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Levels of ecological sounds vary over several orders of magnitude, but the firing rate and
membrane potential of a neuron are much more limited in range. In binaural neurons of
the barn owl, tuning to interaural delays is independent of level differences.Yet a monaural
neuron with a fixed threshold should fire earlier in response to louder sounds, which would
disrupt the tuning of these neurons. How could spike timing be independent of input level?
Here I derive theoretical conditions for a spiking model to be insensitive to input level. The
key property is a dynamic change in spike threshold. I then show how level invariance can be
physiologically implemented, with specific ionic channel properties. It appears that these
ingredients are indeed present in monaural neurons of the sound localization pathway of
birds and mammals.
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1. INTRODUCTION
Consider the barn owl, a predator that is highly efficient in local-
izing its preys based on the sounds they produce. When a prey
produces a sound, it arrives at the two ears with differences in
arrival time (interaural time difference, ITD) and in level (inter-
aural level difference, ILD). These binaural cues vary with the
azimuth and elevation of the sound source, and they are processed
in two anatomically separate pathways (Takahashi et al., 1984). In
the timing pathway (Figure 1A), monaural neurons in the nucleus
magnocellularis (NM) project axons to binaural neurons in the
nucleus laminaris (NL). When the acoustical ITD compensates
the mismatch in axonal conduction delay, the binaural neuron
receives synchronous inputs and fires more (Carr and Konishi,
1990). This preferred interaural delay is called “best delay.”

One remarkable feature is that the ITD tuning of binaural neu-
rons persists when the acoustic level is varied over as much as 70 dB
(Peña et al., 1996), that is, the best delay does not depend on level.
It is also hardly affected by ILD (Takahashi et al., 1984). In terms of
acoustic pressure, 70 dB corresponds to a scaling by a factor greater
than 3000. The challenge for the neural circuit which implements
this operation is illustrated in Figure 1B. Assuming that monaural
neurons fire when their input reaches a fixed threshold, they tend to
fire earlier when the level increases. If the levels are different in the
two ears (i.e., if the ILD is non-zero), these changes in timing could
be different in the two monaural neurons, resulting in a change in
preferred interaural delay of the binaural neuron (Figure 1C).

How can a monaural neuron encode sounds in a way that
preserves timing? There are essentially two possible scenarios
(considering only single-cell mechanisms):

1. The neuron is very noisy, so that its response to small signals is
approximately linear (Fourcaud and Brunel, 2002). In this case,
phase information is preserved and the response of the binaural
neuron approximates the cross-correlation of the two monau-
ral signals. However, this poses at least two problems. First,
it implies that the firing rate increases linearly with level, but

the firing rate cannot increase 3000-fold. Second, the resulting
tuning curve for interaural delay is only mildly selective.

2. The neuron is not noisy, and a gain control mechanism exists
that insures that spike timing and firing rate do not depend on
level.

It seems that the second scenario is closer to the known proper-
ties of NM neurons. Indeed, their firing rate saturates very quickly
(Fukui et al., 2010) while still providing accurate timing informa-
tion to the binaural neurons in NL (Peña et al., 1996). In addition,
these neurons fire at precise phases of pure tones at high frequen-
cies (Koppl, 1997). In the cat, bushy cells in the cochlear nucleus
(analogs of NM neurons in birds) respond to frozen noises with
submillisecond precision, indicating a very low level of intrinsic
noise (Louage et al., 2005). ITD selectivity properties of bin-
aural neurons in the cat inferior colliculus are also remarkably
insensitive to level (Yin et al., 1986).

Part of this phenomenon can be accounted for by the active
mechanics of the basilar membrane, prior to the initiation of any
spike in the auditory periphery (Robles and Ruggero, 2001), and
by the saturation of auditory nerve fibers. I will come back to this
issue in the discussion, but at this point I simply note that NM
neurons are less sensitive to level than AN fibers, as is shown in
Figure 2.

These observations motivate the central question of the present
study: how can the responses of a neuron be insensitive to
input level, and what cellular mechanisms does it imply? First,
I will describe the constraints that level invariance imposes on
spiking models, independently of biological constraints. Then,
taking physiological constraints into account, I will describe
the implications of level invariance in terms of ionic channel
properties.

2. THEORETICAL SPIKING MODELS
In this section, I derive necessary conditions for a spiking model
to produce spike trains in a way that does not depend on input
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FIGURE 1 | ITD processing in the barn owl and the level invariance

problem. (A) ITD processing in the barn owl. The sound arrives earlier at
the closer ear and with louder intensity. It is encoded into spike trains by
monaural neurons in the Nucleus Magnocellularis (after peripheral auditory
processing, not shown). These neurons project axons to binaural neurons in
the Nucleus Laminaris with various conduction delays. When the interaural
time delay (ITD) matches the difference in conduction delay, the neuron
receives synchronous inputs and fires (emphasized neuron). As a result,
neurons are tuned to a particular ITD called the “best delay.” (B) When the
input level is increased, integrating to a fixed threshold in NM neurons
implies that spikes are produced earlier. (C) If level is changed at one ear,
meaning a change in interaural level difference (ILD), the tuning of binaural
neurons should be shifted.

FIGURE 2 | Average firing rate as a function of input level in auditory

nerve (AN) fibers and NM neurons of the chicken (replotted from Fukui

et al., 2010).

level. This means that both the timing and rate of output spikes
are insensitive to level – possibly after a transient convergence
phase.

Consider a spiking neuron, which fires when its membrane
potential reaches a threshold (Figure 3). We require that the spike

FIGURE 3 |Threshold in a level-invariant spiking model: when the

membrane potential is increased (the two curves), the threshold

(dashed lines) must increase in the same proportion to keep spike

timing unchanged.

trains remain unchanged when the input level is varied and we
derive necessary conditions. Let us focus on one interspike interval.
When the input level is varied, the membrane potential changes.
To preserve the timing of the spike, the scaling of the input should
leave the crossing point unchanged (open circles in Figure 3), and
not produce new ones: this implies that the threshold cannot be
fixed. Thus, the spike threshold must somehow follow changes in
membrane potential.

2.1. A SIMPLE MODEL
We start with a simple model that exhibits level invariance
(Figure 4). A spike is produced when the input I (t ) reaches a
dynamic threshold θ(t ) – there is no membrane equation for
the moment. When the input is scaled: I → λI, the threshold
must scale in the same way: θ → λθ . This occurs if the thresh-
old depends linearly on the input. In terms of dynamical systems,
this means that θ is governed by a linear differential equation (or
set of equations), for example:

τθ

dθ

dt
= aI − θ

where a is a fixed parameter. Note that the equilibrium value for
the threshold must be 0 in the absence of input.

After a spike, the threshold must increase, from θ− = θ(t−) to
θ+ = θ(t+), so that the spiking condition is not met anymore. For
simplicity, let us assume that θ+ only depends on θ−: θ+ = f (θ−).
How precisely the threshold increases can now be derived from
the assumption of level invariance. Suppose that we scale the
input, and therefore the trajectory θ(·) so that crossing points
are unchanged (Figure 4A): I → λI and θ(·) → λθ(·). Both θ−
and θ+ are scaled in the same proportion, so that the ratio θ+/θ−
is constant. We denote this ratio ρ and we obtain the following
reset condition at spike time: θ → ρθ . We note that ρ > 1, since
the spiking condition must not be met after the spike.
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FIGURE 4 | A simple level-invariant spiking model. (A) A trajectory of the
model is scaled (blue: input I, red: threshold θ ): the ratio θ+/θ− is constant.
(B) Responses of a level-invariant model (τ θ dθ /dt = I − θ , θ → 2θ at spike
time) to a fluctuating input with level varying between 1 and 100. (C) Same
as in (B), but with the special case τ θ dθ /dt = − θ . (D) Same as in (C), but
level is identical in all trials while initial condition is different (random
between 0 and 1). (E) Same as in (D), but with the model shown in (B).

These considerations have led us to the following elementary
level-invariant spiking model:

τθ

dθ

dt
= aI − θ

θ → ρθ when I = θ

where ρ and τ θ are two free parameters. We note that the initial
condition for θ must be positive (assuming the input is initially
zero). Figure 4B illustrates the level invariance property of this
model with a = 1 and τ θ = 10 ms, which was driven by a fluctu-
ating input with level varying by a factor 100. This input I (t ) was
defined by the following stochastic differential equations:

τ
dI

dt
= level × [ x]+ − I

τ
dx

dt
= −x + √

2τξ(t )

where ξ(t ) is Gaussian white noise, and τ = τ θ = 10 ms. The ini-
tial condition was identical in all runs (θ = 1). All models in this
paper were simulated with the Brian simulator (Goodman and
Brette, 2009).

In Figure 4C, the same simulations were done with a = 0, and
it appears that responses are not identical in all trials (where level
varies from 1 to 100, as in Figure 4B). This is surprising because
the model satisfies the same properties as in Figure 4B and should
be level-invariant. The reason is that for a = 0, responses to the
same input (same level) are also not reproducible across trials,
if initial conditions are different (as in Figure 4D) or if there
is some intrinsic noise. In contrast, responses to the same input
are reproducible across trials with a = 1 when the initial condi-
tion differs (Figure 4E), after a transient synchronization time.
In general, spike trains produced by spiking models in response to
time-varying inputs are robust to changes in initial conditions and
stochastic perturbations (Brette and Guigon, 2003; Brette, 2004,
2008), but there are special cases where the dynamics is unstable, as
in Figure 4D. To understand why, consider the perfect integrator,
which is an example of such a special case:

dX

dt
= I (t )

The neuron fires when X = 1 and is then reset to 0. If
two solutions X 1 and X 2 start with different initial conditions
X 1(0) �= X 2(0), then the difference X 2(t ) − X 1(t ) never changes
(modulo 1) and therefore the solutions never converge: spike tim-
ing is not reproducible. From a dynamical point of view, spiking
in this model is equivalent to a temporal translation t → t + 1/〈I 〉
(where 〈I 〉 is the average input). A similar phenomenon occurs
in the level-invariant model with a = 0, that is, it can be shown
that spiking in this model is topologically equivalent to a tempo-
ral translation t → t + τ θ log ρ, which implies that the model is
sensitive to initial conditions and stochastic perturbations (see the
proof in Appendix B). What happens in this case when the level
is changed: I → λI? Our mathematical considerations imply that
if θ(t ) is a solution for the initial level, then the scaled trajectory
λθ(t ) will be a solution for the scaled level, with spikes occurring
at the same times. That is, the solution starting from initial condi-
tion λθ(0) will spike at the same times. However, the solution with
initial condition θ(0) will not fire at the same times with the scaled
level, because of the dynamical instability of the model. However,
the firing rate is level-invariant [equal to (τ θ log ρ)−1], as well
as the set of possible solutions (for all initial conditions). Thus,
Figure 4C does not show a lack of level invariance, but a lack of
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reproducibility of the model responses for a = 0. In contrast, in
Figure 4B, the model responds at the same times for all levels, but
only after a transient synchronization time. This is because the
model always starts with the same initial condition, rather than
with scaled initial conditions (λθ(0)), and this synchronization
time reflects the time required for solutions with different initial
conditions to converge, as shown in Figure 4E.

The firing rate (which is also level-invariant) can be calcu-
lated for a constant current I = 1 (remember that it does not
depend on the value of that current). Consider one interspike
interval (0, T ). The threshold is θ(0) = ρ at the beginning and
θ(T ) = a + (ρ − a)e−T/τθ at the end. Since a spike is produced
at time T, we have θ(T ) = I = 1 and therefore:

T = τθ log
ρ − a

1 − a

provided this is well defined. The firing rate is the inverse of this
quantity. Note that the firing rate does not depend on level, but it
may depend on other aspects of the time-varying input. The value
we have calculated is only valid for constant inputs.

One important point has been neglected: if the input I is
allowed to be negative, then the threshold θ may become negative
as well. If a spike is produced when θ < 0, the reset θ → ρθ pushes
the threshold below the input, which produces an infinite sequence
of spikes. There are two simple ways to deal with this problem: (1)
to replace I by the half-wave rectified input [I ]+ = max(0, I ); (2)
to consider a different reset when θ < 0: θ → γ θ , with γ < 1. In
fact, we must have γ < 0 to avoid infinite sequences of spikes (e.g.,
θ → −θ). It can be seen that the model is still level-invariant with
these modifications.

As an example, Figure 5 shows how level-invariant models
encode vowels. Figures 5A,B shows the responses of a noisy level-
invariant model to the vowel I, band-pass filtered around 1 kHz.
The noise was modeled as follows: input I is replaced by I (1 + n),
where n is an Ornstein-Uhlenbeck process with time constant
5 ms and SD 0.03. The same vowel was presented 100 times to the
model, and the spike trains of all trials are shown (each dot rep-
resents a spike). The figure shows that spike timing is precise and
can thus be used as a reliable temporal cue for source localization.
In Figures 5C,D, a vowel (I in Figure 5C and A in Figure 5D) is
presented a single time, but to 1000 neurons with different central
frequencies, representing basilar membrane filtering. That is, the
vowel is passed through a bank of band-pass filters (gammatone
filters), with frequencies between 20 Hz and 20 kHz (with regular
ERB spacing), half-wave rectified and compressed (1/3 power law),
and the filter outputs are the inputs of the models. This filtering is
implemented using Brian Hears, an auditory toolbox for the Brian
simulator (as in Figure 1 in Fontaine et al., 2011).

Here, we note that the pitch (periodicity of the sound) appears
in the periodicity of the spiking pattern (notice the smaller period
in B). Note that spiking patterns may repeat at a higher rate than
the firing rate (220 vs. 140 Hz in A) because firing is stochas-
tic (neurons do not fire on every period). Finally, firing rate is
insensitive to level but not to other aspects of the input, such as
spectral content: for example, lower frequency neurons fire at a
lower rate.

I now consider increasingly complex models, in an attempt
to characterize a large class of spiking models that exhibit level
invariance.

2.2. LINEAR SPIKING MODELS
In physiological neuron models, the input is not directly com-
pared to the threshold. Instead, the input changes the membrane
potential v through a differential equation named the “membrane
equation,” and that potential is compared to the threshold. The
same analysis as before applies if the input I is replaced by v, and
the membrane potential scales linearly with level. This is the case
if the spiking model is described by a linear differential system, for
example (but not limited to):

τ
dv

dt
= RI − v

where v is the membrane potential, τ is the membrane time
constant, and R is the membrane resistance. Note that the rest-
ing potential is defined as 0. The differential system may be
non-autonomous, that is, its coefficients may depend on time
(but not on voltage). Equivalently, the membrane potential can
be described by the linear convolution of the input with a
(possibly time-dependent) kernel K : v = K ∗ I, as in the Spike
Response Model (Gerstner and Kistler, 2002). The analysis below
is unchanged if the membrane potential scales linearly with a
function of level f(λ), since it simply amounts to replacing the
scaling parameter λ by f (λ) – this remark will become important
in section 3.

As in the previous section, the threshold should depend lin-
early on the membrane potential in order to keep crossing points
unchanged when the level changes. Thus, the dynamic thresh-
old can be described by a linear differential system or, equiva-
lently, as the linear convolution of the membrane potential with
some filter K θ : θ = K θ ∗ v. The simplest such system consists
of one differential equation: τ θ (dθ /dt ) = av − θ . One deviation
from linearity can be allowed: since we consider linear scaling
with positive numbers only, the model can include half-wave
rectification:

τθ

dθ

dt
= a[v]+ − θ

where [v]+ = max(0,v). More generally, the threshold may be gov-
erned by a different linear differential system for v > 0 and v < 0.
Even more generally, the system may be piecewise linear, each piece
being defined by the condition Ki ∗ v > 0, where Ki is a linear filter.
The same remark applies to the membrane equation.

Finally, the threshold can also be described as a sum of variables
θ = θ1 + θ2, where θ1 and θ2 are governed by equations as above.
This allows different timescales in threshold dynamics.

2.3. THRESHOLD, RESET, AND REFRACTORY PERIOD
At spike time, we have shown in section 1 that the threshold must
change by a constant multiplicative factor: θ → ρθ . To derive this
condition, we assumed that the threshold only depended on the
value of the threshold at spike time. If the threshold is a sum
of components (θ = θ1 + θ2), then each component may be reset
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FIGURE 5 | Responses of level-invariant models to vowels. Two
vowels were filtered through 1000 gammatone filters with
frequencies between 20 Hz and 20 kHz (with regular ERB spacing),
half-wave rectified and compressed (1/3 power law). The processed
signals were inputs to noisy level-invariant spiking models
(τ θ dθ /dt = I − θ , θ → 3θ at spike time, τ θ = 5 ms; noise is added to the

input I, independently for all neurons). (A) Responses of the neuron
with preferred frequency 1 kHz to 100 repeated presentations of
vowel I (each dot is a spike). (B) Zoom of the red box in (A). (C)

Responses to vowel I at fundamental frequency f0 = 220 Hz (A3), and
firing rates of all neurons (right). (D) Responses to vowel A at
fundamental frequency f0 = 294 Hz (D4).

independently: θ1 → ρ1θ1 and θ2 → ρ2θ2. More generally, any
reset preserves level invariance if it scales linearly with mem-
brane potential. In particular, it may depend on a hidden variable
u: θ → ρθ + γ u, where u depends linearly on the membrane
potential (e.g., through a linear differential system).

The same analysis applies to the reset of the membrane poten-
tial. If it only depends on the value of v at spike time, then it must
also be multiplicative: v → γ v. Two simple cases are a fixed reset to
the resting potential: v → 0, and no reset at all. To keep the analysis
simple, we now focus on the simplest cases θ → ρθ and v → γ v.

To ensure that the membrane potential is below threshold
after a spike, the following condition must be met: (ρ − γ )θ− > 0
(remember that θ− = v−). As we previously noted, this implies
that either ρ > γ and the dynamic threshold is always positive (if
the input is positive or if the threshold depends on the half-wave
rectified version of the membrane potential), or ρ − γ must also
change sign for negative potentials. For positive potentials, the
reset parameters must satisfy the following inequality: ρ > γ , and
if negative thresholds are possible, then we must have ρ < 0 and
ρ < γ for negative potentials.

Frontiers in Computational Neuroscience www.frontiersin.org January 2012 | Volume 5 | Article 63 | 5

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Brette Spiking models for level-invariant encoding

However, in practice, the condition ρ > γ is not sufficient. Con-
sider for example the case ρ = 1, γ = 0, and a = 0, that is, no reset
for the threshold and fixed reset for the membrane potential, and
the threshold does not adapt:

τ
dv

dt
= [I ]+ − v

τθ

dθ

dt
= −θ

v → 0 when v = θ

In this case, the dynamic threshold converges exponentially
to zero, which means that the neuron spikes at an exponentially
increasing rate (Figure 6). Thus, even though the model is level-
invariant, it is not of any practical use. How can this situation be
avoided? Suppose that at some point the threshold is hit at a very
small value δv, then it is reset to ρδv. The threshold is then hit
again after a small time δt, of magnitude δv (this follows from the
equality δv + δt × dθ /dt = ρδv + δt × dv/dt ). The derivative of
the threshold is proportional to δv, so that the increase in threshold
after that time has magnitude (δv)2, that is, it does not significantly
change during the interspike interval and remains about ρδv (at
first order in δv). After n spikes, the spike threshold is then ρnδv.
Thus, if ρ < 1, the threshold converges exponentially fast to zero
(and an infinite number of spikes are produced in finite time);
if ρ > 1, then the threshold is repelled from zero at an exponen-
tial rate. If ρ = 1, a simple calculation shows that the threshold is
repelled if aγ > 1, but at a slow rate. In summary, in addition to
the condition ρ > γ , we must have ρ > 1 or ρ = 1 and aγ > 1 to
avoid infinite spiking, and ρ > 1 to avoid strong bursting.

An absolute refractory period can be included in two ways: (1)
by considering that I = 0 for a duration 	 after the spike, (2) by

FIGURE 6 | Infinite firing in a level-invariant model with a fluctuating

input (Ornstein-Uhlenbeck process with time constant 3 ms; model

parameters were τ = 10 ms and τ θ = 40 ms). The dynamic threshold
(dashed) is non-adaptive (a = 0) and is not reset at spike time (ρ = 1). The
membrane potential (solid line) is reset at spike time (v → 0).

clamping the membrane potential at reset for a duration 	. Both
options are compatible with level invariance, because the values of
the threshold and membrane potential at the end of the refractory
period scale linearly with their values at reset time, and therefore
with level.

Relative refractory periods can be included with spike-triggered
currents, which we examine in the next section.

2.4. SPIKE-TRIGGERED CONDUCTANCES
In general, inserting spike-triggered currents in the membrane
equation breaks level invariance, because they do not scale
with level. However, the situation is different if we consider
spike-triggered conductances, that is, the current is modeled as
Is(t ) = g (t )(E − v), where the conductance g (t ) is determined by
the spike trains only (not by the membrane potential) and E is the
reversal potential. Since the membrane potential scales with level,
such a current also scales with level if E = 0 (reversal potential
equals resting potential). Note that the dynamics of the conduc-
tance g (t ) can be arbitrarily complex, as long as it only depends
on the spike trains.

For example, the following model is level-invariant:

τ
dv

dt
= RI − gv − v

τg
dg

dt
= −g

and g → g + 	g at spike time (we assume that threshold and
reset are described as before). Note that this model cannot be
described by a linear time-invariant filter anymore (the effec-
tive time constant τ /(1 + g ) is now dynamic), but it is still
level-invariant.

To end this part, Figure 7 shows an example of a complex level-
invariant model,which includes several of the components we have
discussed (the fluctuating input was generated as in Figure 4).

3. PHYSIOLOGICAL IMPLEMENTATION
In deriving the implications of level invariance on spiking mod-
els, we have not considered physiological constraints yet. There
are mainly two issues to consider. First, the constraints on thresh-
old dynamics imply very specific ionic channel properties. Second,
the dynamic range of the membrane potential is limited (since it is
bounded by the reversal potentials of the various ionic channels),
and specific mechanisms are required to deal with this issue.

3.1. THE DYNAMIC THRESHOLD
In this section, I will only consider transient sodium currents
responsible for spike initiation. Other sodium currents are persis-
tent or slowly inactivating, and activate at low voltages. In this case
they may produce subthreshold oscillations, which would presum-
ably disrupt the level invariance mechanism we are interested in,
in particular because the frequency of these oscillations depends
on depolarization (Gutfreund et al., 1995).

3.1.1. Voltage adaptation
The key property for level invariance is that the threshold adapts to
the membrane potential. This phenomenon can indeed occur in
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FIGURE 7 | A complex level-invariant spiking model with a membrane

equation and an adaptive threshold, multiplicative reset of threshold

and membrane potential, and spike-triggered conductances. (A)

Responses of the model to a fluctuating input (low-pass filtered
Ornstein-Uhlenbeck process with time constant 4 ms, as in Figure 4) with
level varying between 1 and 100. (B) Trace of the membrane potential
(solid) and dynamic threshold (dashed) for the lowest level. Spikes were
drawn for clarity.

neurons because Na channels partially inactivate when the neuron
is depolarized (see for example Howard and Rubel,2010 for thresh-
old dynamics in NM neurons of the chick). In neuron models
with Hodgkin-Huxley sodium current dynamics, it can be shown
that the dynamic threshold depends on the proportion of non-
inactivated channels h through the following threshold equation
(Platkiewicz and Brette, 2010):

θ = VT − ka log h

where VT is the minimum threshold and ka is the activation slope
factor of Na channels (typically, ka ≈ 6 mV; Angelino and Bren-
ner, 2007). From the dynamics of h, a differential equation for the
threshold can be derived (Platkiewicz and Brette, 2011):

τθ (v)
dθ

dt
= θ∞(v) − θ

where τ θ (v) is the inactivation time constant and θ∞(v) =VT − ka

log h∞(v) is the steady-state threshold (this differential equa-
tion is an approximation, which is valid when θ is near θ∞(v)).
Inactivation curves h∞(v) are well approximated by Boltzmann
functions:

h∞(v) = 1

1 + exp v−Vi
ki

where ki is the inactivation Boltzmann factor and Vi is the half-
inactivation voltage. Because of this specific form, it can be seen
that the steady-state threshold is well approximated by a rectified
linear function (Platkiewicz and Brette, 2011):

θ∞(v) ≈ VT + (ka/ki) [v − Vi]
+

The quality of this approximation depends on the sharpness of
the inactivation curve, which is controlled by ki: it becomes exact
in the limit ki → 0. Thus, the dynamic threshold equation is con-
sistent with the constraints we have derived for level invariance if
all the following conditions are met:

1. VT = 0 and Vi = 0 (where the resting potential is taken as the
reference potential, i.e., EL = 0 mV as in section 2; otherwise
the equality is VT =Vi = EL). This means that the minimum
threshold VT, which is controlled by the maximum Na conduc-
tance (Platkiewicz and Brette, 2010), is at the resting potential,
and therefore the neuron spontaneously fires to an arbitrar-
ily small level of intrinsic noise. This is not consistent with
slice experiments (Reyes et al., 1994), but it is consistent with
in vivo data, showing that spontaneous rates of NM neurons
are very high (Warchol and Dallos, 1990; Köppl, 1997) – see
also (Kuenzel et al., 2011) for recent in vivo data in spherical
bushy cells of the gerbil. The half-inactivation voltage Vi must
also be near resting potential, which means that half Na chan-
nels are inactivated at rest. This is consistent with typical values
found in voltage-clamp recordings (Howard and Rubel, 2010;
Platkiewicz and Brette, 2011).

2. τ θ (v) is constant. This is an approximation that is only valid in
a limited voltage range.

4. ki is small. Typical values are in the range 4–8 mV (Angelino
and Brenner, 2007), which is not so small. This means that
the transition between the two linear parts of the steady-state
threshold curve is not so sharp.

Problem 3 can be solved if inputs are positive (that is, only exci-
tatory), by choosing a negative Vi, and VT = (ka/ki)Vi < 0. Indeed
in this case, θ∞(v) = (ka/ki)v for all positive v. It is negative for
negative v, but this never occurs for positive inputs. Precisely, the
dynamic threshold equation reads:

τθ

dθ

dt
= (ka/ki) Vi + (ka/ki) [v − Vi]

+ − θ

where the right hand side is formally equivalent to (ka/ki)[v]+ − θ

for positive voltages. If Vi is hyperpolarized enough, then we have
v −Vi 
 ki (since v is always positive) and the membrane poten-
tial always lies in the linear range of the steady-state threshold
curve. The condition VT = (ka/ki)Vi < 0 assumes EL = 0 mV (the
resting potential is the reference), otherwise it reads: Vi < EL and
VT = EL + (ka/ki)(Vi − EL).

Another issue is the sharpness of spike initiation. In the pre-
vious section, we assumed that spike initiation is sharp, that is,
a spike is produced as soon as voltage threshold is reached, as
in an integrate-and-fire model. Physiologically, this means that
no Na current flows below threshold, and that a very strong
current flows as soon as threshold is reached. This is not nec-
essarily so in a real neuron or a Hodgkin-Huxley model. A more
rigorous way to describe threshold modulation (e.g., by Na inac-
tivation) is to see it as a shift in the excitability curve of the
neuron, rather than as a shift of the voltage threshold per se,
because the voltage threshold is generally not a well defined
quantity with fluctuating inputs (at least in single-compartment
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Hodgkin-Huxley models). More precisely, the Na current can
be approximated by an exponential function (Fourcaud-Trocme
et al., 2003; Badel et al., 2008): INa = kagLexp((v −VT)/ka), which
becomes INa = kagL exp((v −VT + ka log h)/ka) when inactivation
is considered (Platkiewicz and Brette, 2010). Thus, even though
there is no sharp threshold, the current-voltage curve of the neu-
ron is voltage-shifted by inactivation according to the threshold
equation. However, this current is not level-invariant because ka

does not scale with level. Therefore, it seems desirable that spike
initiation be as sharp as possible. There are two possibilities to
obtain this property:

1. ka is small. But typical estimates from voltage-clamp studies
are in the range 4–8 mV. However, these have been obtained
by fitting Boltzmann functions on the entire voltage range
and may not be accurate estimates near spike initiation
(Fourcaud-Trocme et al., 2003; Platkiewicz and Brette, 2010).

2. Spike initiation is made sharper by axonal backpropagation.
This is a subtle issue that has been revived a few years ago, after
a controversy on the validity of the Hodgkin-Huxley model
for cortical neurons (Naundorf et al., 2006; McCormick et al.,
2007). In cortical neurons, spikes are initiated in the axon
hillock, about 35–50 μm away from the soma (Palmer and Stu-
art, 2006; Shu et al., 2007), and actively backpropagated to the
soma (Yu et al., 2008). This makes spikes sharper than they
would be if there were a single electrotonic compartment (this
can be seen in the cable equation, because the diffusion term is
positive at spike initiation). Indeed, measurements in cortical
neurons yield estimates of sharpness around 1 mV rather than
ka ≈ 6 mV (Badel et al., 2008; Rossant et al., 2010). It should be
noted that when distal initiation is considered, threshold mod-
ulation is still proportional to ka, but this quantity is no longer
directly related to the sharpness of spike initiation (Platkiewicz
and Brette, 2010). However, to my knowledge, sharpness of
spike initiation has not been studied in subcortical areas such
as the auditory brainstem.

3.1.2. Reset
In a model with Hodgkin-Huxley Na current dynamics, the thresh-
old also increases after each spike, because Na channels inactivate
during the action potential. We showed that this modification
must be multiplicative to preserve level invariance, but sim-
ple considerations suggest that spike-triggered modifications of
the threshold should be additive (Platkiewicz and Brette, 2010):
θ → θ + ρ. This comes from the approximation that h∞(v) = 0
during the spike, which implies that h(t + 	) = h(t )exp(− 	/τ h),
where t is the time of spike initiation and 	 the spike dura-
tion. It follows that the threshold is shifted by a constant term:
θ → θ + ka	/τ h.

Although this is a crude approximation, the result is more
general, if spike shape is not significantly affected by threshold
modulation. The dynamics of h is governed by the following
differential equation:

τh(v)
dh

dt
= h∞(v) − h

and if the spike shape is fixed, that is, v(t ) is fixed, then this is a
non-autonomous linear differential equation. Therefore, h(t + 	)
depends linearly on the initial condition h(t ): h(t + 	) = λh(t )
(for some value λ which is determined by the spike shape and
inactivation properties). Again, this implies an additive shift of
the threshold.

In pyramidal cortical neurons, spike shape is not always very
variable, possibly because of axonal backpropagation and the
presence of other Na channel types with higher activation and
inactivation voltages (Hu et al., 2009). However, this is not the case
of all neurons (e.g., interneurons). When the threshold is higher,
spike peaks tend to be lower because of the decreased availabil-
ity of Na channels (de Polavieja et al., 2005). This should make
threshold shifts inversely correlated with threshold (the oppo-
site of what is needed), but this effect should be small: if the
peak exceeds threshold by more than a few times ki (that is, by
about 10 mV), then the steady-state inactivation h∞(v) is effec-
tively zero during the spike. Thus, the main determinant of the
threshold shift should be spike width (about ka	/τ h). Therefore,
to obtain multiplicative threshold shifts after each spike, spike
width should be proportional to spike threshold. There is some
experimental evidence that spike width is indeed positively cor-
related with spike threshold in pyramidal cells: in (de Polavieja
et al., 2005), spike height was found to be negatively correlated
with spike width, and spike height is also negatively correlated
with spike threshold.

Spike width is essentially controlled by the potassium recti-
fier current (Carter and Bean, 2009): indeed the speed of repo-
larization is roughly proportional to the total conductance of
the rectifier channel, therefore spike width is inversely propor-
tional to that conductance. Thus, multiplicative threshold modu-
lation requires that the conductance of these channels is inversely
proportional to spike threshold, that is, with the value of the
membrane potential at spike initiation. We may think of two
mechanisms: (1) with higher threshold values, spike height is
reduced and therefore potassium channels activation is reduced,
meaning wider spikes, (2) potassium channels may inactivate,
so that higher threshold values imply more inactivated potas-
sium channels and therefore wider spikes. This second mech-
anism is only possible if rectifier channels inactivate with fast
dynamics. If the inactivation curve is a Boltzmann function,
then the inverse of the inactivation variable (proportion of avail-
able channels) is 1/hK = 1 + exp((v − V K

i )/kK
i ). We want

this quantity to scale linearly with the membrane potential v,
but clearly this can only be approximately valid. large? Nev-
ertheless, this analysis suggests that several factors may make
the threshold modulation due to a spike more complex than a
simple additive shift. As many factors are involved (including
neuronal morphology), this relationship should be empirically
measured, either in vivo or in slice with fluctuating injected
currents.

Finally, note that the reset of the membrane potential is irrele-
vant in a biophysical model, since it is implicitly implemented by
the potassium rectifier channels. As we have seen in section 2, the
condition for level invariance is that the reversal potential of these
channels equals the resting potential.
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3.1.3. Multiple timescales
Na channels inactivate both on fast and slow timescales. A simple
model consists of two independent gating variables:

INa = gLhslowhfastkae(V −VT /ka)

where the gating variables hslow and hfast have slow and fast dynam-
ics, respectively (Fleidervish et al., 1996; Kim and Rieke, 2003).
Since the interaction is multiplicative for the Na current, it is
additive for the threshold:

θ = θslow + θfast = VT − ka log hslow − ka log hfast

and both components of the threshold are described as previously.

3.2. THE DYNAMIC RANGE PROBLEM
In section 2, we have assumed that the membrane potential scales
linearly with level. This is problematic because physiologically, the
membrane potential must be bounded by the minimum and max-
imum reversal potentials. In practice, the dynamic range for the
membrane potential does not exceed a few tens of millivolts. If
the dynamic range of the input is very large, then some compres-
sion is necessary. Suppose the input level can change by a factor
100 but the voltage range is only allowed to change by a factor
10 (say, the amplitude of voltage fluctuations can vary between 2
and 20 mV). Then between the two extreme levels, the membrane
resistance must change by a factor 100/10 = 10. In other words,
the dynamic range for the membrane resistance equals the ratio of
dynamic ranges of the level and membrane potential. This implies
the presence of a very strong conductance with a steeply increasing
activation curve. Assuming that the activation curve is a Boltz-
mann function, this means that the half-activation voltage is high,
so that it approximates an exponential function in the subthresh-
old regime. We consider a slow voltage-activated conductance with
reversal potential E, for example a potassium channel. Since it is
slow, the conductance only depends on the average membrane
potential 〈v〉, so that the membrane equation reads:

τ
dv

dt
= I − v + g (〈v〉)(E − v)

with an approximately exponential conductance:

g (〈v〉) = exp

( 〈v〉 − V K
a

kK
a

)

This implies that the average membrane potential is an approx-
imately logarithmic function of level. The membrane equation can
be rewritten as follows:

τ

1 + g

dv

dt
= I

1 + g
+ gE

1 + g
− v

where g depends on 〈v〉. One issue is that the effective membrane
time constant depends on the conductance g, and therefore on
level. For example, for sinusoidal inputs it implies level-dependent
phase shifts. The problem is solved if the membrane time constant
is small compared to the input frequency range: τ � 1/(2π f ), so

that the phase is preserved. This is a serious constraint for high-
frequency inputs. The alternative is that the minimum membrane
time constant is large compared to the input frequency range:
τ /g max 
 1/(2π f ). In this case, the phase is not preserved but is
insensitive to level (cosine phase). If the time constant issue is
solved, the membrane potential scales linearly with a function of
level, provided E = 0, so that the level invariance constraints are
still satisfied.

Figure 8 shows the same complex spiking model as in Figure 7,
but with an additional strong K high-voltage-activated conduc-
tance. The level invariance property is now only approximately
satisfied (Figure 8A), but considering that the level changes
by a factor 100, the performance is reasonable. Because of the
strong intrinsic conductance, the average membrane potential
does not increase proportionally to the level, and some compres-
sion appears (Figure 8B). As a result, the membrane potential
remains within a physiologically reasonable range, even at high
input levels (Figure 8C). To accomplish this compression, the K
conductance increases by a factor 7 when the level increases by a
factor 100 (Figure 8D).

3.3. THE DYNAMIC THRESHOLD AGAIN
In section 1, we considered the effect of Na inactivation of thresh-
old dynamics. However, the threshold also varies with the total
conductance (in particular K+ conductance) in the following way
(Platkiewicz and Brette, 2010):

θ = VT − ka log h + ka log gtot/gL

Thus, strong conductances as discussed in the previous section
should have a strong impact on the threshold. As we consid-
ered channels with high activation voltage and strong maximal
conductance ḡ , the conductance is

gtot ≈ ḡ exp

( 〈v〉 − V K
a

kK
a

)

Therefore the shift in voltage due to this conductance is

ka log
ḡ

gL
+ ka

kK
a

(〈v〉 − V K
a

)

Thus the threshold reads:

θ = V ∗
T − ka log h + ka

kK
a

〈v〉

where

V ∗
T = VT + ka log

ḡ

gL
− ka

kK
a

V K
a .

Since the last term in the threshold formula scales linearly with
the membrane potential, the previous discussion applies when VT

is replaced by V ∗
T . That is, the threshold still scales with membrane

potential if V ∗
T = 0.
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FIGURE 8 | Response of a level-invariant model with strong K

conductance. The model is similar to the model in Figure 7, but with
an additional K conductance with time constant 50 ms, Boltzmann
activation (Va = − 50 mV and ka = 5 mV) and maximal conductance equal
to 50 times the leak conductance. (A) Responses of the model to a
fluctuating input (low-pass filtered Ornstein-Uhlenbeck process with

time constant 2 ms), with level varying between 1 and 100. (B) Average
membrane potential as a function of input level. (C) Trace of the
membrane potential (solid) and dynamic threshold (dashed) for an
intermediate level (50). Spikes occur at the crossing points. (D) Average
K conductance as a function of input level, relative to the leak
conductance.

4. DISCUSSION
4.1. SUMMARY
In many sensory modalities, the stimuli that neurons must encode
vary in intensity over several orders of magnitude. Thus, efficient
encoding requires some form of gain control. Indeed neuromor-
phic sensors, such as spiking electronic retinas (Posch et al., 2008)
and cochleas (Liu et al., 2010), all address this problem. For exam-
ple, in the DVS electronic retina (Posch et al., 2008), a spike is
produced when pixel intensity changes by a fixed logarithmic
increment. In the sound localization system, this is a very critical
issue because precise estimation of the interaural time difference
(a major cue to azimuth) relies on the comparison of spike timings
at a microsecond scale. In a standard integrate-and-fire model, the
neuron tends to fire earlier when stimulus intensity increases. To
avoid this problem requires that the spike threshold changes with
stimulus level. The simplest level-invariant spiking model is the
following:

τθ

dθ

dt
= a[I ]+ − θ

θ → ρθ when I = θ

where ρ > 1 and a > 0 (I is the time-varying level, θ is the thresh-
old). Its firing rate is T = τ θ log((ρ − a)/(1 − a)) for constant
inputs. More generally, we have seen that a fairly large class of (phe-
nomenological) spiking neuron models exhibits level invariance,
which is described by the following conditions:

• The membrane potential changes linearly with level, or with a
function of it. This occurs for example if it is governed by a
linear differential system, where the input I (or RI, where R is
the membrane resistance) is added to one differential equation
(typically the membrane equation).

• The threshold is dynamic and depends linearly on the half-wave
rectified membrane potential [v]+, or on the membrane poten-
tial v if I > 0. This occurs for example if it is governed by a
linear differential system, where the membrane potential v (or
av) is added to one differential equation. The threshold may be
described as a sum of components θ = θ1 + θ2 with different
dynamics.

• After a spike, both the threshold and membrane potential are
multiplicatively reset: θ → ρθ and v → γ v, with ρ > 1 and
ρ > γ (ρ = 1 is possible, provided that aγ > 1).

• After a spike, an absolute refractory period of duration 	 may
be considered, by either ignoring the input (I = 0) or clamping
the neuron at reset.

• Spike-triggered conductances with arbitrary dynamics may be
included, provided that the reversal potential equals the resting
potential, i.e., the current is I (t ) = − g (t )v.

These conditions imply some specific constraints on ionic channel
properties, which translate to the following constraints:

• Spike initiation is sharp.
• Na channels half-inactivation voltage Vi ≤ 0 (where 0 is the rest-

ing potential) and V ∗
T = (ka/ki)Vi . This value V ∗

T takes into

Frontiers in Computational Neuroscience www.frontiersin.org January 2012 | Volume 5 | Article 63 | 10

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Brette Spiking models for level-invariant encoding

account the properties of Na channels and K rectifier channels
(more generally, high-voltage-activated conductances). This
second condition essentially means that the spike threshold
equals the resting potential.

• Inactivation slope ki is small.
• Spike width is positively correlated with spike threshold.
• There is a strong hyperpolarizing conductance with high half-

activation voltage and slow dynamics (rectifier conductance).
• The reversal potential of rectifier channels equals the resting

potential.
• There are no significant subthreshold oscillations – which could

be due for example to low-voltage-activated persistent sodium
(Gutfreund et al., 1995).

Figure 9 shows how level-invariant spiking models can be used
in the context of ITD processing. A binaural neuron, modeled as
a standard noisy integrate-and-fire neuron, receives inputs from
40 monaural neurons on each side, which are driven by band-
pass filtered noise with varying ITD and ILD. When monaural

neurons are modeled as standard integrate-and-fire neurons
(Figures 9A,B), neurons on the louder side fire more and earlier
(Figure 9A), and as a result, the best delay of the binaural neuron
depends on ILD (Figure 9B). When monaural neurons are mod-
eled as level-invariant spiking models, this ILD-dependent bias
does not occur (Figures 9C,D). Note that the tuning curves for
non-zero ILDs in Figure 9D are above the tuning curve for zero
ILD because neurons on the louder side initially fire more spikes
(and ILDs were introduced by raising the level of either side).

4.2. COMPARISON WITH PHYSIOLOGY
Level invariance imposes specific constraints on neuron prop-
erties. Do these constraints fit the physiological properties of
bushy cells of the cochlear nucleus (mammals) and of neurons
of the nucleus magnocellularis (birds)? A recent study describes
threshold properties of chick NM neurons in vitro (Howard and
Rubel, 2010). It was found that the spike threshold indeed adapts
to the membrane potential. Consistently with our predictions,
spike threshold increases linearly with the membrane potential.

FIGURE 9 | ITD tuning curve of binaural neuron model, with monaural

neurons modeled as either integrate-and-fire neurons (A,B) or

level-invariant models (C,D). (A) A binaural white noise input is passed
through a of gammatone filter centered at 2 kHz, compressed (1/3 power law)
and half-wave rectified. The filtered input is fed into 80 monaural (NM)
neurons, 40 on each side, modeled as noisy integrate-and-fire neurons (time
constant 1 ms, refractory period 1 ms, noise SD 0.03, voltage is in units of the
threshold). Top: membrane potential of one NM neuron (dashed line:
threshold). Bottom: spike trains produced by all 80 neurons, with 0 ms ITD
and 10 dB ILD, i.e., the input sound is 10 dB louder on the right than on the

left. (B) A binaural (NL) neuron is also modeled as a noisy integrate-and-fire
model (time constant 0.1 ms, noise SD 0.1), and all 80 NM neurons project to
the NL neuron with no delay. Each synaptic weight is w = 0.19 (instantaneous
excitatory currents). The plot shows the ITD tuning curve (firing rate vs. ITD)
for three different ILDs (calculated for a 5 s white noise). Thus, the best delay
depends on the ILD. (C) NM neurons are now modeled as level-invariant
spiking models, by simply replacing the fixed threshold by an adaptive
threshold: τ θ dθ /dt = θ − v, with τ θ = 5 ms and θ → 1.5θ at spike time. (D) The
best delay of the binaural neuron [same model as in (B)] is now independent
of ILD.
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However, the threshold was found to be more than 20 mV above
membrane potential, even at rest. A number of studies suggest
that this could different in vivo. In particular, NM neurons have
a high spontaneous rate in the barn owl (Köppl, 1997; greater
than 200 Hz) and in the chick (Warchol and Dallos, 1990; about
100 Hz), which suggests that the threshold may be closer to the
resting (or average) membrane potential in vivo. A recent study
in spherical bushy cells of the gerbil confirms this hypothesis
(Kuenzel et al., 2011). In addition, it was shown in this study
that the firing rate of these neurons in response to pure tones
varies very little over 20 dB SPL (about 200 Hz), and this prop-
erty was related to the observation that the threshold EPSP size
required to produce a postsynaptic spike increases with input
level. Although this effect was attributed to synaptic inhibition,
the results can also be explained a modulation of spike threshold
as described in this paper (the mentioned study did not use phar-
macological methods). For example, the frequency dependence
of EPSP threshold agreed with the receptive field of excitatory
inputs.

In (Howard and Rubel, 2010), threshold modulation was attrib-
uted to both K channels and Na inactivation. The membrane
resistance indeed decreases by a factor of 4 over 20 mV, mean-
ing that a strong voltage-gated conductance is present. Accord-
ing to our threshold equation (Platkiewicz and Brette, 2010), a
four-fold increase in conductance produces a threshold increase
around ka log 4 ≈ 8.4 mV, assuming ka ≈ 6 mV. This is a relatively
small proportion of the observed range of threshold modulation
(more than 40 mV). Patch-clamp studies indicate that the half-
inactivation voltage of Na channels Vi is hyperpolarized, consistent
with our prediction (Howard and Rubel, 2010; Platkiewicz and
Brette, 2011). However, the inactivation Boltzmann factor ki may
not be very small (Angelino and Brenner, 2007).

Another potentially important requirement is that spike initia-
tion be sharp. A few studies suggest that this is the case in cortical
neurons (Naundorf et al., 2006; McCormick et al., 2007; Badel
et al., 2008; Rossant et al., 2010), but it has not been specifi-
cally addressed in the auditory brainstem. Action potentials are
known to be unusually short, which suggests that spike initia-
tion is also sharp, but this specificity is most likely due to K
rectifier channels (Carter and Bean, 2009). A related question
is how the shape of action potentials varies with spike thresh-
old. To implement multiplicative threshold changes at spike time,
spike width should be positively correlated with spike thresh-
old. There is some experimental evidence in pyramidal corti-
cal cells (de Polavieja et al., 2005), but to my knowledge, this
has not been quantitatively measured in the auditory brain-
stem. In (Howard and Rubel, 2010), threshold changes were only
measured in response to presynaptic rather than postsynaptic
spikes.

4.3. PERIPHERAL MECHANISMS
Although I focused on the physiology of NM neurons (and bushy
cells in mammals), part of the problem can be accounted for by the
active mechanics of the basilar membrane, prior to the initiation
of any spike in the auditory periphery (Robles and Ruggero, 2001).
In most species, active cochlear mechanics compresses the sound
according to a power law with exponent around 1/3 for tones at

characteristic frequency (i.e., the amplitude of basilar membrane
displacement is about x1/3, where x is the sound amplitude). This
still leaves a large input dynamic range (note that this compression
was taken into account in Figure 9). The auditory nerve also con-
tributes to level invariance. Each inner hair cell (a non-spiking cell
which transduces basilar membrane displacement into depolar-
ization) makes synaptic contact with a number of auditory nerve
(AN) fibers (Köppl, 2011) – 10–30 in mammals, just a couple
of them in birds (more precisely, tall hair cells in these species).
Collectively, the firing rate of AN fibers essentially follows the
basilar membrane displacement, but individually, many fibers sat-
urate (these are fibers with low spontaneous rate in mammals, but
not in birds). Since AN fibers are the first spiking neurons in the
auditory periphery, the level sensitivity issue also applies to these
saturating types. Therefore, the discussion of the previous section
could also apply to spike initiation in the auditory nerve. Unfor-
tunately, there is less information available about spike threshold
and ionic channels in AN fibers because intracellular recordings
are technically very challenging. We note however that the level
invariance issue is not entirely solved at this stage, because NM
neurons are less sensitive to level than AN fibers, as is shown in
Figure 2, and because the dynamic range of AN fibers tends to be
larger with white noise than with tones (Greenwood and Goldberg,
1970).

4.4. NETWORK MECHANISMS
In this paper, I have only described single-cell mechanisms that
can produce level-invariant responses, but neural circuits may
also produce the desired property – although this is in princi-
ple more costly in terms of energy consumption, since it involves
more synapses and more neurons (specifically, inhibitory cells).

We may think of two types of monaural mechanisms: feed-
back inhibition and feedforward inhibition. In the chicken, NM
neurons are indeed modulated by GABAergic neurons in the
superior olivary nucleus (SON), and pharmacological blocking
of these inhibitory neurons increases the firing rate of NM neu-
rons at high input level (Fukui et al., 2010). In both scenar-
ios (feedback and feedforward), inhibition must increase with
level to reduce the gain in proportion to input level, and be
frequency-specific rather than global. In the feedforward sce-
nario, inhibitory neurons receive inputs from other neurons which
are sensitive to level. One simple possibility is strong shunting
inhibition with slow dynamics: the membrane resistance is then
inversely proportional to the inhibitory firing rate (note how-
ever that GABAergic input is depolarizing rather than shunting
in NM neurons). To produce the desired property, inhibitory fir-
ing rate must then be proportional to the excitatory input level
of the level-invariant neurons (for ITD processing, NM neu-
rons or bushy cells), which may require some fine tuning. In
the feedback scenario, inhibitory neurons receive inputs from
the level-invariant neurons and modulate their gain through an
inhibitory feedback loop: inhibitory neurons fire very strongly
as soon as the firing rate of the excitatory neurons exceed
the desired level. This solution may however cause instability
problems.

We may think of an alternative mechanism to encode ITDs
independently of ILDs: instead of ensuring that the output of
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monaural neurons is insensitive to input level (monaural mecha-
nism), we ensure that the input levels of monaural neurons on
both sides are identical (binaural mechanism). This could be
implemented with cross-hemispheric interactions, for which there
is some evidence in the SON (Fukui et al., 2010).

4.5. SYNAPTIC MECHANISMS
Finally, another possible mechanism to produce level-invariant
responses is synaptic depression: when the level of the input stim-
ulus increases, the presynaptic spike rate increases and the size
of EPSPs decreases. Therefore synaptic depression counteracts the
increase in rate with a decrease in EPSP size, so that the total
synaptic input to the cell might remain approximately constant.
Synaptic depression at the NM-NL synapses has been proposed
as a mechanism for level invariance in sound localization in NL
neurons (Cook et al., 2003), but they do not explain level invari-
ance properties of NM neurons, or the ILD insensitivity of NL
neurons. But synapses between auditory nerve fibers and NM
neurons also show strong synaptic depression in vitro (Zhang and
Trussell, 1994). To maintain a constant average input, the station-
ary EPSC size should be inversely proportional to the presynaptic
spike rate. This did not seem to be the case in the study of (Zhang
and Trussell, 1994), which used very young animals, but it could
be quantitatively different at more physiological temperatures, in
adult animals (Wang and Manis, 2008) or in vivo (Kuenzel et al.,
2011). From a modeling point of view, in standard models of
synaptic depression (Tsodyks and Markram, 1997), the relation-
ship between ESPC amplitude and (inverse) presynaptic rate is
non-linear, unless the recovery time constant τ d is large compared
to the typical interspike interval. This means that synaptic depres-
sion can only produce level-invariant inputs if its time constant is
relatively long. This could be consistent with experimental find-
ings, given that auditory nerve fibers generally fire at high rate
(Wang and Manis, 2008).

4.6. DENDRITIC MECHANISMS
Another mechanism that may contribute to reduce the sensitivity
to input level is dendritic non-linearities. This was proposed in
binaural neurons, which have a bipolar dendritic tree (Agmon-
Snir et al., 1998) – although this is not the case in the barn owl.
All synaptic inputs to each of the two dendritic processes origi-
nate from the same side (contralateral or ipsilateral) and produce
a strong conductance, which clamps the dendritic potential to
the synaptic reversal potential. This reduces the effect of input
rate on dendritic potential, and ensures that binaural coincidence
detection is not affected by input rate. Note that this mechanism
assumes that the timing of input spikes (originating from NM
neurons) is unaffected by level, and therefore it does not solve the
problem I am addressing here.

We may imagine that a similar mechanism could apply to
monaural NM neurons. However, it requires dendritic compart-
mentalization, while auditory nerve fibers make synaptic contacts
(“end bulb of Helds”) onto the soma of NM neurons (Carr and
Boudreau, 1991).

In conclusion, many experimental findings (threshold dynam-
ics, strong intrinsic conductances) point to single-cell mechanisms
that minimize the level sensitivity of monaural neurons in the
ITD processing pathway of birds and mammals, along the lines I
have described here. But it also seems that network mechanisms
(inhibition by the SON) and synaptic depression could play an
important role. While it may well be that many mechanisms con-
tribute to the properties of these cells, one merit of this work is
to propose phenomenological spiking models with level-invariant
properties, which should be useful to develop functional models of
ITD processing and possibly of other sensory processing problems.
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APPENDIX
A. PROPERTIES OF LEVEL-INVARIANT SPIKING MODELS
A.1. RESPONSE TO CONSTANT CURRENTS
What is the response of a level-invariant spiking model to a
step current? We assume that the threshold depends linearly on
the membrane potential: θ = K ∗ v (or K ∗ [v]+). Then, ignoring
spikes for the moment, the stationary value is (

∫
K )v0, where v0

is the stationary response to the step current (
∫

K = a in the sim-
plest level-invariant model). Thus, the neuron responds tonically
to constant currents only if

∫
K < 1. If

∫
K ≥ 1, neuron responses

to constant currents are phasic, which seems to be the case of bushy
cells: fast ramp currents evoke action potentials but slow ramps
do not (McGinley and Oertel, 2006).

In addition, because the threshold is initially very close to the
resting potential, a burst of spikes may be produced at the onset of
the step current. The number of spikes in the burst is proportional
to the logarithm of the depolarizing current (that is, to the level in
decibel), as is shown below.

A.2. RESPONSE TO LEVEL CHANGES
When the input level changes, the stationary response of the model
is unchanged, but there is also a transient response. When the level
decreases, there is a silent period corresponding to the time T
necessary for the threshold to relax to the new stationary value.
Noting v1 (resp. v2) the old (resp. new) average threshold, we have
v2 = exp(-T /τ θ )v1 and v2 = (I 2/I 1)v1. There this silent period
is approximately T = τ θ log(I 1/I 2), which is proportional to the
level change in decibel. When the level increases, a burst of spikes
is produced as the threshold increases to its new stationary value.
In the same way, the number of spikes in the burst is approxi-
mately [log(I 2/I 1)]/log ρ, where ρ is the threshold reset parameter
(θ → ρθ). Again, this is proportional to the level change in decibel.

B. DYNAMICS OF LEVEL-INVARIANT SPIKING MODELS
We consider the following level-invariant model:

τθ

dθ

dt
= aI − θ

and a spike is produced when θ = 1; the threshold is then updated
as follows: θ → ρθ (ρ > 1). We define the spike map ϕ: R → R as
follows (Brette, 2004): ϕ(t ) is the time of the next spike following
a spike at time t ; more precisely, the minimum time s > t such
that θ(s) = I (s), given that θ(t ) = ρI (t ). In this way, spike trains
are sequences (ϕn(t )). In the following, we assume τ θ = 1 (mean-
ing that time is in units of τ θ ). Thus the differential equation is

simply:

dθ

dt
= aI − θ

The following theorem implies that when a = 0, this level-
invariant model is dynamically unstable, meaning that spike tim-
ing is sensitive to the initial condition and to intrinsic noise (see
(Brette and Guigon, 2003) for the implications for spike timing
reliability).

Theorem 1. If a = 0, then the restriction of the spike map
ϕ to its range is topologically conjugated with a translation T :
t �→ t + log ρ.

The arguments follow the proof of a similar result for the
perfect integrator (Brette, 2004). Consider two successive spikes
t and ϕ(t ). By integrating the differential equation, we obtain the
following identity:

ρI (t )et−ϕ(t ) = I (ϕ(t ))

Taking the logarithm (note that θ(t ) > 0 and therefore I (t ) > 0
if t is a spike time):

log ρ + log I (t ) + t = log I (ϕ(t )) + ϕ(t )

This means T ◦φ = φ ◦ϕ, where φ(t ) = log I (t ) + t. It remains
to be proven that φ is a homeomorphism, when restricted to the
range of ϕ.

The range of ϕ is a union of intervals. Consider the right end-
point t of one interval and the left endpoint s of the next interval.
We want to show that ϕ(t ) = ϕ(s), so that the range of the restric-
tion of ϕ to its range is connected. Together with the fact that ϕ is
strictly increasing, it implies that it is a homeomorphism.

Consider the solution θ1 such that θ1(t ) = I (t ). Since t
is in the range ϕ, t = ϕ(u) for some u < t. The solution θ1

must hit I at time s (θ1(s) = I (s)): if it spiked before s, the
range of ϕ would intersect the interval (t, s), if it spiked after
s, s would not be the endpoint of an interval in the range
of ϕ. Consider now the solution θ2 such that θ2(t ) = ρI (t ),
which spikes at time ϕ(t ) > s (since there is no spike between
t and s). At time s, we have θ2(s) = e−T θ2(t ) = ρe−T I (t )
and I (s) = θ1(s) = e−T θ1(t ) = e−T I (t ), where T = s − t. Thus,
θ2(s) = ρI (s). It follows that the solution θ2 spikes at time ϕ(s),
that is, ϕ(s) = ϕ(t ).

This conjugacy also implies that the firing rate is always 1/(τ θ

log ρ), for any input I.
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