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INTRODUCTION

In this paper we propose a firing statistics based neuronal network burst detection
algorithm for neuronal networks exhibiting highly variable action potential dynamics.
Electrical activity of neuronal networks is generally analyzed by the occurrences of spikes
and bursts both in time and space. Commonly accepted analysis tools employ burst
detection algorithms based on predefined criteria. However, maturing neuronal networks,
such as those originating from human embryonic stem cells (hnESCs), exhibit highly variable
network structure and time-varying dynamics. To explore the developing burst/spike
activities of such networks, we propose a burst detection algorithm which utilizes the firing
statistics based on interspike interval (ISl) histograms. Moreover, the algorithm calculates
ISI thresholds for burst spikes as well as for pre-burst spikes and burst tails by evaluating
the cumulative moving average (CMA) and skewness of the ISI histogram. Because of
the adaptive nature of the proposed algorithm, its analysis power is not limited by the
type of neuronal cell network at hand. We demonstrate the functionality of our algorithm
with two different types of microelectrode array (MEA) data recorded from spontaneously
active hESC-derived neuronal cell networks. The same data was also analyzed by two
commonly employed burst detection algorithms and the differences in burst detection
results are illustrated. The results demonstrate that our method is both adaptive to the
firing statistics of the network and yields successful burst detection from the data. In
conclusion, the proposed method is a potential tool for analyzing of hESC-derived neuronal
cell networks and thus can be utilized in studies aiming to understand the development
and functioning of human neuronal networks and as an analysis tool for in vitro drug
screening and neurotoxicity assays.

Keywords: spike trains, action potential bursts, burst analysis, hESCs, human embryonic stem cells, developing
neuronal networks, MEA, microelectrode array

different drugs, toxins, and chemicals, substrate integrated micro-

In this paper we study methods to assess the bursting behavior
of developing human neuronal networks. Previously, it has been
shown that human embryonic stem cell (hESC)-derived neuronal
cells are functional at single cell level (Carpenter et al., 2001; Erceg
et al., 2008; Lai et al., 2008; Daadi et al., 2009; Bissonnette et al.,
2011; Kim et al., 2011) and can form spontaneously functional
neuronal networks (Heikkili et al., 2009). Compared to the more
widely studied in vitro neuronal networks, that is, rodent primary
cultures, it seems that networking mechanisms and behavior of
hESC-derived neurons are more variable in their statistics from
individual spikes to bursts (Heikkilad et al., 2009). This calls for
new methods for the assessment of network development and
functioning, since traditional burst detection algorithms are not
in general capable of capturing the bursts and related features of
such networks.

To assess the functioning of neuronal networks in their dif-
ferent developmental stages and to observe their responses to

electrode arrays (MEAs) provide an in vitro platform to monitor
the firing patterns and the network activity (Gross et al., 1977;
Pine, 1980; Wagenaar et al., 2006; Illes et al., 2007; Heikkild et al.,
2009; Yla-Outinen et al., 2010). Neuronal activity is normally
described either by single cell firing called spikes or actual net-
work activity manifested by more or less regular occurring short
episodes of intense firing called bursts (Kandel and Spencer, 1961;
Connors et al., 1982; Gray and McCormick, 1996). In this type of
network activity, neurons are interacting and firing in an orches-
trated manner. It is suggested that bursts reflect and influence the
plasticity mechanisms and could be used for assessment of net-
work activity (Lisman, 1997). It has been shown, for example,
that cultured networks of rat cortical neurons exhibit a signifi-
cant increase in spontaneous bursting during the development of
new synapses and networks (Ichikawa et al., 1993; Maeda et al,,
1995; Kamioka et al., 1996). Thus, analysis of bursting behavior is
a way to assess the developing neuronal network properties.

Frontiers in Computational Neuroscience

www.frontiersin.org

June 2012 | Volume 6 | Article 38 | 1


http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/about
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Computational_Neuroscience/10.3389/fncom.2012.00038/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=Fikret_EmreKapucu&UID=43844
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=JarnoTanskanen&UID=44083
http://www.frontiersin.org/people/JarnoMikkonen/49052/activity
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=SusannaNarkilahti&UID=13454
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive
http://community.frontiersin.org/people/LauraYl%C3%A4_Outinen/13466

Kapucu et al.

Neuronal burst analysis tool

Even though bursting is a very fundamental property of the
neuronal networks, the definitions of bursts and burst detection
methods, however, differ between studies. Some define bursts
according to interspike interval (ISI) thresholds and the numbers
of spikes in bursts which are set by visual inspection, such as uti-
lizing a fixed ISI of 100 ms and a minimum number of 10 spikes
in bursts (Chiappalone et al., 2005), or again utilizing a fixed
ISI and a minimum number of spikes in bursts which are cho-
sen according to experimental conditions and differentiate bursts
from other activity based on the slopes in time-spike number
curves (Turnbull et al., 2005). Others utilize calculated average
ISIs of the measurements (Mazzoni et al., 2007), average firing
rates and alternatively a fixed ISI threshold of 100 ms (Wagenaar
et al., 2006), or logarithmic histogram of ISIs to calculate an ISI
threshold for detecting bursts (Selinger et al., 2007; Pasquale et al.,
2010). These methods, except that by Turnbull et al. (2005), are
focused on analyzing the activity of neurons extracted from rat
central nervous system such as rat cortical neurons (Chiappalone
et al., 2005; Wagenaar et al., 2006; Pasquale et al., 2010) and rat
hippocampal neurons (Mazzoni et al., 2007). Thus, they may
be tuned to the type of the analyzed network. In the develop-
ing networks, the spiking and bursting may behave differently
as the network is formed by active neuronal movement, process
formation, and synaptic modulation. In fact, beside the frequent
occurrence of “primitive” bursts which are formed by a few spikes,
we also observed bursts with tens of spikes and bursts lasting
from milliseconds to seconds while studying maturing hESC-
derived neuronal networks (Heikkild et al., 2009). The earlier
mentioned most widely applied burst detection and burst anal-
ysis methods, however, ignore the primitive and unstable spike
train and burst activity of hRESC-derived neuronal networks. The
spike trains or bursts of such networks are in this paper defined to
be “unstable” if their statistics such as the number of spikes form-
ing bursts, ISIs inside and between bursts, burst durations, etc.,
highly vary.

In addition to the need for an applicable burst detection
method for developing neuronal networks, it is necessary to
obtain characterization measures for the practical analysis of the
responses of the networks to different treatments, drugs, toxins,
or chemicals. Several parameters such as overall spiking activity,
burst frequency, and duration can be used in activity characteriza-
tion (Bal-Price et al., 2010; Adnismaa et al., 2011; Defranchi et al.,
2011; Hogberg et al., 2011). These parameters can be obtained
from large data pools by an analysis tool which has no bias for a
certain type of analyzed networks, such as fixed burst parameters,
e.g., ISI or the number of spikes in bursts. Thus there is a need
for methods that provide these parameters also intrinsically from
developing networks.

Here, we propose a burst detection method without any a
priori fixed burst criteria, and demonstrate its applicability with
maturing hESC-derived neuronal networks. To demonstrate the
need for such methods we illustrate the dynamic nature of
hESC-derived neuronal networks during maturation by spike
activity maps for different measurement days. Thereafter, we
shortly review the existing burst detection methods and com-
pare their performances in the analysis of hESC-derived neu-
ronal network recordings. We compare the applicability of the

methods, and finally discuss potential uses of the hereby pro-
posed method in assessing the characteristics of various neuronal
networks.

MATERIALS AND METHODS

CELL CULTURES

hESCs [cell line Regea 08/023, passages 36 (used in dataset-I),
42 (used in datasets-II and -III), 44 (used in dataset-IV), and
60 (used in dataset-V)] were differentiated into neuronal cells
using the previously published method (Sundberg et al., 2009;
Lappalainen et al., 2010) and plated on MEAs as described in
Heikkild et al. (2009). Briefly, 10-15 small aggregates dissected
from neurospheres (50,000-150,000 cells in total) were plated
on MEA dishes coated with polyethyleneimine (0.05% solu-
tion, Sigma-Aldrich, St. Louis, MO, USA) and subsequently with
human laminin (20 pg/ml, Sigma-Aldrich). Medium containing
basic fibroblast growth factor (4 ng/ml, FGF, Sigma-Aldrich) and
brain-derived growth factor (5ng/ml, BNDE, Gibco Invitrogen,
Carlsbad, CA, USA or Peprotech, Rocky Hill, NJ, USA) was
replaced three times a week. The cell seeding area in the MEA
was either the normal, that is, 20 mm in diameter or the area was
restricted to @ 4 mm to reduce the amount of cells needed and to
guide the cells to grow on top of the electrode area.

All the MEAs with cells were kept in an incubator (4+37°C, 5%
CO3, 95% air) prior to and between recordings. All recordings
were made using MEAs and equipment’s purchased from Multi
Channel Systems MCS GmbH (MCS, Reutlingen, Germany).
hESC experiments were performed in the Institute of Biomedical
Technology (University of Tampere, Tampere, Finland) that has
the approval from the Ethics Committee of the Pirkanmaa
Hospital District to culture the hESC lines.

ELECTROPHYSIOLOGICAL RECORDINGS

Electrical activities were recorded using MEAs with square
arrays of 59 substrate-embedded titanium nitride microelec-
trodes (30 um in diameter, 200 wm inter-electrode distance,
model: 200/30iR-Ti-gr, MCS) and internal embedded reference
electrodes. Signals were sampled at 20kHz, and stored to a
standard PC using the MC_Rack software (MCS). The culture
temperature was maintained at +37°C using a TC02 tempera-
ture controller (MCS) during the measurements. Recordings were
visually inspected for artifacts and the measurements or channels
likely to contain artifacts were excluded from the further analysis.
In this paper, for demonstrating the proposed analysis methods,
we opted for the analysis of artifact free data only. Spike detec-
tion was carried out online by setting an amplitude threshold at
six times the standard deviation of the signal noise level and the
spike time stamps and spike waveform cutouts were stored in the
MC Rack software.

For method validation, we utilized five different data sets
(Ds-1, Ds-11, Ds-111, Ds-1V, Ds-V) that altogether contained mea-
sured data from 27 MEAs (each containing 59 electrodes referred
to hereafter as channels or ch). Each MEA was measured alto-
gether three times (mesl, mes2, and mes3) and each measure-
ment lasted approximately 300 s. The first measurement day was
chosen according to the criteria that at least 10% of the channels
in a MEA were active and in active channels at least 100 spikes

Frontiers in Computational Neuroscience

www.frontiersin.org

June 2012 | Volume 6 | Article 38 | 2


http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Kapucu et al.

Neuronal burst analysis tool

were found during the recording period. The first measurement
day (mesl) varied between 6 and 22 days of culturing in MEA.
Thereafter, the developing networks were measured at 4-7 days
after the first measurement (mes2), and the third measurement
day (mes3) was 2—4 days after the second measurement day
(Table 1).

SPIKE ACTIVITY COLORMAPS

To observe how dynamic the firing was during the maturation
process of hESC-derived neurons, a spike activity map (col-
ormap) of all 59 channels for different measurement days were
formed. In our colormaps, MEA channels are represented as an
8 x 8 matrix and the layout of the MEA matches the colormap
matrix elements spatially. Since a MEA has 60 channels (includ-
ing the reference channel), the corner elements of the colormap
matrix have no values. Thus, the color shown in the corners of
the subfigures of Figure 1 is set based on values interpolated from
the neighboring channels.

At first, spikes were counted separately for the different mea-
surement days, yielding the total spike counts of each measure-
ment for every MEA channel. Secondly, the logarithms of these
spike counts were calculated to be able to show a wide range
of values in the same colormap, and the values were mapped to
color, the colors were interpolated between the channels, and the
colormaps were contoured.

ISI AND ISI HISTOGRAM BASED BURST DEFINITIONS

Time intervals between consecutive spikes, i.e., ISIs are very com-
monly used in the analysis of neuronal recordings. ISI has also
been used as one of criteria to detect the burst activity in some
reported algorithms (Chiappalone et al., 2005; Wagenaar et al.,
2006; Mazzoni et al., 2007). In these algorithms, an ISI thresh-
old is selected or calculated and a fixed number of consecutive
spikes (three, four, or ten, depending on the algorithm) with
ISIs less than the selected threshold are considered burst spikes.
On the other hand, an ISI histogram can be easily formed after
spike detection by counting the spikes and time binning ISIs. It
can be calculated for, e.g., each channel, recording, measurement
day or complete dataset. Although ISI histograms are capable of
representing some characteristics of the firing activities, it is usu-
ally not rewarding to analyze them alone. Gradual decay in the
IST histogram, forming a tail after the peak of the ISI histogram
and fluctuations of local extrema (local minima and maxima)
are common observations in ISI histograms. The analysis of such
histogram behavior is a promising method for network analysis,
although some aspects of network characteristics are not easily
observable in raw ISI histograms.

LOGARITHMIC INTERSPIKE INTERVAL HISTOGRAM (loglISIH)
ALGORITHM

One of the alternative solutions for analyzing ISI histograms
is plotting the logarithmic ISI instead of plain ISI, which was
proposed previously by Selinger et al. (2007) and employed in
rat cortical cell measurement analysis by Pasquale et al. (2010).
The method is based on plotting ISI histograms using logarith-
mic instead of linear scale. In the algorithm, ISI threshold is
selected at the point where intra-burst ISI is most clearly sepa-
rated from inter-burst ISI. Clear separation is indicated by the
distinct principal and secondary peaks formed in the logarith-
mic histogram representing intra and inter-burst ISIs, respectively
(see Figure 7A). Parameter “void,” which is described in detail
by Selinger et al. (2007), is calculated to assess this separation.
In logISIH algorithm, if the ISI threshold is lower than 100 ms,
bursts are detected only according to this threshold; otherwise a
fixed ISI threshold of 100 ms is employed in finding burst cores
and the calculated threshold is employed to detect burst bound-
ary spikes. Complete detected bursts are formed by combining
the detected burst cores with the boundary spikes adjacent to each
burst core. The algorithm has strict rules such as the occurrence
of the first peak (principal peak) in the ISI histogram, which
represents intra-burst ISIs, within a defined time window (here
100 ms). Recordings should have at least one peak at an ISI less
than 100 ms in their logarithmic IST histograms. In the case where
the logarithmic histograms of the recordings have no good sep-
aration between inter-burst and intra-burst ISIs or there is no
principal peak before 100 ms, another strict burst definition is
employed, such as requiring 10 spikes in a row which have ISIs
less than 100 ms, as in the study by Chiappalone et al. (2005). As a
result, this algorithm was not very suitable for the analysis of our
data as bursts with 10 or more spikes are hardly available. To make
the algorithm more comparable to our algorithm and applicable
to our data, we modified the algorithm to consider three spikes in
a row instead of 10.

CUMULATIVE MOVING AVERAGE METHOD FOR DETECTING BURSTS

For analyzing the recordings for which no clear separation can be
observed between the inter- and intra-burst ISIs, like the majority
of the recordings obtained from maturing hESCs (see Figure 8A),
we propose an adaptive method based on the cumulative moving
average (CMA) of the ISI histogram. As an alternative for ana-
lyzing the raw ISI histogram, CMA of the ISI histogram allows
us to observe the cumulative average spike count up to a partic-
ular ISI. Generally, CMA of a data series smoothens short term
fluctuations and highlights long term trends. In our particular
case, CMA of the ISI histogram provides us the general change

Table 1 | The measurement days and the number of included MEAs for different data sets.

Ds-l (7 MEAs) Ds-ll (6 MEAs) Ds-lll (7 MEASs) Ds-IV (6 MEAs) Ds-V (6 MEAs)
mes1 (days after plating) 20 7 22 6 10
mes2 (days after plating) 25 i 27 12 17
mes3 (days after plating) 28* 15 29 15 20

*Analysis based on six MEAs instead of seven.
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DS-V (N878) mes1 DS-V (N878) mes2 DS-V (N878) mes3
A1 1000 1 1000 1
2 2 2
3 3 3
4 100 2 100 2
5 5 5
6 10 65 10 6
7 7 7
8 0 8 8
12 3 45 6 7 8 12 3 45 6 7 8
DS-IV (N752) mes1 DS-1V (N752) mes2
B 1 1 1000 1
2 2 2
3 3 3
1 2 100 2
5 5 5
6 6 10 6
7 4 7
8 8 0 8
12 3 45 6 7 8
DS-11I (N732) mes1
C 1 1 1000 1
2 2 2
3 3 3
1 2 100 2
5 5 5
6 6 10 6
7 7 7
8 8 0 8
12 3 45 6 7 8
FIGURE 1 | Colormaps of the spike activities. Spikes were counted from all Logarithmic values of the counts are mapped to colors to better facilitate
three measurements time points (mes1, mes2, mes3) from the individual observations, dark blue representing silent channels (0 spikes) and dark red
MEAs from three different data sets (A) Ds-V, (B) Ds-IV, and (C) Ds-llI. the most active ones (1000 spikes).

in the trend of the ISI histogram, and allows us to define an
ISI value which we can use as a threshold to define the bursts
in a particular recording. Thus, without considering any local
changes we can identify the ISIs at which critical changes occur,
i.e., the ISI at which the average spike count starts decreasing. The
proposed algorithm has no strictly fixed parameters that would
render any particular types of neuronal network behaviors not
analyzable. Thus, every recording is evaluated based on its inner
dynamics and bursts are detected for further network analyzes
and characterization.

The proposed CMA algorithm was implemented in Matlab
environment for post recording analysis and consists of the steps
described in the following three subchapters.

Calculating ISI threshold for burst like patterns

Lety;,i =1, ..., N, with N the total number of ISI bins, be the
spike count in the ith ISI bin. The value of the cumulative sum of
the histogram CHj at the Ith, I < N, ISI bin is defined as

I
CH] = Z}/i (1)

i=1

The corresponding CMA is given by
1
CMA; = ; i:Zlyi 2)
whose maximum, CMA,,,, is reached at the mth ISI bin, and

k
m = arg max (% Zyi) (3)

k=1...N \ K

This point represents the maximum that the average spike
count reaches. ISI threshold for defining a burst might, for
example, be selected at this maximum point after which CMA
begins to decrease. However, adding a tolerance to this maxi-
mum, i.e., selecting the actual ISI threshold as o - CMA,,, where
0 < a < 1, strengthens the burst detection. Here, o is selected
according to the ISI behavior of the ISI histogram. Generally,
the ISI histogram of a burst containing recording and its CMA
curve exhibit a peak at lower ISI values and a tail at higher
ISI values. Intra-burst ISIs are expected to be in the neighbor-
hood of the peak because of the fact that intra-burst ISIs are
shorter than the ISIs of individual spikes which don’t belong to
a burst. If they exist, individual spikes are located in the tail
of the histogram, whereas burst tails or pre-burst spikes (burst
related spikes) are located in the histogram between ISIs of intra-
burst spikes and ISIs of individual spikes. For a simple bursting
model, in which ISI values do not widely vary, ISI values will
form an almost symmetrical distribution with a short tail, i.e.,
the skewness of the distribution is approximately zero, and most
of the burst spikes are expected to be located in the vicinity of
CMA,, (c.f., Figure 2A). Thus, we can define two parameters: o;
which can be set close to one, and for the burst related spikes
oy < oy. However, for most of the burst models ISI histograms
lean to the right with a tail, i.e., they are positively skewed. In
these cases, ISI values have large variance, and also the tail of
the ISI histogram contains intra-burst ISIs (c.f., Figures 2B,C).
Longer the tail, more skewed the histogram, and the smaller o
can be set not to miss the intra-burst ISIs in the tail. Denoting
the ISI at CMA,, (3) by x,, the ISI threshold x;, x; > x,, for
burst detection is found at the mid time point of the ISI bin for
which the value of the CMA curve is the closest to ao- CMA,,,.
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FIGURE 2 | Simulation of different bursting models and their ISI
histograms with the corresponding calculated CMA curves and
skewness values. (A) A simple model whose ISl values don't widely

vary. ISl distribution is almost symmetrical with a short tail and an
approximate skewness value of 0.2. On the left hand side, the ISI histogram
is shown with gray bars and the corresponding CMA curve is shown with
black line. On the right hand side, the bursts detected using an « value which

At 10
>
3 skewness~0.2
> O
b=
Q.
w 0 T
0 200 400 600 800 1000 2 4 6 8 10
ISI (ms)
B -*g 10
2 skewness~1.2
©s
=
Q.
w 0 I T
0 200 400 600 800 1000 2 4 6 8 10
ISI (ms) Time (s)
ce 10
3 skewness~3 s -
3 5 O ® 0O OO ©® @
: LIl |
Q.
n 0 . - L L L L Ll L L L " '
0 200 400 600 800 1000 2 4 6 8 10
ISI (ms) Time (s)

corresponds to the skewness value are labeled by black lines. Black circles
denote the burst spikes whereas red crosses represent the burst related
spikes [similarly for (B) and (C)]. (B) A bursting model with a wider tail in its
ISI histogram with an approximate skewness value of 1.2. (C) A bursting
model with a wider ISI distribution than in the previous models.
Consequently, its histogram has a longer tail and a relatively higher skewness
value of approximately 3.

FIGURE 3 | Selecting thresholds for burst ISls by using CMA curve.

(A) The ISI histogram (gray bars), cumulative histogram (dash-dotted), and the
corresponding CMA curve (solid). Vertical axis is logarithmic. (B) Maximum
value of CMA curve, CMA,,, is reached at the ISI x,, and the ISI threshold

A
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x¢ for bursting was found at the ISI corresponding to the CMA value closest
to o - CMA,,. The ISI threshold for burst detection is marked with red
dash-dotted vertical line. Vertical axis is linear and thus the cumulative
histogram is not shown.

In Figure3, CMA of the ISI histogram and the calculation of
the threshold are illustrated. After calculating the threshold, burst
detection is employed, here with the requirement of at least
three spikes in a row (triplet) with ISIs below the calculated ISI
threshold. We consider that extracellular burst means more event

than one, as also noted by Lisman (1997) and Izhikevich et al.
(2003), thus we concentrated on triplets to be sure for this study.
However, also two spikes in a row (duplet) instead of a triplet
can be accommodated in the algorithm’s if the user prefers this
option.
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Calculating 1S threshold for burst related spikes

The term burst related spikes is used here for defining the burst
tails or pre-burst spikes which are located in the neighborhood of
bursts and are an essential part of the bursting behavior. In a pre-
vious study, changes in the firing activity before and after bursts
were observed and analyzed (Wang and Hatton, 2005). Burst tails
have also been studied and utilized in classifying bursting behav-
iors (Wagenaar et al., 2006). It is common to observe the burst
related spikes in our recordings as well. To calculate ISI thresh-
old for the burst related spikes with oy, the first step of the CMA
algorithm is repeated. After detecting the potential burst related
spikes, the ones which are not following or followed by a burst are
omitted.

To automatically select a values, we can form a scale of o val-
ues with the corresponding skewness values. This relationship is
depicted in Figure 4 with oy values used for detecting burst spikes
and o values used for detecting burst related spikes. The scale was
formed by experimenting with the relation of o and skewness for
our recordings.

Extending bursts with the burst related spikes and merging close
bursts

The burst related spikes are included in their neighboring bursts in
this step. Also, the bursts which are closer to each other than the
threshold calculated in the second step are merged together. This
step also corrects erroneous burst spike detections and misses
caused by ISI variance inside bursts and is especially advanta-
geous for the analysis of maturing networks, which frequently
have high ISI variance and consist of both bursts and individ-
ual spikes. Figure 5 demonstrates data with high intra-burst ISI
variability. Black circles are detected burst spikes whereas red
crosses are the detected burst related spikes after the first step
of CMA algorithm, whereas black lines indicate bursts after the
extending and merging process. In Figure 5, the burst around
the 50th second has an intra-burst ISI variability of approxi-
mately 600 ms and the burst related spikes are detected during
the burst. Extending bursts to the burst related spikes and merg-
ing close bursts, we get the satisfactorily detected burst marked
with black line instead of the erroneously detected two separate
bursts.

ANALYSIS OF THE DETECTED BURSTS

After detecting the bursts by CMA algorithm, all the bursts from
five data sets were pooled according to their measurement days.
Additionally, we pooled the bursts according cell seeding area
size on the MEAs. For analyzing the bursts, we calculated three
parameters from the detected bursts for each channel: average
burst duration (ABD), total number of bursts detected (TNB),
and average number of spikes per burst (ASpB). The relations of
these parameters were plotted for different measurement days to
analyze the changes during the development.

RESULTS

A colormap which shows the spike activities is a useful tool for
viewing the channel dynamics of hESC-derived neurons during
the maturation process. The activity colormaps for the three mea-
surement days (mesl, mes2, and mes3) of three MEAs (N732,
N752, and N878) from three data sets (Ds-III, Ds-IV, and Ds-V)
are presented in Figure 1. The dynamics of the networks can be
observed from the fading and rising of the firing activities in time.

Before proceeding to compare the burst detection results using
the previously published methods (Chiappalone et al., 2005;
Pasquale et al., 2010) and our method, we investigated if it was
appropriate to set one fixed threshold to define intra-burst ISIs for
the burst detection algorithms. Since the principal peak in a loga-
rithmic histogram represents mostly the intra-burst ISI values as
mentioned earlier, the principal peak ISI values of our recordings
were calculated to observe the feasibility of using a fixed threshold
as in previously published algorithms.

In Figure 6 are shown the logarithmic ISI histograms of the
selected active channels whose principal peaks of the logarith-
mic histograms include at least 30 spikes to make the three
different common types of logarithmic ISI histogram trends
found in hESC-derived neuronal recordings clearly observable.
Histograms with two well separated peaks, with only one peak
and no local extrema, and with local extrema which cannot be
separated well enough are typical in our recordings. Figure 6A
demonstrates that both the principal ISI values and the histogram
shape may be greatly varying. To further show the variability of
the ISI value of the peak, logarithmic ISI histograms for all of the
channels from every recording were calculated and the locations

Skewness 1 4 9
Qi 1 0.7 0.5 0.3
| | |
| [ [
a2 0.5 0.3 0.1
| | |
[ Il 1l
FIGURE 4 | Scale of o values and the corresponding ISI distribution as 1,0.7 0.5, and 0.3 for the skewness values less than 1, 4, 9, and more
skewness values. The scale is formed by experimenting with the relation of than 9, respectively. ay values were set for burst related spikes as 0.5, 0.3,
a and skewness values for our recordings. ay values were set for burst spikes and 0.1 for the skewness values less than 4, 9, and more than 9, respectively.
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FIGURE 5 | Bursting data with high intra-burst ISl variability. Black circles are the detected burst spikes whereas red crosses are the detected burst related
spikes after the first step of CMA algorithm. Black lines indicate the bursts after the extending and merging process.

FIGURE 6 | The logarithmic ISI histograms and their principal peak
locations for the data selected to illustrate the different commonly
encountered cases. (A) Histograms with two well separated peaks (blue
dashed-dotted and green dashed lines), with only one peak and no local
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extrema (black dotted line), and with local extrema which cannot be
separated well enough (purple solid line), are typical for ISIs of hESC-derived

neuronal recordings. (B) Principal peak locations of selected channels vary
from approximately 30-2000 ms.

of the principal peaks consisting of the minimum of 30 spikes are
shown in Figure 6B. The peak locations have an approximate ISI
range from 30 to 2000 ms.

Figure 7A demonstrates the logarithmic IST histogram of the
data from one channel of a MEA (MEA N728, Ds-II, mes2) which
exhibits clearly separated bursts shown in Figure 7B. In the case
shown in Figure 7, it can be seen that the principal peak (red cir-
cle) and the secondary peak (red cross) are well separated and the
ISI threshold for the burst boundary spikes is calculated at 1259 ms

(blue dashed line). On the other hand, the location of the princi-
pal peak is almost at the proposed threshold for the burst cores
at 100 ms. Accordingly, we experimented with the ISI thresholds
for the burst cores at 100, 200, and also at 1000 ms, which seems
more rational when observing the Figure 7A. The burst detec-
tion results labeled with “1” in Figure 7B represent the results by
the logISIH algorithm with the threshold ISI of 100 ms as also
previously shown (Pasquale et al., 2010). The results obtained by
changing the threshold to 200 ms for the principal peak locations
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FIGURE 7 | The logarithmic ISI histogram of a channel with well
separated inter- and intra-burst ISls. (A) Logarithmic histogram (black solid
line) has two different peaks where red circle shows the principal peak and
the red cross shows the secondary peak. Threshold for the burst boundary
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spikes is calculated to occur at 1259 ms (blue dashed line). (B) Burst
detection results of logISIH method by employing the burst core and principal
peak thresholds at 100, 200, and 1000 ms are labeled as 1, 2, and 3
respectively. The result of the CMA algorithm is labeled as 4.
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FIGURE 8 | The logarithmic ISI histogram of a channel with poorly
separated inter- and intra-burst ISls. (A) Logarithmic histogram (black solid
line) has no well-definable principal or secondary peaks. (B) Burst detection
results obtained with pre-defined thresholds. The results obtained by

Ds-lll mes1 N712 ch#14

90 100 110 120 130 140
Time (s)

employing a threshold for intra-burst spikes of 100 ms with at least 10 spikes
in a burst, 100 ms with at least three spikes, and 200 ms with at least three
spikes, are labeled as 1, 2, and 3, respectively. The result of the CMA
algorithm is labeled as 4.

and for the burst cores are shown labeled “2” The results obtained
by changing ISI threshold for the burst cores from 100 to 1000 ms
and also changing the threshold for the principal peak locations
to 1000 ms are shown labeled “3.” The results given by our CMA
algorithm are shown labeled “4” in Figure 7B. Skewness of the ISI
distribution was in this case found to be 4.7, which corresponds
too; = 0.5and o, = 0.3.

Figure 8A shows an example of logarithmic ISI histogram of a
recording in which the bursts are not clearly separable. As can be
seen, results cannot be obtained by logISTH algorithm since the
required criterion for the separation cannot be satisfied. Instead,
we used fixed ISI threshold values and fixed number of burst
spikes as the criteria to compare the methods. In Figure 8B, 50 s of
the recording and the results are shown to better observe the burst
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detection results. The results labeled from “1” to “3” in Figure 8B
represent the algorithm with 100 ms intra-burst ISI threshold and
the minimum of 10 spikes for detecting bursts (Chiappalone et al.,
2005) and its modified versions alike in Figure 7. The algorithm
with the criteria of 100 ms intra-burst ISI threshold and the min-
imum three of spikes in a burst is labeled with “2,” whereas the
algorithm with 200 ms intra-burst ISI threshold with the min-
imum of three spikes is labeled with “3” The result of CMA
algorithm for this recording is labeled with “4.” In this case skew-
ness of the ISI distribution is found to be 2.7, which corresponds
too; = 0.7and ap, = 0.5.

Further results obtained with logISIH algorithm by chang-
ing its parameters for testing its applicability for analyzing our
recordings are shown in Figure9. For this case, the time win-
dow for principal peaks and ISI threshold for burst cores was
set at 200 ms, which is different from that proposed by Pasquale
et al. (2010). As seen in Figure 9A, logISIH algorithm with the
fixed ISI threshold of 200 ms does not detect more than one
burst in this data. This is because the principal peak of the log-
arithmic histogram for this data is beyond the ISI of 200 ms. In
comparison, our method succeeds in finding bursts in this data
(Figure 9A). In Figure 9B is shown a case in which some of the
bursts correctly found by our method are missed by the logISTH
algorithm, whereas in case shown in Figure 9C, the burst detec-
tion results between the algorithms are different. For the cases
shown in Figures 9A,B, the algorithm proposed in this paper is

clearly advantageous over the logISIH algorithm. For the case
shown in Figure 9C, the selection of the preferable algorithm
depends on the desired subsequent analysis.

We analyzed the usability of the CMA algorithm further
with recordings from differently behaving hESC-derived neu-
ronal networks. Recordings shown in Figures 10A—C have dif-
ferent skewness values of their ISI distributions. As seen from
Figures 10A—C, the longer the tail of the ISI histogram, the big-
ger the skewness value, which also indicates higher variance of
the ISI values. Figure 10A presents a recording which has closely
located ISI values and naturally almost symmetrical ISI distri-
bution with skewness of one. Accordingly, burst detection ISI
threshold is set at the peak of CMA curve. On the other hand,
the recordings presented in Figures 10B,C have more positively
skewed ISI distributions with increasing variance of the ISI val-
ues, and accordingly ISI thresholds are calculated with smaller
a values with the result of setting the detection threshold further
away to the right from the peak of the CMA curve.

We also tested the usability of the methods with a larger
amount of data to demonstrate how much of the data is produced
for further burst analysis by different methods without consider-
ing whether the burst detection was true or false. Simply, if a burst
detection algorithm doesn’t detect any bursts in a recording, that
recording is not included in the further analysis and vice versa.
Thus, we applied all the algorithms on a collection of data sets
consisting of MEA channels which potentially exhibited bursts.

A Ds-Il mes3 N729 ch#48
I 1 1 | |
0 50 100 150 200 250 300
Time (s)
B Ds-ll mes3 N729 ch#21
LI A || A |
0 50 100 150 200 250 300
Time (s)
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A 1 1 e R 1
0 50 100 150 200 250 300
Time (s)
FIGURE 9 | Results obtained with logISIH algorithm by changing (A) loglISIH algorithm detected only one burst in this recording.
the time window for the principal peaks and the ISI thresholds (B) Some of the bursts which were detected by CMA algorithm are
of the burst cores to 200 ms. Black and red lines are bursts detected missed by loglSIH algorithm. (C) logISIH algorithm detected different
by CMA and LoglISIH algorithms, respectively, during approximately 300s. bursts than CMA algorithm.
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FIGURE 10 | Burst detection results of CMA algorithm for differently
behaving networks. Recordings shown in the right panels have different
skewnesses of their ISI histograms. The ISI histograms (gray bars), CMA
curves (blue lines), and the thresholds for the burst and burst related spikes
(black and red lines, respectively) are shown in the left panels. Skewness
values and the corresponding o values used for calculating these thresholds
are given along with the histograms. Logarithmic scale is used for the
vertical axis since CMA curves and histogram values have very different
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scales. (A) Histogram and CMA curve of a recording which has the
calculated ISI histogram skewness of 1 (left panel). Detected bursts

during 25's of the recording (right panel). (B) Histogram and CMA curve of a
recording which has the calculated ISI histogram skewness of 6.8 (left panel).
Detected bursts during 90 s of the recording (right panel). (C) Histogram

and CMA curve of a recording which has the calculated ISI histogram
skewness of 9.2 (left panel). Detected bursts in the entire recording of 300 s
(right panel).

Table 2 | The number of burst containing channels which are found by different methods.

Ds-l Ds-Il Ds-lll Ds-IV Ds-V
Number of recordings with over 12/18 47/93 76/117 14/27 41/86
50 spikes/Total number of recordings

Number of burst CMA algorithm 7 (39%) 57 (61%) 78 (67 %) 13 (48%) 46 (53%)
containing logISIH (100 ms threshold)* 6 (33%) 13 (14%) 49 (42%) 10 (37%) 16 (19%)
channels found by Ten spikes with IS < 100 ms* 1 (6%) 0(0%) 9 (8%) 1 (4%) 1 (1%)
different burst Five spikes with ISI < 100 ms** 3(17%) 6 (6%) 28 (24%) 2 (7%) 5 (6%)
detection Three spikes with ISI < 100 ms** 8 (44%) 18 (19%) 55 (47%) 10 (37%) 18 (21%)
algorithms and Three spikes with ISI < 200 ms** 12 (67%) 32 (34%) 64 (55%) 13 (48%) 27 (31%)
criteria logISIH (200 ms threshold)** 12 (67%) 28 (30%) 57 (49%) 12 (44%) 24 (28%)

*Previously proposed burst detection method.

**Methods modified from previously proposed burst detection methods by changing burst criteria parameters to further investigate the usability of these methods

for analysis of hESC-derived neuronal cell recordings.

Data from channels from all measurement days and all data sets
which exhibit over 50 spikes at least in one of the measurements
of approximately 300 s were chosen for a test. For example, if a
channel exhibits over 50 spikes in the second measurement day,
then the same channel data from the first and third measurement
days are also chosen for the test without considering how many
spikes they contain. In Table 2 are given the numbers of channels

in which the burst were detected. Percentage values represent the
ratio of detected bursts containing channels to total number of
recordings tested.

In addition to success of the algorithm demonstrated in
Figures 7 and 8, Table 2 points out that we can increase the
number of channels to be further analyzed by employing our
CMA algorithm, which means extracting more burst or burst-like
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FIGURE 11 | Changes in the network behavior of maturing hESC-derived total number of bursts detected (TNB), and average number of spikes per
neuronal cells. Results from five experiments are pooled according to the bursts (ASpB). In the leftmost and middle panels the vertical axis ranges are
measurement days (mes1, mes2, mes3). The channels are analyzed by the limited to better observe the data, whereas in the rightmost panels all data is
means of three different derived parameters: average burst duration (ABD), shown.

data for the subsequent analysis. As seen from Table 2, CMA algo-
rithm works well in comparisons with the other tested algorithms
and their variants. In Table 2, the methods with three spikes with
ISI < 200 ms and logISTH with 200 ms threshold did not yield
satisfactory results. Figure 9 shows an example of this compar-
ison for three different channels, comparing logISIH algorithm
with modified burst detection criteria of intra-burst ISI thresh-
old of 200 ms with at least three spikes in a burst and our CMA
algorithm. The results demonstrate that even though logISIH
algorithm with modified parameters detects bursts (c.f., Table 2),
this does not necessarily mean that the burst detection is satis-
factory for further analysis since some burst event may be missed
(Figures 9A,B) or differently detected (Figure 9C).

The CMA algorithm can be used to assess the developing net-
work with regard to different types of MEAs and cultures as well.
To demonstrate this, we pooled all the spontaneous recordings
from five data sets according to the measurement days and plotted
the relations of the calculated parameters ABD, TNB, and ASpB.
Figure 11 shows the results for all three measurement time points
with each channel represented by one blue circle. The number of
burst containing channels increased after the first measurement
day. The numbers of burst containing channels for mesl, mes2,
and mes3 were 28, 60 and 50, respectively. Despite of the small
dataset available, we were able to observe changes by simply ana-
lyzing the ABD vs. TNB panels for all three measurement days
in Figure 11, where the values for up to ABD of 55 are demon-
strated for a better view. We can conclude that majority of ABDs
increased for second and third measurement days compared to
first measurement day. The ABD values for mes1, mes2, and mes3
were found to be 7.7, 14, and 10.95s, respectively. The ASpB val-
ues increased as well, and were 7, 9.4, and 9.3 spikes per bursts
for the three measurement days, respectively. Increase in ASpB

values can be seen from ASpB vs. TNB panels for all three mea-
surement days. The values for up to 50 spikes are shown in the
ASpB vs. TNB panels of Figure 11 for more in detail observations.
Also, the effects of restricted cell growth area on the development
of the network were assessed: the number of bursting channels
increased with the restricted cell growth area. The total num-
ber of burst containing channels was 28 in 10 normal MEAs,
whereas the total number was 63 measured from three MEAs with
restricted cell growth area. ASpB and TNB values for those active
channels increased as well for the MEAs which had restricted cell
growth areas (Figure 12). Average number of bursts per channel
was calculated to be 16.6 and 27.1 bursts for normal MEAs and
MEAs with restricted cell growth areas, respectively, and the aver-
age spikes per burst were calculated to be 11.9 and 23.4 spikes,
respectively. The relations between these three parameters give us
an idea about changes in the bursting behavior during network
development: as expected, increasing number of bursts is seen
during development, as is the increase in the ASpB.

DISCUSSION

As hESC-derived neuronal cells can generate spontaneously func-
tional networks in vitro (Heikkild et al., 2009), analyzing their
bursting behaviors is essential to understand the development
and functioning of human neuronal networks in vitro, and thus
to strive to analyze the development of connections in these
rather primitive networks with implications to the understand-
ing of brain function. As we show in this paper, hESC-derived
neuronal cells exhibit extremely time varying trends, and chang-
ing spiking trends can be observed as various types of burst-like
patterns that are dynamically changing during the maturation
of the cells and networks. Different burst definitions have been
proposed previously, which mainly use fixed criteria, or as in
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Wagenaar et al. (2006), employ a detection algorithm based
on channel synchrony. As seen in Figure 1, developing active
hESC-derived networks change their firing trends often. For such
networks, in which the spatial synchronicity is changing rapidly,
taking synchronicity as the primary criterion for bursting may not
always be fruitful. Thus, synchronicity is not in the scope of this
paper but for future studies, taking synchronicity into account
would provide additional outcomes. For example, for the net-
works where bursts have tendencies to fire synchronously, bursts
would be considered as individual events or clusters and neuronal
network maturity can be assessed by analyzing IBIs instead of
bursts itself (Tateno et al., 2002).

Another observation of variable neuronal network behavior
is the irrationality of applying predefined fixed burst definition
parameters. Classical parameters used for the burst detection and
analysis, i.e., the number of spikes in bursts and burst dura-
tions (Harris et al., 2001; Tam, 2002; Kepecs and Lisman, 2004;
Chiappalone et al., 2005), are often neither useful nor prefer-
able for analysis of the developing networks. A previous study
using intracellular recordings demonstrated the presence of sin-
glet and duplet spikes that occur upon burst mediated depolariza-
tion (Weick et al., 2011). However for their study, hESC-derived
neuroepithelial aggregates were added on a slice rather than
grown as an entity. Also the temperature of their experiments
(room temperature, 21-23°C) may have resulted in different
results as our experiments were carried out in 37°C. Cooling from
34 to 21°C has been shown to remove network synchronization in
rat hippocampal slices (Javedan et al., 2002). Furthermore, since
extracellularly detected bursts require synchronization of large
network of neurons, we consider that extracellular burst means

more than one spike (Lisman, 1997; Izhikevich et al., 2003), and
at least duplets or triplets should be evaluated as bursts. Here,
we propose that other detection parameters should not restrict
the burst. This can be realized by extracting the parameters from
statistics of the firing networks. It is possible that some of the
maturing cells that still are incapable of emitting several spikes
are omitted from our bursting criteria. However, multiple record-
ings of the same culture would reveal if such a neuronal assemble
is later detected by the algorithm. Let us also note that cellular
network activity manifested only in local field potentials (Kelly
et al.,, 2010) could be utilized to improve network burst analy-
sis, but is naturally ignored by our purely action potential based
analysis. Figure 6 demonstrates the problems with the analysis of
developing networks if a priori defining ISI threshold boundaries
as suggested previously (Harris et al., 2001; Kepecs and Lisman,
2004; Chiappalone et al., 2005; Pasquale et al., 2010). It can be
seen that the major concentrations of intra-burst ISIs represented
by the principal peaks appear in a wide range of approximately
from 30 to 2000 ms. We could find a well behaving predetermined
threshold by experimenting with various threshold values, but
this is not very practical and the results would be sporadic. Our
CMA algorithm is based on our motivation to detect burst like
activities according to the assessment of the dynamics of the data
itself. It provides us means to assess the developing networks with
irregular and evolving dynamics.

With CMA algorithm the skewness and skewness based fac-
tor a, can be used in analyzing the network behavior. Skewness
of ISI distributions has been considered, for example, also in con-
junction with the assessment of different neuronal and network
models, e.g., by Hosaka et al. (2006). The relation of o and
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skewness is assessed in this paper by observing the relationship
at a few discrete values of o and skewness. Since only a limited
number of values of the skewness and o were tested, in some
cases, different o values may produce better results than the o’s
employed here. The set of values employed here simplifies the
detection algorithm and more importantly still results in satis-
factory performance of our algorithm. For future studies, o and
skewness may be utilized more extensively to describe network
behaviors. Further, CMA also enables considering burst pre-
spiking and burst tails as part of the analysis while considering
dynamic network behavior and data.

A drawback of the CMA algorithm is that since it is devised
to point out any “noteworthy” burst like events in the recordings,
it may detect bursts erroneously in certain conditions, especially
when applied on rarely spiking data with no bursts or on very
active channels with very frequent nonstop spiking. Such kind
of erroneous detections can be seen in the analysis of outliers
and can be excluded by, e.g., simple cluster analysis, filtering, or
thresholding. In our data, an example of a rare spiking channel
which fires approximately 50 spikes in 300 s was detected as a sin-
gle burst. The plot for this burst is seen as an outlier in Figure 11
in the rightmost panel for the second measurement day. It can be
seen as an extraordinary behavior among the usual bursts which
forms a cluster in lower values in the same panel. If needed,
exclusion of this outlier and focusing only on common burst-
ing behavior for the subsequent analysis is a simple task by using
a threshold of for instance 50 spikes for ASpB and 5s for ABD
values in this example. In fact, in closer observation, Figure 11
demonstrates the increase in ABD and ASpB values as well as
increase in the number of burst containing channels after the
first measurement day. This is supported by the calculated aver-
age values for these parameters as well. Effect of cell growth area
is shown in Figure 12. Increase in the average number of bursts
per channels and ASpB is evident in Figure 12 and confirmed by
numerical analysis results. It seems that the restricted cell growth
area results in faster network development since the number of
burst containing channels increased as well in comparison with
the control MEAs (Figure 12).

logISIH algorithm is excellent in detecting the bursting behav-
ior especially for very frequent firing networks which have a good
separation of inter-burst ISIs from intra-burst ISIs. Thus, it would
be effective for detecting burst like activities of matured dynamic
hESC-derived neurons. For developing networks the predefined
boundaries limit its usability and, further, the logarithmic ISI
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