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Most studies on the dynamics of recurrent cortical networks are either based on purely
random wiring or neighborhood couplings. Neuronal cortical connectivity, however, shows
a complex spatial pattern composed of local and remote patchy connections. We ask to
what extent such geometric traits influence the “idle” dynamics of two-dimensional (2d)
cortical network models composed of conductance-based integrate-and-fire (iaf) neurons.
In contrast to the typical 1 mm2 used in most studies, we employ an enlarged spatial
set-up of 25 mm2 to provide for long-range connections. Our models range from purely
random to distance-dependent connectivities including patchy projections, i.e., spatially
clustered synapses. Analyzing the characteristic measures for synchronicity and regularity
in neuronal spiking, we explore and compare the phase spaces and activity patterns of
our simulation results. Depending on the input parameters, different dynamical states
appear, similar to the known synchronous regular “SR” or asynchronous irregular “AI”
firing in random networks. Our structured networks, however, exhibit shifted and sharper
transitions, as well as more complex activity patterns. Distance-dependent connectivity
structures induce a spatio-temporal spread of activity, e.g., propagating waves, that
random networks cannot account for. Spatially and temporally restricted activity injections
reveal that a high amount of local coupling induces rather unstable AI dynamics. We
find that the amount of local versus long-range connections is an important parameter,
whereas the structurally advantageous wiring cost optimization of patchy networks has
little bearing on the phase space.
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1. INTRODUCTION
Typically, the study of cortical network dynamics was based on
randomly connected single-cells without any spatial embedding
(e.g., Amit and Brunel, 1997; van Vreeswijk and Sompolinsky,
1998; Brunel, 2000; Kumar et al., 2008a). Likewise, neural mass
(or neural field) models mostly assumed homogeneous random
intrinsic couplings whereas the external links between differ-
ent masses were more specifically chosen (Jansen and Rit, 1995;
Deco et al., 2011). Alternately, several studies on single-cell net-
works turn to local distance-dependent connectivity assumptions
describing the dynamics within the range of a so-called corti-
cal column of about one millimeter radius (Mehring et al., 2003;
Kumar et al., 2008b; Kriener et al., 2009; Yger et al., 2011). It turns
out that there are important functional advantages of including
such local connectivity, e.g., for the retrieval of states in associative
memory (Roudi and Treves, 2004) or with respect to orientation
selectivity (Buzás et al., 2006).

In reality, however, intrinsic cortical synapses are established
with respect to various features, as, for instance, cell-type speci-
ficity (e.g., preferred couplings between certain neurons and/or
layers, see White, 2002), and the spatial distance between the
neurons. Even inside the gray matter, i.e., with respect to axons
that do not enter the white matter, there is a distinction between
local and remote connections (Kisvárday and Eysel, 1992; Voges
et al., 2010a,b). The local connection probability is usually

approximated by a Gaussian distance-dependent decay (Buzás
et al., 2006; Hellwig, 2000; Stepanyants et al., 2008), while non-
local projections are often confined to a limited number of
discrete spots in space, the so-called “patches” (e.g., Kisvárday
and Eysel, 1992; Binzegger et al., 2007; Voges et al., 2010a,b).
Thus, cortical connectivity is neither merely random nor con-
fined to local couplings; in fact, it is a combination of both
(Braitenberg and Schüz, 1998; Stepanyants et al., 2009; Voges
et al., 2010a,b).

Accordingly, several large-scale neural mass (or neural field)
models include spatially modulated connectivity kernels (e.g.,
Troy and Schusterman, 2007; Kilpatrick and Bressloff, 2010). In
particular from the wiring cost perspective, such a combination
of local and remote couplings is highly advantageous (Buzsaki
et al., 2004; Chklovskii, 2004; Voges et al., 2010b). On one hand,
signal propagation needs to be fast and efficient, even between
distant neurons. On the other hand, the longer axon collaterals
are, the more space they take up, and space is limited inside the
skull. Therefore, small-world networks are an attractive approach
for cortical network models (Newman, 2003; Voges et al., 2012b):
they span the whole range between (local) regular and random
connectivity by varying one single parameter which characterizes
the number of regular local versus long-range connections.

In our study we ask for the consequences on the dynamics if
discrete cortical networks comprise such real-world connectivity

Frontiers in Computational Neuroscience www.frontiersin.org July 2012 | Volume 6 | Article 41 | 1

COMPUTATIONAL NEUROSCIENCE

http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/about
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Computational_Neuroscience/10.3389/fncom.2012.00041/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=NicoleVoges&UID=38955
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=LaurentPerrinet&UID=2578
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Voges and Perrinet Dynamics of spatially realistic connectivities

patterns, i.e., a mixture of local and remote couplings, as well
as patchy projections. To this end, we require an extended spa-
tially embedded two-dimensional (2d) network that enables us to
consider such connectivity patterns going beyond the range of a
cortical column. Our network models consist of two distinct types
of conductance-based integrate-and-fire (iaf) neurons (Nowak
et al., 2003) whose connection probabilities are adapted to the
cat’s visual cortex (Binzegger et al., 2004). Given these assump-
tions, we analyze the effect of different network structures on their
“idle” dynamics. Having started with purely random connectivity
in (Voges and Perrinet, 2010), we here advance to various types
of mixed connectivity structures, including patchy projections. In
addition to the one extreme of merely random connections, we
also consider the other extreme, i.e., a network where all synapses
are established as local distance-dependent projections. As all
these architectures are based on identical fundamental param-
eters (Sections 2.1 and 3), we are in a position to analyze the
isolated effect of their structural differences. We investigate if cer-
tain connectivity assumptions alter the appearance, the position,
and/or the sharpness of phase space transitions, as well as possible
changes in terms of occurring activity patterns. Moreover, to take
into account the stability of the resulting dynamical states, we also
investigate the effect of additional localized activity injections.

Initially, Brunel (2000) demonstrated the existence of different
dynamical states for sparsely connected random networks com-
posed of 80% excitatory (exc.) and 20% inhibitory (inh.) single
neurons. Depending on the ratio between the strength of exc.
and inh. synaptic weights and the external input rate, the ensem-
ble of all neurons fired either synchronously or asynchronously,
and regularly or irregularly. Kumar et al. (2008a) considered
conductance-based synapses instead of current-based synapses,
leading to significant differences in their phase space compared
to (Brunel, 2000). Roxin et al. (2005) showed that including
conduction delays clearly affects the resulting dynamics of 1d
ring graphs. Assuming 2d spatially embedded random networks
(Voges and Perrinet, 2010), we demonstrated the emergence of a
new critical parameter, as well as yet another set of phase space
changes which were at least partially based on the inclusion of
distance-dependent conduction delays.

Several other studies investigate the relationship between
structural network properties and their dynamical consequences.
For instance, Kitano and Fukai (2007) studied the variability and
synchronicity in neuronal spiking in dependence of the rewiring
probability in 2d networks based on a small-world topology.
Recently, Yger et al. (2011) analyzed the dynamics of balanced
2d locally connected networks of conductance-based iaf neurons
for varying Gaussian connectivity profiles. They found that the
macroscopic properties of the spiking activity are invariant with
respect to their different connectivity assumptions. Kriener et al.
(2009), however, showed that strong common input, e.g., induced
by predominant neighborhood coupling, amplifies synchrony
in recurrent networks. In contrast, a broad degree distribution
enhances fluctuations in the spike rates, and it shapes the power
spectrum of the population activity by partially destroying the
global oscillations in certain frequency bands (Denker et al.,
2004; Tetzlaff et al., 2008). Similarly, Roxin (2011) investigated
the effect of broadening binomial degree distributions on the

network dynamics. Compared to such studies on specific details,
we focus on actually existent cortical projections patterns as a
whole, rather similar to Kitano and Fukai (2007) and Yger et al.
(2011) but on a larger spatial scale. It is the aim of this paper
to provide first insights into the dynamical consequences of dif-
ferent connectivity structures for a spatially extended network
model, using the neuroanatomically realistic parameters detailed
in Voges et al. (2010a,b).

In the following Section 2, we explain the different network
structures and connectivity profiles considered in this study.
Important parameters and measures used to simulate and charac-
terize the network dynamics are summarized in Section 3. Then,
we present the results of our simulations in Section 4. We finish
off with a discussion of our results.

2. NETWORK CONNECTIVITY STRUCTURES
This section describes the five different network architectures
whose dynamics are to be analyzed in this study and some of
their neuroanatomical background. In order to allow for non-
local synapses, we assume a 2d cortical sheet of 5 × 5 mm2, a
relatively large spatial region compared to previous studies, which
typically represent one squared millimeter (Mehring et al., 2003;
Kumar et al., 2008a). Thus, we focus on connectivity patterns that
occur on a spatial scale that comprehends many cortical columns.
According to Buzsaki et al. (2004); Binzegger et al. (2007) both
exc. and inh. neurons establish non-local synapses. Remote inh.
projections, however, are less frequent with a much shorter spa-
tial range than remotely established synapses of exc. neurons
(Binzegger et al., 2007). We distinguish between the following
network architectures:

• Randomly connected networks (RD): In this basic model the
synapses of each neuron are generated randomly, i.e., inde-
pendently of the spatial positions of the cells. The resulting
network and its phase space dynamics have already been pre-
sented in (Voges and Perrinet, 2010). Nevertheless, we include
this model as default network to estimate the effect of altered
connectivities.

• Locally connected networks (LO): Here we assume that all
synapses of all neurons are established locally within the neigh-
borhood of each neuron. This local connectivity profile is char-
acterized by a Gaussian distance-dependent decay (Stepanyants
et al., 2008; Hellwig, 2000), see Section 2.1. Note, however,
that other studies find that this distance dependence is bet-
ter described by an exponential decay (Holmgren et al., 2003)
and that distribution of synaptic efficaciesis is skewed and not
Gaussian (Song et al., 2005).

• Mixed connectivities: Each neuron targets both neurons sit-
uated within its local neighborhood and remotely located
neurons (Kisvárday and Eysel, 1992; Binzegger et al., 2007;
Voges et al., 2010a,b). The local connectivity profiles of these
three network models are identical, however, their connectivi-
ties differ with respect to the spatial arrangement of the remote
projections.

– Homogeneously distributed remote synapses (RM): In
addition to its local couplings each neuron projects to
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randomly chosen remote cells, resulting in a spatially homo-
geneous distribution of the distant targets. On one hand,
this type of mixed connectivity represents the simplest
modeler assumption. On the other hand, it agrees with
the findings of (van Hooser et al., 2006) who claim the
absence of patchy connections in the primary visual cortex
of mammals without orientation maps.

– Patchy remote connections (OP, PB): In addition to its
local couplings, each neuron projects to spatially clustered
remote cells as typically suggested for cortical long-range
projections (Kisvárday and Eysel, 1992; Lewis et al., 2002;
Angelucci and Bressloff, 2006; Buzás et al., 2006; Binzegger
et al., 2007; Voges et al., 2010a,b). We consider two dif-
ferent patchy projection patterns: OP and PB. The rather
deterministic OP model assumes a partial overlap of the
termination fields of neighboring neurons. The resulting
projection pattern of a cigar-shaped group of adjacent neu-
rons is similar, e.g., to the elongated stripes resulting from
extracellular tracer injections in the monkey prefrontal cor-
tex (Lewis et al., 2002; Voges et al., 2010a,b). In the PB model
we consider the set of all synaptic targets of groups of neu-
rons that are situated in spatially confined regions (boxes).
All neurons in such a box establish a common patchy
projection pattern, whereas each single neuron projects into

a randomly chosen subset of these patches. As explained
in (Voges et al., 2010a,b) this is the most appropriate pro-
jection pattern if one aims to reproduce neuroanatomical
findings with respect to both intra- and extra-cellular tracer
injections.

Figure 1 shows the typical connectivity of the five network
architectures for three exc. and one inh. cell chosen randomly
(from the central region) of an exemplary realization of the
5 × 5 mm2 sheet of cortex. Presynaptic exc. (inh.) cells are rep-
resented by red (blue) triangles, exc. (inh.) postsynaptic targets
are represented by red (blue) crosses if the presynaptic neuron is
an exc. cell, or red (blue) disks if the presynaptic neuron is an
inh. cell.

2.1. DETAILS ON NETWORK CONNECTIVITIES
The general settings and parameters briefly repeated in this sec-
tion are identical to those used in (Voges and Perrinet, 2010).
For all network structures, we consider N = 49, 163 neurons1

that are spatially embedded in a 2d quadratic domain of side

1The neurons are primarily sorted by ascending y-coordinate, then by ascend-
ing x. This means that in our 2d sheet of cortex, neuron zero is located at the
top left, whereas neuron 49,162 is located at the bottom right.

FIGURE 1 | Network structures. Typical connectivity for the five
network architectures from an exemplary realization of our 5 × 5 mm2

sheet of cortex. Each image shows the positions of all pre- and
post-synaptic cells of three excitatory and one inhibitory neuron,

located near the center of each square. Top row: Purely local (LO)
or random (RD) connections. Bottom row: The three mixed
architectures comprising local and random remote (RM) or local
and patchy remote (OP, PB) connections.
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length R = 5 mm. The assumption of periodic boundary condi-
tions leads to a maximum projection range of rmax = 2.5 mm.
Following Binzegger et al. (2004) and focusing on layer 2/3 of
the cat’s visual cortex, we assume 22% inh. cells, i.e., Ni = 1042

neurons arranged on jittered lattice positions. For the remaining
78% exc. pyramidal or spiny stellate cells, we assume uniformly
distributed spatial positions. The global connectivity of all net-
work models analyzed in this study is c = k̄/N ≈ 0.0153, with an
average number k̄ � 752 in- and out-going synapses per neuron,
respectively. Note that usually, the numeric relation between the
number of exc.–exc., exc.–inh., inh.–exc., and inh.–inh. synapses
exclusively depends on the frequencies of exc. and inh. neurons
(Amit and Brunel, 1997; van Vreeswijk and Sompolinsky, 1998;
Brunel, 2000; Kumar et al., 2008a). In contrast, and again follow-
ing Binzegger et al. (2004), our networks comprise 71.1% exc.
to exc. (βee = 0.711), 9.96% exc. to inh. (βei = 0.0996), 16.14%
inh. to exc. (βie = 0.1614), and 2.8% inh. to inh. (βii = 0.028)
synapses.

For four out of the five network models we analyze, we
distinguish between local and remote connections. The global
connectivity is thus composed of the following terms:

c = βee · c + βei · c + βie · c + βii · c (1)

=: (cloc
ee + crm

ee ) + (cloc
ei + crm

ei ) + (cloc
ie + crm

ie ) + (cloc
ii + crm

ii )

(2)

Based on (Kisvárday and Eysel, 1992; Voges et al., 2010a,b), we
assume that 60% of all out-going synapses of the exc. neurons in
the network models with mixed connectivities (RM, OP, PB) are
local ones. They are established according to a Gaussian distance-
dependent profile (Hellwig, 2000; Stepanyants et al., 2008), see
Equation (5). The maximum value of the connection probability
between exc. neurons was set to pmax

ee = 0.8 (Hellwig, 2000). The
width of their Gaussian connectivity profile is defined as σee =
0.25 mm. The latter value corresponds to the distance d1/2 =
0.24 mm for which pmax

ee decays to ½ pmax
ee as in Stepanyants et al.

(2008). Thus,

cloc
ee = N2

e

N2
· 2π

pmax
ee σ2

ee

R2
·
〈
1 − exp

(
− bl2

2σ2
ee

)〉
with (3)

σ2
ee = d1/2

2 ln(2pmax
ee )

(4)

for a Gaussian connectivity profile according to

p(d) = pmax · exp

(
− d2

2σ2

)
, (5)

where d is the distance between any two neurons. Therewith, we
fix the global connectivity to c = cee/(βee · 0.6). The remaining
connectivity parameters are determined with respect to this value,
and are subject to the following additional assumptions:

• We define pmax ≤ 1 for all connections, i.e., we allow for only
one synapse between any two neurons, and we do not permit
autapses.

• According to Braitenberg and Schüz (1998), inh. neurons
exhibit a slightly shortened local projection range with an
increased number of synapses (due to stronger neuritic

arborizations) as compared to exc. pyramidal cells. Hence, we
assume σii = 3/4 · σee together with a corresponding increase
in pmax

ii . The local connectivity range between exc. and inh.
neurons is fixed to σei = σie = (σee + σii)/2, together with the
corresponding changes for pmax

ei and pmax
ie .

• We assume 27% remotely established inh. synapses with a
maximal spatial connectivity range of 0.7 mm, and a minimal
distance of 0.25 mm.

• For the LO network model with only local couplings (crm = 0),
the width of the Gaussian describing the connectivity between
exc. neurons is increased to σee = 0.33 mm. Keeping c constant,
this results in pmax

ee = 0.96. The other parameters are changed
accordingly.

For the patchy network models (OP, PB) some additional
parameters have to be defined. For a detailed derivation, based
on neuroanatomical findings, see Binzegger et al., 2007; Voges
et al., 2010a,b. The radius of the patches established by exc. and
inh. neurons is set to be 0.2 mm and 0.15 mm, respectively. The
radial distance from an inh. cell body to its patch is randomly
chosen from [0.4, 0.55] mm, while the angle describing the spatial
position of inh. patches is randomly chosen from (0, 360) degrees.

In the OP network model, each exc. (inh.) neuron establishes
three (two) patches. The radial distance between an exc. cell body
and each of its patches is drawn from a normal distribution with
a mean of 1 ± 0.3 mm. Its angle is restricted to integer multiples
of 60◦ (see Voges et al., 2010a).

In the PB model, the number of patches of exc. and inh. neu-
rons is generated via binomial distributions: for inh. patches with
a mean of two and a maximum of three, for exc. patches with
a mean of three and a maximum of seven. In contrast to the OP
model, the PB patch positions are determined for the set of all exc.
neurons located in a box 2. To each box, we assign 8–12 patches
(uniform distribution), whose distances between the center of
the box and the patch are drawn from one of two normal dis-
tributions, with means of 1 ± 0.2 mm and 1.7 ± 0.2 mm. These
values are chosen according to (Buzás et al., 2006; Voges et al.,
2010a,b).

The realizations of our five network architectures are based on
identical spatial positions of the neurons. All networks with com-
bined local and remote connections (mixed connectivities: OP,
PB, RM) include identical local couplings.

3. NETWORK DYNAMICS
We now describe the dynamical properties and parameters
assumed for simulating the dynamics of the discrete single-cell
networks detailed above. We then list and explain the measures
used to characterize the corresponding phase spaces and activity
patterns.

We aim to investigate the effect of an increased structural
complexity on the network dynamics while considering purely
random connectivity as the default architecture to compare with.
Therefore, the parameters characterizing single neuron dynamics,
briefly summarized in the following paragraph, are identical

2Where the sheet of cortex is subdivided into 10 × 10 boxes of side length
bl = 0.5 mm.
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to those described in (Voges and Perrinet, 2010). We consider
conductance-based iaf neurons (Tuckwell, 1988; Gerstner and
Kistler, 2003; Kumar et al., 2008a,b), adapted to represent two
types of neurons: regular spiking exc. cells and fast spiking inh.
cells (Brunel and Wang, 2003; Muller, 2003; Nowak et al., 2003).
The spiking threshold Vθ = −55 mV, as well as the resting and
reset potentials Vrest = Vrest = −70 mV, are identical for both
neuron types. The synaptic time constants τe,i = 1.5 and 10 ms,

the reversal potentials Ve,i
rev = 0 and −80 ms, the membrane

capacitances Ce,i
m = 289.5 and 141 pF, and the membrane con-

ductances at rest Ge,i
rest = 29 and 21.2 nS are different for exc. and

inh neurons, leading to distinct membrane time constants τ
e,i
rest =

Ce,i
m /Ge,i

rest = 10 and 6.7 ms. We assume an average conduction
velocity of 0.15 m/s for neurons located close to each other, and
0.3 m/s for distances larger than 1.5 mm (i.e., potentially myeli-
nated axons) which results in a distance-dependent conduction
delay for all internal synapses (Bringuier et al., 1999), in addition
to a baseline value in the range [1.2, 1.5] ms. Excitatory neurons
receive an external Poissonian input rate ν while the input to inh.
neurons is reduced to ν× 0.66 (Voges and Perrinet, 2010).

Excitatory synaptic weights are drawn from a Gaussian distri-
bution (σ = 10% of μ) to produce EPSPs of on average 0.11 mV
peak amplitude in exc. and 0.28 mV peak amplitude in inh. neu-
rons at Vrest Inh. synaptic weights are determined by the factor g:

g = Jiτi|Vrest − Vi
rev|

Jeτe|Vrest − Ve
rev|

.

We explore the dynamical phase space via numerical network
simulations using NEST and PyNN (Gewaltig and Diesmann,
2007). In order to adjust all free parameters we performed a
series of exploratory simulation runs. Finally, simulations were
performed 3 for experiments of duration 2 s with varying input
parameters g and ν: for all networks, g ranged from 2.5 to 6 (in
steps of 0.5) while the input rate variations changed with respect
to the connectivity assumptions, see Table 1. Similarly, depending
on the network structure, additional simulations were performed
for zoom-in-values of g, also listed in Table 1.

The values were adjusted in such a way that each phase space
represents all observed dynamical states for each specific network
model, as well as the transitions from one to another. The upper
and lower boundaries of the input parameter variation were
reached if there were no more changes for larger or smaller values
of g and ν. Similar to Kumar et al. (2008a,b), Brunel (2000), we
neglect inh. inputs and assume them integrated into the external
exc. rate.

Since both the connectivity and the simulation of the net-
work dynamics are based on random processes (e.g., random
distributions, Poissonian input), we performed a second series of
simulations for different network realizations (i.e., with different
spatial neuron positions). The results of this control are only men-
tioned in case of any major deviations between the first and the
second simulation series.

3One simulation run, including all parameter variations and the calculation
of the resulting measures, took around one week of CPU time.

Table 1 | List of input parameters used to simulate the phase spaces

of the five network architectures.

Network structures LO OP, PB, RM RD

Range of ν [KHz] 9.3, 9.4 . . . 9.9 9.5, 9.6 . . . 10.1 9.25, 9.5 . . . 12.0

Additional g values 3.17, 3.33 2.67, 2.83

ν gives the average number of spikes each neuron receives per second from a

Poissonian input generator process, and g describes the ratio between exc. and

inh. synaptic weights.

3.1. ANALYZING NETWORK DYNAMICS
In order to describe the neurons’ activities and their dynami-
cal state, we compute the following observables: the mean firing
rate per neuron FR (based on time bins of 1 ms length), the
mean free membrane potential Ve

m (Kuhn et al., 2004), and the
mean change in total conductance Ge

tot/rest. In addition, we cal-
culate the typical measures used to characterize a network’s phase
space: the correlation coefficient CC to classify synchronous ver-
sus asynchronous spiking, and a specific version of the coefficient
of variation CV in order to characterize the (ir)regularity in spik-
ing (Brunel, 2000; Kumar et al., 2008a; Voges and Perrinet, 2010).
For FR, CC, and CV we average across exc. and inh. popula-
tions (Voges and Perrinet, 2010). We estimate CC for time bins
of 2 ms, averaging over N = 49, 163 (disjoint, randomly chosen)
pairs:

CC(ni, nj) = cov(ni, nj)/

√
var(ni) var(nj), (6)

where ni, nj are the spike counts of neuron i and j, cov denotes
their covariance, and var the variance. The CV measure used in
this article is based on the Kullback–Leibler divergence, and was
introduced in (Koyama and Shinomoto, 2007; Voges and Perrinet,
2010):

CVKL := exp(−KL) with KL =
∑

P(ISI) ln[P(ISI)/Q(ISI)] (7)

where P(ISI) is the unknown (measured) Inter-Spike-Interval
distribution of all neurons, using as reference distribution the
exponential Q(ISI) produced by Poissonian spike trains. The
advantages of this regularity measure are firstly that it also works
for bimodal ISI distribution, and secondly, that it also works in
case of very sparse spiking since it is directly determined from
the population activity of all neurons (Voges et al., 2010a). To
avoid transient effects, the first 500 ms of each simulation run are
excluded from the analysis.

Since many of the dynamical states observed for structured
networks (Section 4.1) are not (completely) congruent to those
described for RD networks, we employ two modified measures.
First, motivated by our distance-dependent connectivity assump-
tions, we compute a distance-dependent version of the correlation
coefficient, CC(d), see also Kriener et al. (2009); Yger et al. (2011).
To this end, the spatial distances between the pairs of neurons for
which CC is calculated are sorted into bins of 0.1 mm. Second,
in order to capture the spatio-temporal propagation of neuronal
spiking, we calculate another extended version of the correlation
coefficient, CC(dx/τ) and CC(dy/τ). For each pair of neurons
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located at a distance d = √
dx + dy, CC(τ) is determined for vary-

ing time delays τ, in steps of 2 ms. Then, CC(dx,y/τ) is plotted in
dependence of the velocities dx,y/τ.

In addition to the phase space analysis described above, we also
examine dynamics subject to spatially and temporally restricted
activity injections. Given the network dynamics were classified
as AI-like (i.e., asynchronous-irregular), we selected some phase
space positions where groups of exc. neurons located near the
center of our 2d sheet of cortex receive additional input. The
injections start at t = 750 ms and stop at t = 1500 ms. The synap-
tic weight distribution is identical to the one assumed for intrinsic
connections, while the synaptic delays are 0.2 + 0.02 ms, i.e.,
small compared to the intrinsic delays. Depending on the spe-
cific form of the unperturbed phase spaces, these injections are
applied for different g and ν values, listed in Table 2, adjusted
to hit the corresponding AI states, see Figure 2. We inject with
two different additional Poissonian input rates νi = ν × 0.3 and
νi = ν × 0.6, respectively, i.e., 30% or 60% of the input rate at the
corresponding phase space position. We examine two different
injection sizes with a diameter of Ø = 0.3 mm and Ø = 0.6 mm,
respectively, i.e., approximately 110 or 430 exc. neurons receive
additional input.

4. RESULTS
We first present the phase spaces resulting from our simulations.
Then, we proceed to a more detailed inspection of single dynam-
ical states and their activity patterns (Section 4.1). From there,
we turn back to the global comparison of the dynamics of differ-
ent network structures, including the results of localized activity
injections (Section 4.2).

Figure 2 shows the average firing rate FR and its standard devi-
ation, the average correlation coefficient CC, and the coefficient
of variation CV obtained by varying the input parameters g and
ν for the five network architectures considered in this study. We
here focus on the measures of the spiking activity, while the results
of computing the mean free membrane potential and the mean
changes in conductance are presented in Figure A1, see Appendix.
The maximum values of these observables and measures are given
in Table 3.

The general structure of the five phase spaces is relatively sim-
ilar. All networks comprise different regimes characterized by
their average firing rates and their amount of synchronicity and
regularity in neuronal spiking. The highest FR and CC values
occur for the lowest excitation-inhibition ratios (g < gc) and large
input rates (ν � νc). Likewise, the CV is always lowest for g < gc

Table 2 | Phase space positions and resulting dynamics of additional localized activity injections into LO, PB, and RD networks.

LO

g = 3.5 g = 4.0 g = 4.5 g = 5.0 5.5

νi = 0.3 νi = 0.6 νi = 0.3 νi = 0.6 νi = 0.3 νi = 0.6 νi = 0.3 νi = 0.6 νi = 0.3 νi = 0.6

ν = 9.6, Ø = 0.6 − − − − − − − − SR,Mp SR

ν = 9.6, Ø = 0.3 − − − − − − − − SR SR

ν = 9.5, Ø = 0.6 − − − − SR Mp SR SR M,Wyp SR

ν = 9.5, Ø = 0.3 − − − − SR SR SR SR SR SR

ν = 9.4, Ø = 0.6 Mp Mp SR SR SR Mp SR SR − −
ν = 9.4, Ø = 0.3 SR SR/Mp SR SR SR SR SR M,Wxp − −
PB

ν = 9.9, Ø = 0.6 − − − − SR SR SR SR/M SR/M SR/SI/M

ν = 9.9, Ø = 0.3 − − − − SR SR/sAI SR/SI/M SR/SI/M SR1/SI sAI

ν = 9.8, Ø = 0.6 − − − − SR SR SR SR SR/M SR/M

ν = 9.8, Ø = 0.3 − − − − SR/SI SR/sAI SR sAI sAI AI

ν = 9.7, Ø = 0.6 SR SR SR SR SR SR/SI − − − −
ν = 9.7, Ø = 0.3 SR SR SR/SI SR1/sAI SR/SI SR1/sAI − − − −
ν = 9.6, Ø = 0.6 SR SR SR SR SR SR/SI − − − −
ν = 9.6, Ø = 0.3 SR SR/SI SR SR1/sAI SR SR1/sAI − − − −
RD

ν = 10.25, Ø = 0.6 − − SRs SR SI SR − − − −
ν = 10.25, Ø = 0.3 − − AI/SI SI AI/SI SI − − − −
ν = 10, Ø = 0.6 SR SR SI SR SI SR − − − −
ν = 10, Ø = 0.3 SI SI AI/SI AI/SI AI/SI SI − − − −
ν = 9.75, Ø = 0.6 AI SR AI/SI SR AI SI − − − −
ν = 9.75, Ø = 0.3 AI AI/SI AI SRs AI AI − − − −

All injections are spatially restricted to a radius of either Ø = 0.6 or 0.3 mm with a Poissonian spike rate of either vi = 0.3 v or 0.6 v. Injections are always applied

in the (s)AI state, see Figure 2. The entries indicate the induced activity pattern. The index p indicates a permanent change. Apart from the well-known SR, SI, and

AI states, we also observed W (plane waves), M (mixed dynamical patterns, e.g., overlapping waves), a stripy AI state (sAI), and several mixtures between different

states (e.g., SR/SI, AI/SI), cf. Figure 7. SR1/sAI indicates one burst in an otherwise sAI state.
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FIGURE 2 | Phase space analysis of the spiking activity of the five

network structures. From left to right: av. firing rate per neuron FR
and its standard deviation, av. correlation coefficient CC, and coefficient of
variation CV . From top to bottom: locally connected network (LO), two
networks with combined local and patchy remote connections (OP, PB), a
network with local aand random remote connections (RM), and a randomly
connected network (RD). On the x-axis g denotes the ratio between exc.
and inh. synaptic weights, while ν on the y-axis indicates the input rate.

The colorbars shown at the bottom (RD) are valid for all plots in the
corresponding column. Blue text in the FR plots describes the states that
occur at the corresponding phase space positions. The transition regions
(zoom-in values for g) are indicated by the blue boxes in the lower left. Red
text in the std(FR) plots describes the positions of the specific dynamical
patterns shown in Figures 3, 4, and 5. Red crosses in the CC plots indicate
the input parameter combinations for which additional activity injections were
applied (see Table 2).

if ν > νc. Given a minimum input rate ν > νc, the transitions
between different regimes depend on both ν and g. For input
rates below νc we always observe weak irregular asynchronous
(AI) firing.

However, the details in the transitions clearly depend on
the network structure. They occur with varying smoothness at

different phase space positions. For example, in networks includ-
ing distance-dependent connections (structured networks), the
transition from extremely high to lower firing rates is much
sharper than for RD networks (cf. Table 3). Therefore, we zoomed
in on additional values for g, in dependence of the network
structure (light blue rectangles in Figure 2, listed in Table 1).
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Table 3 | Maximum values of the phase space observables (mean firing rate FR, mean free membrane potential V e
m, mean change from resting

to total conductance Ge
tot/rest

, and the corresponding standard deviations) and measures (CC and CV ) presented in Figures 2 and A1.

Network structures LO OP PB RM RD

max{FR} [Hz p. n.] 253.5 265.1 254.0 261.0 97.2

max{std(FR)} 17.55 0.7 27.78 1.17 43.78

max{CC} 0.35 0.22 0.35 0.22 0.63

min, max{V e
m} [mV] –62.4, –51.6 –63.2, –52.4 –60.2, –53.5 –61.3, –52.2 –60.2, –56.05

max{std(V e
m)} 5.61 5.7 5.32 5.9 5.19

max{Ge
tot/rest} [nS] 12.33 12.67 8.18 12.78 6.27

max{std(Ge)} 128.6 88.5 63.6 151.0 88.0

For FR, CC, and CV we averaged over exc. and inh. populations while V e
m and Ge

tot/rest are given with respect to the exc. population only.

With respect to the latter we assumed different ranges for ν which
are also listed in Table 1. With respect to these g and ν values
and the corresponding transition regions, we assign the five phase
spaces to three different categories:

• RD networks with a first transition at gc = 2.5 for νc �
10 KHz separating highly synchronized, regular and strong
spiking from medium FR, CC, and CV values. A second
transition to asynchronous and irregular spiking occurs for
3 < g � 4.5, although firing remains slightly synchronous for
ν � 10.75 KHz (Voges and Perrinet, 2010).

• Networks with combined local and remote couplings (mixed
connectivities OP, PB, RM): a first transition regime appears
at gc ≈ 2.67 for νc � 9.7 KHz, shifted to g ≈ 2.83 for ν �
9.9 KHz. It separates extremely high (FR > 200 KHz) from
medium firing rates (7–25 KHz) along with a decrease in syn-
chrony and regularity. In particular, it contains a small range
with very low CC values. A second transition takes place for
3.5 � g � 4.5, depending on the specific ν value (which is
higher for larger g).

• LO networks with a transition for gc ≈ 3.3 and νc �
9.5 KHz separating two synchronous regular regimes, one with
extremely high firing rates (FR > 200 KHz), the other with low
to moderate FR values (2–20 KHz).

As expected, the network architecture has an effect on the phase
space structure, although this effect mainly depends on the ratio
between local distance-dependent versus remote connections: the
more local Gaussian couplings, the higher the g values (i.e.,
stronger inh. synaptic weights) at which the transitions from
strong, synchronous, and regular firing to weak, asynchronous,
and irregular spiking take place. Likewise, the more local cou-
plings, the smaller the critical input rate νc which separates low
AI firing from the possibility of strong, synchronous-regular spik-
ing. Yet, there is no significant difference in the phase spaces
of the mixed connectivity structures (OP, PB, RM), apart from
one apparent exception, see Appendix. For a given percentage of
local versus long-range connections, the transitions seem inde-
pendent of the details in the remote connectivity assumptions.
These findings are summarized in Figure 8.

In order to compare and characterize the dynamical states
themselves, we now present characteristic examples of the activity
patterns that occur at different phase space positions.

4.1. COMPLEX ACTIVITY PATTERNS
Figures 3, 4, and 5 show the raster plots, the firing rate over time,
and the ISI distributions for the phase space positions marked in
Figure 2. These activity patterns are representative for the vari-
ous states resulting from simulating the dynamics of structured
networks, i.e., LO, OP, PB and RM network models.

Figure 3 shows two examples each of synchronous-regular
(SR) and asynchronous-irregular (AI) firing. Similar to what we
found for RD networks (Voges and Perrinet, 2010), the SR states
are not as clearly defined as it has previously been reported
(Brunel, 2000; Kumar et al., 2008a). A burst of spikes starts with
a shorter (Figure 3, top left) or longer (Figure 3, bottom left)
interval of AI firing which initiates a short period of synchronous-
regular spiking involving (almost) all neurons [FR(t) maxima],
followed by a refractory period without any spikes. We dis-
tinguish between SR and SRs (i.e., slow) with respect to the
frequency of bursts. The higher the input rate ν and the smaller g
(lower inh. weights) the more bursts occur—with less AI firing in
between. The corresponding ISI distributions are either bimodal
(periodic bursting, high CV) or even multi-modal in case of irreg-
ularly appearing bumps (intermediate CV). A zoom-in on the
raster plots, however, reveals a clear difference between the SR
states of structured versus random networks: for networks with
local distance-dependent connections, each burst exhibits a spi-
ral structure, indicating a spherical wave in the 2d geometry of
our sheet of cortex4, see Figure 6, top left. A small spot of activ-
ity emerges at some random position, it spreads out circularly
over the whole spatial domain, and then vanishes (Schmidt et al.,
2010; Yger et al., 2011). In the RD network there is no such spatial
propagation. The corresponding 2d view of SR activity in the RD
model is a synchronous blinking of (almost) all neurons.

The right column of Figure 3 shows two types of weak
asynchronous-irregular activity that occur in structured net-
works. The upper plot is a typical AI state, well-known from RD
networks (Brunel, 2000; Kumar et al., 2008a; Voges and Perrinet,
2010): a low and flat FR(t) together with an exponential ISI dis-
tribution. In our structured networks, a pure AI state appears
only rarely, mainly for ν < νc . Mostly, we find so-called stripy
AI (sAI) dynamics, see Figure 3, bottom right. We see principally
asynchronous-irregular firing [with a still relatively flat FR(t)]

4The spiral is a visualization of the neuron ordering, see Section 2.1.
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FIGURE 3 | Synchronous-regular and asynchronous-irregular firing.

Four exemplary raster plots (each black dot represents a spike of one
neuron at one time step, top rows) with the corresponding firing
rates over time FR(t) (av. firing rate per neuron in Hz, middle rows) and ISI
distributions (logarithmic y-axis, bottom rows). Left: two characteristic

types of SR activity. Right: a typical AI state (top) and a modification of the
typical AI with short periods of increased firing of subgroups of neurons,
called stripy AI (bottom). The network structure and the input parameters
(ν, g) used to generate these activity patterns are stated the top of each
raster plot.

that contains small stripes of clustered spikes (Kriener et al.,
2009). Yet, these spatio-temporal clusters of spikes are not pro-
nounced enough to establish a proper SI state: they involve only
subgroups of all neurons so that CC � 0.002 at the correspond-
ing phase space locations (Figure 2). This is even lower than the
correlations defining the weak SI state in RD networks, namely
0.003 � CC � 0.01, see Voges and Perrinet (2010).

The left column of Figure 4 shows two types of dense spik-
ing with exceptionally high firing rates and a pronounced peak
at very short ISIs that occur in structured networks for ν > νc

and g < gc. The corresponding activity in RD networks consists
of thin vertical stripes due to highly synchronous firing of all neu-
rons, called SRfast (Kumar et al., 2008a; Voges and Perrinet, 2010).

Instead, structured networks exhibit either chessboard-like raster
plots together with exceptionally strong FR(t) fluctuations called
DSI , or a state named DSII with smaller, very fast FR(t) fluctua-
tions. This difference between DSI and DSII may be seen in the
phase space plots where we have low std(FR) values at ν > νc

and g < gc for OP and RM networks compared to LO and PB
networks (Figure 2).

The right column of Figure 4 presents a second type of waves
that occurs mainly for mixed network structures (OP, PB, RM) at
g ≈ 2.67 or g ≈ 2.83, i.e., at the border between DS and SR activ-
ity. A raster plot with thin, oblique, horizontally oriented stripes
(top right) indicates a plane wave that propagates in y-direction,
while thin, oblique, vertically oriented stripes (bottom right)
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FIGURE 4 | Dense spiking and plane waves. Four exemplary raster
plots (top rows, please note the different time scales) with the corresponding
FR(t) curves (middle rows) and ISI distributions (bottom rows). Left: two
types of dense spiking DS, characterized by exceptionally high firing rates.
Right: plane waves beginning after approximately 750–900 ms. Note the

flat FR(t). Thin oblique horizontal stripes indicate a propagation in y-direction
(see Figure 6, top row), while thin oblique vertical stripes indicate a
propagation in x-direction. Again, the network structures and the input
parameters used to generate these activity patterns are stated at the top of
each raster plot.

indicate a plane wave that propagates in x-direction. Figure 6,
top right gives an example of such a wave propagating in y, from
the bottom to the top of our 2d sheet (then re-entering at the
bottom due to the periodic boundary conditions). Plane waves
exhibit a bimodal ISI distribution (small CV , i.e., regular spiking)
but a flat FR(t), which is the reason for the small CC values in
Figure 2. They emerge after a certain settling time, often due to
interference of several spherical waves, cf. M3 in Figure 5. These
states are rather transient, mostly mixed with SR or DS activ-
ity patterns, see M2 in Figure 5. They often appear as part of an
ongoing state change (called “local transition”) in LO networks,
see Figure 5, top left. Other transient or mixed states are, for

example, M2 in Figure 5, bottom left which indicates a periodic
switching between plane and spherical waves. Melting stripes (M3
in Figure 5, top right) sometimes induce a transition into another
activity pattern. M4 shows a typical mixture between sAI, SR, and
SI activity which usually appears at the border between SR and
sAI states.

In general, the typical measures used to characterize spiking
activity of random networks FR, CC, and CV are still appropri-
ate for structured networks. There are, however, new or modified
activity patterns that do not exist in RD networks, as, for exam-
ple, propagating waves or dense spiking. Some of them are not
adequately described by the usual measures (see also Section 4.2),
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FIGURE 5 | Mixed spike patterns. Four exemplary raster plots
(top rows, please note the different time scales) with the corresponding
FR(t) curves (middle rows) and ISI distributions (bottom rows).
M1 occurs in LO networks and indicates a mixture between DS,SR,
and plane waves. M2 represents an ongoing change between
SR and Wy. M3 shows a typical variation of SR activity in structured

networks: melting bursts.(at t ≈ 1250 ms), and short periods
of increased firing shortly before an actual burst occurs (at t ≈ 1400 and
1600 ms). M4 shows a typical activity pattern, namely one single SR burst
embedded in an otherwise sAI state. Network structure and input
parameters used to generate these activity patterns are stated at the top of
each raster plot.

e.g., the average CC in case of plane waves: intuitively, spherical
and plane waves are just two realizations of one and the same
activity pattern. Yet, the flat FR(t) in Figure 4, as well as the low
CC values in Figure 2 indicate asynchronous firing for Wx and
Wy states, whereas spherical waves are clearly classified as SR.
Thus, in particular to capture the spatio-temporal propagation
of plane waves, we compute CC(d) and CC(τ/d) (middle and
bottom row of Figure 6).

We find that the correlation coefficients of states with very high
firing rates (DS, M1 in LO networks, SRf in RD networks) depend
only weakly on the spatial distances (Figure 6C). Only in case of

purely local couplings CC(d) clearly decreases (red curve). The
CC(d) values of the RD network were highest and independent
of d. Figure 6D shows CC(d) for states with high or intermediate
firing rates. These curves decrease with increasing d for struc-
tured networks, only the RD model remains independent of d
(black line). Thus, in case of intermediate FR values, a higher
connection probability between neighboring neurons leads to a
more synchronized firing of those neurons (cf. Kriener et al.,
2009; Yger et al., 2011). Yet, there is no difference between SR
states with one single burst (dotted red line) or several bursts
(e.g., continuous red line). Moreover, this measure does not
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A

EDC

B
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FIGURE 6 | Spatio-temporal activity propagation. (A,B) Two 2d sheets of
cortex, each at two different time steps. Each dot represents the position of a
spike of a single neuron. (A) Shows a circular spherical wave propagation
while (B) shows a plane wave of spikes that propagates only in y-direction.
(C,D,E,F,G,H) Distance-dependent and velocity-dependent average

correlation coefficients, subdivided into different categories according to the
dynamical state. (C,F) CC(d) and CC(d/τ ) for states with extremely high
firing rates (DS, M3, SR of RD networks), (D) CC(d) for states with medium
to high firing rates (SR, Wx, Wy), (E) CC(d) for states with low firing rates,
(G) CC(d/τ ) for 2d waves, (H) CC(d/τ ) for 1d waves.

distinguish between plane and spherical waves, although their
average CC values differ significantly. As mentioned above, plane
waves (cyan lines and dotted green line) are usually intermingled
with SR or DS activity patterns and one single burst is enough to
induce a CC(d) curve similar to frequently bursting SR dynamics.
Likewise, CC(d) yields similar curves for all states with low firing
rates (Figure 6E), independent of the network structure (cf. Yger
et al., 2011). Only the SI state of RD networks exhibits slightly
higher CC(d) values due to a slightly higher average CC value
(Voges and Perrinet, 2010). Finally, by calculating CC(dx/τ) and
CC(dy/τ), we are able to identify the spatio-temporal propaga-
tion of plane waves. The peaks in Figure 6H clearly indicate such
waves traveling in x- or y-direction. More precisely, they indicate
velocities of approximately 0.1–0.2 m/s.

4.2. PHASE SPACE ANALYSIS AND ACTIVITY INJECTIONS
We have demonstrated that local distance-dependent connec-
tions lead to new, more complex activity patterns that do not

occur for purely random couplings. In particular, structured
networks with distance-dependent conduction delays induce a
spatial spread of spiking activity, i.e., plane or spherical waves
(Schmidt et al., 2010; Yger et al., 2011). Comparing the phase
space of our networks we find that the correlation coefficient is
generally higher in the RD model (Figure 2). On one hand, this
might be an effect of the spatio-temporal activity propagation
since Equation (6) does not allow for any spatial properties, and
we did not adapt the bin size5. On the other hand, Renart et al.
(2010) demonstrate that substantial amounts of shared input (as
caused by neighborhood couplings) do not necessarily lead to
increased correlations. Moreover, Ecker et al. (2010) suggests an
active decorrelation of adjacent neurons. We also find that the
distribution of FR values was much smoother for RD networks
(Figure 2), whereas the maximum firing rates are extremely high

5Which was chosen to be 2 ms for all networks, independently of the waves’
velocities.

Frontiers in Computational Neuroscience www.frontiersin.org July 2012 | Volume 6 | Article 41 | 12

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Voges and Perrinet Dynamics of spatially realistic connectivities

for structured networks, see Table 3. Most likely, this is due to
the increased recurrency in networks with distance-dependent
couplings leading to a mutual activation of neighboring neurons
(positive feedback loop). However, it seems that this feature is
not graduated in terms of the amount of local couplings since the
maximum FR values of LO, OP, PB, and LO are quite similar.

Our analysis reveals that some states occur only for certain net-
work structures, or at specific phase space locations depending on
the network type. Plane waves, for example, appear either at the
border between DS and SR activity in networks with mixed con-
nectivities (g = 2.67, 2.83 for OP, PB, RM), or for g ≈ 6 in LO
networks. None of our network models shows a clear SI state.
Instead, we obtain a modified AI state containing fragmentary
stripes of spikes (sAI). Additionally, there are many transient
regimes, i.e., mixed states in which the activity pattern changes
between different types of waves, or in which one or two occa-
sional bursts appear during an otherwise (s)AI firing. Such a
coexistence of two (or more) states occurs mostly at the bor-
ders between DS and SR spiking (Figure 5) or between SR and
(s)AI firing, similar to what we found for RD networks (Voges
and Perrinet, 2010). Therefore, with respect to the question of sta-
bility, we perform a series of simulations that involve additional,
localized activity injections, listed in Table 2. Since the results for
networks with mixed connectivities (OP, PB and RM model) are
qualitatively identical, we only present PB injections.

In order to enable the possibility of state change we restrict the
injections to exc. neurons. Targeting inh. neurons always results in
a clear reduction of neuronal firing, independent of the network
type. Yet, this is not in agreement with cortical reality for input
coming from the thalamus (Kremkow et al., 2010) and, there-
fore, indicates an issue with the general set-up of our networks
(as discussed later on). Figure 7 shows a selection of raster plots
of the activity patterns resulting from localized injections, ordered
according to the network structure. These plots are chosen to be
representative examples of the states listed in Table 2.

Depending on both the injection parameters and the network
architecture, the dynamical state may switch from (s)AI firing
to SR or W activity or to states with extremely high firing rates
(SD, M). Mostly, the activity switches back to the original (s)AI
state as soon as the injection ends. Only in case of LO networks
do some injections induce a permanent state change (indicated
by an upper index p), mainly, but not exclusively, for injections
at phase space positions with small g values (Table 2). Likewise,
only in case of LO networks, do all injections lead to a total change
of the activity dynamics, i.e., to traveling waves (SR, W) or mix-
tures of states with extremely high firing rates. In contrast, for
RD models or networks with mixed connectivities, neuronal fir-
ing can also remain weak and irregular, see Figure 7, left and
Table 2, bottom—provided that ν is not too large and g is large
enough. Additional activity in the RD network at small ν may
even remain locally confined to the injection site (Figure 7, bot-
tom right). In the PB network, additional spikes always propagate
to neighboring neurons, but usually not across the whole net-
work, i.e., injection usually does not induce SI activity. If so,
this occurs typically in combination with one or two SR bursts
(Table 2). Principally, the phase space position of the injection has
the strongest effect: the smaller g and the larger ν the higher the

probability for a major change, i.e., a transition to some type of
regular state (SR firing, plane waves or a mixture between these
states). The injection parameters are less important, the impact
of Ø is typically larger than the impact of νi. Quantitatively, both
parameters operate in the same direction as ν. In summary, we
see that sensitivity to additional input clearly increases from RD
networks to networks with mixed connectivities to LO networks,
which exhibit particularly unstable, at times even permanently
changed, dynamics.

5. DISCUSSION AND CONCLUSION
Aiming to shed light on the effect of different intrinsic connec-
tivity assumption on cortical network dynamics, we analyze the
phase spaces of three network categories: (1) purely random cou-
plings as often used in studying cortical network dynamics, (2)
purely local couplings as an opposite to random networks, and
(3) three types of combined local and remote connectivities. The
latter are carefully chosen in order to represent neuroanatomical
findings. They differ in terms of the spatial arrangement of their
remote synapses: random versus two types of patchy projections.

We find that different connectivity assumptions lead to shifted
phase space transitions, summarized in Figure 8. The critical
parameter is the percentage of local distance-dependent couplings
versus remotely established synapses (Stepanyants et al., 2009).
Details in the spatial arrangement of the remote connections have
neither a visible effect on the “idle” dynamics, nor on the activity
patterns generated by additional localized Poissonian inputs.

The ratio between local and remote couplings affected not only
the transitions between different regimes in the phase space, but
also the regimes themselves. Depending on the input parameters,
local distance-dependent couplings induce extremely high firing
rates. In particular, they cause a spatio-temporal spread of activ-
ity, i.e., propagating waves (Schmidt et al., 2010; Yger et al., 2011).
Moreover, for input rates larger than a certain critical value, net-
works with mixed connectivity mainly exhibit a stripy AI state
instead of the clear asynchronous irregular (AI) or synchronous
irregular (SI) firing described previously (Brunel, 2000; Kumar
et al., 2008a; Voges and Perrinet, 2010). For ν > νc the dynamics
of purely LO is always composed of waves (regardless of g) and,
for ν < νc, we find them to be rather unstable (Section 4.2).

Significant phase space modifications have already been
demonstrated for random networks: with respect to conductance-
based synapses (Brunel, 2000; Kumar et al., 2008a) and as a
consequence of a whole-set of changes in Voges and Perrinet
(2010) compared to Brunel (2000); Kumar et al. (2008a). As men-
tioned before, we use the general set-up described in Voges and
Perrinet, 2010 in order to focus on the comparison of differ-
ent network structures. There are some general issues concerning
our networks. First, the spatial enlargement (5 × 5 instead of one
squared millimeter) of our models is naturally at the expense of an
unrealistically small neuron density (Voges and Perrinet, 2010).
Second, we do not consider depressing or facilitating synapses,
although this is a known property of cortical neurons (Nowak
et al., 2003). Most probably, this is the reason why we have to
confine our additional activity injections to exc. neurons: actually,
fast spiking neurons often slow down for tonic input. Third, our
notion of LO networks deviates from the usual meaning of local

Frontiers in Computational Neuroscience www.frontiersin.org July 2012 | Volume 6 | Article 41 | 13

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Voges and Perrinet Dynamics of spatially realistic connectivities

FIGURE 7 | Exemplary raster plots resulting from additional localized

activity injections (each black dot represents a spike of one neuron at one
time step). Top row: LO network, middle row: PB network, bottom row:

RD network. The labeling of the resulting states listed in Table 2 is given in
red. The ν, g, νi , and Ø values used to generate these activity patterns are
given at the top of each plot.
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FIGURE 8 | Schematic summary of Figure 2. The five phase spaces
are assigned into three different categories: Purely local couplings,
mixed (i.e., separated local and remote) connectivity assumptions, and

purely random couplings. SR indicates synchronous-regular like firing,
AI asynchronous-irregular like firing, DS dense spiking, and W the occurence
of waves.

networks. The crucial feature of our LO model is that there are
many neurons outside the local connectivity range, i.e., neurons
with which the central neuron establishes no synapses at all, see
Figure 1. In contrast, the usual definition implies a non-zero con-
nection probability between any pair of neurons (Mehring et al.,
2003; Kumar et al., 2008b; Yger et al., 2011). Since we focus on
the impact of explicit remote (as opposed to local) projections,
our LO model represents one extreme connectivity assumption,
while the RD model represent the other extreme.

A well-known network model that spans the whole range
between regular and random connectivity is the small-world

network (Newman, 2003; Voges et al., 2010a, 2012b). Kitano
and Fukai (2007) analyze the effect of explicit long-range con-
nections on the dynamics of 2d spatially embedded networks
by varying the rewiring probability pw. pw = 1 and pw = 0
roughly correspond to our RD and LO models, respectively, while
our mixed connectivities correspond to pw = 0.4. Kitano and
Fukai (2007) demonstrates a monotonically increasing spiking
regularity (small CV) as a consequence of decreasing pw, i.e., less
long-range connectivity. This is in agreement with our results if
one compares the CV values for RD and LO networks in Figure 2.
Their pw value to maximize synchronicity was found to depend
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on the synaptic strength, it was either pw = 1 in agreement with
our findings, or pw = 0.05. Our models cannot contribute to the
discussion as in (Roxin, 2011) as nearly all our degree distribu-
tions are binomial (Voges et al., 2010a). There is one exception,
the PB model which has a broader out-degree distribution. Yet,
this corresponds to a case where Roxin (2011) shows the total CC
to be unaffected.

Recently, Yger et al. (2011) published a study with respect to
local connectivity (in the usual sense). Focusing on the SI regime,
they vary the spatial spread of a Gaussian connectivity profile σc.
They find that the macroscopic properties of the spiking activ-
ity are basically invariant with respect to σc. Similarly, we claim
that details in the remote connectivity have little impact on the
network dynamics. Moreover, Yger et al. (2011) state that their
findings do not hold in the limit of very small σc which cor-
responds to our LO network. Yet, these two studies principally
represent two different approaches: we systematically vary the
input rate ν while Yger et al. (2011) vary σc for a fixed ν. We
analyze the transitions between different regimes, whereas they
focus on a single regime, the SI state. However, we see no SI,
but rather a stripy AI regime instead. On one hand, this might
be due to the different parameter values for the single neurons,
the conduction delays, etc. On the other hand, it may be an effect
of the distinct spatial scales (5 × 5 versus one squared millime-
ter) resulting in distinct global connectivity assumptions: Our
connection density is a factor 3 smaller than their minimum
(0.15% versus 0.5%) and we separate between local and remote
projections. Thus, our fragmentary stripes, which are indeed syn-
chronized spikes of clusters of neighboring neurons (due to the
neuron ordering, see Section 2.1), could well be SI firing on a
more local spatial scale.

In summary, we demonstrate that the connectivity type
assumed for discrete cortical network does play a role in the
resulting dynamics (Figure 8). Thus, depending on the aim of
the study, one should be aware of the characteristics and limits
of the chosen network structure. Random networks, for exam-
ple, cannot account for propagating waves and are therefore less
appropriate to investigate a spatio-temporal spread of activity.
Purely LO show no (a)synchronous-regular regime for higher
input rates and they are extremely sensitive to additional local-
ized inputs (unstable). The assumption of a Gaussian connectivity
profile for spatially extended networks (i.e., including remote
intrinsic synapses) is presumably not appropriate. Choosing a σ

that correctly captures the local connectivity range of each neu-
ron most probably results in a far too low connection probability
for the distant projection targets (similar to our LO model). One
solution is to distinguish between local and remote connectiv-
ity. Another possibility is to assume another distance-dependent
connection probability profile, e.g., one with a slower decay or
a heavy tail distribution. As mentioned in Section 2, there are
indeed studies that suggest an exponential decay for the local
connectivity (Holmgren et al., 2003).

In general, heterogeneity is an important property of cortical
networks (Denker et al., 2004; Tetzlaff et al., 2009). Our results
support this statement with respect to different connectivity
types. Moreover, as mentioned in Section 1, a mixture of local
and remote couplings is crucial with regard to the wiring

optimization necessary for real cortical networks (Chklovskii,
2004). Patchy connections provide an additional advantage: they
ensure synapses between distant groups of neurons using very
little cable length (Voges et al., 2010b). We show that the inclu-
sion of this advantageous feature neither changes the “idle”
dynamics, nor the network’s reaction to additional localized
input. Thus, if one aims at closely representing cortical con-
nectivity, the relatively complex PB model would be a good
choice. However, if one simply needs a stable AI state, the RD
model should suffice, see also below. Patchy connectivity patterns
most probably come into play when information is processed,
i.e., with respect to functional aspects like orientation selectiv-
ity (Buzás et al., 2006), receptive field properties (Angelucci and
Bressloff, 2006), or for embedding synfire chains (Kumar et al.,
2010).

Our results are an encouraging step toward a reconciliation of
the apparent conflict between detailed topological network mod-
els (Mehring et al., 2003; Kumar et al., 2008a,b; Voges et al., 2010a;
Yger et al., 2011) and the mean-field approach taken in neural
mass models (Jansen and Rit, 1995; Deco et al., 2011; Voges et al.,
2012a), similar to those presented by Yger et al., 2011. As men-
tioned in Section 1 these macroscopic models often consist of
several single units with random internal couplings, representing
the neuronal connectivity inside the range of a cortical column
(Jansen and Rit, 1995). Then, the units are typically connected
by specific external links, representing (white matter) connec-
tions between different (functional) areas of the brain (e.g., V1,
V2, MT, A1). On one hand, such models neglect details of the
spatio-temporal dynamics on the small (neuronal) scale. On the
other hand, the activity dynamics in such macroscopic models is
rather dominated by the corresponding properties of the exter-
nal connections (e.g., their conduction speed), in particular with
regard to the resting state dynamics (Deco et al., 2011). Thus, such
neural mass models are an appropriate approximation as long
as the spatial scale is large enough and as long as the properties
to be analyzed are sufficiently macroscopic. Yet, concerning the
investigation of issues that involve topographic projections (e.g.,
receptive field properties) or phenomena that might be influenced
by spatial aspects (e.g., negative BOLD responses in epilepsy, see
Voges et al., 2012a), spatially embedded single-cell networks are a
better choice.

Finally, we would like to stress the point that there is a con-
nectivity scale in between the cortical column and white matter
projections. Including these remote but mostly intrinsic connec-
tions inside one area or between neighboring brain regions has an
impact on the phase space dynamics.
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APPENDIX
We here present the second part of the phase space, i.e., the mean
free membrane potential Ve

m, the mean change from resting to
total conductance Ge

tot/rest (each for the exc. population only),
and their corresponding standard deviations for varying g and ν.
Averaging over exc. and inh. neurons is not appropriate for these

FIGURE A1 | Phase space, part II. From left to right: mean free
membrane potential V e

m of the exc. population and its standard deviation,
mean change from resting to total conductance Ge of the exc. population,
and the variations in the measured Ge values. From top to bottom: LO,
OP, PB, RM, and RD network. The colorbars shown at the bottom (RD)
are each valid for all plots in the corresponding column. On the x-axis g

denotes the ratio between exc. and inh. synaptic weights, while ν on the
y-axis indicates the input rate. Blue text in the V e

m plots describes the
general states that occur at the corresponding phase space positions.
The transition regions (zoom-in values for g) are indicated by the blue
boxes in the lower left. Red text in the Ge

tot/rest plots describes the
positions of the specific dynamical patterns shown in Figures 3, 4, and 5.

observables due to different types of neurons; we focus on the exc.
population (Voges and Perrinet, 2010).

A comparison between Figure 2 and A1 shows that FR
(cf. Figure 2), Ve

m, Ge
tot/rest′ , and their standard deviations

exhibit a similar behavior with respect to the input parameters.
Maximum values occur for low inhibition combined with high
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input rates, and minimum values for large g and small ν. In case
of AI or sAI firing (ν > νc or g > gc together with the corre-
sponding ν values) Ve

m weakly fluctuates [small std(Ve
m)] a few

millivolts below the threshold Vθ. Membrane conductances are
increased by a factor 1.2–3 relative to the membrane conductance
at rest for exc. neurons. Correspondingly, this leads to a reduction
of τe

rest = 10 ms to 3–8 ms. For regimes with medium to rela-
tively high firing rates (W, SR or SRs), Ve

m shows slightly lower
values but larger fluctuations while the changes in Ge

tot/rest are
similar to those described for the (s)AI state but with larger fluc-
tuations. Thus, these states are in line with in vivo physiological
observations (Destexh et al., 2003).

However, the dynamical states with exceptionally high FR val-
ues (DS for ν < νc and g < gc in structured networks) are surely
very far from physiological observations in healthy animals. The
mean free membrane potential can exceed the firing threshold, the

increase in membrane conductance exceeds a factor of 10, and
the corresponding fluctuations are huge (see Table 3). They are
even more pathological than the corresponding SRf state in RD
networks (Voges and Perrinet, 2010). Such a regime constitutes
a comparably large part of the phase space of the LO network,
see Figure 2 and A1. In case of mixed connectivities (OP, PB,
and RM network) such a state occurs rarely, only for g < 2.67 or
g < 2.83 together with very high input rates. The apparent differ-
ence between the phase spaces of PB versus OP and RM networks
results from this pathological regime: the vertical stripe of high
std(FR) and CC values occurs only in case of PB connectivity, at
2.5 � g � 2.67 for ν � 9.7 KHz. However, this difference is not
visible in Figure A1 and there is no such vertical stripe in our
second series of simulations. The results of this control are qual-
itatively identical to the ones shown in Figure 2, apart from the
effect described above.
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