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1. INTRODUCTION

It has been proposed that the dense excitatory local connectivity of the neo-cortex
plays a specific role in the transformation of spatial stimulus information into a temporal
representation or a temporal population code (TPC). TPC provides for a rapid, robust,
and high-capacity encoding of salient stimulus features with respect to position, rotation,
and distortion. The TPC hypothesis gives a functional interpretation to a core feature of
the cortical anatomy: its dense local and sparse long-range connectivity. Thus far, the
question of how the TPC encoding can be decoded in downstream areas has not been
addressed. Here, we present a neural circuit that decodes the spectral properties of the
TPC using a biologically plausible implementation of a Haar transform. We perform a
systematic investigation of our model in a recognition task using a standardized stimulus
set. We consider alternative implementations using either regular spiking or bursting
neurons and a range of spectral bands. Our results show that our wavelet readout circuit
provides for the robust decoding of the TPC and further compresses the code without
loosing speed or quality of decoding. We show that in the TPC signal the relevant
stimulus information is present in the frequencies around 100 Hz. Our results show that
the TPC is constructed around a small number of coding components that can be well
decoded by wavelet coefficients in a neuronal implementation. The solution to the TPC
decoding problem proposed here suggests that cortical processing streams might well
consist of sequential operations where spatio-temporal transformations at lower levels
forming a compact stimulus encoding using TPC that are subsequently decoded back to
a spatial representation using wavelet transforms. In addition, the results presented here
show that different properties of the stimulus might be transmitted to further processing
stages using different frequency components that are captured by appropriately tuned
wavelet-based decoders.

Keywords: temporal coding, visual system, wavelet transform, pattern recognition, spike neural network, Haar
wavelets

to real-world tasks such as hand-written character recognition

The encoding of sensory stimuli requires robust compression
of salient features (Hung et al., 2005). This compression must
support representations of the stimulus that are invariant to a
range of transformations caused, in case of vision, by varying
viewing angles, different scene configurations, and deformations.
Invariances and compression of information can be achieved by
moving across different representation domains i.e., from spatial
to temporal representations.

In earlier work we proposed an encoding paradigm that makes
use of this strategy called the Temporal Population Code (TPC)
(Wyss et al., 2003a). In this approach the input stimulus is
topographically projected onto a network of neurons organized
in a bi-dimensional Cartesian space with dense local connec-
tivity. The output of the network is a compressed representa-
tion of the stimulus captured in the temporal evolution of the
population spike activity. The space to time transformation of
TPC provides for a high-capacity encoding, invariant to posi-
tion, and image deformations that has been successfully applied

(Wyss et al., 2003b), spatial navigation (Wyss and Verschure,
2004) and face recognition in a humanoid robot (Luvizotto
et al., 2011). TPC shows that the dense excitatory local con-
nectivity found in the primary sensory areas of the mammalian
neo-cortex can play a specific role in the rapid and robust
transformation and compression of spatial stimulus informa-
tion that can be transmitted over a small number of projections
to subsequent areas. This wiring scheme is consistent with the
anatomy of the neo-cortex where about 95% of all connections
found in a cortical volume also originate in it (Sporns and Zwi,
2004).

In classical models of visual perception invariant representa-
tions emerge in the form of activity patterns at the highest level
of an hierarchical multilayer network of spatial feature detectors
(Fukushima, 1980; Riesenhuber and Poggio, 1999; Serre et al.,
2007). In this approach, invariances are achieved at the cost of
increasing the number of connections between the different lay-
ers of the hierarchy. However, these models seem to be based
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on a fundamental assumption that is not consistent with corti-
cal anatomy. In comparison to these hierarchical models of object
recognition, the TPC architecture has the significant advantage of
being both compact and wire independent thus providing for the
multiplexing of information.

Recently direct support for the TPC as a substrate for stimulus
encoding has been found in a number of physiological studies.
For instance, the physiology of the mammalian visual system
shows dynamics consistent with the TPC in orientation discrim-
ination (Samonds and Bonds, 2004; MacEvoy et al., 2009) and
spatial selectivity regulation (Benucci et al., 2007). In particular,
showing stimulus-specific modulation of the phase relationships
among active neurons. In the bird auditory system, the temporal
responses of neuron populations allow for the intensity invariant
discrimination of songs (Cyrus et al., 2008). Similarly in the infe-
rior temporal and prefrontal cortices information about stimulus
categories is encoded by the temporal response of populations of
neurons (Meyers et al., 2008; Barak et al., 2010). Signatures of the
TPC have also been found in the insect olfactory system where the
glomeruli and the projection neurons of the antennal lobe display
stimulus induced temporal modulations of their firing rate at a
scale of hundreds of milliseconds (Carlsson et al., 2005; Knusel
et al., 2007).

If the TPC plays a role in stimulus encoding it is relevant to
understand what its key coding features are and how these fea-
tures can be subsequently decoded in areas downstream from the
encoder. The readout by the decoder must be fast and compact,
extracting the key characteristics of the original input stimulus in
a compressed way. These key features must be captured in a non-
redundant fashion so that prototypes of a class can emerge and be
efficiently stored in memory and/or serve on-going action.

In a hierarchical model of sensory processing based on the
notion of TPC, the encoded temporal information provided by
primary areas is mapped back onto the spatial domain allowing
higher order structures to further process the stimulus. Hence,
a TPC decoder is required to generate a spatially structured
response from the TPC of the encoder. Taking into account these
requirements our question is how a cortical circuit can retrieve
the features encapsulated in the TPC.

In the past years, different strategies for decoding temporal
information have been suggested. A recently proposal is the so-
called Liquid State Machine, or LSM (Doetsch, 2000) which is an
example of a larger class of models also called reservoir comput-
ing (Lukosevic¢ius and Jaeger, 2009). In this approach the dense
local circuits of the cerebral cortex are seen as implementing a
large set of practically randomly defined filters. When applied to
reading out the TPC we have reported a lower performance as
compared to using Euclidean distance as a result of the LSM’s
noise sensitivity (Kntisel et al., 2004). In addition to being less
effective than a linear decoder, LSM is computationally expen-
sive requiring an additional layer of hundreds of integrate and
fire neurons, while performance strongly depends on the spe-
cific parameters settings which compromises generality. Given
that TPC is consistent with current physiology we want to know
whether an alternative approach can be defined that is more
tuned to the specific properties of the TPC, i.e., its temporal
structure.

A readout mechanism for temporal codes, such as TPC, could
also be based on an analysis of the temporal signal over different
frequency bands and resolutions. A population of readout neu-
rons tuned to different spectral bands could be possibly capable
to implement such a readout stage. In this scheme, the temporal
information of TPC is mapped back into a spatial representation
by cells responsive to different frequency bands and thus the spec-
tral properties of their inputs. A suitable framework for modeling
such a readout stage is the wavelet decomposition: a spectrum
analysis technique that divides the frequency spectrum in a desir-
able number of bands using variable-sized regions (Stéphane,
1998). Higher processing stages in the neo-cortex could make use
of such a scheme in order to capture information compressed and
multiplexed in different frequency bands by preceding areas.

The wavelet transform is a biological plausible candidate and
has already been extensively used for modeling cortical cir-
cuits in different areas (Stevens, 2004; Chi et al., 2005). The
classic description of image processing in V1 is based on a
two-dimensional Gabor wavelet transform (Daugman, 1980).
Recently, two alternative wavelet-based models approximating the
receptive field properties of V1 neurons in the discrete domain
have been proposed, which show additional desirable features
such as orthogonality (Saul, 2008; Willmore et al., 2008).

A one-dimensional wavelet transform can be interpreted as
a strategy for reading out the different spectral components of
the TPC that is equivalent to the wavelet-based models of V1
receptive fields (Jones and Palmer, 1987; Ringach, 2002). Thus,
providing for a general encoding-decoding model that can be
generalized to the whole of the neo-cortex given its relatively
uniform anatomical organization. Furthermore, from both repre-
sentation and implementation perspectives, orthogonal wavelets
are a compact way of decomposing a signal where the frequency
spectrum is divided in a dyadic manner: at each resolution level
of the filtering process a new frequency band emerges represented
by half of the wavelet coefficients presented in the previous reso-
lution level. Thus, meeting one of the fundamental requirements
of an efficient readout system: compactness.

Here, we combine the encoding mechanism of the TPC with
decoder that is based on a one-dimensional, orthogonal, and dis-
crete wavelet transform implemented by a biological plausible
circuit. We show that the information provided by the TPC gen-
erated at an earlier neuronal processing level can be decoded in a
compressed way by this wavelet read-out circuit. Furthermore, we
show that these wavelet transforms can be performed by a plau-
sible neuronal mechanism that implements the, so called, Haar
wavelet (Haar, 1911; Papageorgiou et al., 1998; Viola and Jones,
2001). The simplicity and orthogonality of the Haar wavelet
makes this readout process fast and compact in a implementation
that requires only four neurons.

To investigate the validity of our hypothesis we first define
a baseline for benchmarking the network’s performance in a
classification task. Benchmarking is done using a stimulus set
of images based on artificially generated geometric shapes. To
test the readout performance we evaluate how the information
extracted across different sets of wavelet coefficients, covering
orthogonal regions of the frequency spectrum, influences classi-
fication performance. The simulations are performed using two
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types of implementations: regular spiking and bursting neurons.
We consider these two types of models in order to address the
effects of spiking dynamics on the encoding and decoding perfor-
mance of the model. These two types of spiking behaviors have
also been observed in V1 pyramidal neurons (Hanganu et al,
2006; Turilli et al., 2011).

We also investigate the speed of encoding-decoding of the pro-
posed wavelet-based circuit in comparison to the method used
in previous studies of TPC that are based purely on linear clas-
sifiers. In the last experiments, we explore the generality that the
wavelet coefficients hold in forming prototypical representations
of an object class that can be stored in working memory in fast
object recognition tasks. In particular, we are concerned with the
question of how high-level information generated by sensory pro-
cessing streams can be flexibly stored and retrieved in long-term
and working memory systems (Verschure et al., 2003; Duff et al.,
2011).

One option for the memory storage problem would be a
labeled line code where specific axon/synapse complexes are ded-
icated to specific stimuli and their components (Chandrashekar
et al., 2006; Nieder and Merten, 2007). This approach, how-
ever, faces capacity limitations both in the amount of informa-
tion stored and the physical location where it can be processed.
Alternatively a purely temporal code, such as TPC, would be in
this respect independent of the spatial organization of the physical
substrate and allow the multiplexing of high-level information.
We show that this latter scenario is feasible and can be realized
with simple biologically plausible neuronal components.

Our results suggest that sensory processing hierarchies might
well comprise sequences of spatio-temporal transformations that
encode combinations of local stimulus features into perceptual
classes using sequences of TPCs encoding and their wavelet
decoding back to a spatial domain.

2. MATERIALS AND METHODS

The model is divided in two stages: a model of the lateral genicu-
late nucleus (LGN) and a topographic map of laterally connected
spiking neurons with properties found in the primary visual cor-
tex V1 (Figurel) (Wyss et al.,, 2003a,b). In the first stage we
calculate the response of the receptive fields of LGN cells to the

input stimulus, a gray scale image that covers the visual field.
The approximation of the receptive field’s characteristics is done
convolving the input image with a difference of Gaussians oper-
ator (DoG) followed by a positive half-wave rectification. The
positive rectified DoG operator resembles the properties of on
LGN center-surround cells (Rodieck and Stone, 1965; Einevoll
and Plesser, 2011). The LGN stage is a mathematical abstrac-
tion of known properties of this brain area and performs an edge
enhancement of the input image. In the simulations we use a ker-
nel ratio of 4:1, with a size of 10 x 10 pixels and variance 0 = 1.5
(for the smaller Gaussian).

The LGN signal is projected onto the V1 spiking model, where
the coding concept is illustrated in Figure 2. The network is an
array of N x N model neurons connected to a circular neigh-
borhood with synapses of equal strength and instantaneous exci-
tatory conductance. The transmission delays are related to the
Euclidean distance between the positions of the pre- and post-
synaptic neurons. The stimulus is continuously presented to the
network and the spatially integrated spreading activity of the V1
units, as a sum of their action potentials, results in the so called
TPC signal.

In the network, each neuron is approximated using the spiking
model proposed by Izhikevich (Izhikevich, 2003). These model
neurons are biologically plausible and computationally efficient
as integrate-and-fire models (Izhikevich, 2004). Relying only on
four parameters, our network can reproduce both regular (RS)
and bursting (BS) spiking behavior using a system of ordinary
differential equations of the form:

vV =0.047% +5v+ 140 —u+ 1 (1)
u = a(bv — u) (2)

with the auxiliary after-spike resetting:

V< C
u<—u+d

if v > 30mV, then { (3)

Here, v and u are dimensionless variables and a, b, ¢, and d are

dimensionless parameters that determine the spiking or burst-

ing behavior of the neuron unit and ' = %, where ¢ is time.

V1

Input LGN

Gabor
Filters

n—

TPC

Spikes

/
Array of
Spiking Neurons|

Time

FIGURE 1| The TPC encoding model. In a first step, the input image
is projected to the LGN stage where its edges are enhanced. In the
next stage, the LGN output passes through a set of Gabor filters

that resemble the orientation selectivity characteristics found in the
receptive fields of V1 neurons. Here we show the output response

of one Gabor filter as input for the V1 spiking model. After the image
onset, the sum of the V1 network’s spiking activity over time gives

rise to a temporal representation of the input image. This temporal
signature of the spatial input is the, so called temporal population code,
or TPC.
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FIGURE 2 | The TPC encoding paradigm. The stimulus, here represented
by a star, is projected topographically onto a map of interconnected

cortical neurons. When a neuron spikes, its action potential is distributed
over a neighborhood of a given radius. The lateral transmission delay of
these connections is 1 ms/unit. Because of these lateral intra-cortical
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interactions, the stimulus becomes encoded in the network’s activity
trace. The TPC representation is defined by the spatial average of the
population activity over a certain time window. The invariances

that the TPC encoding renders are defined by the local excitatory
connections.

The parameter a describes the time scale of the recovery vari-
able u. The parameter b describes the sensitivity of the recovery
variable u to the sub-threshold fluctuations of the membrane
potential v. The parameter ¢ accounts for the after-spike reset
value of v caused by the fast high-threshold KT, and d the
after-spike reset of the recovery variable u caused by slow high-
threshold NAT and KT conductances. The mathematical analysis
of the model can be found in (Izhikevich, 2006).

The excitatory input I in Equation 1 consists of two compo-
nents: first a constant driving excitatory input g; and second the
synaptic conductances given by the lateral interaction of the units
g:(t). So

I(t) = gi + g(1) (4)

For the simulations, we used the parameters suggested in
(Izhikevich, 2004) to reproduce RS and BS spiking behavior
(Figure 3). All the parameters used in the simulations are sum-
marized in Table 1.

The network architecture is composed of 24 populations
of orientation selective neurons where a bank of Gabor filters
are used to reproduce the characteristics of V1 receptive fields
(Figure 1). The filters are divided in layers of eight orientations
® € {0, §.2%, ...} and three scales denoted by 3. The distance
of the central frequency among the scales is 1/2 octave with a
max frequency Fpax = 1/10 cycles/pixel. The convolution with
Gs,@ is computed at each time step and the output is truncated
according to a threshold T; € [0,1], where the values above T;
are set to a constant driving excitatory input g;. Each unit can

be characterized by its orientation selectivity angle ©, its scale 8,
and a bi-dimensional vector x € R? specifying the location of its
receptive center within the input plane. So a column is denoted
by u(x, ©, 3).

The lateral connectivity between V1 units is exclusively excita-
tory with strength w. A unit u,(x, ¢, 8) connects with 1, if all of
the following conditions are met:

1. Be in the same population: ®, = ®p and §, = §;
2. Have a different center position: x, # Xp
3. Within a region of a certain radius: || x, — x, [|< r

According to recent physiological studies, intrinsic V1 intra-
cortical connections cover distances that represent regions of the
visual space up to eight times the size of single receptive fields
in V1 (Stettler et al., 2002). In our model we set the connectiv-
ity radius r to 7 units. The lateral synapses are of equal strength
w and the transmission delays 7, are proportional to || x; — X,||
with 1 ms/cell.

The TPC is generated by summing the network activity in a
time window of 128 ms. Finally, the output TPC vectors from dif-
ferent layers of orientation and scales are read out by the proposed
wavelet circuit forming the decoded TPC vector used for the sta-
tistical analysis. In discrete-time, all the equations are integrated
with Euler’s method using a temporal resolution of 1 ms.

2.1. NEURONAL WAVELET CIRCUIT
The proposed neuronal wavelet circuit is based on discrete
multi-resolution decomposition where each resolution reflects
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a different spectral range and uses the Haar wavelets as basis
(Stéphane, 1998). Approximation Coefficients, or AC, are the
high-scale, low-frequency components of the signal spectrum
obtained by convolving the signal with the scale function ¢.
The Detail Coefficients, or DC, are the low-scale, high-frequency
components giving by the wavelet function {r. Each component

Regular Spiking (RS)

25ms
<
_—
Burst Spiking (BS)
7
f-) 35ms
=

\_

— I(t)

FIGURE 3 | Computational properties of the two types of neurons used
in the simulations: regular (RS) and burst spiking (BS). The RS neuron
shows a mean inter spike interval of about 25 ms (40 Hz). The BS type
displays a similar interburst interval with a within burst interspike interval
of approximately 7ms (140 Hz) every 35 ms (28 Hz).

Table 1 | Parameters used for the simulations.

Variable Description Value
N Network dimension 80 x 80 Neurons
a Scale of recovery 0.02
Sensitivity of recovery 0.2
Crs Afterspike reset value of v for —65
RS neurons
Chs After-spike reset value of v for —55
BS neurons
drs Afterspike reset value of u for 8
RS neurons
dps Afterspike reset value of u for 4
BS neurons
v Membrane potential -70
Membrane recovery rest -16
g Excitatory input conductance 20
T; Minimum V1 input threshold 0.4
r Lateral connectivity radius 7 units
w Synapse strength 0.4

has a time resolution matched to the wavelet scale that works as a
filter.
The Haar wavelet | at time ¢ is defined as:
1 o0=<t<1
=1 -1 3<t=<1 (5)
0 otherwise

and its associated scale function ¢ as:

1 0<t<l1
0 otherwise

(1) = { (6)

In a biologically plausible implementation, the wavelet decom-
position can be performed based on the activity of two short-term
buffer cells Bl and B2 inhibited by an asymmetric delayed con-
nection from cell A (Figure 4A). The buffer cells integrate rapid
changes over a certain amount of time analogous to the scale
function ¢, from Equation 6. In our model, the buffer cells are
modeled as discrete low-pass Finite Impulse Response (FIR) fil-
ters. They are equivalent to the scale function ¢ in the discrete
domain. Buffer cells have been reported recently in other cortical
areas such as the prefrontal cortex (Koene and Hasselmo, 2005;
Sidiropoulou et al., 2009).

A I TPC

Time 128 ms

” Inhibion | Exc Exc
Envelope \4& Short Term

\4 Phase shift Buffer Cell

@ time 90° @
Inh Inh
Spike Spike
| IIIIII| i > lll |I Il >
Inh

Spikes

Integration Exc

profile gi\i
Wavelet
read out cell
B
[}
©
=
a Dc3
£
£ /_\ \
n/8 n/4 /2 T
Frequency

FIGURE 4 | (A) Neuronal readout circuit based on wavelet decomposition.
The buffer cells B1 and B2 integrate, in time, the network activity
performing a low-pass approximation of the signal over two adjacent time
windows given by the asynchronous inhibition received from cell A. The
differentiation performed by the excitatory and inhibitory connections to W
gives rise to a band-pass filtering process analogous to the wavelet detail
levels. (B) An example of band-pass filtering performed by the wavelet
circuit where only the frequency range corresponding to the resolution level
Dcs is kept in the spectrum.
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In our model, the buffer cells receive an inhibitory input from
A that defines the integration envelope. The inhibition has to be
over a time period of ¢ and with a shift in phase of 7/2 between
A to B2. Therefore, Bl and B2 will have their integration profile
shifted in time by . When the inhibition is synchronized in time
with the integration profile of the buffer cells, the period 2¢ deter-
mines the low-frequency cutoff or the resolution level ] associated
with the Haar scale function ¢, Equation 6 (low-pass filter). If
both Bl and B2 are excitatory, the projection to cell W gives rise
to the approximation level Al. On the other hand, if one buffer
cell is inhibitory, as in the example of Figure 4A, the detail level
Dy is obtained by cell W as performed by the Haar wavelet func-
tion itself (Equation 5). In our model, the inhibition is modeled
as discrete high-pass FIR filters. The combination of low-pass and
high-pass filters in cascade produces band-pass filters. Therefore,
the readout can be optimized to specific ranges of the frequency
spectrum (Figure 4B).

2.2. STIMULUS SET

The stimulus set is based on abstract geometric forms as used
previously (Wyss et al., 2003b). In a circular path with a diame-
ter of 40 pixels, five uniformly distributed vertices can connect to
each other with equal probability, defining the shape of a stim-
ulus class, (Figure5). The different objects forming a class are
generated by jittering the position of the vertices and the default
line thickness of 4 pixels. We defined a total of 10 classes for the
experiments with 50 exemplars per class.

For the experiments we subdivide the data-set in three sub-
sets with increasing complexity by varying the amount of jitter
in the vertices’ position and thickness of the connected line seg-
ments. The values of the jitter are given by uniform randomly
distributed factors with zero mean and standard deviation equal
to 0.03, 0.04, and 0.05 for the vertices’ position and 0.018, 0.021,
and 0.025 the thickness of each subset, respectively. We used sub-
set 1 with 50 stimuli per class as training and classification set. In
the case where subset 1 is used for classification, 50% of the stim-
uli are randomly assigned as training set and the other part used
for classification. The subsets 2 and 3 are only used as classifi-
cation set. In this case the subset 1 is entirely used for training.
Therefore, training stimuli are not used for classification and
vice-versa.

For estimating the degree of similarity among the images we
used the normalized Euclidean distance of the pixels. The nor-
malization is done as follows: a given stimulus has distance equal
to zero if it is equal to its class prototype and one if it is the glob-
ally most distant exemplar over all subsets. The image prototype
is defined by the five vertices that define the geometry of a class
with no jitter applied.

2.3. CLUSTER ALGORITHM

For the classification we used the following algorithm. The net-
work’s responses to stimuli from C stimulus classes S, S, ..., Sc
are assigned to C response classes R, Ry, ..., Rc of the train-
ing set, yielding a C x C hit matrix N(Sy, Rg), whose entries
denote the number of times that a stimulus from class S, elicits a
response in class Rg. Initially, the matrix N(Sq, Rg) is set to zero.
For each response r € S, we calculate the Euclidean distance of r
to the responses r’ # r elicited by stimuli of class S, :

o(r, Sy) = (Il p(r, 1‘/) 1) elicited by Sy (7)

where (.) denotes the average among the temporal Euclidean dis-
tances between r and r’ denoted by p(r, r’). The response r is
classified into the response-class Rg for that p(r, Sg) is minimal,
and N(Sg, Rg) is incremented by one. The overall classification
ratio in percentage is calculated summing the diagonal of the
N(Sq, Rg) and dividing by the total number of elements in the
classification set R. We chose the same metrics that was used
in previous studies to establish a direct comparison between the
results over different scenarios.

3. RESULTS

We start analyzing the properties of the proposed stimulus set
detailed in section “Stimulus set” Then, we run network simu-
lations in order to establish a baseline classification ratio in an
stimulus detection task. In the follow step we use the wavelet cir-
cuit to read out the TPC signal over different frequency bands and
compare the classification results to the previously established
baseline. In order to address the effect of spiking modality on the
decoding mechanism we run separate simulations with two dif-
ferent kinds of neurons: Regular and Burst Spiking (Equations 1
and 2). In the subsequent experiment, we investigate how the
speed of encoding is affected by reading out the TPC using a
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Subset 2 \'x\ “ X //\ H\\ ,

S RN M 7>K

—
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FIGURE 5 | The stimulus classes used in the experiments after the edge enhancement of the LGN stage.
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FIGURE 6 | The stimulus set. (A) Image-based prototypes (no jitter in the
vertices applied) and the globally most different exemplars with normalized
distance equal one. The distortions can be very severe as in the case of class
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neuronal implementation of the wavelet circuit. Subsequently,
we show how the dense wavelet representation provided by our
decoding circuit can be used to create class prototypes that can be
used to flexibly define the content of a memory system. Finally,
we perform an analysis of the similarity relationships between
the TPC encoding and the representation of the stimuli in the
wavelet and in the spatial domain respectively. The model param-
eters used for all simulations are specified in section “Materials
and methods” and in Table 1.

3.1. STIMULUS SET SIMILARITY PROPERTIES

We use an algorithmic approach to parametrically define our
stimulus classes. Every class is defined around a prototype.
(Figure 6A upper row). We measure how similar the exemplars
from the classification sets are to the respective image class proto-
type (see methods, section “Stimulus set”). The median Euclidian
distance of stimulus set 1-3 are 0.59, 0.64, and 0.70, respectively.
This increasing median translates in an increasing difficulty in the
classification of the stimulus sets.

3.2. BASELINE AND NETWORK PERFORMANCE

As a reference for further experiments we first establish a baseline
classification ratio. The baseline is defined by applying the cluster-
ing algorithm described previously (section “Cluster algorithm”)
directly in the spatial domain of the stimulus set. In this scenario,
the classification is performed over the pixel intensities of the cen-
tered and edge enhanced images (Figure 7). As to be expected,
the classification performance decreases with an increase of the
geometric variability of the three subsets used in the experiments.
For subset one, two, and three the classification ratio reaches 91%,
88%, and 82%, respectively.

domain.
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d
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3 60
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©
o 20¢ 1
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FIGURE 7 | Baseline classification ratio using Euclidean distance
among the images from the stimulus set in the spatial domain.

3.3. WAVELET CIRCUIT READOUT
We want to now assess the classification performance of compres-
sion capacity of the wavelet circuit we have proposed (section
“Neuronal wavelet circuit”). We consider a range of frequency
resolutions in a dyadic manner using the wavelet resolution lev-
els Acs corresponding to 0-15.5Hz, D¢s from 15.5 to 31 Hz,
Dc¢y from 31 to 62 Hz, Dc; from 62 to 125Hz, D¢, from 125 to
250 Hz and finally Dc¢; from 250 to 500 Hz. In the simulations, we
increase the inhibition and integration time of the cells A, B1, and
B2 (Figure 5) in order to explore the classification performance
in the stimulus classification task of the network.

The results using RS neurons show that the classification per-
formance has a peak in the frequency range from 62 Hz to 125 Hz
equivalent to the, so called, Dc; level in the wavelet domain where
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91%, 83%, and 74% of the TPC encoded stimuli are correctly clas-
sified for the subsets one, two, and three, respectively (Figure 2).
In comparison, using BS neurons the classification performance
has a peak in the frequency range from 15Hz to 31 Hz equiva-
lent to the, so called, Dcs level in the wavelet domain where 92%,
82%, and 74% of the responses are correctly classified for the sub-
sets one, two, and three, respectively (Figure 8). Reading out the
TPC without the wavelet circuit, i.e., using the integrated spiking
activity over time without the wavelet representation, we achieve
a classification ratio for subsets one, two, and three of 88%, 79%,
and 75 % for RS neurons and 87%, 80%, and 74 % for BS neu-
rons. Thus, the wavelet circuit adds a marginal improvement to
the readout of the TPC signals as compared to the control con-
dition for the RS neurons, in particular for the easier stimulus
set, while the BS version of the model does not show a marked
increase in classification performance.

However, while maintaining classification performance nearly
the same, the dyadic property of the wavelet discrete transform
compresses the length of the temporal signal by a factor of 8 and
32 using the Dc3 level and the Dcs levels for RS and BS neurons,
respectively. So the information encoded over the 128 ms of stim-
ulus presentation is captured by only a few wavelet coefficient, in
a compressed way.

In comparison, with the benchmark results (Figure7), the
wavelet circuit readout provides slightly lower classification ratio.
However, if we look at the BS network numbers, the TPC wavelet
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FIGURE 8 | Comparison among the correct classification ratio for
different resonance frequencies of the wavelet filters for both types of
neurons RS and BS. The frequency bands of the TPC signal is represented
by the wavelet coefficients Dc; to Acs in a multi-resolution scheme. The
network time window is 128 ms.

readout can generate a reliable representation of the input image
with 24 x 4 coefficients. In comparison, the 80 x 80 pixels of
the original input image used for the benchmark is extremely
compressed. The compression factor is about 66 times without
a significant loss in classification performance. Therefore, the
wavelet coefficients provide for a compact representation of the
stimuli in a specific region of the frequency spectrum.

3.4. CLASSIFICATION SPEED

A key feature of TPC is the encoding speed. It has been shown
in previous TPC studies that the speed of encoding is compatible
with the speed of processing observed in the mammalian visual
system (Thorpe et al., 1996; Wyss et al., 2003b; Tollner et al.,
2011). Here we investigate how fast the information transmit-
ted by the TPC is captured by the wavelet coefficients. We use
the mutual information measure (Victor and Purpura, 1999) to
quantify the amount of transmitted information for a varying
length of the signal interval of all the 24 network layers used to cal-
culate the Euclidean distance (Figure 9). The mutual information
calculation is performed using the wavelet coefficients generated
by the readout circuit. We also compare the speed of encoding
between the TPC signal in the temporal domain against the read-
out version based on the wavelet coefficients. For RS neurons,
the wavelet coefficients that lead to maximum classification per-
formance are localized in the frequency interval from 62 Hz to
125 Hz, equivalent to the resolution level Dc3. For BS neurons,
the frequency interval is in a lower range from 15Hz to 31 Hz,
equivalent to the resolution level Dc5. In these frequency ranges
the maximum classification performance is achieved as shown in
the previous section (Figure 8).

We observe that the number of bits encoded over the time
window of 128 ms is nearly the same when comparing the non-
filtered TPC signals (RS-TPC and BS-TPC, Figure 3) and the
signals captured by the wavelet readout (RS-Wav and BS-Wav,
Figure 9). However, in the case of the BS neurons the speed of
encoding is slower when the signal is decoded by the wavelet cir-
cuit. This effect is due to the longer time constant of the buffer
cells B1 and B2 to integrate and differentiate the signal at this
resolution level and, therefore, to compute the wavelet coeffi-
cients. The buffer cells need 32 ms to compute the first wavelet
(Figure9). In case of the RS neurons more than 90% of total
information was captured within the second wavelet coefficient,
or 16 ms after stimulus onset. Thus, the effect of the neuronal
wavelet circuit on the speed of encoding depends both on the
spiking behavior of the encoders and on the frequency range at
which the signal is read out.

3.5. PROTOTYPE-BASED CLASSIFICATION

In the last step, we investigate whether the wavelet representa-
tion can be generalized to the generation of prototypes from the
stimulus classes. The aim of the experiment is to create proto-
types learned from the training set that can be stored in memory
and retrieved in a future classification task. To construct such
representations we build class prototypes based on the wavelet
coefficients of the N stimuli making up the training set. For
each of the 10 stimulus classes we calculate the median over the
wavelet coefficients among the 50 response exemplars that define
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FIGURE 9 | Speed of encoding. Number of bits encoded by the network's
activity trace as a function of time. The RS-TPC and BS-TPC curves
represent the bits encoded by the network’s activity trace without the
wavelet circuit. The RS-Wav and BS-Wav correspond to the bits encoded by
the wavelet coefficients using the Dcjs resolution level for RS neurons and
the Dcs for BS neurons, respectively. For a time window of 128 ms the Dcs
level has 16 coefficients and the Dcs has only 4 coefficients. The dots in the
figure represent the moment in time where the coefficients are generated.

a training class (subset one). Hence, for each class we have a vec-
tor of wavelet coefficients that define the class specific prototype,
i.e., a representation of a class in the wavelet domain. Based on
the classification experiments we use for RS neurons the coeffi-
cients from the Dcs level and for BS neurons the Dcs levels. The
Fourier transform of the prototypes reveals the frequency compo-
nents that comprise the prototypes for the two different neuron
models we consider (Figure 10).

We present the classification set to the network and calcu-
late the Euclidean distance between the output responses of the

wavelet network within the ten previously created prototypes.
For the classification a simple criterion is adopted, the small-
est Euclidean distance defines the class to which the stimulus is
assigned.

The results for the RS neurons show that 86%, 82%, and 75%
of the responses are correctly classified (diagonal entries) by the
wavelet prototypes for the subset one, two, and three, respectively.
For the BS neurons we observe that 91%, 81%, and 72% of the
responses are correctly classified for the subset one, two and three,
respectively (Figure 11). The classification ratios are consistent
with the results previously presented in section “Wavelet circuit
readout” using the cluster algorithm (see Methods, “Cluster algo-
rithm”). However, the number of calculations in the classification
stage is drastically reduced because each class is represented by
a prototype vector of wavelet coefficients instead of a collection
of vectors. This result suggest that with a simple algorithm the
wavelet representation can be integrated into a compact descrip-
tion of a complex spatially organized stimulus. Therefore, the
information provided by densely coupled cortical neurons can
be learned and efficiently stored in memory independently of the
details of their spiking behavior.

In the second part of the experiment, we present a geomet-
ric and spatio-temporal analysis of the underlying neural code.
We perform a correlation analysis among the stimuli misclas-
sified using the wavelet prototypes in both wavelet and spatial
domains. We want to understand whether the geometric defor-
mations applied in the spatial domain are directly translated
to the temporal representation captured by the wavelet coeffi-
cients. This analysis is performed using the exemplars that where
misclassified using the wavelet prototypes approach. We calcu-
late the normalized Euclidean distances in the spatial domain
between each stimulus of the misclassified set and its prototype
for each class. Second, we apply the same distance measure but
using the wavelet representation of the misclassified stimuli and
the prototypes. Finally, we make a correlation among the dis-
tance values. (Figure 12). The results show a positive correlation
over the Euclidian distances in the two domains suggesting that
the amount of geometric deformations in the spatial domain is
directly translated to the wavelet representation of the temporal

code. The correlation is higher for RS neurons with a value of 0.62
against 0.50 for BS neurons (p < 0.001). The positive correlation
between both domains validates the wavelet prototypes and there-
fore the overall TPC transformation structure as an equivalent
representation of the stimuli classes that conserves the relevant
spatial information.

4. DISCUSSION
We have shown previously that in a model of the sensory cor-
tex, the representation of a static stimulus can be generated using
the temporal dynamics of a neuronal population or Temporal
Population Code. Here we have shown that this temporal code has
a specific signature in the phase relationships among the active
neurons of the underlying substrate. This signal is efficiently used
to pass a complete and dense amount of information that can be
decoded in further areas through a sub-set of wavelet coefficients.
The TPC is a relevant hypothesis on the encoding of sen-
sory events given its consistency with cortical anatomy and
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FIGURE 10 | Single-sided amplitude spectrum of the wavelet prototype
for each stimulus class used in the simulations. The signals x(t) where
reconstructed in time using the wavelet coefficients from the Dcs and Dcs
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optimal frequency response of the Dcj level (62-125 Hz) and of the Dcs level
(15.5-31 Hz). The less pronounced responses around 400 Hz are aliasing
effects due to the signal reconstruction to calculate the Fourier transform
(see discussion).

recent physiology. Since its introduction, however, a persistent
problem has been to extend this concept to a readout stage that
would be neurobiologically compatible. A priori it was not clear
whether a wavelet transform would be suitable because it implies
a specific structure in the TPC representation itself.

We have shown that decoding of the TPC can be based on
wavelet transforms. Using a systematic spectral investigation of
the TPC signal we observed that the Haar basis seems to be
a feasible choice providing robust and reliable decoding. The
achieved results associated with the Haar wavelet are consistent
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prototype.

with previous studies where Haar filters are used to preprocess
neuronal data prior to a linear discriminant analysis (Laubach,
2004). In comparison with the original TPC readout the neuronal
wavelet circuit proposed here showed the same encoding perfor-
mance for regular spiking neurons as compared to the algorithmic
version. However, for bursting neurons the wavelet readout had a
slower speed of encoding in comparison with the original TPC.
Therefore, the details of the readout mechanism such as its inte-
gration time constant and its wavelet resolution level depend on
the spiking dynamics.

The specific geometric characteristics of each stimulus class
could be captured in a very compact way using the wavelet fil-
ters. We showed that a visual stimulus can be represented and
further classified using a strongly compressed signal based on the
wavelet coefficients. Reading out the network based on regular
spiking neurons using wavelet coefficients yielded a compression
factor of 16.6 times the original image size. In the case of the
bursting neurons the compression ratio was even higher reach-
ing 66 times the original image size. Therefore, the spatial to
temporal transformation of the TPC model combined with the
efficient wavelet readout circuit can provide for a robust and

compact representation of sensory inputs for different spiking
modalities.

We have performed a detailed analysis of the misclassified
stimuli in order to better understand the similarity conserving
misclassifications we observe. We found a positive correlation
among the geometric distortions between the spatial and tem-
poral domain, represented by the wavelet coefficients. These
findings suggest that the deformations in the spatial domain
were directly translated into the wavelet domain and, therefore,
responsible for the misclassifications observed. This result rein-
forces the direct relationship present between the geometric and
spatio-temporal portions of the underlying neural code and its
decoding.

Our results also suggest that specific axon/synapse complexes
dedicated to specific features are not needed to successfully
encode visual stimuli. We have shown that the efficient structure
of an orthogonal basis like the Haar wavelet, can be implemented
by a neuronal circuit (see Figure 4), with low computational cost,
low latency and thus in a real-time system. The wavelet filters
as implemented with buffer neurons can be changed on line
depending on what kind of information needs to be retrieved and
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classification with relation to the Euclidean distances within the
prototyped classes.

its specific frequency range. This property allows multiplexing
high-level information from the visual input and flexible storage
and retrieval of information by a memory system. Indeed, recent
experiments have shown that distinct activity patterns overlaid in
primary visual cortex individually signal motion direction, speed,
and orientation of object contours within the same network at the
same time (Onat et al., 2011). We speculate that in a non-static
scenario other stimulus characteristics such as motion speed and
direction could be extracted from other frequency bands using
the same wavelet circuit.

The optimal resolution level for the wavelet readout was
determined through an systematic investigation based on the cor-
relation between compression and performance (Figure8). In
the case of regular spiking neurons we observed a maximum
classification performance in the Dcj resolution level, or in the
frequency range from 62 Hz up to 125 Hz. While for the burst-
ing neurons it falls in the range of 15.5Hz to 31 Hz. The wavelet
circuit itself does not define the choice of the wavelet resolution.
However, we could show that in the TPC framework the proposed
readout circuit can capture different properties of visual stim-
uli that travel through the sensory processing stream at different

frequency ranges. In our case the sensitivity of the wavelet cir-
cuit will depend on the feed-forward receptive fields combined
with the phase relationship imposed by the inhibitory units. The
mechanisms used by higher cognitive areas to manipulate the
frequency ranges and the kind of information carried in these
temporal information channels are currently not clear and are
subject of follow up studies.

In comparison to the LSM model previously applied to read
out the TPC, the wavelet circuit is computationally inexpensive
and requires only four neurons to be implemented. Although the
optimal readout performance also depends on specific parameters
to set the readout frequency range the generality of the model is
not affected as in the case of the LSM. Our results suggest that this
optimal frequency range is determined by the spiking behavior of
the neurons in the network.

From a technical perspective, one issue related to orthogo-
nal wavelets is the aliasing effect (Chen and Wang, 2001) which
could insert redundant spectral content in the TPC signals lead-
ing to reduced classification performance. This property can be
addressed by increasing the vanishing moments of the wavelet
basis, the effects of aliasing is smoothed, increasing the orthog-
onality between the spectral sub-bands. However, the filtering
process would get more sophisticated and would require more
than two buffer cells. In contrast, the Haar based readout circuit
is computationally efficient.

To evaluate the effects of different spiking behaviors on the
proposed readout circuit, we used a different and more physio-
logically constrained neuron model from previous TPC studies.
In comparison, the overall dynamics of the previous neuron
model are significantly different from the model used here. For
instance, the model used in previous studies (Wyss et al., 2003b)
has a strong onset response with about 50% more spikes in the
first 20 ms after stimulus onset as compared to the model used
in the current study that includes mechanisms for spike adap-
tation. In addition, we observed significant differences in the
sub-threshold fluctuations and the membrane potential enve-
lope between these neuron models. However, the overall results
reported here are compatible with those previously reported
(Wyss et al., 2003a,b). Based on that, we conclude that TPC and
the proposed readout mechanism are robust with respect to the
details of the spiking dynamics and the overall biophysical proper-
ties of the membrane potential envelope. We are not aware of any
other encoding-decoding model of cortical dynamics that shows
a similar generality.

The performance measure we use, essentially based on clas-
sification, is a well-established standard (Victor and Purpura,
1999) in the literature, based on Euclidean distance. We looked
both at classification performance and information encoded. In
order to develop the specific point of this paper, the decoding of
the TPC using wavelets, we adhere to this standard. Hence, the
results should be seen as relative to those established and pub-
lished for the TPC, contributing to the unresolved issue of how
a biologically plausible decoding can take place. We demonstrate
that a Wavelet-like transform can fulfill the requirements for an
efficient readout mechanism, thus generating a specific hypothe-
sis on the role of the sparse inter-areal connectivity found in the
neo-cortex.
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We have shown that the dense local connectivity of the neo-
cortex can transform the spatial organization of their inputs
into a compact TPC. By virtue of its multiplexing capability this
code can be transmitted to downstream decoding areas using
the sparse long-range connections of the cortex. We have shown
that in these downstream areas the TPC can be decoded and
further compressed using a wavelet based readout system. Our
results show that the TPC information is organized in a spe-
cific subset of frequency space creating virtual communication
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