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Recent advances in Computer Vision and Experimental Neuroscience provided insights
into mechanisms underlying invariant object recognition. However, due to the different
research aims in both fields models tended to evolve independently. A tighter
integration between computational and empirical work may contribute to cross-fertilized
development of (neurobiologically plausible) computational models and computationally
defined empirical theories, which can be incrementally merged into a comprehensive
brain model. After reviewing theoretical and empirical work on invariant object perception,
this article proposes a novel framework in which neural network activity and measured
neuroimaging data are interfaced in a common representational space. This enables direct
guantitative comparisons between predicted and observed activity patterns within and
across multiple stages of object processing, which may help to clarify how high-order
invariant representations are created from low-level features. Given the advent of
columnarlevel imaging with high-resolution fMRI, it is time to capitalize on this new
window into the brain and test which predictions of the various object recognition models
are supported by this novel empirical evidence.
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INTRODUCTION

One of the most complex problems the visual system has to solve
is recognizing objects across a wide range of encountered vari-
ations. Retinal information about one and the same object can
dramatically vary when position, viewpoint, lighting, or distance
change, or when the object is partly occluded by other objects. In
Computer Vision, there are a variety of models using alignment,
invariant properties, or part-decomposition methods (Roberts,
1965; Fukushima, 1982; Marr, 1982; Ullman et al., 2001; Viola
and Jones, 2001; Lowe, 2004; Torralba et al., 2008), which are able
to identify objects across a range of viewing conditions.

Some computational models are clearly biologically inspired
and take for example the architecture of the visual system into
account (e.g., Wersing and Korner, 2003), or cleverly adapt the
concept of a powerful Computer Vision algorithm (e.g., the
Fourier-Mellin transform) to a neurobiologically plausible alter-
native (Sountsov et al., 2011). Such models can successfully detect
objects in sets of widely varying natural images (Torralba et al,,
2008) and achieve impressive invariance (Sountsov et al., 2011).
In general however, computer vision models are developed for
practical image analysis applications (handwriting recognition,
face detection, etc.) for which fast and accurate object recogni-
tion and not neurobiological validity is pivotal. Therefore, these
models are generally less powerful in explaining how object con-
stancy arises in the human brain. Indeed, “Models are common;
good theories are scarce” as suggested by Stevens (2000, p. 1177).

Humans are highly skilled in object recognition, and they out-
perform machines in object recognition tasks with great ease
(Fleuret et al., 2011). This is partly because they are able to strate-
gically use semantics and information from context or memory.
In addition, they can direct attention to informative features in
the image, while ignoring distracting information. Such higher
cognitive processes are difficult to implement, but improve object
recognition performance when taken into account (Lowe, 2000).
Computer vision models might become more accurate in recog-
nizing objects across a wide range of variations in image input,
when implementing algorithms derived from neurobiological
observations.

Reciprocally, our interpretation of such neurobiological find-
ings might be greatly improved by insights in the underlying com-
putational mechanisms. Humans can identify objects with great
speed and accuracy, even when the object percept is degraded,
occluded or presented in a highly cluttered visual scene (e.g.,
Thorpe et al., 1996). However, which computational mechanisms
enable such remarkable performance is not yet fully understood.
To create a comprehensive theory of human object recognition
and how it achieves invariant object recognition, computational
mechanisms derived from modeling efforts should be incorpo-
rated in neuroscientific theories based on experimental findings.

In the current paper, we highlight recent developments in
object recognition research and put forward a “Common Brain
Space” framework (CBS; Goebel and De Weerd, 2009; Peters et al.,
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2010) in which empirical data and computational results can be
directly integrated and quantitatively compared.

EXPLORING INVARIANT OBJECT RECOGNITION IN THE
HUMAN VISUAL SYSTEM

Object recognition, discrimination, and identification are com-
plex tasks. Different encounters with an object are unlikely to
take place under identical viewing conditions, requiring the visual
system to generalize across changes. Information that is impor-
tant to retrieve object identity should be effectively processed,
while unimportant view-point variations should be ignored. That
is, the recognition system should be stable yet sensitive (Marr
and Nishihara, 1978), leading to inherent tradeoffs. How the
visual system is able to accomplish this task with such apparent
ease is not yet understood. There are two classes of theories on
object recognition. The first suggests that objects can be recog-
nized by cardinal (“non-accidental”) properties that are relatively
invariant to the objects’ appearance (Marr, 1982; Biederman,
1987). Thus, these invariant properties and their spatial relations
should provide sufficient information to recognize objects regard-
less of their viewpoint. However, how such cardinal properties
are defined and recognized in an invariant manner is a com-
plex issue (Tarr and Biilthoff, 1995). The second type of theory
suggests that there are no such invariants but that objects are
stored in the view as originally encountered (which, in natural
settings encompasses multiple views being sampled in a short
time interval), thereby maintaining view-dependent shape and
surface information (Edelman and Biilthoff, 1992). Recognition
of an object under different viewing conditions is achieved by
either computing quality matches between the input and stored
presentations (Perrett et al., 1998; Riesenhuber and Poggio, 1999)
or by transforming input to match the view specifications of the
stored representation (Biilthoff and Edelman, 1992). The latter
normalization can be accomplished by interpolation (Poggio and
Edelman, 1990), mental transformation (Tarr and Pinker, 1989),
or alignment (Ullman, 1989).

These theories make very different neural predictions. View-
invariant theories suggest that the visual system recognizes objects
using a limited library of non-accidental properties, and neural
representations are invariant. Evidence for such invariant object
representations have been found at final stages of the visual path-
way (Quiroga et al., 2005; Freiwald and Tsao, 2010). In contrast,
the second class of theories assumes that neural object representa-
tions are view-dependent, with neurons being sensitive to object
transformations. Clearly, the early visual system is sensitive to
object appearance: the same object can elicit completely differ-
ent, non-overlapping neural activation patterns when presented
at different locations in the visual field. So, object representa-
tions are input specific at initial stages of processing, whereas
invariant representations emerge in final stages. However, how
objects are represented by intermediate stages of this process-
ing chain is not yet well understood. Likely, multiple different
transforms are (perhaps in parallel) performed at theses stages.
This creates multiple object representations, in line with the var-
ious types of information (such as position and orientation) that
have to be preserved for interaction with objects. Moreover, posi-
tion information aids invariant object learning (Einhiduser et al.,

2005; Li and DiCarlo, 2008, 2010) and representations can reflect
view-dependent and view-invariant information simultaneously
(Franzius et al., 2011).

The following section reviews evidence from monkey neuro-
physiology and human neuroimaging on how object perception
and recognition are implemented in the primate brain. As already
alluded to above, the visual system is hierarchically organized in
more than 25 areas (Felleman and Van Essen, 1991) with ini-
tial processing of low-level visual information by neurons in the
thalamus, striate cortex (V1) and V2; and of more complex fea-
tures in V3 and V4 (Carlson et al., 2011). Further processing of
object information in the human ventral pathway (Ungerleider
and Haxby, 1994), involves higher-order visual areas such as the
lateral occipital cortex (LOC; Malach, 1995) and object selective
areas for faces (“FFA”; Kanwisher et al., 1997), bodies (“EBA”;
Downing et al., 2001), words (“VWFA”; McCandliss et al., 2003),
and scenes (“PPA”; Epstein et al., 1999).

The first studies on the neural mechanisms of object recogni-
tion were neurophysiological recordings in monkeys. In macaque
anterior inferotemporal (IT) cortex, most of the object-selective
neurons are tuned to viewing-position (Logothetis et al., 1995;
Booth and Rolls, 1998), in line with viewpoint-dependent theo-
ries. On the other hand, IT neurons also turned out to be more
sensitive to changes in “non-accidental” than to equally large
pixel-wise changes in other shape features (“metric properties”;
Kayaert et al., 2003), providing support for structural description
theories (Biederman, 1987). Taken together, these studies pro-
vide neural evidence for both theories (see also Rust and Dicarlo,
2010). However, to which degree object representations are stored
in an invariant or view-dependent manner across visual areas,
and how these representations arise and are matched to incoming
information, remains elusive.

Also human neuroimaging studies have not provided conclu-
sive evidence. In fMRI studies, the BOLD signal reflects neural
activity at the population rather than single-cell level. The highest
functional resolution provided by standard 3 Tesla MRI scan-
ners is around 2 x 2 x 2mm?, which is too coarse to zoom into
the functional architecture within visual areas. However, more
subtle information-patterns can be extracted using multi-voxel
pattern analysis (MVPA; Haynes et al., 2007) or fMRI-adaptation
(fMRI-A; Grill-Spector and Malach, 2001). MVPA can reveal sub-
tle differences in distributed fMRI patterns across voxels resulting
from small biases in the distributions of differentially tuned
neurons that are sampled by each voxel. By using classification
techniques developed in machine learning, distributed spatial
patterns of different classes (e.g., different objects) can be suc-
cessfully discriminated (see Fuentemilla et al., 2010 for a temporal
pattern classification example with MEG). For example, changing
the position of an object significantly changes patterns in LOC,
even more than replacing an object (at the same position) by an
object of a different category (Sayres and Grill-Spector, 2008).
Rotating the object (up to 60°) did not change LOC responses
however (Eger et al., 2008) suggesting that LOC representations
might be view-dependent in only some aspects. fMRI-A exploits
the fact that the neuronal (and the corresponding hemodynamic)
response is weaker for repeated compared to novel stimuli (Miller
and Desimone, 1994). Thus, areas are sensitive to view-dependent

Frontiers in Computational Neuroscience

www.frontiersin.org

March 2012 | Volume 6 | Article 12 | 2


http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Peters et al.

Object perception: Integrating neuromodeling/neuroimaging

changes when their BOLD response returns to its initial level
for objects that are presented a second time, but now from
a different view-point. This technique revealed interesting and
unexpected findings. For example, a recent study observed view-
point and size dependent coding at intermediate processing stages
(V4, V3A, MT, and V7), whereas responses in higher visual areas
were view-invariant (Konen and Kastner, 2008). Remarkably,
these view-invariant representations were not only found in the
ventral (e.g., LOC), but also in the dorsal pathway (e.g., IPS).
The dorsal “where/how” or “perception-for-action” pathway is
involved in visually guided actions toward objects rather than
in identifying objects—which is mainly performed by the ven-
tral or “what” pathway (Goodale and Milner, 1992; Ungerleider
and Haxby, 1994). For this role, maintaining view-point depen-
dent information in higher dorsal areas seems important, which
however was thus not confirmed by the view-invariant results in
IPS (but see James et al., 2002). Likewise, another recent study
(Dilks et al., 2011) revealed an unexpected tolerance for mirror-
reversals in visual scenes in a parahippocampal area thought to
play a key role in navigation (e.g., Janzen and van Turennout,
2004) and reorientation (e.g., Epstein and Kanwisher, 1998),
functions for which view-dependent information is essential.
Furthermore, mixed findings have been reported for the object-
selective LOC. For example, different findings on size, position,
and viewpoint-invariant representations in different subparts of
the LOC have been found (Grill-Spector et al., 1999; James et al.,
2002; Vuilleumier et al., 2002; Valyear et al., 2006; Dilks et al.,
2011). These divergent findings might be partly related to intri-
cacies inherent to the fMRI-A approach (e.g., Krekelberg et al.,
2006), and its sensitivity to the design used (Grill-Spector et al.,
2006) and varying attention (Vuilleumier et al., 2005) and task
demands (e.g., Ewbank et al., 2011). The latter should not be
regarded as obscuring confounds however, since they appear to
strongly contribute to our skilled performance. Object percep-
tion is accompanied by cognitive processes supporting fast (e.g.,
extracting the “gist” of a scene, attentional selection of relevant
objects) and accurate (e.g., object-verification, semantic inter-
pretation) object identification for subsequent goal-directed use
of the object (e.g., grasping; tool-use). These processes engage
widespread memory- and frontoparietal attention-related areas
interacting with object processing in the visual system (Corbetta
and Shulman, 2002; Bar, 2004; Ganis et al., 2007). As the involve-
ment of such top-down processes might be particularly pro-
nounced in humans—and weaker or even absent in monkeys and
machines respectively—efforts to integrate computational mod-
eling with human neuroimaging remain essential (see Tagamets
and Horwitz, 1998; Corchs and Deco, 2002 for earlier work).
With the advent of ultra-high field fMRI (>7 Tesla scanners),
both the sensitivity (due to increases in signal-to-noise ratio lin-
early dependent on field strength) and the specificity (due to
a stronger contribution of gray-matter microvasculature com-
pared to large draining veins and less partial volume effects)
of the acquired signal improves significantly, providing data at
a level of detail which previously was only available via inva-
sive optical imaging in non-human species. The functional visual
system can be spatially sampled in the range of hundreds of
microns, which is sufficient to resolve activation at the cortical

column (Yacoub et al., 2008; Zimmermann et al., 2011) and layer
(Polimeni et al., 2010) level. Given that cortical columns are
thought to provide the organizational structure forming compu-
tational units involved in visual feature processing (Hubel and
Wiesel, 1962; Tanaka, 1996; Mountcastle, 1997), the achievable
resolution at ultra-high fields will therefore not only produce
more detailed maps, but really has the potential to yield new vistas
on within-area operations.

INTEGRATION OF COMPUTATIONAL AND EXPERIMENTAL
FINDINGS IN CBS

The approach we propose is to project the predicted activity
in a modeled area onto corresponding cortical regions where
empirical data are collected (Figure1). By interfacing empiri-
cal and simulated data in one anatomical “brain space”, direct
and quantitative mutual hypothesis testing based on predicted
and observed spatiotemporal activation patterns can be achieved.
More specifically, modeled units (e.g., cortical columns) are
1-to-1 mapped to corresponding neuroimaging units (e.g., vox-
els, vertices) in the empirically acquired brain model (e.g., cortical
gray matter surface). As a result, a running network simulation
creates spatiotemporal data directly on a linked brain model,
enabling highly specific and accurate comparisons between neu-
roimaging and neurocomputational data in the temporal as
well as spatial domain. Note that in CBS (as implemented in
Neurolator 3D; Goebel, 1993), computational and neuroimag-
ing units can flexibly represent various neural signals (e.g., fMRI,
EEG, MEG, fNIRS, or intracranial recordings). Furthermore,
both hidden and output layers of the neural network can be pro-
jected to the brain model, providing additional flexibility to the
framework as predicted and observed activations can be com-
pared at multiple selected processing stages simultaneously (see
Figure 2 for an example).

To model the human object recognition system, we developed
large-scale networks of cortical column units, which dynamics
can either reflect the spike activity, integrated synaptic activity, or
oscillating activity (when modeled as burst oscillators), resulting
from excitatory and inhibitory synaptic input. To create simulated
spatiotemporal patterns, each unit of a network layer (output
and/or hidden) is linked to a topographically corresponding patch
on a cortical representation via a so-called Network-to-Brain
Link (NBL). Via this link, activity of modeling units in the run-
ning network is transformed into timecourses of neuroimaging
units, spatially organized in an anatomical coordinate system.
Importantly, when simulated and measured data co-exist in the
same representational space, the same analysis tools (e.g., MVPA,
effective connectivity analysis) can be applied to both data sets
allowing for quantitative comparisons (Figure 2). See Peters et al.
(2010) for further details.

We propose that such a tight integration of neuroimaging
and modeling data allows reciprocal fine-tuning and facilitates
hypothesis testing at a mechanistic level as it leads to falsi-
fiable predictions that can subsequently be empirically tested.
Importantly, there is a direct topographical correspondence
between computational (cortical columnar) units at the model
and brain level. Moreover, comparisons between simulated and
empirical data are not limited to activity patterns in output stages
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Empirical Data

E/MEG

anatomical brain space via network-brain links (see Figure 2).

Common Brain Space

FIGURE 1 | The Common Brain Space framework: measured neuroimaging data (left panel) and simulated data (right panel) are projected to the same

Simulated Data
FFA LOC

retina

LX)
A

FIGURE 2 | Data Integration in Common Brain Space. Input: (A)
Visualization of Common Brain Space (CBS) in Neurolator: Each
computational unit of a neural network layer is separately connected to a
topographically corresponding location on the cortical sheet via a
Network—Brain Link (NBL). In this example, model layers V1, LOC, and FFA
are connected to the corresponding brain regions V1, LOC, and FFA on a
mesh reconstruction of an individual’s gray-white matter boundary. For this
participant, V1, LOC, and FFA were localized using standard retinotopy and
related fMRI Region-of-Interest mapping techniques. By connecting a

Vertex time course  Analytical tools

Observed fMRI data GLM
ICA
— | Connectivity
MVPA
Bold latency

quantitative comparisons

~ ' Simulated fMRI data oLm

I - =

Output

o

running neural network, activity in the connected layers is projected to the
cortical sheet via the NBLs, creating spatially specific timecourses. (B) In
Neurolator, functional MRI data can be projected on the cortical mesh, similar
to the standard functional-anatomical data co-registration applied in fMRI
analyses. Output: (C) Depending on display mode, cortical patches (i.e.,
vertices) either represent the empirical or the simulated fMRI data. Since the
observed and simulated datasets are in the same anatomical space, identical
fMRI analyses tools can be used to analyze observed and simulated
timeseries.

(i.e., object-selective areas in anterior IT such as FFA or even more
anterior in putative “face exemplar” regions; Kriegeskorte et al.,
2007), but also at intermediate stages (such as V4 and LOC).
Interpreting the role of feature representations at intermediate

stages may be essential for a comprehensive brain model of object
recognition (Ullman et al., 2002).

Studying several stages of the visual hierarchy simultaneously,
by quantitatively comparing ongoing visual processes across
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stages both within and between the simulated and empirically
acquired dataset, may help to clarify how higher-order invari-
ant representations are created from lower-level features in sev-
eral ways. Firstly, this may reveal how object-coding changes
along the visual pathway. Incoming percepts might be differ-
ently transformed and matched to stored object representations
at several stages, with view-dependent matching at intermediate
stages and matching of only informative properties (Biederman,
1987; Ullman et al., 2001) at later stages. Secondly, monitoring
activity patterns at multiple processing stages simultaneously is
desirable, given that early stages are influenced by processing
in later stages. To facilitate object recognition, invariant infor-
mation is for example fed back from higher to early visual
areas (Williams et al., 2008), suggesting that object perception
results from a dynamic interplay between visual areas. Finally,
it is important to realize that such top-down influences are not
limited to areas within the classical visual hierarchy, but also
engage brain-wide networks involved in “initial guessing” (Bar
et al., 2006), object selection (Serences et al., 2004), context
integration (Graboi and Lisman, 2003; Bar, 2004), and object
verification (Ganis et al., 2007). Such functions should be incor-
porated in computational brain models to fully comprehend
what makes human object recognition so flexible, fast, and accu-
rate. Modeling higher cognitive functions is in general challeng-
ing, but may be aided by considering empirical observations in
object perception studies where the level of top-down process-
ing varies (e.g., Ganis et al., 2007). The interactions between the
visual pathway and frontoparietal system revealed by such fMRI

studies can be compared at multiple processing stages to simula-
tions, allowing a more subtle, process-specific fine-tuning of the
modeled areas.

A number of recent fMRI studies applied en- and decod-
ing techniques developed in the field of Machine Learning and
Computer Vision, to interpret their data (Kriegeskorte et al., 2008;
Miyawaki et al., 2008; Haxby et al., 2011; Naselaris et al., 2011; see
LaConte, 2011 for an extention to Brain-Computer-Interfaces),
showing that both fields are starting to approach each other. For
example, by summarizing the complex statistical properties of
natural images using a computer vision technique, a visual scene
percept could be successfully reconstructed from fMRI activity
(Naselaris et al., 2009). The trend to investigate natural vision is
noteworthy, given that processing cluttered and dynamic natural
visual input rather than artificially created isolated objects poses
additional challenges to the visual system (Einhduser and Konig,
2010). We believe that now columnar-level imaging is in reach
with the advent of high-resolution fMRI (in combination with the
recently developed en- and decoding fMRI methods) the time has
come to more directly integrate computational and experimen-
tal neuroscience, and test which predictions of the various object
recognition models are supported by this new type of empirical
evidence.
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