fork is an implicit call to
instantiate, but it also performs the structural changes to the
soma or axon. For neurite extension from the soma or side branch
formation from a pre-existing neurite segment, fork contains
only one set of arguments; in the case of bifurcation at the tip of
an elongating neurite, two sets of arguments, one for each daugh-
ter branch (the two can be identical for symmetrically behaving
branches, or they can be different).

If a machine contains afork that instantiates an instance of the
same type of machine in a new branch, then a recursive branching
mechanism is obtained. For instance:

M_branching={move; 1→m(p)→probability.
fork(M_branching, M_branching)}.

This machine contains amoveprimitive that elongates the neu-
rite (since the move primitive does not receive an input through
its “direction” port, the elongation movement is a “smoothed”
random walk – see Materials and Methods). Independently, it
contains a branching mechanism that triggers a bifurcation with
a probability p. the probability is implemented by a function
element that constantly outputs the value 1, linked to a filter that

multiplies its input by the constant p. This value is then fed into
the primitive fork. After bifurcation, a copy of the same machine
is re-instantiated within the daughter branches, so that the process
continues indefinitely.

To terminate the branching process, we propose a stopping
mechanism in which the elongating machine removes itself with
a probability depending on the neurite’s diameter. The diameter
can be reduced during elongation or at branch points. The effects
of these two mechanisms for diameter reductions are illustrated in
the machine M4(a,b) (see Figure 2A), where a is the parameter
for reduction during elongation, and b the parameter for reduc-
tion at a branch point. The first case is implemented by feeding the
current speed into the input port “diameter” of a morph primitive
(this input specifies the change in diameter – and not merely the
diameter). For the second mechanism, we simply use the parame-
ter “daughter_diameter” of fork. If b�a, the number of branch
points on the path connecting the soma to the extremities will be
the same, regardless of the actual path length (Figure 2B), whereas
if a�b, the path length from the soma to all distal extremities is
the same, regardless of the number of branch points (Figure 2C).

Alternative branching mechanisms from the literature are also
easily implemented. For example, in a production-consumption
model (Kiddie et al., 2005) an intracellular resource substance Y
is produced at the soma at a constant rate, and diffuses intracel-
lularly along neurites. The growth cones need this resource for
elongation, and they move at a speed proportional to the concen-
tration of the resource substance in the distal element. However,
the growth cones consume the resource proportional to how
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move speed

M4(a,b)

diameter

kill(this)

morph diameter

probability

synapse probability

1 fork(b,M4(a,b),M4(a,b))probability

morph(a)

(f)

(s)

A

CB

FIGURE 2 | A G-machine capable of producing various branching

patterns, with synapse formation. (A) The machine M4 contains four
independent processes. (i) A move primitive elongates the neurite, and
transmits the current speed to a filter where it is multiplied by the coefficient
a, and fed into a morph for diameter reduction (proportional to the distance
traveled). (ii) With a probability f, a fork element triggers a neurite
bifurcation, producing two daughter branches with diameters smaller than the
mother branch’s diameter by a factor b, and instantiates in each of them a
copy of the machine M4. (iii) When the diameter falls below a certain limit, a

kill primitive removes the machine. (iv) A synapse primitive produces pre-
or post-synaptic processes with a probability inversely proportional
(proportionality constant s) to the branch diameter. (B) When the diameter is
decreased at the bifurcation points but not during elongation, the path from
every branch tip to the soma passes the same number of branch points,
regardless of the actual length. Note the spines are produced with a density
inversely proportional to the neurite diameter. (C) When the diameter is only
decreased during elongation and not at branch points, each branch tip is at the
same path length from the soma.

much they have actually elongated. Thus, the limited amount of
resource limits the neurite outgrowth. This mechanism is specified
as follows:

M_soma= {secrete(Y,i)} in the soma, and
M_growth_cone= {detect(Y,i).concentration →
speed.move; move.speed →m(a)→secrete(Y,i)}

in the terminal elements of the neurites, with a being a negative
number (negative secretion being equivalent to consumption). It is
of course also possible to have the branching probabilities depend
on intracellular concentrations. Note that if the substance Y dif-
fuses purely passively within the neuron, there is no need to define
a machine for its transport.

2.6. SYNAPSE FORMATION
Synapse formation is an important part of neural development;
not only because the synapses convey electrophysiological activ-
ity across the neuronal network, but also because there is a tight

interplay between synaptogenesis and the formation of the axonal
and dendritic trees. In our framework the primitive synapse
regulates three different aspects of synapse formation: the pro-
duction of a pre-synaptic terminal; the control of the density
of post-synaptic elements; and the establishment of a functional
synapse between existing pre- and post-synaptic structures. Each
of these aspects corresponds to a specific input port. The output
port of synapse reports the local density of connections made
by a cell element. It can be used for instance to prevent retraction
of branches that have already formed synapses.

For example, we observe in pyramidal neurons that the
bouton (pre-synaptic terminal) density is higher on terminal
branches of the axon, which have a smaller diameter, than
on the main shafts (John Anderson, Personal Communica-
tion). The implementation of such a mechanism is straight
forward: Msynapse(s)= {morph.diameter →m(-s)→
bouton_formation.synapse}. The effect of this machine is
illustrated in Figure 2.
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2.7. CELL CYCLE
Cell division is encoded in G-code by the primitive replicate.
The original cell divides, forming two daughter cells (by default
each with half the mother cell’s volume) each one containing a
copy of the genome. In biology this division is regulated by the cell
cycle, a sequence of events by which the DNA is first copied and the
cell actually divides. The cell cycle is under the control of several
proteins that activate and deactivate themselves in a complicated
cascade, which is repeated for each division. Several mathematical

models of this have been published (see (Fuss et al., 2005) for a
review). A simple cell cycle can be achieved with a G-machine
containing only three primitives (Figure 3A). It is based on the
following principle: as long as the machine is active, the cell will
divide as soon as it grows large enough, i.e., if the cell exceeds a
certain volume (as reported by the output port “volume” of the
morph primitive).

If the cell is too small, it simply increases its volume (an action
controlled via the input port “volume” of morph). To stop the

A

B

C

detect (G1)

detect (G3)

detect (G2) secrete (G1)

secrete (G2)

secrete (G3)

detect (G1)

detect (G3)

detect (G2) instantiate (M1)
OR

AND

replicate

morph volume

morphvolume

probability

w11

w21

w31

w12

w22

w23

w13

w32

w33

FIGURE 3 | G-machines necessary for cell division and differentiation.

(A) Simple cell cycle model: if the soma volume is large enough, the cell
divides; otherwise the soma volume is slowly increased. (B) Schematic
representation of a small gene regulatory network (GRN), in which three
genes G1, G2, and G3 influence each others’ expression. The gene
expression is done with the primitive secrete. The production rate is a

function of the weighted sum of the concentrations of all three genes
(determined with the primitive detect). The same machine can be
extended to an arbitrarily large number of genes. (Filters used:
multiplication, sum, and Hill function). (C) Example of a read-out gene,
which instantiates a machine under certain conditions on the GRN gene
concentrations (Filters used: threshold functions, OR, AND).
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cell cycles (for instance in differentiating neurons) the cell cycle
machine is killed. A multiplicative filter can be inserted to regulate
the change of volume, and hence the cell cycle speed. We could also
combine an input depending on some extracellular or intracellular
substance. Based on this idea, we have also implemented a partic-
ularly elegant model proposed by Tyson (1991) (see Materials and
Methods).

2.8. GENE REGULATORY NETWORK
Different cell types express different genes. In biology, the gene
expression depends on transcription factors (TFs), small regula-
tory elements that bind onto specific regions of the genome (the
promoter regions) and either activate or suppress the translation
of specific genes. Since the TFs are usually themselves proteins,
their concentrations are also regulated by gene expression. Several
genes coding for TFs and influencing each other’s expression form
a gene regulatory network (GRN; Levine and Davidson, 2005).
The activity of the different genes of the GRN also influence the
transcription of other genes coding for functional or structural
proteins (such as those forming the cytoskeleton for instance). In
the following, the genes that are regulated by the GRN without
being part of the GRN themselves, are termed read-out genes.

Several models of GRNs have been proposed (Schlitt and
Brazma, 2007; Karlebach and Shamir, 2008). Our model consists
of a set of differential equations describing how the activity gi

of each gene (i.e., the concentration of the protein it is coding
for) changes depending on the activity of all of the genes in the
GRN, for instance through a weighted sum of all activities with a
non-linearity:

ġ i(t ) = f

⎛
⎝∑

j

wij gj(t )

⎞
⎠ − kgi(t ), (3)

where gi(t ) is the activity of the i th gene, f is a sigmoid function
and k a degradation constant (Vohradsky, 2001).

We explain now how a GRN and read-out mechanisms can be
expressed in G-code. An important difference from biology is that
our GRN and read-out “genes” are seen as machines (since they
are composed of primitives and filters) and not as a part of the
genome (although the genome contains a description of them).
The GRN and the read-out “genes” have thus to be instantiated to
become active, and can also be removed.

In our models the TFs are represented as intracellular signal
substances. The left hand side of Eq. 3 corresponds to the pro-
duction rate of the TF coded by the gene i and is implemented
using the secrete primitive. The right hand side, representing
the effect of various TFs on the promoter regions, is realized by a
network of detect primitives, and filters (Figure 3B).

Read-out machines are composed of detect and
instantiate primitives. detect primitives are organized in
a decision tree that recognizes whether the cell is in an appropriate
state (i.e., whether the correct pattern of TFs exists) for triggering
the expression of a target gene; instantiates are responsible
for the production of the required machines from their G-code
description (Figure 3C).

During cell division, the different TFs can be distributed asym-
metrically to the two daughter cells, so defining new (and possibly

different) internal states. This asymmetrical repartitioning of gene
activity permits the formation of different types of cells (see
Materials and Methods).

2.9. A SIMULATION OF CORTICAL DEVELOPMENT
Having described some examples of how neural developmental
mechanisms can be cast as G-code machines, we now describe
how these machines can be customized and combined into longer
developmental sequences, and so permit the design of genetic
programs for the growth of a wide range of neural architectures,
beginning from a single progenitor cell. We illustrate this proce-
dure by growing a cortex-like structure containing three layers (L1,
L2, and L3), with one cell type per layer. The goal is to grow the net-
work depicted in Figure 4A: L1 cells send their axons down to the
basal dendrites of the L2 and L3 cells; L2 cells project to the basal
dendrites of L3 cells; L3 cells project up to the dendrites of the three
different cell types. Note that this architecture does not correspond
to any real cortical structure; we use it as a didactical example on
how to explicitly design a genome to construct a target network.

L1

L3

L2

b1

b2A3a2

b3A3a3

a1

L1

L2

L3

s

gene activation

gene suppression

cell type definition

A C

B

FIGURE 4 | Building blocks for the three-layered cortex simulation.

(A) Schematic representation of the desired cortex, with three layers L1,
L2, and L3. Axonal projections are depicted by a black arrow, apical and
basal dendrites are depicted in green. Note that L1 cells have no apical
dendrite. (B) Gene regulatory network (black) and read-out genes (colored)
producing the different neuronal types. The main motif is a pair of self
exciting, mutually inhibiting genes. When sufficiently expressed, the gene
ai induces cell differentiation, whereas bi allows the further division of the
progenitors. Each pair is expressed sequentially. (C) Simulation snapshot of
the three cell types. Identically colored segments are grown by instances of
the same machine (black: axonal shaft, red: axonal ramification, light blue:
apical dendritic shaft, violet: apical dendritic tuft, green: basal dendrite).
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The first step is the production of the cells. This is achieved
by incorporating into the G-code a cell cycle machine, as well as
a description of the various cell types. In this example we use
the cell cycle model of (Tyson, 1991) described in the Section
“Materials and Methods.” For sequentially selecting cells that will
become the neuron precursors (in the following order: first L1,
then L2, and finally L3), we use the gene regulatory network rep-
resented in Figure 4B (see also Materials and Methods). Its main
motif is a pair of self enhancing, mutually inhibiting genes. Ini-
tially only one gene is expressed (S, for start). During this period
a pool of precursors is formed (through symmetrical division,
i.e., where each daughter cell is similar). When a specified expres-
sion level is reached, S triggers the expression of the genes A1

and B1. The expression product of these two genes is distributed
asymmetrically at division, so that some daughter cells will receive
more A1, and the others more B1. This differential expression is
further increased by the mutual inhibition between these genes.
The cells in which the A1 expression reaches a specified threshold
will differentiate into L1 cells. The other cells continue to divide
and express the next pair of competing genes (A2 and B2), which
in turn determine the cells becoming L2 neurons or continuing
to divide further and become L3 cells. To recognize the specific
gene-expression patterns that define the three cell-types, we incor-
porate three read-out genes that will instantiate cell type specific
cell machines when high levels of A1, A2, or A3 concentrations are
reached.

Once a cell is committed to a specific neuron type, it is required
to migrate to its final location, so contributing to the formation
of a specific layer. For this purpose, the first machine instantiated
by the read-out genes is a migration machine, which drags its cell
up the gradient of a specific signaling molecule. The migration
mechanism is similar to the M2 machine as described in Figure 1.
In addition, the read-out genes kill the cell cycle machine (which
prevents the further division of the neuron) as well as the GRN
and all of the read-out genes: since in this particular model the
role of the GRN and the read-out genes is only to define the dif-
ferent cell types, they can be removed to improve the simulation
speed. In alternative models we could have the GRN and read-out
genes further determine the cell properties; in this case they would
remain active or would be re-instantiated at a later point.

Once the neuron precursors have reached their final position,
they must extend their axonal and dendritic trees. For this task we
include in the genome cell-type specific forking machines which
will produce the appropriate neurites, namely: the basal dendrites
(common to all three cell types); the main shaft of the apical
dendrite (in L2 and L3 cells); and the main shaft of the axon
(present in all cells, but with different parameters). The terminal
segment of each neurite contains its own independent machine.
The ones in the basal dendrites follow a random direction, and
are rapidly killed with a probability depending on the (linearly
reducing) diameter (using M4, see Figure 2). The axonal and
dendritic shafts move toward their target layer, guided by the
concentration gradient of the layer-specific signaling molecules.
Once they enter a region where the concentration of the mole-
cule they are sensitive to is high enough, the elongation machine
kills itself and instantiates a branching machine for the forma-
tion of an axonal or dendritic patch (an M2 linked to an M4). The

axonal shaft of the L1 cell also contains an additional machine that
makes a side branch when the growth cone enters L2, and instan-
tiates in it an axonal patch machine. Figure 4C shows a grown
instance of each cell-type, color-coded by the machines used for
each cell part. Note that the machines can be used in more than
one cell type (e.g., the basal dendrite machine is used in L1, L2,
and L3).

The G-code to generate this neural network contains the
description of 17 different machines (Table 3). When inserted
into a single progenitor cell, the first machine (main) is instanti-
ated. This machine instantiates the cell-cycle, the GRN, the three
read-out genes, and an internal clock (constant production of
an intracellular substance), and so launches the growth process
(Figure 5).

3. DISCUSSION
G-code is a framework for directing the self-construction of neural
networks in a biologically plausible manner. As such, it offers a
tool for understanding the principles of biological development.
It is based on a small set of primitives that represent elemen-
tary intracellular and cellular functions. These primitives can be
combined into functional networks that we call “G-machines,”
similar to biochemical pathways, and capable of reproducing com-
plex developmental patterns. We have shown how a description of
these machines can be encoded in an efficient way in a text file (for
instance with an XML format, see Materials and Methods) that
serves as the complete genetic code for developing neural tissues
in simulation.

Over the past few decades several groups have explored the
use of genetic encodings for the generation of artificial neural net-
works. The earliest works employed rather explicit coding schemes
that used a direct mapping of the genotype onto the phenotype,
such as a chromosome describing the neural connectivity matrix
(Jian and Yugeng, 1997). Such an explicit encoding of a weight
matrix is biologically implausible, and has the inconvenience that
the length of the genetic code increases quadratically with net-
work size. Grammar-based models such as L-systems circumvent
this scaling problem: simple rules can give rise to extremely com-
plicated networks (Kitano, 1990; Boers et al., 1993; Vaario and
Shimohara, 1997). But they too lack biological plausibility in that
they do not tend to model the actual growth of a neural structure
(Nolfi, 2003) and are context insensitive. More plausible mod-
els have offered gradient-based growth of specific connections
between neurons (Rust et al., 1996), cell division, and migration
(Cangelosi et al., 1994; Kitano, 1995); and have incorporated a
gene regulatory network (GRN) for orchestrating neuronal growth
(Eggenberger, 2001).

Most approaches have used evolutionary algorithms to search
for a genome that encodes a suitable neural network, often with the
motivation to use the network to control a co-evolved virtual crea-
ture (Sims, 1994; Schramm et al., 2011). This approach is useful for
finding genomes that satisfy specific fitness criteria, but it provides
little understanding of the principles of self-construction, in the
sense that a genome that is suitable for one task, cannot be directly
modified to solve a different task. Moreover evolutionary search
does not scale well with problem size: Impractically large com-
putational resources would be required to search for the genome
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Table 3 | Overview of the genome used for the construction of the three-layered cortex (see Figure 5).

ID Function Complexity (elements, links) Instantiates Kills

1 Initial (“main”) machine (instantiates machines for cell division/differentiation) 14.5 (14,1) 2, 3, 4, 5

2 Cell cycle 55 (35,40)

3 Gene regulatory network (seven genes) 147 (87,80)

4 Read-out genes (three genes) 16.5 (12,9) 6 2, 3, 4

5 Internal cell clock 4 (3,2)

6 Layer-specific soma migration 17 (13,8) 7 or 8 or 9 6

7 Axon and dendrites sprouting for L1 cells 9.5 (8,3) 10, 13, 14 7

8 Axon and dendrites sprouting for L3 cells 11.5 (8,7) 10, 11, 13 8

9 Axon and dendrites sprouting for L3 cells 11.5 (8,7) 10, 11, 13 9

10 Growth cone for basal dendrites 15 (11,8) 16 10

11 Growth cone for apical dendrite shafts 8 (6,4) 12, 16 11

12 Growth cone for apical dendrite tufts 14 (10,8) 12, 16 12

13 Growth cone for axon shafts 7 (5,4) 15, 17 13

14 Sprouting of a side branch in L1 axons 5.5 (4,3) 15 14

15 Growth cone for apical dendrite tufts 14 (10,8) 15, 17 15

16 Spine formation (dendrites) 4.5 (3,2)

17 Bouton formation (axons) 4.5 (3,2)

The genome contains the description of 17 G-machines of various complexity (defined according to Eq. 2 as the number of machine elements plus 0.5 times the

number of links). For each G-machine the table lists which other machine(s) it might instantiate or kill. For instance the growth cone elongating the axonal shaft

(machine 13), once entering the appropriate region kills itself and instantiates a growth cone for ramification (machine 15) and formation of pre-synaptic boutons

(machine 17). The XML file containing the genome is provided as Supplementary Material.

able to generate realistically sized cortical circuits. A more explicit
design strategy is called for.

There have been a few attempts to explicitly design a genetic
code that grows a desired network, without relying on an evolu-
tionary algorithm. Gruau et al. (1995) described a graph grammar
for automatic construction of abstract networks. Doursat (2008)
has proposed growth systems in which abstract cells proliferate and
form patterns on a lattice; the fate of these cells is determined by
an internal gene regulatory network. Roth et al. (2007) proposed a
more biologically realistic model of development for a multicellu-
lar organism with a simple neural system, capable of performing
a foraging task. Zubler and Douglas (2010) introduced a coding
scheme for controlling the growth pattern of individual simulated
neurites.

To formalize the relation between the genetic information and
developmental patterns we have presented an instruction language
based on 11 primitive neural actions. Of course, each primitive
represents an extremely complex mechanism, that might involve
hundreds of different proteins. However, our intention here was
not to model the detailed biophysics of the neurons, but rather
to understand the interaction between inert encoded mecha-
nism and its spatio-temporally ordered expression as functioning
intracellular machines. Therefore we have allowed ourselves a cer-
tain level of abstraction. The set of primitives would change if we
decided to increase the level of details at a molecular level, in which
case we would have primitives describing the polymerization and
depolymerization of microtubules for instance.

The contribution of this paper is to offer a framework allow-
ing the explicit programming (Nagpal, 2002) of a genetic code
for growing a desired neural architecture in biologically plausible

way, without relying on an evolutionary algorithm. The procedure
includes the following steps. (1) Using a cell cycle machine, and a
mechanism to produce the desired quantities of different cells. (2)
Decomposing the desired dendritic and axonal arbors of each cell
type into distinct regions, and designing a G-machine for growing
each one of these regions. (3) Linking the machines in chains of
expression [with removal of machines after completion of dedi-
cated tasks, while launching the next machine(s)]. This approach
appears to scale favorably. For example, adding new cell types,
or designing a more complex branching pattern for one partic-
ular cell type is not detrimental to the rest of the code: adding
new machines does not perturb the functioning of the existing
ones. And since the G-code is modular (the same machine can
be expressed in different cells, higher-level machines can con-
tain other machines etc.), pieces of the genome can be re-used
in different cells.

Our intention here was not to demonstrate the full capabilities
of the G-code, but to explain it in a didactical way; therefore the
examples presented are simple. In particular the three-layered cor-
tex presented has limitations as a model of cortical development.
The major one is that it develops in a pre-labeled environment,
which seems to contradict the principles of self-construction.
Another limitation is the limited number of layers and cell types,
as well as the simplified architecture of the cells. However, we have
previously shown (Zubler and Douglas, 2009) how to produce a
laminated cortical structure in an unprepared environment, and
how to make layer-specific branching patterns in CX3D. We are
now implementing these more biologically plausible procedures in
G-code, and will soon present them in the context of a large-scale
simulation of cortical development.
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FIGURE 5 | Formation of a three-layered cortex. (A) The simulation starts
with a single precursor cell (black). Three signaling molecules “L1,” “L2,” and
“L3” define three different areas (for clarity, only the concentration of “L1” is
shown in violet). (B) The precursor divides, forming a precursor pool, from
which some cells differentiate into L1 cells (red). (C) L1 cells quit the cell
cycle, and migrate up the gradient of the “L1” signaling substance, forming
the first neuronal layer. L2 cells start to be formed as well (blue). (D) The last

L1 cells migrate to their layer. L2 and L3 (green) cells are produced, and settle
into the region with the highest concentration of their associated chemical.
(E) The last precursors turn into L3 cells. (F–H) When the layers are in place,
neurons complete their differentiation by growing axonal and dendritic
processes in a layer-specific manner. In total, 89 cells were produced from the
first precursor cell (for clarity, only one quarter of the cells have their neurites
shown).

3.1. COMPLEXITY
In the three-layered cortex example, 60% of the genetic code is
used for the generation of the three cell sub-populations (cell
cycle: 15.3%, GRN: 41%, read-out genes with promoters: 4.6%);
whereas the extension of the axonal and dendritic arbors only rep-
resent 40% of the genome (see Table 2). At first, this result seems
paradoxical. How can the amount of information required for pro-
ducing these complicated geometrical structures be less than what
is required for defining the three cell-types? The reason is that the
genetic code does not specify each individual branch point. What
is specified instead is an algorithm to grow a distribution of typical
neurite arborizations, rather than exact morphologies.

Of course, an explicit description of each branch length is pos-
sible with our language (for instance based on a diameter decrease
or a internal substance consumption proportional to the desired
length). In this case each instance of a neuron would be truly
similar. But this specificity comes at the cost of a longer genome.
The same is true for biological neurons: some types of neuron
can exactly reproduce a typical morphology (Grueber et al., 2005;
Sanchez-Soriano et al., 2007), but this occurs only in small nervous
systems, or for a very limited number of cells in larger systems.

The problem is different for the GRN. The generation of the
different cell types is also implicitly coded, because the exact
population sizes are not specified as parameters in the genome,

Frontiers in Computational Neuroscience www.frontiersin.org December 2011 | Volume 5 | Article 57 | 11

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Zubler et al. Instruction language for neural growth

but rather emerge from the interaction of the different genes
of the GRN. However, the interactions among the genes of the
GRN must be specified explicitly, which explains the complex-
ity of the GRN (and its corresponding size in the genome). It
should also be noted that we have deliberately chosen a bio-
logically inspired mechanism for producing the different cell
types. There are alternative, less plausible mechanisms that are
much simpler to encode and so would have reduced the size of
the genome. For example, the sequence of asymmetrical divi-
sions could be controlled by the decrease of a single intracellular
substance, so producing sequentially all the cells of each type.
But this mechanism calls for implausibly reliable dynamics of
the signal molecule, and discrimination of many levels of its
concentration.

The question of phenotypic versus genetic complexity is par-
ticularly interesting in the context of the recent fashion of
connectomics, or exhaustive description of neuronal circuits,
with the goal of reverse-engineering the brain (Markram, 2006;
Bock et al., 2011; Seung, 2011). The connectomic approach
accepts the need to accumulate exabytes of data in order to
characterize the phenotypic circuits, whereas the genetic spec-
ification is only of the order of gigabytes. This huge disparity
of information and associated effort indicates how important
it is to fully understand the principles by which cells expand
their relatively compact genetic information into phenotypic
structure.

3.2. TOWARD A GENERAL FORMALISM FOR SELF-CONSTRUCTING
SYSTEMS

The definition of our primitives is supported by arguments from
biology and also from computer science, which opens interest-
ing perspectives for applications in numerous other contexts.
Although designed specifically for neural tissues, similar primi-
tives could be used to model the development of other organs
or multicellular organisms, in which initial multipotent precur-
sor cells divide, migrate, communicate, undergo apoptosis, and
so on (Montell, 2008). For some specific tissues the set of prim-
itives would have to be extended (for instance, currently no
primitive allows for the fusion of cells for the formation of a
syncytium, such as in skeletal muscle). Higher-level biological
self-organizing systems could be described with a similar frame-
work, for instance when modeling the cooperative behavior in
insect colonies (Pratt et al., 2005). Again, each single individual
behaves according to its local environment, which has been pat-
terned by other members of the colony. Of course, specific actions
such as digging or picking up a piece of wood with the mandibles
would require additional primitives. But many of the usual insect
behaviors could be coded with our primitives: produce pheromone
(secrete), or follow a trail of pheromone (detect→move),
lay eggs (replicate) etc. The computer science and robot-
ics community has benefited from the study of the principles of
self-organization in biology, developing new technologies for dis-
tributed computing, modular robots (Butler et al., 2002), or sensor
swarms (Hinchey et al., 2007). The further exploration of these
phenomena and their explicit control will prove beneficial to our
understanding of biology, as well as leading to novel technological
capabilities.

4. MATERIALS AND METHODS
4.1. IMPLEMENTATION OF PRIMITIVES
Simulations were performed using the Java package CX3D (Zubler
and Douglas, 2009). In CX3D, neurons are composed of inter-
connected discrete cell segments with distinct physical proper-
ties. These elements can contain “modules,” which are small Java
programs written by the modeler to specify the local biological
properties and behavior of the cell segment in which they are
contained. Active G-code machines are implemented as CX3D
modules. Primitives, filters and links are Java classes as well. Tran-
scription of the G-code invokes instances of these classes appro-
priately configured to provide machine modules within particular
cell elements. At each time step, each machine and machine ele-
ment inside it is run sequentially, and all input and output values
are updated.

Most of the primitives’ actions are implemented in a straight-
forward way, using the standard CX3D programming interface.
For instance the output port “diameter” of morph simply outputs
the value returned by the method in CX3D for getting an element’s
diameter.

The implementation of the move primitive is slightly more
complex since it represents a model of the biochemical machin-
ery used for the movement of cellular elements. In our model,
the characteristics of the movement, namely the speed and the
direction are computed independently at each time step, and trans-
mitted to CX3D for the actual displacement in physical space. The
speed s is specified with the input port “speed,” the default value is
s = 60μm/h. The movement direction d is defined as the weighted
vectorial sum of three unitary vectors: the desired direction ĝ (the
input port “direction,” normalized to 1), a history dependent com-

ponent ĥ (accounting for the stiffness of the cytoskeleton; Koene
et al., 2009), and a perturbation r̂ (a random vector of length
1, representing the stochastic nature of growth cone movements;
Maskery and Shinbrot, 2005):

d = cg ĝ + chĥ + cr r̂ (4)

where cg, ch, and cr are coefficients modulating the relative impor-
tance of the desired direction, the previous direction and the noise.
In all of the simulations presented in this paper, these values are
1, 0.3, and 0.3 respectively. The history dependent component is
calculated from the previous movement directions, updated with
a time constant

h (t ) = 10
h (t − 1)

‖h (t − 1)‖ + d (t − 1)

‖d (t − 1)‖ ,

and normalized to get the vector ĥ(t ) used in Eq. 4 to compute
d(t ). If the desired direction is not specified (i.e., if the “direction”
input port of the primitive move does not receive any input),
the trajectory follows a smoothed random walk (as opposed to
a random walk where the direction is randomly chosen at each
time step; here only the noise added to the previous direction is
random). Note that move represents only the displacement. The
branching behavior, which is often attributed to the growth cone,
is performed in our framework using the fork primitive.
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The implementation of attach depends on its parame-
ter: attach(static) represents some adhesion forcing two
cell elements to stay close together; it is implemented by
adding an extra spring-like element between two CX3D phys-
ical objects. attach(follow) is used for neurite fascicula-
tion, or cell migration along a radial glial fiber (not shown in
this paper); it is implemented in a similar way to move, but
with an additional component preventing the moving element
from deviating away from the specific neurite to which it is
attached.

The filters are also implemented in straightforward way. At
each time step the output is computed based on the current input
according to the definitions given in Table 2. Note that two fil-
ters have a non-deterministic output: p returns a random vector
lying in a plane perpendicular to some input vector (for instance
to grow side-branches in a plane perpendicular to a concentra-
tion gradient: detect(X,e).gradient →p→ direction.fork)
and rand returns a random vector of length 1 (used to chose a
random direction).

4.2. GENETIC CODE IMPLEMENTATION
The genetic code is implemented as an XML file containing names
and descriptions of G-machines, as well as an indication of which
single machine is to be instantiated right at the beginning of the
simulation. Apart from the first (or “main”) machine, the expres-
sion and removal of the other machines is controlled by active
machines (containing the primitives instantiate or fork
for expression, kill for removal). The description of a machine
in the genome follows the formal definition (Eq. 1). The hierar-
chical structure of the XML specification is particularly adapted
for listing for each machine the ports, the machine elements, and
the links. The various parameters (e.g., for secrete the type of
substance which has to be produced) are set using XML attributes.
As an example, we list here part of the genetic code used for the
machine M3 (Figure 1):

< genome >
< !-- The machine instantiated at the

beginning of the simulation -- >

< mainmachine > M3 < /mainmachine >

< !-- Description of M3 -- >
< machine name = "M3" > < !-- Elements -- >

< machineinstance type = "M2" name = "M2_0"/ >
< instantiate machinetype = "M1"

name = "instantiate_0"/ >
< !-- Links -- >
< link >

< from element = "M2_0" output = "hasKilled"/ >
< to element = "instantiate_0"

input = "probabilityToInstantiate"/ >
< /link >

< /machine >

< !-- Description of M2 -- >

< machine name = "M2" >
...code of M2...

< /machine >

< !-- Description of M1 -- >

< machine name = "M1" >
...code of M1...

< /machine >

< /genome >

The < mainmachine> tag specifies the machine that
is instantiated right at the beginning of the simulation
(in this case M3). The description of this machine is
enclosed between the tag < machine name= "M3"> and the
next < /machine> tag. As we already know, this machine con-
tains two elements: an instance of the machine M2, and an
instance of the primitive instantiate. Each element is given
a name (such as instantiate_0) as a reference to define the
links. This is necessary when several instances of the same type of
element are present (for instance in a GRN with seven genes there
are seven instances of secrete, each one with different para-
meters). The different parameters (e.g., the type of machine that
instantiate has to express) are specified as XML attributes.

The genome for the three-layered cortex (Figure 5) is provided
as Supplementary Material.

4.3. GENE REGULATORY NETWORK FOR THE THREE-LAYERED CORTEX
Bi-stable switches are a recurrent motif in biological networks
(Alon, 2006), and have been used previously as model in the con-
text of cell differentiation (Huang et al., 2007; Graham et al., 2010).
We used this motif to design a GRN for controlling the branch
points of a cell lineage tree (Figure 4B): Three sequentially acti-
vated bi-stable switches (one for each cell-type) regulate the exit
from the proliferative state to become a neuron precursor. The
exact dynamic of the GRN is:

ṡ = 0.14 − Ks

ȧ1 = Mh (1.3a1 + 0.89s − b1) − Ka1

ḃ1 = Mh (1.3b1 + 0.89s − a1) − Kb1

ȧ2 = Mh (1.3a2 + b1 − b2) − Ka2

ḃ2 = Mh (1.3b2 + 0.98b1 − a2) − Kb2

ȧ3 = Mh (1.3a3 + b2 − b3) − Ka3

ḃ3 = Mh (1.3b3 + 0.98b2 − a3) − Kb3

where h(x) = x4

1+x4 , the maximum production rate M = 0.27,
and the degradation rate K = 0.26. The implementation in
G-code requires 87 elements (primitives and filters) and 80
links.

To select the parameters of the GRN we used the following
procedure. We have previously characterized the parameter space
for the external input to the switch (the external arrows to ai

and bi), so that we can choose these parameters according to a
look-up table, depending on the type of branch point that we
want to form. Since the dynamic of one switch impacts on the
outcome of the next one, we have then to adapt the parame-
ters within the switches (action of ai and bi on themselves and
on each other); for this procedure we use a gradient descent.
The threshold of the read-out mechanism is systematically chosen
to be 1.
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At the time of cell division, substances are distributed into the
two daughter cells depending on their corresponding asymmetry
constant α. For substances with α = 0 (substance s) both daughter
cells receive the same amount, whereas for α = 1 or α = − 1 (sub-
stances ai and bi respectively) the substances are distributed asym-
metrically with only one daughter cell receiving the entire amount.

4.4. CELL CYCLE FOR THE THREE-LAYERED CORTEX
Tyson proposed a particularly elegant model of the cell cycle
describing the interactions between cyclin and cdc2 (Tyson, 1991),
which he reduced to a system of two differential equations describ-
ing the evolution over time of two substances u and v exhibiting
an oscillatory behavior:

u̇ = k4 (v − u)
(
α + u2) − k6u

v̇ = κ − k6u
(5)

where k4 = 100, k6 ∈ [0,5], α = 1.8·10−4, and k = 0.015.
We successfully implemented this model in G-code, and used

it in the simulation described in Figure 5. u and v are measured
with detect, while u̇ and v̇ are expressed using secrete. Note
that this approach could be used to implement almost any kind of
dynamical system ẋ = f (x) .

We use the periodic oscillations of the u substance of Tyson’s
model to define the different phases of the cell cycle. Since we
do not model the physical replication of DNA, we have only
two phases: the increase of volume (traditional G1 phase), which
occurs at low u concentration, and the division (M phase)
which requires both a high concentration of u and a suffi-
cient diameter. This latter condition prevents multiple rapid
divisions by forcing the cell to go through a low u phase, in
which it can increase its volume, before being allowed to divide
again.
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