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Understanding the interplay of topology and dynamics of excitable neural networks is one of
the major challenges in computational neuroscience. Here we employ a simple determinis-
tic excitable model to explore how network-wide activation patterns are shaped by network
architecture. Our observables are co-activation patterns, together with the average activity
of the network and the periodicities in the excitation density. Our main results are: (1) the
dependence of the correlation between the adjacency matrix and the instantaneous (zero
time delay) co-activation matrix on global network features (clustering, modularity, scale-
free degree distribution), (2) a correlation between the average activity and the amount
of small cycles in the graph, and (3) a microscopic understanding of the contributions by
3-node and 4-node cycles to sustained activity.
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1. INTRODUCTION
The fiber networks linking the neural nodes of the brain possess
a specific, non-regular, and non-random organization. This net-
work organization comprises characteristic topological features,
such as network motifs (small sets of nodes with specific wiring;
Milo et al., 2002, 2004; Sporns and Kötter, 2004; Song et al., 2005),
modules (sets of nodes with more internal than external connec-
tions; Hilgetag et al., 2000), and hubs (network nodes with a much
higher-than average number of connections; Sporns et al., 2007;
Zamora-López et al., 2010). These features may be present across
many orders of scale, from circuits and populations of individual
neurons (Mountcastle, 1997; Binzegger et al., 2004) to large-scale
regions and lobes of the entire brain (Bullmore and Sporns, 2009),
creating an intricate multi-scale organization of structural brain
networks.

What are the consequences of this characteristic neuroanatomi-
cal network organization for neural dynamics during spontaneous
network activity or task-related stimulation? The global dynamics
of the brain display a number of characteristic features. As a central
aspect, the brain shows self-sustained, rhythmic multi-frequency
activity in the absence of external stimuli. Such rhythmic sustained
activity represents internal self-organized states of the nervous
system, and has attracted great attention (van Vreeswijk and Som-
polinsky, 1996, 1998; Brunel, 2000; Roxin et al., 2004; Galán, 2008).
Self-sustained brain dynamics are important in various neural
functions, such as dynamic stability (Kaiser et al., 2007a; Kaiser
and Hilgetag, 2010), signal propagation (Vogels and Abbott, 2005),
and neural coding (Lewis et al., 2009). It was shown that networks
of sparsely connected spiking neurons can produce highly irreg-
ular chaotic activity without external stimuli, due to the balance

between excitation and inhibition (van Vreeswijk and Sompolin-
sky, 1998;Vogels and Abbott, 2005). However, little is known about
the impact of neural network topology on the organization of
sustained rhythmic neural activity.

Traditional perspectives of cognitive neuroscience saw the brain
as a passive, stimulus-driven device. In this view, the spontaneous
ongoing activity of the brain was regarded as noise. Over the last
decades, the paradigms have shifted to consider the brain as an
active network that can generate meaningful activity by itself,
which has significant impact on the selective responses to stim-
uli (Engel et al., 2001; Fries, 2005; Knight, 2007). Importantly, the
sustained resting-state activity of the brain is far from simply noisy.
Rather, rhythmic oscillations with characteristic frequencies, such
as α, β, γ waves are abundant (Buzsáki, 2006). The relationship
between cognitive functions and brain rhythms as well as synchro-
nization of the rhythms has been a central topic in neuroscience
over the last decade (Engel et al., 2001; Fries, 2005). How oscilla-
tions emerge in the brain and how they are related to the network
architecture, however, is still largely an open question.

More generally, studying the interplay between the modu-
lar architecture and dynamical activity of neural networks may
deliver important insights for the understanding of structure-
function relationships in neural systems. Previous investigations
have shown several interesting results. The study of synchroniza-
tion dynamics in the cerebral cortical network demonstrated that
modular functional networks coincide with the anatomical com-
munities (Zhou et al., 2006, 2007; Honey et al., 2009). In a model
of spreading neural activity, persistent and scalable network acti-
vation could be produced in hierarchical modular networks, but
not in same-size random networks, implying that the hierarchical
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cluster architecture is a potential basis for the stable and diverse
functional patterns in cortical networks (Kaiser et al., 2007a; Kaiser
and Hilgetag, 2010). It was also shown that hierarchical modular
networks satisfy constraints of stability under dynamical changes
(Robinson et al., 2009).

In the present paper, we are guided by the following ques-
tions:What aspects of network topology explain principal dynamic
features of the brain, such as sustained activity, patterns of
periodic activity, as well as large-scale, network-wide patterns
of average activity? In particular, topological “devices” at what
scale (e.g., at the level of nodes, motifs, cycles, or even more
global network features, such as modules, hubs, or the network’s
degree distribution) are responsible for the particular dynamic
patterns?

We are exploring a highly minimal, deterministic model (a
three-state cellular automaton) of a neuron, in order to extract
a few “stylized facts” (Buchanan, 2012) of how network topology
shapes excitable dynamics. The model is the deterministic limit
of the stochastic cellular automaton analyzed in previous publica-
tions (Müller-Linow et al., 2006, 2008; Hütt and Lesne, 2009; Hütt
et al., 2012). The deterministic nature of the model and the fact
that we set the refractory period to a single time step lead to a high
average excitation density. Generally, this model is not meant as
a realistic rendering of neuronal dynamics, but rather as a means
of extracting particularly strong influences of the topology on the
dynamics.

Previous theoretical findings on self-sustained activity and
excitable dynamics either followed from mean-field approaches
or numerical simulations. In several cases (e.g., Deco et al., 2009,
2011), noise was considered to be essential for sustained activ-
ity. The establishment of sustained activity presumably depends
on the initial conditions and the way the system is prepared. It
has been shown (Carvunis et al., 2006) that the excitable dynam-
ics on a scale-free graph of three-state neuron model (E : excited,
S: susceptible, and R: refractory) with recovery period one set-
tles in a period-three regime. The origin of this behavior has
been identified in the presence of 3-node triangles of ESR act-
ing as pacemakers and imposing their period on the whole system.
Roxin et al. (2004) has shown, for integrate-and-fire neurons, that
a very low density of shortcuts was sufficient to generate per-
sistent activity from a local stimulus through the re-injection of
activity into previously excited domains. In a continuous set-
ting Qian et al. (2010b) and Liao et al. (2011) demonstrated
the existence of phase-advanced driving links, revealing possi-
ble self-organized structures supporting self-sustained oscilla-
tions. Another study (Qian et al., 2010a) analyzed diverse self-
sustained oscillatory patterns and their mechanisms in small-
world networks of excitable nodes, showing that spatiotemporal
patterns are sensitive to long-range connection probability and
coupling intensity. Further research (Kaiser and Hilgetag, 2010)
explored how variation in the number of hierarchical levels and
the number modules per level influenced the network dynam-
ics and the occurrence of limited sustained activity (between
the extremes of either quickly dying out or activating the whole
network).

Many of these previous investigations were done with contin-
uous, ODE-based models. We here explore the simplest possible

deterministic discrete excitable neuron model, a three-state cellu-
lar automaton, on a graph, in order to understand the topological
factors contributing to self-sustained activity. With our minimal
neuron model we are able to enumerate all system states for small
devices contributing to sustained activity and explore transitions
between systems states, much in the same way as in the case of
Random Boolean Networks (Kauffman, 1969).

It is intuitively clear, and supported by numerical evidence
(Qian et al., 2010b; McGraw and Menzinger, 2011; Vladimirov
et al., 2012) that cycles contribute to sustained activity. Less
clear is which cycles are selected and how their embedding
in the network affects the periodicities observed in the exci-
tation density. Our discrete model facilitates addressing these
questions.

Our principal motivation is that some deep relationships
between network topology and excitable dynamics are far more
pronounced for the stylized deterministic dynamics discussed
here. We show that topological network features at different scales
sculpt different characteristics of the network dynamics. On the
one hand, small cycles are responsible for the sustained activity of
the whole network. On the other hand, large-scale features (such
as hubs or modules) shape the organization of co-activation pat-
terns. We start from a macroscopic perspective, where we identify
global network properties regulating the co-activations patterns.
Then we move to a more microscopic view, where we explore cycles
as the sources of sustained activity.

2. MATERIALS AND METHODS
2.1. DYNAMIC MODEL
We studied a minimal deterministic discrete excitable model for
a network of interacting elements. The model consisted of three
discrete states for each node (susceptible S, excited E, and refrac-
tory R), which were updated synchronously in discrete time steps
according to a set of update rules allowing for signal propagation:
(1) a susceptible node S became an excited node E, when a direct
neighbor was in the excited state; (2) an excited node E entered
the refractory state R; (3) a node regenerated (R→ S) after r time
steps. The parameter r is the deterministic refractory period of
the system. For small r, the network dynamics can settle into an
regular oscillatory behavior after a transient period. The set of
nodes is thus partitioned into distinct groups of nodes, where two
nodes are in the same group when they are simultaneously excited.
In the numerical results presented here, which were obtained for
networks of a small to moderate size (∼60 nodes), we restricted
ourselves to r = 1.

2.2. ANALYZED NETWORKS
To investigate the role of the topology on the dynamics in a deter-
ministic model,we considered three different types of bidirectional
benchmark graphs: random, scale-free, and random-modular net-
works. The random graph was the classical Erdős–Rényi (ER)
model (Erdős and Rényi, 1960), the scale-free graph was the
Barabási–Albert (BA; Barabási and Albert, 1999) model, and the
random-modular graph was a composition of four small ran-
dom (ER) graphs of identical size with few links among them.
All networks were generated with the software package NetworkX
(Hagberg et al., 2008). The artificial networks had 60 nodes, and
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the BA and the random-modular network possessed 800 links.
In the case of the ER graphs, the number of links was var-
ied between 300, 400, 600, and 800 links. We also applied our
minimal dynamical model to the cortical network of the cat
(Scannell et al., 1999) and the network of macaque visual cor-
tex (Felleman and Van Essen, 1991). The cat cortical network
is composed of 52 cortical areas and 820 links among them,
while the macaque visual cortex is composed of 30 areas and
311 links. Both data sets are available as part of the Brain Con-
nectivity Toolbox (https://sites.google.com/a/brain-connectivity-
toolbox.net/bct/; Rubinov and Sporns, 2010).

The adjacency matrix of the biological networks was reordered
according to the community structure to better represent this
feature. We used two algorithms implemented in the Brain Con-
nectivity Toolbox (Rubinov and Sporns, 2010), one to compute the
community structure and the other to reorder nodes maximizing
the number of links close to the diagonal.

2.3. CO-ACTIVATION MATRICES
After appropriate initialization of the deterministic dynamical
model, the network activity settles into a regular periodic behavior.
Therefore, the nodes are divided into distinct groups; nodes are in
the same dynamic group when they are simultaneously active. To
analyze the pattern of joint excitations, we computed the number
of simultaneous excitations for all pairs (i, j) of nodes, and then
normalized this value by the minimum number of excitations of
node i and j. The outcome matrix is the so-called co-activation
matrix, a representation of the functional connectivity of the
nodes.

We also analyzed the co-activation matrix with time delay 1,
i.e., the patterns of excitations when node i is active at time t + 1
and node j at time t.

We simulated the dynamics for 500 different initial conditions,
and computed the average co-activation matrix for each network.
This average co-activation matrix was used for all subsequent
analyses.

The initial conditions were randomly generated, with proba-
bility 0.1 to set a node into the excited state E, and the remaining
nodes were equipartitioned into susceptible S and refractory R
states.

The topology structure of a network is represented by the adja-
cency matrix A, where Aij= 1, if node j is connected to node
i, and Aij= 0 otherwise. To compare the adjacency matrix with
the co-activation matrix, we thresholded and binarized the co-
activation matrix into ones (exceeding the threshold) and zeros.
To monitor the total number of non-zero entries in the thresh-
olded co-activation matrix, we calculated the connection density,
the total number of ones divided by the maximal possible number
(N 2
−N, where N is the number of nodes).

We calculated the Pearson correlation coefficient between the
adjacency and co-activation matrices for different values of the
threshold (we excluded the diagonal elements of both matrices to
avoid spurious variations of the correlation coefficient). We bench-
marked the results against the average correlation coefficient of
binary random sequences with the same matrix dimension. This
procedure was followed for 1000 different sequences and used to
calculate an average correlation coefficient.

2.4. COUNTING CYCLES: EXACT RESULT WITH FINITE
(END-CONSTRAINED) RECURSION

A necessary condition for sustained activity in our model is
the existence of cycles of nodes, in which activity propagates
unidirectionally. To count elementary cycles (i.e., cycles where no
vertices appear more than once in the sequence) on graphs, we
implemented the following algorithm.

For a network of N nodes, we denote B(n) the N ×N matrix
such that B(n)

ij gives the number of distinct paths of n steps, vis-

iting n− 1 nodes pairwise distinct and distinct from i and j. The

diagonal element B(n)
ii gives the number of distinct and elementary

cycles of n steps passing through i. “Elementary” means that the
cycle does not break into two or more cycles. In contrast, An

ii gives
the overall number of closed paths of length n passing through i,
distinct but possibly embedding smaller loops. Each of the elemen-
tary n-cycles contains n− 1 other nodes, hence it is encountered n
times when one lets i vary, i.e., each cycle should contribute with
a weight 1/n. Overall the total number C(n) of distinct elementary
cycles of length n is given by (note that this formula holds also for
directed graphs):

C(n)
=

1

n

N∑
i=1

B(n)
ii =

1

n
TrB(n) (1)

This formula actually counts oriented cycles distinguishing,
e.g., 12341 and 14321. It thus overestimates the number of undi-
rected cycles by a factor of 2 for n≥ 4. The first step of the
computation writes:

B(n)
ii =

N∑
k=1

B(n−1)

ik Aki (2)

Namely, a cycle of length n starting from i is obtained by clos-
ing any path starting from i and visiting exactly n− 1 pairwise
distinct nodes. There is no need to restrict the sum to k 6= i since
this case is automatically discarded due to the fact that Aii= 0. We

set B(1)
=A, then B(2)

=A2. Note that B(2)
ii is arguably not a num-

ber of cycles, as it accounts for degenerate cycles with two identical

edges i→ k and k→ i. This number B(2)
ii actually coincides with

the degree κi of node i (number of edges i→ k out of i). Anyhow,
the values of the diagonal components of B(2) will appear to be

of no consequence in the recursion. The computation of B(3)
ii is

still straightforward, according to the above formula. Non-trivial

counting starts for n= 4. Indeed, the computation of B(3)

ik for k 6= i
already encounters the difficulty that will be present in the next

steps of the recursion: we cannot compute B(3)

ik as
∑

j 6=i B(2)
ij Ajk

since B(2)
ij contains the contribution of the path i→ k→ j, which

leads to a 2-cycle k→ j→ k when adding the final step j→ k, with

contribution Ajk. Similarly, for n > 4, computing B(n−1)

ik within a
recursive scheme cannot be done simply by extending all loop-
free paths of length n= 2. The difficulty is the same as for n= 4:
in extending by a step j→ k (contribution Ajk) a path of length
n− 2 from i to j, we have to exclude paths passing through k in

order to obtain a (n− 2)-path actually contributing to B(n−1)

ik , that
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A B

C D

FIGURE 1 | Excitation patterns of a Barabási–Albert (BA) scale-free
graph with 60 nodes and 800 links. (A) Graphical representation of
the network (the node degree is represented by the size of the nodes)
and (B) adjacency matrix. Analysis of excitations: (C) average

co-activation matrix with a threshold of 0.46 and (D) average
co-activation matrix at time delay ±1 and threshold 0.3. All matrices are
sorted according to the node degree of the adjacency matrix, from high
to low degree.

is, with no loop. One thus has to keep track of the nodes actually
visited, or not visited, by the paths. Accordingly, the computation
of B(n−1) will necessarily involve auxiliary matrices.

We define recursively auxiliary matrices D(q|a1,...,az ) where q is
an index for the power, equivalently path length, whereas a1,. . .,
az are the indexes of z excluded nodes:

D
(q|a1,...,az)
ik =

∑
x 6=a1,...,x 6=az ,x 6=i

D
(q−1|a1,...,az ,k)
ix Axk (3)

D
(q|a1,...,az )

ik counts the paths of length q from i to k which do
not visit nodes a1,. . ., az. The recursion starts with

D(2|a1,...,az )

ik =

∑
x 6=a1,...,x 6=az

Aix Axk (4)

For q > 2, we have moreover to make sure that counted paths
contain no loop, hence the presence of the additional excluded
node k in the auxiliary matrix D(q−1|a1,...,az ,k) involved in the

recursion formula (3). This ensures that the added node k (step
x→ k, contribution Axk) has not yet been visited by the path
of length q− 1. Also, the sum has to exclude the case x = i, in
order to get a loop-free contribution to D(q|.) (no embedded
cycle i→ i). In any cases, the sum is restricted to x 6= a1,. . .,
x 6= az to ensure that the resulting paths do not pass through
the excluded nodes a1,. . ., az. The computation of D(q|a1,...,az )

ultimately involves matrices of the form D(2|a1,...,az ,az+1,...az+q−2)

(at the first step of the recursion, from D(2|·) to D(3|·)). This
shows that an unbounded recursion (in the limit as N→∞) is
not possible. Indeed, the construction has to take into account
up to which cycle length n we want to go, so as to com-
pute right from the beginning matrices D(2|a1,...,az+q−2) with
the proper number n− 3 of excluded sites. More precisely,
these auxiliary matrices are used in the formula for loop-free
(n− 1)-paths:

B(n−1)

ik =

∑
y 6=i

D(n−2|k)
iy Ayk (5)
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A

B

FIGURE 2 |Threshold dependence of the correlation coefficient between
the adjacency matrix and the co-activation matrix [(A)-lower panel, in
blue] for a BA graph. The same for the co-activation matrix with time delay ±1
[(B)-lower panel, in blue]. The value of the average correlation coefficient

(±the standard deviation) of binary random sequences is plotted in red.
Connection density of the co-activation matrix [(A)-top panel, in green] as a
function of the threshold, and the same graph for the co-activation with time
delay ±1 [(B)-top panel, in green].

where D(n−2|k)
iy is the number of paths of length n− 2 from i to y

which do not pass through k. Ultimately, we start from matrices
D(2|a1,...,an−3).

For n≥ 4,D(n−2|j) is constructed recursively from D(2|a1,...,an−4,j).

We thus need to keep track of D(2|a1,...,an−3) to go up to B(n)
ii ,

and also of D(2|a1,...,an−3) to get B
(q)

ii with q < n. To compute for
instance the number of cycles of length up to n= 5, we need
to compute the auxiliary matrices D(2|a1), D(2|a1,a2), and D(3|a1).
More generally, to compute the number of cycles of length up

to n, we need to keep track of all matrices D(2|a1,...,az ) with
z ≤ n− 3.

3. RESULTS
3.1. MACROSCOPIC ANALYSIS
We generated co-activation matrices for different network types
and studied how the different topologies affected statistical prop-
erties of the pairwise co-activation of nodes. We considered node
co-activations in the regime of sustained activity, which arises from
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a combination of the initial conditions and the topology of the net-
works. In particular, some initial conditions only lead to transient
activity, while others lead to sustained activation, see Section 3.3.

In the deterministic model for a finite system, the only possible
type of sustained activity is periodic. As the configuration space is
finite, the trajectory of the system necessarily visits some configu-
ration twice, where it will either stay (fixed point) or from which
it will indefinitely follow the same periodic orbit (sustained activ-
ity) due to the deterministic nature of the dynamics. A non-trivial
question is how much the topology of the network contributes to
the successful implementation of deterministic sustained dynam-
ics. In particular, it is not clear whether the pool of successful
distributions of states systematically increases or decreases with
the modification of certain topological features.

3.1.1. Functional connectivity indicated by node co-activation
patterns

Given the setup of the discrete dynamic model and a refractory
period of one time step, the commonly observed period of node
activation is three (for a detailed discussion of the mechanisms
leading to the periodicity of node activations see Section 3.3).
At this typical frequency, one can consider network activation
patterns that arise from the co-activation of the nodes at zero
delay, as well at a delay of one (see Figures 1C and D). Given the
period length of three, co-activations at a delay of one time step
are equivalent to co-activations at a delay of minus two time steps.
Therefore, it is sufficient to display the zero-delay co-activations
as well as co-activations for a delay of plus or minus one time
step. Such diagrams, also including the adjacency matrix as well
as visualizations of the respective networks, are given in Figure 1
and in subsequent figures.

Instantaneous co-activations label nodes which are jointly acti-
vated. This activation may arise from common input to the nodes
as well as from independent inputs. The specific shape of the joint
node excitation pattern may allow inferences on the likely input
of nodes. By contrast, co-activations at plus or minus one time
step delay reveal the apparent flow of excitations in the network.
This apparent pattern does not necessarily represent causal signal
flow, because the activation of a node may be caused by any of sev-
eral active neighbors that are linked to the node. This additional
contribution would be smaller in sparser networks. Moreover, an
apparent transfer of excitations may also occur in nodes that are
not themselves linked, but are targeted by a common input that
affects them at a delay difference of one time step. Thus, the net-
works representing causal flow of excitations are a subset of the
co-activation patterns at one time step delay. In a bidirectional
network, one might expect that the average transfer of excitations
from any node i to j is the same as from j to i; however, we found
that there are network topologies that lead to an asymmetrical
excitation flow between nodes.

How do global features of the structural network topology
affect the co-activation patterns at different delays? To analyze
the patterns, we converted the average co-activation matrix into
a functional “adjacency” matrix by thresholding it into zeros and
ones and contrasted it with the structural adjacency matrix. We
calculated the Pearson correlation coefficient between the adja-
cency and the thresholded co-activation matrix to quantify the

relation (as described in Section 2.3). In Figure 2A, we plotted the
evolution of the correlation coefficient as a function of the thresh-
old for a scale-free network. Apparent is a clear anti-correlation
for intermediate values of the threshold, when the connection den-
sity of the co-activation matrix is approximately 0.5. We included
in this figure the average correlation coefficient of binary ran-
dom sequences with the same dimension of the adjacency matrix.
Figure 3 shows a different representation of the anti-correlation.
Here, the nodes’ degrees of the adjacency matrix are compared
with the nodes’ degrees of the thresholded co-activation matrix.
This plot clearly shows the anti-correlation of structural and func-
tional connectivity for these dynamics, demonstrating that nodes
which are connected in the structural graph are less co-active, and
vice versa.

In scale-free networks, hubs are the highly connected cen-
tral nodes of the network that re-distribute activity, forming the
starting point of concentric, network-wide waves (Müller-Linow
et al., 2008). Thus, most network nodes receiving direct, com-
mon input from the hubs are co-activated at the same time
(Figure 1C). Therefore, the co-activations are anti-correlated to
the structural adjacency matrix (Figure 2A). This anti-correlation
results from the fact that, due to the discrete model, linked nodes
which transfer excitation from one to another cannot be excited
at the same time. Interestingly, there is a difference for excita-
tions moving toward the hubs or away from them (shown as
co-activations at positive or negative delays, upper-lower diagonal
in Figure 1D). Thus, there is an asymmetry for the two spread-
ing directions in hub networks, which is clearly apparent in the
delayed co-activation matrix (Figure 1D), even when all network
connections are bidirectional. Therefore, in this case we observed
a positive correlation for connections directed away from the hub
(Figure 2B).

In modular networks, the modular organization is reflected in
the co-activation patterns (Figure 4C), which now have a positive
correlation with the adjacency matrix of the underlying network

FIGURE 3 | Degree of the nodes (sorted by nodes’ degree in the
adjacency matrix, from high to low) as a function of the node index,
for a BA graph (in green) and its co-activation matrix at threshold 0.46
(in red).
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A B

C D

FIGURE 4 | Different network representations of a modular
graph with 60 nodes and 800 links. (A) Graphical representation
of the network (the color of the nodes represents membership to
different modules) and (B) adjacency matrix (intra-module links are

represented in black and inter-module links are represented in gray).
Analysis of excitations: (C) average co-activation matrix with a
threshold of 0.44 and (D) average co-activation matrix with time
delay ±1 and threshold 0.28.

(Figure 5A). In other words, a modular network organization can
override the anti-correlation between the co-activations and the
structural adjacency matrix. Patterns at delay one (Figure 4D),
however, are not modular, as they reflect longer-range network
interactions that go beyond the interactions within modules (see
Figure 5B).

Due to the lack of a specific organization in ER-random graphs,
the co-activations at different delays are also random. Nonetheless,
these co-activations are anti-correlated to the adjacency matrix of
the underlying network for sparser graphs (Figure A1A in the
Appendix). For intermediate values of the connection density, the
co-activation with delay is positively correlated with the adjacency
matrix (Figure A1B in the Appendix). For these intermediate val-
ues, the co-activation highlights the links that are used to transfer
excitations in the network.

Finally, the biological examples of cortical networks of the
cat and monkey brain show patterns that appear to arise from

combining modular and hub features. On the one hand, the
co-activations delineate modules reminiscent of those of the
underlying structural networks. Therefore, the core activations
are positively correlated with the structural adjacency matrix for
both networks (Figures 7A and 9A). On the other hand, co-
activations at a delay of plus or minus one time step are strongly
asymmetrical (Figures 6 and 8) and positively correlated with the
adjacency matrix (Figures 7B and 9B), similar to the delay co-
activations for the hub network (Figure 1), and unlike the delay
co-activations of the random-modular network (Figure 4). In par-
ticular, hub-like network nodes possess a high out-degree for the
delay co-activations, marking them as the starting point of wave-
like spreading of excitation, while nodes with few connections
possess a high in-degree for delay co-activations, indicating them
as recipients of excitation waves (Figures 10 and 11). Thus, area
nodes in the biological networks are assigned dynamic roles, such
as organizer of modular co-activation or sender versus receiver of
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A

B

FIGURE 5 |Threshold dependence of the correlation between the
adjacency matrix and the co-activation matrix [(A)-lower panel, in blue] for
a modular graph; same for the co-activation matrix with time delay ±1
[(B)-lower panel, in blue]. The value of the average correlation coefficient

(±the standard deviation) of binary random sequences is plotted in red.
Connection density of the co-activation matrix [(A)-top panel, in green] as a
function of the threshold, and the similar graph for the co-activation with time
delay ±1 [(B)-top panel, in green].

excitation, that reflect aspects of their topology, such as modular
membership and degree.

To verify the apparent dynamic competition between hub fea-
tures and the modular organization in the biological networks, we
eliminated hub nodes in the cat cortical network (Kaiser et al.,
2007b; Sporns et al., 2007) and re-simulated the dynamics. We
consecutively eliminated five nodes (and all their connections),
starting with the highest degree node. Figure 12 shows the corre-
sponding correlation coefficients between the co-activation matrix
and the adjacency matrix. Upon the removal of hub nodes, the

correlation coefficient increased to similar values as observed in
the artificial ER-modular graph (Figure 5).

3.2. LINK BETWEEN MACROSCOPIC AND MICROSCOPIC
PERSPECTIVE

So far, we focused on the macroscopic perspective, analyzing co-
activation matrices obtained from numerical simulations of our
deterministic minimal model of excitable dynamics. We observed
a systematic impact of some global topological features on these
co-activation matrices.
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A B

C D

FIGURE 6 | Different network representations of the cortical
connectivity of the cat (52 nodes and 820 links). (A) Graphical
representation of the network (the color of the nodes represents
membership to different modules) and (B) adjacency matrix

(intra-module links are represented in black and inter-module links are
represented in gray). Analysis of excitations: (C) average co-activation
matrix with a threshold of 0.46 and (D) average thresholded
co-activation with time delay ±1 and threshold 0.28.

In this section, we “zoom into” these dynamics and explore
the more microscopic foundations of sustained activity. As men-
tioned in Section 1, similar explorations with different dynam-
ical models are found in Qian et al. (2010b) and McGraw
and Menzinger (2011). Our deterministic model allows us to
obtain a deeper microscopic understanding of sustained activ-
ity that serves as a (deterministic) basis for explaining similar
effects in time-continuous and stochastic simulations, as well as
experimental data.

For dense graphs, the generally observed average excitation
density is 1/3, due to the collective period-3 oscillation. Here we
explore sparser graphs to better understand the topological pre-
requisites of sustained activity. In many ways, the deterministic
model is a very schematic toy model version of an excitable cell or
population.

For sparse graphs, the average excitation density depends on
the initial conditions, see Figure 13. If the inter-excitation inter-
val (or period) for all nodes is three times steps, the average

excitation density is 1/3, for four times steps the mean activity
is 1/4, and for five time steps 1/5 (Figure 13). It is also possible
that some nodes present a period of three times steps followed
by a period of four times steps; in this case the mean activ-
ity will differ from the values mentioned before. We use the
mean activity measure as a proxy for periodicity of the global
activity.

The first step toward this microscopic interpretation is given
by Figure 14, where the average mean activity (average over many
initial conditions) as a function of the number of elementary 3-
node (Figure 14A) and 4-node cycles (Figure 14B) is shown. We
observe a clear positive correlation of the mean activity and the
number of 3-node cycles, while the number of 4-node cycles has
no impact on this measure.

Even on this purely statistical level, small topological devices
such as 3-node and 4-node cycles have an impact on the amount
of sustained activity observed in the network. Furthermore, dense
networks seem to favor smaller devices.
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FIGURE 7 |Threshold dependence of the correlation between the
adjacency matrix and the co-activation matrix [(A)-lower panel, in blue] for
the cat cortical network; same graph for the co-activation matrix with time
delay 1 [(B)-lower panel, in blue]. The value of the average correlation

coefficient (± the standard deviation) of binary random sequences is plotted
in red. Connection density of the co-activation matrix [(A)-top panel, in green]
as a function of the threshold, and the same graph for the co-activation matrix
with time delay ±1 [(B)-top panel, in green].

In the following sections we study these individual devices
under our dynamics in more detail. In particular, we constructed
basins of attraction for the different possible asymptotic states
and discussed the effect of embedding these devices into larger
networks.

3.3. SMALL DEVICES
The key observation from the previous section is that
indeed a systematic relationship between the number of
3-node cycles and the mean activity can be identified.

Therefore, we now analyze the smallest network com-
ponents that are capable of producing sustained activity
on their own. Specifically, we explore “small topological
devices,” such as 3-node cycles (“triangles”) and 4-node-cycles
(“squares”).

We here extend the work from Carvunis et al. (2006), in which
the role of triangles where the three vertices are, respectively, in
the state E, S, and R has been evidenced: they behave as dynamic
motifs of period 3 totally insensitive to the surrounding activity,
that is, as robust pacemakers.
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FIGURE 8 | Different network representations of the macaque
visual cortex (30 nodes and 311 links). (A) Graphical representation
of the network (the color of the nodes represents membership to
different modules) and (B) adjacency matrix (intra-module links are

represented in black and inter-module links are represented in gray).
Analysis of excitations: (C) average co-activation matrix with a
threshold of 0.45 and (D) average co-activation matrix with time delay
±1 and threshold 0.28.

For such small devices, like triangles or 3-node cycles,
we can now indeed enumerate all possible initial conditions.
Figure 15 displays these possibilities (not showing symmet-
rical conditions) and follows them through time. Of the
nine cases, only two initial configurations settle into sus-
tained periodic activity. The only two configurations that pro-
duce sustained activity are the ESR and ERS in the trian-
gle.

3.3.1. Preliminary considerations: necessary conditions for
sustained activity

In this model the following thought experiment is possible that
will serve as a guideline for the remaining parts of our investiga-
tion: We can formally enumerate all possible initial conditions and
observe how many will settle into a periodic asymptotic behavior.
A question central to our investigation is, thus, which topolog-
ical properties lead to an increase in the number of sustained
outcomes?

The general framework of spatiotemporal pattern forma-
tion, and in particular spiral waves, which can be seen as the
spatiotemporal equivalent of sustained activity, can provide some
interesting insights into contributors to sustained activity in gen-
eral and, more specifically, the mapping of initial conditions to
asymptotic behavior. Qualitatively speaking, the cases where an
odd number of “susceptible” – “excited” – “refractory” states
neighbors appear in the initial conditions can serve as a mean-
field-like expectation of the number of successful initial con-
ditions, accounting for a certain portion of the connectivity
dependence (due to the total number of neighbors).

When edges are topologically undirected, both forward and
backward propagation are possible when introducing an excita-
tion from outside in a chain of susceptible nodes. Having a triplet
of neighbors with the initial settings S–E–R induces directionality
in the excitation propagation. The presence of a refractory stage
prevents backward propagation, and makes the paths dynami-
cally directed. Coexistence of two excitations cycling along the
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FIGURE 9 |Threshold dependence of the correlation between the
adjacency matrix and the co-activation matrix [(A)-lower panel, in blue] for
the macaque visual cortex network; same graph for the co-activation matrix
with time delay ±1 [(B)-lower panel, in blue]; the average correlation

coefficient of binary random sequences is plotted in red (± the standard
deviation). Connection density of the co-activation matrix [(A)-top panel, in
green] as a function of the threshold, and the same graph for the co-activation
with time delay ±1 [(B)-top panel, in green].

closed paths are only possible if the cycle is properly initialized
(and it is not robust with respect to the surrounding activity).
Otherwise, the incoming excitations (from outside) propagate in
both directions and annihilate those propagating behind; only
the most advanced survive, which lead to an accelerating phase
slip when occurring. Once in a state of cycling excitation, a sin-
gle external input can only shorten the period. This leads to an
important caveat: cycle length does not always corresponds to

inter-spike interval (accelerating phase slips are possible upon the
involvement of external excitations).

The idea is that an excitation neighbored by a refractory and a
susceptible element is a seed configuration of a propagating“wave”
in the graph. Let us consider a ring of some not-too-small length
l. A single excitation placed in an otherwise susceptible graph will
generate two such “wave fronts” that will meet again after bl/2c
time steps and this transient activity will die out with the graph
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FIGURE 10 | Functional nodes’ degrees of the cat cortical network as a
function of the node areas (sorted by nodes’ degree of the adjacency

matrix, from high to low) for the delayed co-activation matrix with
threshold 0.3. In-degree is plotted in green, and out-degree in red.

FIGURE 11 | Functional nodes’ degrees of the macaque visual cortex
network as a function of the node areas (sorted by nodes’ degree of the

adjacency matrix, from high to low) for the delayed co-activation matrix
with threshold 0.3. In-degree is plotted in green, and out-degree in red.

settling into an all-susceptible state due to the “annihilation” of the
two “wave fronts.”

Let us now consider the case of a single excitation placed into
this ring graph with a single refractory neighbor, while the remain-
ing l − 2 nodes are all in their susceptible state. In this case, the
“wave front” will propagate unidirectionally along the ring and if
the length l is larger than the (deterministic) refractory period r,
we will have sustained activity. This is in strong analogy to the core
region of a spiral wave in spatiotemporal pattern formation.

Next, we consider the case where in addition to the previous
initial conditions one of the remaining l − 2− r nodes (with the

exception of the other direct neighbor of the refractory state, as
well as the r − 1 next-to-nearest neighbors in that direction) is
initially in the excited state. In this case we have a unidirectionally
propagating wave front, like before, and additionally in some dis-
tance two wave fronts emanating from the other excited element
and propagating in opposite directions. The first will annihilate
with one of the others, while the remaining wave front will persist.
Thus, a very large number of deviations from the successful ini-
tial condition described above (based on the seed of “susceptible”,
“excited” and “refractory” states neighbors) will also be successful
and lead to asymptotic sustained activity.
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FIGURE 12 |Threshold dependence of the correlation between the
adjacency matrix and the co-activation matrix (lower panel) for the cat

cortical network after eliminating one to five hub nodes. Connection
density of the co-activation matrix (top panel) as a function of the threshold.

FIGURE 13 | Mean activity (y -axis) for different initial conditions and
different ER graphs (x -axis, network index). All the networks have 60
nodes and 250 links.

As a next step, we verify for the triangle that the background
does not matter as shown in Carvunis et al. (2006). It is clear that
once the triangle settled into periodic activity, it cannot be dis-
rupted by random excitations. A possible source of such random
excitations (apart from spontaneous activity) can come from the
embedding of such a device in a larger network. Having observed
that this sustained activity in a triangle, once established, will
persist, even when the triangle is located in a network, the next

natural question is whether the basin of attraction for the periodic
asymptotic behavior changes due to the embedding of the device
in the network. We considered various such embeddings, with five,
six, and seven nodes (Figure 16). We computed the total number
of initial conditions that lead to sustained activity from all possi-
ble initial configurations when we consider one to four excitations
in the devices. The success of an initial configuration does not
depend on the number of initial excitations nor on the triangle
embedding, but only whether the triangle is initially in the ESR
configuration or not. We confirmed our numerical observation by
comparing the results with the analytical formula described in the
Appendix.

We repeated the same general discussion for a square. Again,
we counted the successful initial conditions and, like in the case of
the triangle, we analyzed how robust this sustained activity is with
respect to spontaneous excitations or outside excitations (repre-
sented by asterisks in Figure 17) when the square is embedded in
a larger network.

The configuration ESSR of the square also produces sustained
activity, whatever the background (which only affects the recur-
rence time and which configuration is actually recurrent, but
not the fact that there is recurrence, i.e., sustained activity). In
Figure 17 we have taken into account all the instances, whether
the background brings an additional excitation (the red-star exci-
tation from outside arriving at other S locations produce the same
effect as the propagation of excitation within the motif) or not. As
we mentioned before, we consider the inter-excitation interval for
one node as the period of node excitation.

The first observation is that, as in the case of the triangle,
sustained activity on a square device is also robust against such per-
turbations. The second observation is of importance for looking
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A B

FIGURE 14 | Average mean activity for different ER graphs versus (A) the number of 3-node cycles and (B) the number of 4-node cycles. Each network is a
ER graph with 60 nodes and 250 links.
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FIGURE 15 |Time course (from left to right) of triangles for all possible
initial conditions with at least one excitation (top to bottom; omitting
symmetrical ones) with the model described in Section 2.1. The last
time step shown in each row allows to discern the asymptotic behavior:
all-susceptible steady state (blue) and sustained periodic activity (red).

deeper into the structure of the output signal in time: While the
time output of the triangle is strictly periodic, the square can
display phase slips, where the regular period-4 output is some-
times disrupted (due to the noise-like excitation events) by other
inter-excitation intervals in the time courses of the nodes.

The square is the smallest device capable of displaying the gen-
eral phenomenon of such phase slips already hinted on the thought

experiment discussed previously. We can now imagine the square
being embedded in the network in a way that such excess excita-
tions arrive systematically at the right moment. In this case, the
embedded device would yield, e.g., a period-3 oscillation in spite
of the underlying cycle length of four. This is a first example where
the periodicities observed in the dynamics do not directly match
the periodicities dictated by the “hardware,” i.e., the cycles present
in the graph.

As we did before for the triangles, we analyzed how the basin
of attraction of the squares changes when we consider some
additional nodes coupled to it (Figure 16). In analogy to the
combinatorial prediction of the successful initial conditions for
the triangle, we can also predict the numerical results (see the
Appendix for details). As before for the triangle, the embedding
does not affect the basin of attraction of the sustained activity
beyond combinatorial effects. All the initial configurations that
lead to sustained activity for an embedded square (Figure 18), as
we mentioned in the thought experiment, contain an excited node
neighbored by a refractory and a susceptible element.

4. DISCUSSION
In our study, we started addressing the question of what topologi-
cal aspects of an excitable network are responsible for characteris-
tic features of the network dynamics. Starting from an established
three-state model of neuronal activity that forms a stochastic cel-
lular automaton (see Müller-Linow et al., 2006, 2008; Hütt and
Lesne, 2009; Hütt et al., 2012), the model was taken to the limit
of few spontaneous excitations and high recovery probability [i.e.,
f→ 0 and p→ 1 in the notation of the model from Müller-Linow
et al. (2006)], resulting in a deterministic discrete excitable node
model that is simple enough for an exhaustive analysis of small
networks. With the help of this model, we explored the topo-
logical determinants of periodic, self-sustained activity as well
as the large-scale co-activation patterns that can be observed in
random, modular and hub networks as well as in networks of
cortico-cortical connections of the mammalian brain.

The present deterministic model is a cellular automaton (CA)
and can therefore also be discussed in the context of CA on graphs.
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FIGURE 16 | Some triangle (left) and square (right) embeddings, local neighborhoods within the network with degree 2, 3 up to degree 4.

Cellular automata (CA) have been used in a vast number of investi-
gations to explore the emergence of complex patterns from simple
dynamic rules. Originally defined on regular lattices (Wolfram,
1983), they have also been studied on more complex topologies
(Traub et al., 1999; Amaral et al., 2004;Marr and Hütt, 2005, 2009)
and in noisy environments (Moreira et al., 2004; Marr and Hütt,
2006). The principal goal of discussing CA on graphs is to explore
the relationship between network architecture and dynamics from
the perspective of pattern formation. Also for CA on graphs, the
Wolfram classes (Wolfram, 1983, 1984) are a helpful and estab-
lished means of characterizing observed dynamic behaviors (see,
e.g., Marr and Hütt, 2005). It seems that the sequential nature
of states in our cellular automaton (each cell cycles through the
states in the order S→ E→R) and the “diffusive” neighborhood
coupling restrict the Wolfram classes to I (fixed point) and II
(periodic). We do not observe Wolfram classes III (chaotic) and
IV (complex). However, we have no formal argument ruling out
these dynamics. Extending the formalism from Marr and Hütt
(2009) to three states, enumerating all possible CA of that type
(with the CA discussed in the present paper being represented
as one example) and then studying how the number of complex
(Wolfram class IV ) dynamics changes with network architecture
would be a very informative investigation.

We found that features of network dynamics are based on
topological network attributes at different scales. Such scales are
represented by isolated small topological “devices” (cycles of 3
and 4 nodes) on the microscopic scale, the same devices embed-
ded in a particular “network environment” at the mesoscopic
scale, and large-scale network features, such as modules or hubs,
at the macroscopic scale. While devices comprising only a few
nodes (e.g., cycles of 3 and 4 nodes) are the origin of sustained
network activity and the periodicity of node activation patterns,
larger-scale topological features appear responsible for the average
co-activation patterns of the networks.

Systematic relations emerged between functional and struc-
tural connectivity in different network topologies. As a general
feature, simultaneous activation of linked nodes was suppressed
in the model, due to the inclusion of a refractory phase. Therefore,

nodes that are linked tend to be anti-correlated in their activ-
ity, in the sense that a node which transfers its excitation to a
directly connected node turns refractory in the next step and,
thus, is not active at the same time as its target. The anti-
correlation of the co-activation matrix and the graph’s adjacency
matrix was in particular observed for sparse random and hub
networks.

However, it also emerged that this anti-correlation depends
strongly on global properties of the network architecture. The
minimal model allowed us to study systematically which topolog-
ical properties of the network enhance or reduce this attribute. In
particular, the suppression of joint activation of linked nodes can
be “overwritten” in graphs with high clustering, such as encoun-
tered within the modules of a modular graph, due to the largely
shared input of intra-modular nodes. In modular graphs, nodes
are most frequently linked within the modules, forming cliques.
Therefore, two connected nodes are also likely to share the same
neighbors and, thus, frequently receive common input. As a con-
sequence, the anti-correlation was strongest in sparse random
networks, but was not observed in random-modular networks or
the studied biological cortical networks, which are also modular
(Hilgetag et al., 2000).

Several potential functions have been suggested for the modu-
larity of brain networks. These functions include increased robust-
ness against network damage such as through link lesions (Kaiser
and Hilgetag, 2004), increased synchronizability, higher levels of
limited sustained activity (Kaiser et al., 2007a; Kaiser and Hilge-
tag, 2010), and self-organized criticality (Wang et al., 2011) as
well as increased dynamic complexity of neural systems (Sporns
et al., 2000), based on the idea of higher integration of nodes
within modules combined with their segregation between mod-
ules. The present findings provide an additional explanation for
the modular organization of brain dynamics in neural systems
(Zhou et al., 2006; Honey et al., 2007) and suggest that modular
co-activation patterns are based on the common input of nodes
within the structural modules of cortical networks.

Clearly, the generic anti-correlation between co-activation and
connectivity is enhanced by the minimal nature of our model, in
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FIGURE 17 | Effect of spontaneous excitations perturbing the time
course of a successful initial condition on a square (consisting of a
single triplet of "susceptible", "excited" and "refractory" states
neighbors and one susceptible node. “Noise” excitations are marked by
an asterisk. The first noise excitations has already been added to the initial
configuration (left-hand side; turning one of the two susceptible elements
into an excitation). Toward the right, each row explores one possibility of
time course, partly depending on additional noise events. The numbers
indicated at the end of each row are the time steps until the initial
configuration is reached again.

particular, the discrete time and the synchronous, deterministic
updating. However, a contribution to co-activation that displays
significant anti-correlation to the adjacency matrix might also be
expected to be seen in more refined dynamic models. In the light of
the fact that correlation networks yielding functional connectivity
are frequently employed as data analysis and data representation
strategies (Greicius et al., 2009; van den Heuvel et al., 2009),
it is important to emphasize that, indeed, structural connectiv-
ity and functional connectivity can be anti-correlated, with the
(structural) network architecture regulating the strength of the
anti-correlation, for example, via clustering and modularity.

Further information on the propagation of excitations in the
networks was derived from the delay co-activation matrix at plus
or minus one time step. The strong asymmetry between the upper
and lower triangles of this matrix for scale-free graphs is an
indicator of the waves described in Müller-Linow et al. (2008):
excitations propagate toward the hub(s) individually, while they
emerge from the hub in a coherent fashion. Therefore, surprisingly,
the large-scale topologic feature of a hub imparts a directionality
on the structurally bidirectional links of an excitable network. This
phenomenon is also apparent in a more graded fashion for the bio-
logical networks, where nodes with a high degree were the main
sources of excitations, while low-degree nodes formed sinks. Thus,
the biological networks combine dynamic features based on mod-
ules as well as hub-like nodes. While these cortical networks may
lack very pronounced hubs in the sense of a scale-free network
(Barabási and Albert, 1999), it is clear that they have a wide, non-
random degree distribution (Kaiser et al., 2007b), and may possess

FIGURE 18 | Initial conditions that lead to sustained activity for an
isolated square.

hub-like nodes that were identified by topological analyses (Sporns
et al., 2007; Zamora-López et al., 2010), lesion simulations (Kaiser
et al., 2007b), or by dynamic exploration (Müller-Linow et al.,
2008). The present study suggests another potential role of these
highly connected, central network nodes, that they may serve as the
origins of recurrent excitation waves in the cerebral network. Inter-
estingly, these sources are not formed by primary cortical areas, but
rather by areas removed from the sensory and motor periphery,
underlining the importance of endogenous cortical sources for
self-sustained dynamics, in contrast to dynamics evoked by exter-
nal inputs. In particular in the cat (Figure 10), these excitation
sources are formed by a group of multi-sensory, parahippocampal,
and limbic areas. Perhaps it is no coincidence that such areas are
also frequently suspected to be the origin of epileptic spreading in
the human brain (Penfield and Jasper, 1954). In the monkey visual
cortex (Figure 11), the sources of excitation waves are also formed
by higher-order areas, particularly of the dorsal visual stream, that
are some steps removed from visual input, while most areas of the
ventral visual stream, particularly in the inferotemporal cortex, are
recipients of excitation. It will be interesting to see if these patterns
can also be identified in experimental resting-state data.

At the level of smaller topological devices, previous stud-
ies (Milo et al., 2004; Sporns and Kötter, 2004) showed that
neural networks have a characteristic content of motifs, in par-
ticular of well-connected motifs. However, the exact functional
roles of these motifs while embedded in networks have not
been clear. Previous work using ODE modeling suggested that
these topological features can play the role of dynamic pace-
makers (Qian et al., 2010b). Here we confirmed this idea with
the discrete model, which allowed us to investigate the dynamic
behavior of these small circuits in an analytical and exhaus-
tive way. We showed by numerical simulation that the fre-
quency diversity decreases, and consequently, the mean activ-
ity increases, with the number of triangles in a graph. We
also showed that an embedding of triangles and squares does
not alter the basin of attraction of oscillatory behavior, that is,
the number of initial conditions leading to self-sustained activ-
ity. Any initial condition containing S–E–R in the cycle (and
none other) produces sustained oscillations. The only new phe-
nomenon arising on this level are phase slips, such as period-
3 contributions to the oscillations on squares, which we also
observed.

In summary, the characteristic dynamics of prototypical graphs
as well as biological neural networks appear to be shaped by a com-
bination of topological features at different network scales. It will
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be a challenge for the future to link these local and global topolog-
ical perspectives in understanding neural network dynamics and
to confirm the present results in more intricate dynamical models,
involving stochastic parameters as well as noise. Moreover, it has
been claimed that pattern generation on neural graphs essentially
relies on a well-chosen distribution of delays (Deco et al., 2009). It

remains to be further explored if some of these patterns can also
be reproduced in discrete models without delay.
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APPENDIX
SMALL DEVICES
We investigated the dynamics of single small devices within
their surrounding, and identified pacemakers, if any. That is,
local motifs whose activity is able to control and sustain the
activity of a larger subnetwork in which they are embed-
ded. We started with 3-node and 4-node cycles. In Figure 16
we illustrate various such embeddings for 3-node and 4-node
cycles.

The dependence of the percentage of successful initial condi-
tions s(n,k) on the embedding (i.e., the number k of excess nodes
beyond the device) and on the number k of excitations initially
present can be easily understood by assuming that any successful
initial condition requires a permutation of SER in the triangle.
This leads to 3! configurations for the triangle. For a single exci-
tation, we thus have 3! 2n successful initial conditions, where n
is the number of excess nodes. With two excitations, a successful
initial condition requires one of them to be in the triangle and the
other in the excess nodes, yielding 3! n 2n

−1 cases. In general, k
excitations lead to

3!

(
n

k − 1

)
2n−(k−1) (A1)

successful cases. The normalization for each of the numbers is
given by the total number of initial conditions with n+ 3 nodes
and k excitations, i.e.(

n + 3
k

)
2n+3−k (A2)

yielding

s (n, k) =

3

(
n

k − 1

)
2

(
n + 3

k

) , (A3)

for the percentage of successful initial conditions. For the per-
centage of successful initial conditions s(n,k) in the case of an
embedded square we obtain:

s (n, k) =

2

(
n + 1
k − 1

)
(

n + 4
k

) . (A4)
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A

B

FIGURE A1 |Threshold dependence of the correlation coefficient
between the adjacency matrix and the co-activation matrix [(A)-lower
panel] for a Erdős–Rényi (ER) graphs with different connection density; same
graph for the co-activation matrix with time delay ±1 [(B)-lower panel]; in red

is plotted the value of the average correlation coefficient (± the standard
deviation) of binary random sequences. Connection density of the
co-activation matrix [(A)-top panel] as a function of the threshold, and a similar
graph for the co-activation matrix with time delay ±1 [(B)-top panel].
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FIGURE A2 | Correlation coefficient between the adjacency matrix and
the average co-activation matrix, for a fixed threshold, starting with
the artificial ER-modular graph shown in Figure 4 and then
randomizing the connections toward a ER-random graph. The fixed
threshold 0.45 was chosen where the correlation coefficient between the
adjacency and the co-activation matrix of the ER-modular is maximal (see
Figure 5A)
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