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Learning by temporal association rules such as Foldiak’s trace rule is an attractive
hypothesis that explains the development of invariance in visual recognition. Consistent
with these rules, several recent experiments have shown that invariance can be broken
at both the psychophysical and single cell levels. We show (1) that temporal association
learning provides appropriate invariance in models of object recognition inspired by the
visual cortex, (2) that we can replicate the “invariance disruption” experiments using these
models with a temporal association learning rule to develop and maintain invariance, and
(3) that despite dramatic single cell effects, a population of cells is very robust to these
disruptions. We argue that these models account for the stability of perceptual invariance
despite the underlying plasticity of the system, the variability of the visual world and
expected noise in the biological mechanisms.

Keywords: object recognition, invariance, vision, trace rule, cortical models, inferotemporal cortex, visual

development

1. INTRODUCTION
A single object can give rise to a wide variety of images. The pix-
els (or photoreceptor activations) that make up an image of an
object change dramatically when the object is moved relative to its
observer. Despite these large changes in sensory input, the brain’s
ability to recognize objects is relatively unimpeded. Temporal
association methods are promising solutions to the problem of
how to build computer vision systems that achieve similar feats
of invariant recognition (Foldiak, 1991; Wallis and Rolls, 1997;
Wiskott and Sejnowski, 2002; Einhauser et al., 2005; Spratling,
2005; Wyss et al., 2006; Franzius et al., 2007; Masquelier and
Thorpe, 2007; Masquelier et al., 2007). These methods associate
temporally adjacent views under the assumption that temporal
adjacency is usually a good cue that two images are of the same
object. For example, an eye movement from left to right causes an
object to translate on the visual field from right to left; under such
a rule, the cells activated by the presence of the object on the right
will be linked with the cells activated by the presence of the object
on the left. This linkage can be used to signal that the two views
represent the same object—despite its change in retinal position.

Recent experimental evidence suggests that the brain may also
build invariance with this method. Furthermore, the natural tem-
poral association-based learning rule remains active even after
visual development is complete (Wallis and Bulthoff, 2001; Cox
et al., 2005; Li and DiCarlo, 2008, 2010; Wallis et al., 2009). This
paper addresses the wiring errors that must occur with such a
continually active learning rule due to regular disruptions of tem-
poral contiguity (from lighting changes, sudden occlusions, or
biological imperfections, for example).

Experimental studies of temporal association involve putting
observers in an altered visual environment where objects change
identity across saccades. Cox et al. (2005) showed that after
about an hour of exposure to an altered environment, where
objects changed identity at a specific retinal position, the sub-
jects mistook one object for another at the swapped position
while preserving their ability to discriminate the same objects at
other positions. A subsequent physiology experiment by Li and
DiCarlo using a similar paradigm showed that individual neu-
rons in primate anterior inferotemporal cortex (AIT) change their
selectivity in a position-dependent manner after less than an hour
of exposure to the altered visual environment (Li and DiCarlo,
2008).

The Li and DiCarlo experiment did not include a behavioral
readout, so the effects of the manipulation on the monkey’s per-
ception are not currently known, however, the apparent robust-
ness of our visual system suggests it is highly unlikely that the
monkey would really be confused between such different looking
objects (e.g., a teacup and a sailboat) after such a short expo-
sure to the altered visual environment. In contrast, the Cox et al.
psychophysics experiment had a similar timecourse (a significant
effect was present after 1 h of exposure) but used much more
difficult to discriminate objects (“Greebles” Gauthier and Tarr,
1997).

In this paper, we describe a computational model of invari-
ance learning that shows how strong effects at the single
cell level, like those observed in the experiments by Li and
DiCarlo do not necessarily cause confusion on the neural pop-
ulation level, and hence do not imply perceptual effects. Our
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simulations show that a population of cells is surprisingly robust
to large numbers of mis-wirings due to errors of temporal
association.

2. MATERIALS AND METHODS
2.1. HIERARCHICAL MODELS OF OBJECT RECOGNITION
We examine temporal association learning with a class of cor-
tical models inspired by Hubel and Wiesel’s famous studies of
visual cortex (Hubel and Wiesel, 1962). These models contain
alternating layers of simple S cells or feature detectors to build
specificity, and complex C cells that pool over simple cells to
build invariance (Fukushima, 1980; Riesenhuber and Poggio,
1999; Serre et al., 2007). We will focus on one particular such
model, HMAX (Serre et al., 2007). The differences between
these models are likely irrelevant to the issue we are study-
ing, and thus our results will generalize to other models in this
class.

2.2. THE HMAX MODEL
In this model, simple (S) cells compute a measure of their input’s
similarity to a stored optimal feature via a gaussian radial basis
function (RBF) or a normalized dot product. Complex (C) cells
pool over S cells by computing the max response of all the S
cells with which they are connected. These operations are typi-
cally repeated in a hierarchical manner, with the output of one C
layer feeding into the next S layer and so on. The model used in
this report had four layers: S1 → C1 → S2 → C2. The caption of
Figure 1 gives additional details of the model’s structure.

In our implementation of the HMAX model, the response of a
C2 cell—associating templates w at each position t—is given by:

rw(x) = max
t

⎛
⎝exp

⎛
⎝− 1

2σ

n∑
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(wt, j − xj)
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⎞
⎠

⎞
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FIGURE 1 | An illustration of the HMAX model with two different input

image sequences: a normal translating image sequence (left), and an

altered temporal image sequence (right). The model consists of four layers
of alternating simple and complex cells. S1 and C1 (V1-like model): The first
two model layers make up a V1-like model that mimics simple and complex
cells in the primary visual cortex. The first layer, S1, consists of simple
orientation-tuned Gabor filters, and cells in the following layer, C1, pool
(maximum function) over local regions of a given S1 feature. S2: The next
layer, S2, performs template matching between C1 responses from an input
image and the C1 responses of stored prototypes (unless otherwise noted,
we use prototypes that were tuned to, C1 representations of, natural image
patches). Template matching is implemented with a radial basis function

(RBF) network, where the responses have a Gaussian-like dependence on
the Euclidean distance between the (C1) neural representation of an input
image patch and a stored prototype. The RBF response to each template is
calculated at various spatial locations for the image (with half overlap). Thus,
the S2 response to one image (or image sequence) has three dimensions: x
and y, corresponding to the original image dimensions, and feature, the
response to each template. C2: Each cell in the final layer, C2, pools
(maximum function) over all the S2 units to which it is connected. The S2 to
C2 connections are highlighted for both the normal (left) and altered (right)
image sequences. To achieve ideal transformation invariance, the C2
cell can pool over all positions for a given feature as shown with the
highlighted cells.
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In the hardwired model, each template wt is replicated at all
positions, thus the C2 response models the outcome of a previous
temporal association learning process that associated the patterns
evoked by a template at each position. The C2 responses of the
hardwired model are invariant to translation (Serre et al., 2007;
Leibo et al., 2010). The remainder of this report is focused on
the model with learned pooling domains. Section 2.3 describes
the learning procedure and Figure 2 compares the performance
of the hardwired model to an HMAX model with learned C2
pooling domains.

As in Serre et al. (2007), we typically obtain S2 templates from
patches of natural images (except where noted in Figure 3). The
focus of this report is on learning the pooling domains. The
choice of templates, i.e., the learning of selectivity (as opposed
to invariance) is a separate issue with a large literature of its own1.

2.3. TEMPORAL ASSOCIATION LEARNING
Temporal association learning rules provide a plausible way to
learn transformation invariance through natural visual expe-
rience (Foldiak, 1991; Wallis and Rolls, 1997; Wiskott and
Sejnowski, 2002; Einhauser et al., 2005; Spratling, 2005; Wyss
et al., 2006; Franzius et al., 2007; Masquelier and Thorpe, 2007;
Masquelier et al., 2007). Objects typically move in and out of
our visual field much slower than they transform due to changes

1See Leibo et al. (2010) for a discussion of the impact of template-choice on
HMAX results with a similar translation-invariant recognition task to the one
used here.

in pose and position. Based on this difference in timescale we
can group together cells that are tuned to the same object under
different transformations.

Our model learns translation invariance from a sequence of
images of continuously translating objects. During a training
phase prior to each simulation, the model’s S2 to C2 connections
are learned by associating the patterns evoked by adjacent images
in the training sequence as shown in Figure 1, left.

The training phase is divided into temporal association peri-
ods. During each temporal association period the highly active
S2 cells become connected to the same C2 cell. One C2 cell is
learned during each association period. When modeling “stan-
dard” (undisrupted) visual experience, as in Figure 2, each asso-
ciation period contains all views of a single object at each retinal
position. If temporally adjacent images really depict the same
object at different positions, then this procedure will group all the
S2 cells that were activated by viewing the object, no matter what
spatial location elicited the response. The outcome of this learning
procedure in one association period is illustrated in Figure 1, left.
The C2 cell produced by this process pools over its connected S2
cells. The potential effect of a temporally altered image sequence
is illustrated in Figure 1, right. This altered training will likely
result in mis-wirings between the S2 and C2 neurons, which could
ultimately alter the system’s performance.

2.3.1. Learning rule
In Foldiak’s original trace rule, shown in Equation 2, the weight
of a synapse wij between an input cell xj and output cell yi is
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FIGURE 2 | The area under the ROC curve (AUC) (ordinate) plotted for the

task of classifying (nearest neighbors) objects appearing on an interval

of increasing distance from the reference position (abscissa). The model
was trained and tested on separate training and testing sets, each with 20 car
and 20 face images. For temporal association learning, one C2 unit is learned
for each association period or training image, yielding 40 learned C2 units.

One hard-wired C2 unit was learned from each natural image patch that S2
cells were tuned to, yielding 10 hard-wired C2 units. Increasing the number of
hard-wired features has only a marginal effect on classification accuracy. For
temporal association learning, the association period τ was set to the length
of each image sequence (12 frames), and the activation threshold θ was
empirically set to 3.9 standard deviations above the mean activation.
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strengthened proportionally to the input activity and the trace
or average of recent output activity at time t. The dependence of
the trace on previous activity decays over time with the δ term
(Foldiak, 1991).

Foldiak trace rule:

�w(t)
ij ∝ xjȳ

(t)
i

ȳ(t)
i = (1 − δ)y(t−1)

i + δy(t)
i

(2)

In the HMAX model, connections between S and C cells are
binary. Additionally, in our training case we want to learn con-
nections based on image sequences of a known length, and thus
for simplicity should include a hard time window rather than a
decaying time dependence. Thus we employed a modified trace
rule that is appropriate for learning S2 to C2 connections in the
HMAX model.

Modified trace rule for the HMAX model:

for t in τ :
if xj > θ, wij = 1
else, wij = 0

(3)

With this learning rule, one C2 cell with index i is produced for
each association period. The length of the association period is τ.

3. RESULTS
3.1. TRAINING FOR TRANSLATION INVARIANCE
We model natural invariance learning with a training phase where
the model learns to group different representations of a given
object based on the learning rule in Equation 3. Through the
learning rule, the model groups continuously translating images
that move across the field of view over each association period τ.
An example of a translating image sequence is shown at the top,
left of Figure 1. During this training phase, the model learns the
domain of pooling for each C2 cell.

3.2. ACCURACY OF TEMPORAL ASSOCIATION LEARNING
To test the performance of the HMAX model with the learning
rule in Equation 3, we train the model with a sequence of train-
ing images. Next, we compare the learned model’s performance to
that of the hard-wired HMAX (Serre et al., 2007) on a translation-
invariant recognition task. In standard implementations of the
HMAX model, the S2 to C2 connections are hard-wired, each
C2 cell pools all the S2 responses for a given template globally
over all spatial locations. This pooling gives the model transla-
tion invariance and mimics the outcome of an idealized temporal
association process.

The task is a 20 face and 20 car identification task, where
the target images are similar (but not identical) for different
translated views 2. We collect hard-wired C2 units and C2 units

2The invariance-training and testing datasets come from a concatenation of
two datasets from: ETH80 (http://www.d2.mpi-inf.mpg.de/Datasets/ETH80)
and ORL (http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.
html). Except when noted, the image patches used to obtain the S2 templates
were obtained from a different, unrelated, collection of natural images; see
Serre et al. (2007) for details.

learned from temporal sequences of the faces and cars. We then
used a nearest neighbor classifier to compare the correlation of C2
responses for translated objects to those in a given reference posi-
tion. The accuracy of the two methods (hard-wired and learned
from test images) versus translation is shown in Figure 2. The two
methods performed equally well. This confirms that the temporal
associations learned from this training yield correct invariance.

3.3. MANIPULATING THE TRANSLATION INVARIANCE OF A
SINGLE CELL

In their physiology experiments Li and DiCarlo identified AIT
cells that responded preferentially to one object over another, they
then performed altered temporal association training where the
two objects were swapped at a given position (Li and DiCarlo,
2008). To model these experiments we perform temporal associa-
tion learning (described by Equation 3) with a translating image
of one face and one car. For this simulation, the S2 units are tuned
to the same face and car images (see Figure 1 caption) to mimic
object-selective cells that are found in AIT. Next we select a “swap
position” and perform completely new, altered training with the
face and car images swapped only at that position (see Figure 1,
top right). After the altered training, we observe the response (of
one C2 cell) to the two objects at the swap position and another
non-swap position in the visual field that was unaltered during
training.

As shown in Figure 3, the C2 response for the preferred object
at the swap position (but not the non-swap position) is lower
after training, and the C2 response to the non-preferred object
is higher at the swap position. As in the physiology experiments
performed by Li and DiCarlo, these results are object and position
specific. Though unsurprising, this result draws a parallel between
the response of a single C2 unit and the physiological response of
a single cell.

3.4. INDIVIDUAL CELL VERSUS POPULATION RESPONSE
In the previous section we modeled the single cell results of Li
and DiCarlo, namely that translation-invariant representations of
objects can be disrupted by a relatively small amount of exposure
to altered temporal associations. However, single cell changes do
not necessarily reflect whole population or perceptual behavior
and no behavioral tests were performed on the animals in this
study.

A cortical model with a temporal association learning rule pro-
vides a way to model population behavior with swap exposures
similar to the ones used by Li and DiCarlo (2008, 2010). A C2 cell
in the HMAX model can be treated as analogous to an AIT cell
(as tested by Li and DiCarlo), and a C2 vector as a population of
these cells. We can thus apply a classifier to this cell population to
obtain a model of behavior or perception.

3.5. ROBUSTNESS OF TEMPORAL ASSOCIATION LEARNING
WITH A POPULATION OF CELLS

We next model the response of a population of cells to differ-
ent amounts of swap exposure, as illustrated in Figure 1, right.
The translating image sequence with which we train the model
replicates visual experience, and thus jumbling varying amounts
of these training images is analogous to presenting different
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FIGURE 3 | Manipulating single cell translation invariance through

altered visual experience. (A) Figure from Li and DiCarlo (2008)
summarizing the expected results of swap exposure on a single cell. P is the
response to preferred stimulus, and N is that to non-preferred stimulus.
(B) The response of a C2 cell tuned to a preferred object before (left) and
after (right) altered visual training where the preferred and non-preferred

objects were swapped at a given position. To model the experimental
paradigm used in Wallis and Bulthoff (2001), Cox et al. (2005), and Li and
DiCarlo (2008, 2010), altered training and final testing were performed on the
same altered image sequence. The C2 cell’s relative response (Z -score) to
the preferred and non-preferred objects is shown on the ordinate, and the
position (swap or non-swap) is shown on the abscissa.

amounts of altered exposure to a test subject as in (Li and DiCarlo,
2008, 2010). These disruptions also model the mis-associations
that may occur with temporal association learning due to sudden
changes in the visual field (such as light, occlusions, etc.), or other
imperfections of the biological learning mechanism. During each
training phase we randomly swap different face and car images
in the image sequences with a certain probability, and observe
the effect on the response of a classifier to a population of C2
cells. The performance, as measured by area under the ROC curve
(AUC), versus different neural population sizes (number of C2
cells) is shown in Figure 4 for several amounts of altered expo-
sure. We measured altered exposure by the probability of flipping
a face and car image in the training sequence.

A small amount of exposure to altered temporal training
(0.125 probability of flipping each face and car) has negligi-
ble effects, and the model under this altered training performs
as well as with normal temporal training. A larger amount of
exposure to altered temporal training (0.25 image flip probabil-
ity) is not significantly different than perfect temporal training,
especially if the neural population is large enough. With enough
C2 cells, each of which is learned from a temporal training
sequence, the effects of small amounts of jumbling in training
images are insignificant. Even with half altered exposure (0.5
image flip probability), if there are enough C2 cells, then clas-
sification performance is still reasonable. This is likely because
with similar training (multiple translating faces or cars) redun-
dant C2 cells are formed, creating robustness to association
errors that occurred during altered training. Similar redundan-
cies are likely to occur in natural vision. This indicates that in
natural learning mis-wirings do not have a strong effect on learn-
ing translation invariance, particularly with familiar objects or
tasks.

4. DISCUSSION
We use a cortical model inspired by Hubel and Wiesel (1962),
where translation invariance is learned through a variation of
Foldiak’s trace rule (Foldiak, 1991) to model the visual response to
altered temporal exposure. We first show that this temporal asso-
ciation learning rule is accurate by comparing its performance
to that of a similar model with hard-wired translation invari-
ance (Serre et al., 2007). This extends previous modeling results
by Masquelier et al. (2007) for models of V1 to higher levels in
the visual recognition architecture. Next, we test the robustness
of translation invariance learning on single cell and whole pop-
ulation responses. We show that even if single cell translation
invariance is disrupted, the whole population is robust enough
to maintain invariance despite a large number of mis-wirings.

The results of this study provide insight into the evolution
and development of transformation invariance mechanisms in
the brain. It is unclear why a translation invariance learning rule,
like the one we modeled, and those confirmed by Cox et al.
(2005) and Li and DiCarlo (2008, 2010), would remain active
after development. We have shown that the errors associated with
a continuously active learning rule are negligible, and thus it
may be simpler to leave these processes active than to develop a
mechanism to turn them off.

Extending this logic to other transformations is interesting.
Translation is a generic transformation; all objects translate in
the same manner, so translation invariance, in principle, can be
learned during development for all types of objects. This is not
true of “non-generic” or class-specific transformations, such as
rotation in depth, which depends on the 3-D structure of an
individual object or class of objects (Vetter et al., 1995; Leibo
et al., 2010, 2011). For example, knowledge of how 2-D images
of faces rotate in depth can be used to predict how a new face will
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FIGURE 4 | Results of a translation invariance task (±40 pixels)

with varying amounts of altered visual experience. To model
the experimental paradigm used in (Wallis and Bulthoff, 2001; Cox et al.,
2005; Li and DiCarlo, 2008, 2010; Wallis et al., 2009), training and
testing were performed on the same altered image sequence. The
performance (AUC) on the same translation-invariant recognition task

as in Figure 2, with a nearest neighbor classifier, versus the number
of C2 units. Different curves have a different amount of exposure
to altered visual training as measured by the probability of swapping
a car and face image during training. The error bars show ± one
standard deviation over runs using different natural image patches as S2
templates.

appear after a rotation. However, knowledge of how faces rotate
is not useful for predicting the appearance of non-face objects
after the same 3-D transformation. Many transformations are
class-specific in this sense3. One hypothesis as to why invariance-
learning mechanisms remain active in the mature visual system
could be a continuing need to learn and refine invariant represen-
tations for more objects under non-generic transformations.

Disrupting rotation in depth has been studied in psy-
chophysics experiments. Wallis and Bulthoff showed that training
subjects with slowly morphing faces, disrupts viewpoint invari-
ance after only a few instances of altered training (Wallis and
Bulthoff, 2001; Wallis et al., 2009). This effect occurs with a faster
time course than observed in the translation invariance experi-
ments (Cox et al., 2005). One possible explanation for this time
discrepancy is that face processing mechanisms are higher-level
than those for the “greeble objects” and thus easier to disrupt.
However, we conjecture that the strong, fast effect has to do with
the type of transformation rather than the specific class of stimuli.

Unlike generic transformations, class-specific transformations
cannot be generalized between objects with different proper-
ties. It is even possible that we learn non-generic transforma-
tions of novel objects through a memory-based architecture that
requires the visual system to store each viewpoint of a novel

3Changes in illumination are another example of a class-specific transforma-
tion. These depend on both 3-D structure and material properties of objects
(Leibo et al., 2011).

object. Therefore, it is logical that learning rules for non-generic
transformations should remain active as we are exposed to new
objects throughout life.

In daily visual experience we are exposed more to transla-
tions than rotations in depth, so through visual development or
evolutionary mechanisms there may be more cells dedicated to
translation-invariance than rotation-invariance. We showed that
the size of a population of cells has a significant effect on its
robustness to altered training, see Figure 4. Thus rotation invari-
ance may also be easier to disrupt, because there could be fewer
cells involved in this process.

Two plausible hypotheses both point to rotation (class-
specific) versus translation (generic) being the key difference
between the Wallis and Bulthoff and Cox et al. experiments. We
conjecture that if an experiment controlled for variables such as
the type and size of the stimulus, class-specific invariances would
be easier to disrupt than generic invariances.

This study shows that despite unavoidable disruptions, mod-
els based on temporal association learning are quite robust and
therefore provide a promising solution for learning invariance
from natural vision. These models will also be critical in under-
standing the interplay between the mechanisms for developing
different types of transformation invariance.

ACKNOWLEDGMENTS
This work was supported by the following grants: NSF-0640097,
NSF-0827427, NSF-0645960, DARPA-DSO, AFSOR FA8650-50-
C-7262, AFSOR FA9550-09-1-0606.

Frontiers in Computational Neuroscience www.frontiersin.org June 2012 | Volume 6 | Article 37 | 6

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Isik et al. Learning and disrupting visual invariance

REFERENCES
Cox, D., Meier, P., Oertelt, N., and

DiCarlo, J. J. (2005). ‘Breaking’
position-invariant object recogni-
tion. Nat. Neurosci. 8, 1145–1147.

Einhauser, W., Hipp, J., Eggert, J.,
Korner, E., and Konig, P. (2005).
Learning viewpoint invariant object
representations using a temporal
coherence principle. Biol. Cybern.
93, 79–90.

Foldiak, P. (1991). Learning invariance
from transformation sequences.
Neural Comput. 3, 194–200.

Franzius, M., Sprekeler, H., and
Wiskott, L. (2007). Slowness and
sparseness lead to place, head-
direction, and spatial-view cells.
PLoS Comput. Biol. 3:e166. doi:
10.1371/journal.pcbi.0030166

Fukushima, K. (1980). Neocognitron:
a self-organizing neural network
model for a mechanism of pattern
recognition unaffected by shift in
position. Biol. Cybern. 36, 193–201.

Gauthier, I., and Tarr, M. (1997).
Becoming a “greeble” expert:
exploring mechanisms for face
recognition. Vision Res. 37,
1673–1682.

Hubel, D. H., and Wiesel, T. N. (1962).
Receptive fields, binocular interac-
tion and functional architecture in
the cats visual cortex. J. Physiol. 160,
106–154.

Leibo, J. Z., Mutch, J., and Poggio,
T. (2011). “Why the brain sepa-
rates face recognition from object
recognition,” in Advances in Neural
Information Processing Systems
(NIPS), (Cambridge, MA).

Leibo, J. Z., Mutch, J., Rosasco, L.,
Ullman, S., and Poggio, T. (2010).
Learning generic invariances in
object recognition: translation and
scale. MIT-CSAIL-TR-2010–2061.

Li, N., and DiCarlo, J. J. (2008).
Unsupervised natural experience
rapidly alters invariant object rep-
resentation in visual cortex. Science
321, 1502–1507.

Li, N., and DiCarlo, J. J. (2010).
Unsupervised natural visual experi-
ence rapidly reshapes size-invariant
object representation in infe-
rior temporal cortex. Neuron 67,
1062–1075.

Masquelier, T., Serre, T., Thorpe, S., and
Poggio, T. (2007). Learning complex
cell invariance from natural videos:
a plausible proof. MIT-CSAIL-TR-
2007–2060.

Masquelier, T., and Thorpe, S. J.
(2007). Unsupervised learning of
visual features through spike timing
dependent plasticity. PLoS Comput.
Biol. 3:e31. doi: 10.1371/journal.
pcbi.0030031

Riesenhuber, M., and Poggio, T.
(1999). Hierarchical models of

object recognition in cortex. Nat.
Neurosci. 2, 1019–1025.

Serre, T., Wolf, L., Bileschi, S.,
Riesenhuber, M., and Poggio,
T. (2007). Robust object recogni-
tion with cortex-like mechanisms.
IEEE Trans. Pattern Anal. Mach.
Intell. 29, 411–426.

Spratling, M. (2005). Learning view-
point invariant perceptual represen-
tations from cluttered images. IEEE
Trans. Pattern Anal. Mach. Intell. 27,
753–761.

Vetter, T., Hurlbert, A., and Poggio,
T. (1995). View-based models of
3D object recognition: invariance
to imaging transformations. Cereb.
Cortex 3, 261–269.

Wallis, G., Backus, B. T., Langer, M.,
Huebner, G., and Bulthoff, H.
(2009). Learning illumination-
and orientation-invariant rep-
resentations of objects through
temporal association. J. Vis. 96,
1–8.

Wallis, G., and Bulthoff, H. (2001).
Effects of temporal association on
recognition memory. Proc. Natl.
Acad. Sci. U.S.A. 98, 4800–4804.

Wallis, G., and Rolls, E. T. (1997).
Invariant face and object recog-
nition in the visual system. Prog.
Neurobiol. 51, 167–194.

Wiskott, L., and Sejnowski, T. J. (2002).
Slow feature analysis: unsupervised

learning of invariances. Neural
Comput. 14, 715–770.

Wyss, R., Konig, P., and Verschure,
P. (2006). A model of the ventral
visual system based on temporal
stability and local memory. PLoS
Biol. 4:e120. doi: 10.1371/journal.
pbio.0040120

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 01 November 2011; accepted:
27 May 2012; published online: 25 June
2012.
Citation: Isik L, Leibo JZ and Poggio
T (2012) Learning and disrupting
invariance in visual recognition with
a temporal association rule. Front.
Comput. Neurosci. 6:37. doi: 10.3389/
fncom.2012.00037
Copyright © 2012 Isik, Leibo and
Poggio. This is an open-access article dis-
tributed under the terms of the Creative
Commons Attribution Non Commercial
License, which permits non-commercial
use, distribution, and reproduction in
other forums, provided the original
authors and source are credited.

Frontiers in Computational Neuroscience www.frontiersin.org June 2012 | Volume 6 | Article 37 | 7

http://dx.doi.org/10.3389/fncom.2012.00037
http://dx.doi.org/10.3389/fncom.2012.00037
http://dx.doi.org/10.3389/fncom.2012.00037
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

	Learning and disrupting invariance in visual recognition with a temporal association rule
	Introduction
	Materials and Methods
	Hierarchical Models of Object Recognition
	The HMAX Model
	Temporal Association Learning
	Learning rule


	Results
	Training for Translation Invariance
	Accuracy of Temporal Association Learning
	Manipulating the Translation Invariance of a Single Cell
	Individual Cell Versus Population Response
	Robustness of Temporal Association Learning with a Population of Cells

	Discussion
	Acknowledgments
	References


