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We describe an attractor network of binary perceptrons receiving inputs from a retinotopic
visual feature layer. Each class is represented by a random subpopulation of the attractor
layer, which is turned on in a supervised manner during learning of the feed forward
connections. These are discrete three state synapses and are updated based on a
simple field dependent Hebbian rule. For testing, the attractor layer is initialized by the
feedforward inputs and then undergoes asynchronous random updating until convergence
to a stable state. Classification is indicated by the sub-population that is persistently
activated. The contribution of this paper is two-fold. This is the first example of competitive
classification rates of real data being achieved through recurrent dynamics in the attractor
layer, which is only stable if recurrent inhibition is introduced. Second, we demonstrate
that employing three state synapses with feedforward inhibition is essential for achieving
the competitive classification rates due to the ability to effectively employ both positive
and negative informative features.
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1. INTRODUCTION
Work on attractor network models with Hebbian learning mech-
anisms has spanned almost three decades (Hopfield, 1982; Amit,
1989; Amit and Brunel, 1997; Wang, 1999; Brunel and Wang,
2001; Curti et al., 2004). Most work has focused on the mathe-
matical and biological properties of attractor networks with very
naive assumptions on the distribution of the input data; few have
attempted to test these on highly variable realistic data. Such
data may violate the simple assumptions of the models; they
may have correlation between class prototypes or highly variable
class coding levels. Some attempts have been made to bridge this
gap between theory and practice. Amit and Mascaro (2001), in
order to deal with the complexity of real inputs, propose a two
layer architecture with a non-recurrent feature layer feeding into
a recurrent attractor layer. In the attractor layer, random sub-
sets of approximately the same size were assigned to each class.
The main role of learning was to update the feedforward connec-
tions from the feature layer to the attractor layer. Classification
was expressed through a majority vote in the attractor layer;
actual attractor dynamics proved to be unstable. Assuming a fixed
threshold for all neurons in the attractor layer, it was neces-
sary to introduce a field-dependent learning rule that controlled
the number of potentiated synapses that could feed into a sin-
gle neuron. Furthermore, to achieve competitive classification
rates, it was necessary to perform a boosting operation with
multiple networks. Subsequent work (Senn and Fusi, 2005) pro-
vided an analysis of field-dependent learning, and experiments
were performed on the Latex database. This analysis was fur-
ther pursued in Brader et al. (2007) using complex spike-driven
synaptic dynamics. In both cases majority voting was used for
classification.

The contribution of this paper is two-fold. First, we achieve
classification through recurrent dynamics in the attractor layer
which is stabilized with recurrent inhibition. Second, we employ
three state synapses with feedforward inhibition, allowing us to
achieve competitive classification rates with one network without
the boosting required in Amit and Mascaro (2001). The advantage
of a three state feedforward synapse with feedforward inhibition
over a two state synapse stems from the ability to give a pos-
itive effective weight to features with high probability on class
and low probability off class and a negative effective weight to
features with low probability on class and high off class. Both
types of features are informative for class/non-class discrimina-
tion. The intermediate “control” level of less informative features
is assigned an effective zero weight. This modification in the num-
ber of synaptic states coupled with the appropriate feedforward
inhibition leads to dramatic increases in classification rates. The
use of inhibition to create effective negative synapses was pro-
posed in Scofield and Cooper (1985) in a model of learning in
primary visual cortex. An inhibitory interneuron receives input
from the presynaptic neuron and feeds into the postsynaptic neu-
ron. This type of feedforward system has since then been used in
many models. Recently in Parisien et al. (2008) a more general
approach is proposed to achieve effective negative weights avoid-
ing a dedicated interneuron for each synapse. This is the approach
taken here.

That synapses have a limited number of states has been
advocated in a number of papers, see for example, Petersen et
al. (1998), O’Connor et al. (2005a,b). Experimental reports on
LTP and LTD typically show three synaptic levels for any given
synapse. These include a control level, a depressed state, and a
potentiated state, see Mu and Poo (2006), Dong et al. (2008),
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and Collingridge et al. (2010), although the distribution of the
strengths of the potentiated states over the population of synapses
has a significant spread, see Brunel et al. (2004). In our model the
three states are uniformly set at 0, depressed; 1, control; and 2,
potentiated.

There has been some work on analyzing the advantages of
multi-state synapses versus binary synapses for feedforward sys-
tems. This work has mainly been in the context of memory
capacity with the assumption of standard uncorrelated random
type inputs with some coding level. See for example Ben Dayan
Rubin and Fusi (2007), Leibold and Kempter (2008). In broad
terms, it appears that multiple level synapses do not provide a sig-
nificant increase in memory capacity for low coding levels. Here
the question is quite different. We are interested in the discrimina-
tive power of the individual perceptrons on real-world data with
significant overlap between the features of competing classes and
significant noise in terms of the presence or absence of a feature
in any given class.

2. MATERIALS AND METHODS
The network architecture consists of two layers, a retinotopic
input feature layer F and an attractor layer A that contains ran-
dom populations Ac coding for the different classes. The attractor
layer has recurrent connections labeled Jij, between presynaptic
neuron ai ∈ A and post-synaptic neuron aj ∈ A. The input layer
has only feedforward connections labeled Jkj between feature fk
and attractor neuron aj, see Figure 1. The two-layer separation
was initially motivated in Amit and Mascaro (2001) by the fail-
ure to obtain stable attractor behavior in recurrent networks of
neurons coding input features such as edges or functions of edges
on real images. The variability in the number of high probability
features among the different classes was too large as well as the
overlap of features between classes. The coding of classes and the

memory retrieval phenomena—the important characteristics in
attractor networks—are therefore pushed to an “abstract” attrac-
tor layer with random subsets of neurons coding for each class.
These subsets do not have any inherent relation to the sensory or
visual input. In Figure 1 the different color nodes in the attractor
layer A represent different class populations Ac, showing only a
subset of the potentiated synapses connecting them. All neurons
in the network are binary, taking only values of 0 or 1. All synapses
in the network can take on three states, 1, baseline; 0, depressed;
and 2, potentiated.

2.1. THE INPUT LAYER
The input layer consists of retinotopic arrays of local features com-
puted from the input image. There are no connections between
neurons in the input layer, only feedforward connections to
attractor neurons. Each neuron in the input layer corresponds to a
particular visual feature at some location. If a feature is detected at
a location, activation is spread to the surrounding neighborhood.
Spreading introduces more robustness to local shape variabil-
ity and is analogous to the abstraction of the complex neuron.
This was first employed in the neo-cognitron (Fukushima and
Miyake, 1982). It is a special case of the MAX operation from
Riesenhuber and Poggio (1999). Most experiments were per-
formed with binary oriented edge features. These are selective to
discontinuity orientation at eight orientations—multiples of π/4,
at each location in the image. The neuron activates at a location if
an edge is present with an angle that is within π/8 of the neuron’s
defined orientation. The neuron thus has a step function tuning
curve as opposed to the traditional bell-shaped tuning curve. The
input may be compared to an abstraction of the retinotopic map
of complex cells in V1 (Hubel, 1988). In Figure 2 we show the
eight edge orientations, an example of an edge detected on an
image and illustrate the notion of spreading.

FIGURE 1 | Architecture of network. Input retinotopic feature layer
oriented edge features with units denoted fk . Attractor layer A with units
ai , aj . Units of different colors correspond to different class populations Ac .

Feedforward connections (F → A) denoted Jkj and recurrent
connections A → A denoted Jij . Feedforward inhibition ηff and recurrent
inhibition ηrc .
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We also experimented with higher level features called edge
pairs. These are spatial conjunctions of two different edges, a
center edge and another edge, in five possible relative orienta-
tions, (±π/2, ±π/4, 0) anywhere in an adjacent constrained
region. The size of the area searched for the second edge was
nine pixels. The set of edge pairs centered at a horizontal edge
is illustrated in Figure 3. Similar conjunctions are proposed in
Riesenhuber and Poggio (2000). Neurons receptive to such fea-
tures can be viewed as coarse curvature selectors and are are
analogous to curvature detectors found in Hegde and Van Essen
(2000) and Ito and Komatsu (2004). Edge pairs are more sparsely
distributed in generic images than single edges and are quite
stable at particular locations on the object. A detailed study of
the statistics of such features in generic images can be found in
Amit (2002).The edge pairs are used without the input edge fea-
tures since for each orientation the first pair shown in Figure 3

FIGURE 2 | (A) Eight oriented edges. (B) Neurons respond to a particular
feature at a particular location. (C) If an edge feature is detected at some
pixel, neurons in the neighborhood are also activated. In this case, the
neighborhood is 3 × 3.

detects orientation, but with higher specificity. The increase in
feature specificity allows for an increase in the range of spread-
ing, yielding more invariance. Increased spreading also allows
for greater subsampling of the feature locations to a coarser
grid. The end result is an improvement in the classification
rate.

Feedforward connections to the attractor layer are random; a
connection is established between an input neuron fk and attrac-
tor neuron aj with probability pff independently for each input
neuron. The set of input neurons feeding into unit aj is denoted
F j. Each attractor neuron therefore functions as a perceptron
with highly constrained weights {0, 1, 2}, which classifies between
its assigned class and “all the rest.” The random distribution
of the feedforward connections is one way to ensure that these
perceptrons constitute different and hopefully weakly correlated
classifiers [see Amit and Geman (1997)]. They respond to differ-
ent subsets of features (Amit and Mascaro, 2001), whose size is
determined by pff. This is one motivation for using multiple per-
ceptrons as opposed to one unit per class. However, as we will
see below, the primary motivation is the ability to code classifi-
cation as the sustained activity of this population in a recurrent
network.

A complementary approach to randomizing the perceptrons
is through the learning process, as opposed to the physical net-
work architecture. With full feedforward connectivity—pff = 1—
this is achieved through randomization in the potentiation and
depression coupled with the field dependent learning, as detailed
in Section 2.4.

2.2. THE ATTRACTOR LAYER
Classification takes place in the attractor layer which is fully
connected. Classes are represented by a population of attractor
neurons selected at random with probability pcl. Because of the
random selection there will be some overlap between the popu-
lations. Learning of synaptic connections in the attractor layer is
done prior to the presentation of any input images. A class label
is chosen at random, the units coding for that class are activated,
and the synapses are updated based on the learning rule described
in Section 2.4. The synapses connecting units within the same
class population end up potentiated with high probability, and
synapses from units of a class population to non-class units end
up depressed with high probability.

Classification is represented as the stable sustained activity of
the elements of one population and the elimination of activity in
the others. Upon presentation of an image to the network, the
attractor layer is initialized with the response of each of the per-
ceptrons to the stimulus coming from the input layer. Let Fj ⊂ F
be the set of input neurons connected to aj. The feedforward

FIGURE 3 | Illustration of five edge pairs centered at a horizontal edge. There are five similar pairs for each of the other seven edge orientations.
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field hff at aj is computed as:

hff
j =

∑
k∈Fj

Jkj fk − ηff

∑
k∈Fj

fk,

ainitial
j =

{
1 if hff

j > θ

0 otherwise
(1)

The inhibition term is local, namely depends on the activity in the
set Fj connected to aj.

Typically the number of neurons in the correct class, initial-
ized as in (1) by the feedforward connections, will be larger than
that in other classes. The initialized activity ainitial is in itself suf-
ficient for classifying the input, by assigning it to the population
with the majority of active units, as in Amit and Mascaro (2001).
However, classification through a win or take all process of con-
vergence to an attractor is more biologically plausible and more
powerful as a tool for sustained short-term memory, for pattern
completion and noise elimination. After the initialization step the
feedforward input is removed, and the updates in the recurrent
layer proceed through stochastic asynchronous dynamics. At step
t a random neuron j is selected for update, the field hrc

j is com-
puted only from the recurrent layer inputs and compared to the
threshold.

hrc
j =

∑
i�=j

Jij a(t)
i − ηrc

∑
i

a(t)
i

a(t+1)
j =

{
1 if hrc

j > θ

0 otherwise
(2)

Stable convergence to an attractor state is only possible with
the recurrent inhibition, the second term of the field computation
above. The essential role of inhibition in stabilizing a recurrent
network of integrate and fire neurons has been well established
since Amit and Brunel (1997). More recently in Amit and Huang
(2010) this has been demonstrated in the context of networks
of binary neurons, and has been shown to increase the memory
capacity of these networks. Once the network converges, activity
in all classes but the winner class is eliminated and the activity of
the population of the winning class can be sustained for a very
long time, even in the presence of noise.

2.3. THREE STATE SYNAPSES
As indicated above, feedforward inhibition in the network is
local with each attractor neuron aj having its own pool of local
inhibitory neurons, which are all connected to the set of inputs
Fj that feeds into aj. If the synaptic states are constrained to
J = 0, 1, 2, when ηff = 1 the effect of these local inhibitory cir-
cuits is simply a constant subtraction of 1 from the synaptic
state of every input neuron in Fj. Thus, (1) can be rewritten

as hff
j = ∑

k∈Fj
(Jkj − 1)fk, or the effective feedforward synaptic

weights become −1, 0, 1. We note that feedforward inhibitory
circuits, with presynaptic neurons having both direct excitatory
and interneuron inhibitory connections to post-synaptic neu-
rons, have been found in the hippocampus (Buzsak, 1984), the

LGN (Blitz and Regehr, 2005), and the cerebellum (Mittmann
et al., 2005). Models involving such circuits can be found in
Scofield and Cooper (1985) but would require an interneuron
for each synapse. Our approach is similar to that of Parisien
et al. (2008) using a pool of inhibitory neurons receiving non-
specific input from the afferent neurons of each attractor neuron.
Moreover with full connectivity from the input layer to the attrac-
tor layer, only one non-specific inhibitory pool of neurons is
needed that receives input from the feature layer and is con-
nected to all neurons in the attractor layer. Regarding the discrete
state synapses, there appears to be experimental evidence that
individual synapses exhibit “three” states: depressed, control, and
potentiated. See for example O’Connor et al. (2005a,b), Mu and
Poo (2006), Dong et al. (2008), and Collingridge et al. (2010).

The three synaptic states play a crucial role in distinguishing
features that are low probability on the class and higher probabil-
ity on other classes. More specifically, imagine dividing the input
features for the given class into three broad categories. “Positive”
features are high probability on the class and lower probability
on the rest, “negative” features are low probability on the class
and higher probability on the rest, and all the remaining “null”
features have more or less the same probability on the class and
on the rest. The first two categories contain informative features
that can assist in classification. Features from the third category
are not useful for classification. Any reasonable linear classifier
would assign the first category of features a positive weight, the
second category a negative weight and ignore the third category.
This is achieved with the three state synapses combined with local
inhibition.

For each perceptron of a given class, the randomized learn-
ing process described in Section 2.4, effectively potentiates the
synapses coming from some subset of “positive” features and
depresses the synapses from some subset of “negative” fea-
tures. In Figure 4 we show the histograms of log[P(fk = 1|
Class c)/P(fk= 1| Class not c)] (log probability ratio of feature on
for image from class c to feature on for image not from class
c), for those synapses at state 2 at the end of the learning pro-
cess. For state 2 synapses, we specifically focused on features
for which p(fk) > 0.3. We also show the histograms of the same
quantity for all synapses at state 0 (bottom row). The former are
skewed towards the positive side, namely state 2 synapses corre-
spond to “positive” features that have higher probability on class
than off class. The state 0 synapses are skewed toward the neg-
ative side of the axis corresponding to features that have higher
probability off class than on class. Both types of synapses are
informative for class/non-class discrimination. With only two
synaptic states it is impossible to separate these two types of fea-
tures. Performance with two state feedforward synapses with the
local inhibition is significantly worse, since the non-informative
“null” features get confounded with either the “positive” ones or
the “negative” ones.

2.4. LEARNING
Learning in the network is Hebbian and field-dependent. As in
previous models with binary synapses, Amit and Fusi (1994),
Senn and Fusi (2005), Romani et al. (2008), and Amit and Huang
(2010), learning is stochastic. If both the pre-synaptic and the
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FIGURE 4 | Histograms of log probability ratios log[P(fk = 1|Class c)/

P(fk = 1|Class not c)] for potentiated synapses J = 2 and depressed

synapses J = 0 after learning. (A) Class c = 0. (B) Class c = 4.

Top: distribution for state 2 synapses. Bottom: distribution for state 0
synapses. For state 2 synapses the log-probability ratios are mostly positive,
for state 0 synapses mostly negative.

post-synaptic neuron are active, then the synapse will increase in
state with probability pLTP. If the pre-synaptic neuron is active but
the post-synaptic neuron is not, then the synapse will decrease
in state with probability pLTD. Since there are only three discrete
synaptic states, both potentiation and depression probabilities are
kept small in order to avoid frequent oscillations. In field depen-
dent learning potentiation stops when the field is above threshold
by a margin of �LTP. Similarly when the field is below thresh-
old by a margin of �LTD depression stops. This is summarized as
follows:

• If fk = 1, aj = 1, Jkj < 2, hff
j < θ + �LTP then Jkj → Jkj + 1,

with probability pLTP

• If fk = 1, aj = 0, Jkj > 0, hff
j > θ − �LTD then Jkj → Jkj − 1,

with probability pLTD.

All transitions are mutually independent.

2.4.1. Attractor layer
As indicated above, learning in the attractor layer occurs first
and involves activating class populations Ac in random order and
updating the synapses according to the rule above. The coding
level in the attractor layer is fixed and the overlaps of the random
Ac subsets are small, thus learning is very stable and effectively
ends up with almost all synapses between neurons within Ac

potentiated at level 2 and all synapses from neurons in Ac to those
outside depressed at 0.

2.4.2. Feedforward synapses
The feedforward synapses are learned by choosing a training
image at random, say from class c, activating its input features
and activating the population Ac of neurons corresponding to its
class in the attractor layer. No dynamics occurs in the attractor
layer—the units in Ac are assumed “clamped” to the on state, and
all the other units to the off state. All feedforward synapses are
then updated according the rule above. In order for a synapse
connecting to a unit in Ac to potentiate, it must correspond to
a high probability “positive” feature for images of class c, and this

will occur with high probability only with a large number of pre-
sentations. However, it will only remain potentiated if it is low
probability for images not from class c. Similarly, in order for a
synapse to depress it must correspond to a low probability “nega-
tive” feature for class c, with high probability on images not from
class c. This will occur with high probability only with a large
number of presentations. As proposed in Senn and Fusi (2005),
we set the parameters at pLTP = pLTD = 0.01. These parameters
coincidentally were found to yield optimal performance in our
experiments (see below).

Field-dependent learning keeps the average input for all neu-
rons in the network roughly the same, allowing the use of a global
threshold. Without this constraint it would be difficult to adjust
one threshold to simultaneously accommodate classes with differ-
ent numbers of “positive” and “negative” features. Indeed this was
the original motivation for the introduction of field-dependent
learning in Amit and Mascaro (2001), see also the discussion and
comparison with other synaptic normalization methods. The dis-
tribution of features in the different classes varies significantly
as shown in Figure 5. In Figure 6 we show the distribution of
the number of synapses at state 2 and state 0 for each of the
10 classes. These are all very similar, despite the variability in
feature distributions.

From its very definition the field-dependent learning yields an
algorithm reminiscent of the classical perceptron learning rule,
except that it is randomized and the synapses are constrained to
a small set of values. Specifically, in perceptron learning weight
modification takes place only if the current example is wrongly
classified, i.e., its field is on the wrong side of the threshold. This
has been analyzed in detail in Senn and Fusi (2005). However,
an additional outcome of this form of learning, coupled with
the stochastic nature of potentiation and depression, is that even
with the same set of features, each learning run creates a different
classifier. Thus multiple randomized perceptrons are generated,
even with full connectivity between the input layer and the attrac-
tor layer. Without field-dependent learning, even with stochastic
potentiation and depression, asymptotically as the number of
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FIGURE 5 | Scatter plots of on-class γ and off-class β feature probabilities for all input features. (A) Class 1, (B) Class 8. There are significant differences
between the two classes in the fraction of positive and negative features.

FIGURE 6 | Means (blue) and standard deviations (red) of the number

of synapses in the two informative states (2/0) connected to attractor

neurons after learning with the base parameters. Mean over
perceptrons in each class. The field dependent learning mechanisms
generally create a stable number of potentiated and depressed synapses
across classes.

pattern presentations for each class grows, all “positive” fea-
tures for that class would be potentiated with high probability.
As mentioned above the feedforward connectivity probability pff

determines the average size of the subset of features for each

randomized perceptron. Subsets that are too small will not con-
tain enough information for the neurons to distinguish classes.
Performance initially increases quickly and then slows down as
pff reaches around 30%. Indeed, the percentage of synapses with
state 0 or 2 does not vary significantly as pff varies between 20
and 100%. It remains around 17–20%. Performance thus almost
solely rests on choosing an appropriate threshold and learning
probabilities. For this reason in the experiments we used full
connectivity between the input layer and each perceptron.

3. RESULTS
The network was tested on the MNIST handwritten digit dataset
(Lecun, 2010). The 28 × 28 images were first treated with a basic
form of slant correction. The network was then trained on 10,000
randomly ordered examples, 1000 from each digit class, and
tested on another 10,000 examples. Attractor neurons were ran-
domly assigned to classes. For convenience, the learning phase
of the attractor classes was skipped. All the in-class attractor
synapses were thus assigned a state of 2 and the rest 0. This short-
cut has no effect on the final behavior of the network. During
feedforward training, the attractor neurons of a given classes were
clamped on, while all other neurons in the layer were inactive.
Learning of the feedforward synapses then took place after the
input pattern was presented and the field of each neuron in the
attractor layer was calculated. Field-dependent learning implied
that potentiation stopped if the feedforward field exceeded �LTP

units above threshold, and depression stopped if the field was less
than �LTD units below threshold.

Testing began with an initial presentation of a pattern that
activated the attractor neurons without any recurrent dynam-
ics. Typically many attractor neurons of the correct class were
activated together with a number of neurons in other classes.
Then the input was removed, and classification was represented
by the convergence to an attractor corresponding to a single class.
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Table 1 | Base parameters for experiments.

No. of attractor neurons:

2000

Feedforward connection

probability: pff = 1

Class proportion: pcl = 0.1 Features: Edges Recurrent inhibition:

ηrc = 1.5

Potentiation probability:
pLTP = 0.01

Depression probability:
pLTD = 0.01

Threshold: θ = 0
Margins: �LTP = �LTD = 5

Spreading: 5 × 5 Feedforward inhibition
ηff = 1

Sustained activity is present only among neurons coding for one
class. Neuron updates in the attractor layer were asynchronous,
and continued until convergence to a steady state occurred–no
changes in neural states. Base parameters are in Table 1. When
using a training set of 10,000 images (1000 per class) each
image was presented three times—all in random order. With
smaller training sets the number of presentations was rescaled
accordingly. For example with 1000 images (100 per class) we
used 30 presentations per image. The base classification rate
was 96.0%.

3.1. TWO STATE vs. THREE STATE SYNAPSES
To compare two state vs. three state synapses we kept all base
parameters listed in Table 1 the same and modified only the two
inhibition levels. Feedforward inhibition for two states was set at
0.05 instead of 1 in the three state network, and attractor inhibi-
tion was set at 0.75 instead of 1.5. Using one perceptron per class
the classification rates were 48.1% for two states and 81.2% for
three states. For the full size attractor layer, with two state synapses
there is a drastic difference between performance of classification
with straightforward voting and using attractor dynamics. Voting
yields a 90.0% classification rate whereas the recurrent dynam-
ics produced the much lower rate of 64.4%. In contrast the three
state network yields similar performance with voting or attractor
dynamics once the size of the class populations Ac is on the order
of several tens. For lower population sizes the attractor dynamics
is less stable and voting performs much better. The classification
rate at 96.0%., with the base parameter settings (Table 1), is com-
parable to support vector machines. For the full size attractor
layer, convergence failed only with eight examples out of 10,000.

Of particular interest is the fact that with two state synapses
there was significant sensitivity to the size of the margins. It is
clear that the three state system not only performs better, but is
also much more stable to the margin settings and is nearly sym-
metric. For the two state system there is a marked preference for
a larger depression margin, meaning that it is “easier” to achieve
depression. In this scenario, synapses corresponding to the less
informative features will most likely be depressed. It is possible
that the errors incurred by non-informative features “voting” for
a class are larger than when they “vote” against. The results for
classification using a set of different margin values are shown in
Table 2 for both two state and three state synapses.

3.2. SENSITIVITY TO PARAMETER SETTINGS
Keeping all other parameters constant at the base level, each
parameter was modified over some range. The classification rate
based on recurrent dynamics was then compared. The network
seems to be fairly robust to changes in parameters in a neighbor-
hood of the base parameters.

Table 2 | Classification results with different margin values.

(A)

�LTD�LTP 0 5 50 100
0 69% 38% 5% 0%
5 86% 69% 6% 0%
50 88% 87% 8% 0%
100 88% 86% 8% 0%
(B)

�LTD�LTP 0 5 50 100
0 96% 96% 94% 89%
5 96% 96% 95% 91%
50 94% 94% 95% 93%
100 86% 86% 89% 90%

(A) two state synapses (B) three state synapses.

Table 3 | Dependence of classification rates on size of attractor layer

and mean size Āc of class populations.

Size of A, Āc 100, 10 250, 25 500, 50 1000, 100 2000, 200

Rate 81% 93.0% 94.6% 95.8% 96.0%
pcl 0.05 0.1 0.15 0.2
Āc 100 200 300 400
Rate 95.7% 96.0% 95.6% 10.0%

3.2.1. Size of attractor layer and size of class population
Each class population is chosen randomly with proportion pcl,
yielding some overlaps between class populations. When the size
of the population coding for each class in the attractor layer is too
small classification degrades due to a combination of the lack of
sufficient randomized perceptrons and instability in the attractor
dynamics. Thus with 100 neurons in A, namely 10 per class on
average, the rate is 81%, with 250 neurons the classification rate
rises to 93%. In contrast when the proportion of each class gets
too large (e.g., pcl = 0.2) with the size of A held fixed, the overlaps
are too large and recurrent dynamics collapses. These results are
summarized in Table 3.

3.2.2. Learning rate
We also see that slow learning is preferable. If the potentiation
probability is high many irrelevant features can get potentiated,
and as mentioned above the randomizing effect on the perceptrons
is lost. Sensitivity to the depression rate is not as pronounced,
which may reflect the fact that most of the information for
classification lies in “negative features”, namely features that are low
probability on class and high probability on the rest. See Table 4.

3.2.3. Other parameters
Feedforward connectivity affects the number of features used in
each randomized perceptron. The baseline is full connectivity so
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Table 4 | Dependence of classification rate on learning rates.

pLTP 0.001 0.01 0.05 0.1 0.5

Rate 95.2% 96.0% 95.7% 94.6% 73.2%

pLTD 0.001 0.01 0.05 0.1 0.5

Rate 94.2% 96.0% 95.7% 95.3% 93.6%

Table 5 | Classification rates as feedforward connectivity, the

threshold and the spreading vary individually around baseline

given in Table 1.

pff 0.05 0.125 0.25 0.5 1

Rate 90.6% 93.6% 94.8% 95.6% 96.0%

θ –30 –15 0 15 30

Rate 95.6% 95.8% 96.0% 95.9% 96.1%

Spread None 3 × 3 5 × 5

Rate 94.7% 96.3% 96.0%

that randomization is only a result of the combination of stochas-
tic and field-dependent learning. Lowering the connectivity does
not have a major effect until it drops by an order of magnitude at
which point there are not enough input features to generate suffi-
ciently good classifiers. The performance does not seem to depend
significantly on the threshold in a reasonable range. We also see
that some advantage is gained from spreading. See Table 5.

3.3. COMPARISON TO OTHER CLASSIFIERS
The network performs at a level comparable to state of the art
classifiers such as support vector machines, which interestingly
performed optimally with the simple linear kernel (see Table 6).
The network performed slightly better with the smaller training
sets of 1000 (100 per class) or 100 (10 per class). The software
for the SVMs was a specialized version of libsvm (Huang et al.,
2011) that used one-versus-all classification. The input layer was
treated as an n-dimensional vector of 1s and 0s. All other libsvm
parameters were set at the default level.

To assess the loss involved in using discrete three state synapses
and a classification decision based on convergence to a single sta-
ble population (as opposed to simple voting) we experimented
with a voting scheme among large numbers of classical per-
ceptrons, 200 per class, each classifying one class against the
rest. Each perceptron was fully connected to the input layer and
trained using the classical perceptron learning rule, with continu-
ous unbounded weights. Training data was presented in random
order, with a step size of 0.001 for edges and 0.0001 for edge-
pairs. The randomization of the presentation order of the training
data produced the randomization in the different perceptrons
assigned to the same class. Classification was based on the group
of perceptrons with the highest aggregate output. The percep-
trons were also trained on three iterations of the training data
for 10,000 examples, 30 iterations for 1000, and 300 iterations for
100 examples. The results seem to indicate that nothing is lost in
using constrained perceptrons with discrete three state synapses.
On the other hand the linear SVM, which is also a perceptron,
albeit trained somewhat differently, achieves its high classification
rate with only one unit per class, showing that with a differ-
ent learning scheme and unconstrained synapses a large pool of

Table 6 | Comparison of classifiers with edges.

Training Network SVM-linear SVM-gauss Multiple

examples (%) (%) (%) perceptrons

per class (%)

1000 96.0 97.1 96.9 96.0

100 95.3 95.9 94.0 92.3

10 86.8 86.6 78.7 73.7

Table 7 | Comparison of classifiers with edge-pairs.

Training Network SVM-linear SVM-gauss Multiple

examples (%) (%) (%) perceptrons

per class (%)

1000 97.4 97.9 97.1 96.5

100 96.2 96.5 93.7 92.8

10 87.1 86.9 80.8 70.1

perceptrons is not really needed—as long as classification is read
out directly from the output of the units and not through the
sustained activity of a class-population in the attractor layer.

Also in Table 7 observe that performance is improved with the
more informative edge-pair features. It is to be expected that even
further improvements could be achieved with even more com-
plex features; however, it is at this point unclear how these should
be defined. Using all triples, for example, is combinatorially pro-
hibitive; there thus needs to be some mechanism for selection of
complex features.

4. DISCUSSION
We find it encouraging that competitive classification rates can
be achieved with a highly constrained network of binary neu-
rons, discrete three state synapses and simple field dependent
Hebbian learning. Moreover classification is successfully coded in
the dynamics of the attractor layer through the sustained activity
of a class population. The use of a population of neurons to code
for a class together with the stochastic learning rule turn out to
be an asset in the sense that we gain a collection of weakly corre-
lated randomized classifiers whose aggregate classification rate is
much higher than that of any individual one. However, it should
be noted that for mere classification, using simple voting, only
10–20 units per class are needed to achieve competitive rates. The
larger number of units is needed to stabilize the attractor dynamics.

Of further interest is the comparison to the outcome of full
perceptron learning with multiple perceptrons. Here the only ran-
domization is the order of the training example presentations,
not the decision whether to modify a weight or not. It may be
that this does not introduce sufficient randomness in the classi-
fiers. Another point is that no weight penalization occurs in the
perceptron learning rule, whereas the network we propose has a
drastic penalization in that weights are constrained to three states.
Note that the best performance was recorded with linear SVM’s
with only one unit per class. In other words, there exists a set of
weights for the synapses that can achieve very low error rates with
only 10 linear classifiers of class against non-class. This, however,
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requires the weight penalization incorporated in the SVM loss
function, which does not appear in ordinary perceptron learning.

The advantage of three state synapses with feedforward inhi-
bition for feedforward processing is apparent already in the
behavior of a single perceptron. For simple recurrent networks
with random input patterns the advantage of signed synapses in
terms of capacity was noted in Nadal (1990). Recently, there has
been interest in the distribution of synaptic weights in Purkinjee
cells in cerebellum (Brunel et al., 2004). The analysis of this dis-
tribution made the assumption that all weights were positive.
Based on the experiments reported here this would seem rather
wasteful. The experiments reported in Brunel et al. (2004) report
on the role of inhibition achieved by an individual interneu-
ron, in forcing inputs to be highly coincident in time. However,

they do not show the behavior of the post-synaptic neuron in
the presence of stimulation of a large number of input neu-
rons, which would trigger the collective inhibitory correction to
the synapses, yielding an effective negative effect for depressed
synapses. The assumption in Brunel et al. (2004) is that the silent
synapses correspond to those with lowest weights. A provocative
but not impossible alternative is that the silent synapses corre-
spond to those that would have had no effect after factoring in
the inhibitory effect of the full array of stimuli, and that the spike
in the distribution is actually located somewhere in middle of the
distribution.
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