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Spike synchronization is thought to have a constructive role for feature integration, attention,
associative learning, and the formation of bidirectionally connected Hebbian cell assem-
blies. By contrast, theoretical studies on spike-timing-dependent plasticity (STDP) report
an inherently decoupling influence of spike synchronization on synaptic connections of
coactivated neurons. For example, bidirectional synaptic connections as found in cortical
areas could be reproduced only by assuming realistic models of STDP and rate coding. We
resolve this conflict by theoretical analysis and simulation of various simple and realistic
STDP models that provide a more complete characterization of conditions when STDP leads
to either coupling or decoupling of neurons firing in synchrony. In particular, we show that
STDP consistently couples synchronized neurons if key model parameters are matched to
physiological data: First, synaptic potentiation must be significantly stronger than synaptic
depression for small (positive or negative) time lags between presynaptic and postsynaptic
spikes. Second, spike synchronization must be sufficiently imprecise, for example, within
a time window of 5-10 ms instead of 1 ms. Third, axonal propagation delays should not
be much larger than dendritic delays. Under these assumptions synchronized neurons will
be strongly coupled leading to a dominance of bidirectional synaptic connections even for
simple STDP models and low mean firing rates at the level of spontaneous activity.

Keywords: Hebbian cell assemblies, learning, memory, spike synchronization, STDP, synaptic connectivity, synaptic

plasticity

1. INTRODUCTION

Whether neural activity follows either a rate code or a tempo-
ral code (Singer and Gray, 1995; Theunissen and Miller, 1995;
Shadlen and Movshon, 1999; VanRullen et al., 2005; Clopath et al.,
2010) and, in the latter case, whether spike synchronization will
either couple or decouple coactivated neurons (Lubenov and Sia-
pas, 2008; Clopath et al., 2010; Fell and Axmacher, 2011) are still
unsolved issues in neuroscience. These questions bear importance
for both understanding brain functions and improving therapy of
diseases such as epilepsy, tinnitus, and Parkinson (Lubenov and
Siapas, 2008; Benabid et al., 2009; Pfister and Tass, 2010).

On the one hand, there is physiological evidence that spike
synchronization reflects feature integration (Singer and Gray,
1995), attention (Fries et al., 2001), and associative learning
(Miltner et al., 1999), which suggests a constructive rather than
destructive role of spike synchronization for memory (Jutras
and Buffalo, 20105 Fell and Axmacher, 2011) and the forma-
tion of Hebbian cell assemblies (Hebb, 1949; Braitenberg, 1978;
Palm, 1982; Knoblauch and Palm, 2002a; Pulvermiiller, 2003;
Lansner, 2009; Buzsaki, 2010). Consistent with many attractor
neural network models of memory (Marr, 1971; Palm, 1980;
Hopfield, 1982; Lansner, 2009; Knoblauch, 2011), these ideas
imply the prediction that synchronized neurons should organize
into bidirectionally connected cell ensembles, where the pres-
ence of a strong synapse from neuron i to neuron j increases

the likelihood for the presence of a strong synapse in the reverse
direction from neuron j to neuron i, as has been reported
for various cortical areas (Markram et al., 1997a; Song et al.,
2005).

On the other hand, it has been pointed out (Fell and Axmacher,
2011) that there is a conflict between these ideas and prop-
erties of spike-timing-dependent plasticity (STDP) of synapses
(Markram et al., 1997b; Bi and Poo, 1998; Sjostrom et al., 2001;
Froemke and Dan, 2002). For example, it is well established that
the weight modification F(At) after a spike pairing depends in a
characteristic way on the time lag At: = t,05t — tpre between presy-
naptic and postsynaptic spike times (Figure 1A). Around At =0
pair-based STDP models assume a sharp transition from max-
imal long-term depression (LTD) to maximal long-term poten-
tiation (LTP) as the time lags increase from negative to positive
values (Gerstner et al., 1996; Song et al., 2000; Izhikevich and
Desai, 2003; Morrison et al., 2008), whereas some physiological
experiments report a narrow (few milliseconds) transition zone
where both LTP and LTD are possible (Bi and Poo, 1998). Even
worse, recent theoretical studies on STDP suggest that strong bidi-
rectional synaptic connections would be generally incompatible
with temporal coding because model simulations including real-
istic propagation delays show a strong depression of synapses
connecting synchronized neurons (Gerstner et al., 1996; Song
and Abbott, 2001; Knoblauch and Sommer, 2003; Kozloski and
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FIGURE 1 | The conflict between spike-timing-dependent plasticity
(STDP) and spike synchronization in Hebbian cell assemblies. (A) In
standard spike pairbased (doublet) STDP models, the weight change Aw is a
function F(At) of the time lag At: = t s — tye between presynaptic and
postsynaptic spike. For positive time lags At > 0 (pre-before-post) STDP
models predict long-term potentiation (LTP) with Aw > 0. For negative time
lags At <0 (post-before-pre) STDP models predict long-term depression
(LTD) with Aw < 0. (B) Experimental evidence suggests that spike
synchronization reflects constructive processes such as feature integration
(Singer and Gray, 1995), attention (Fries et al., 2001), associative learning
(Miltner et al., 1999), and memory formation (Jutras and Buffalo, 2010; Fell
and Axmacher, 2011) which is thought to involve coupling of synchronized
neurons into bidirectionally connected Hebbian cell assemblies (Hebb, 1949;
Marr, 1971; Braitenberg, 1978; Palm, 1980, 1982; Hopfield, 1982; Knoblauch

and Palm, 2002a; Pulvermdiller, 2003; Lansner, 2009; Buzsaki, 2010;
Knoblauch, 2011). However, these ideas are in conflict with STDP models
because, assuming positive axonal propagation delays d, synchronization of
spike activity in cell somas (left panel) corresponds to negative time lags

At =—d at the synaptic site [right panel; cf. (A)]. Therefore, STDP models
predict decoupling of neurons firing in synchrony (Gerstner et al., 1996; Song
and Abbott, 2001; Knoblauch and Sommer, 2003; Kozloski and Cecchi, 2008;
Lubenov and Siapas, 2008; Clopath et al., 2010). It is therefore an open
question how unequivocal LTP is accomplished by spike synchronization (Fell
and Axmacher, 2011). Here we argue that unequivocal LTP can easily be
explained by coarse spike synchronization where time lags are distributed
around —d leading to a mixture of both LTD and LTP events with LTP
dominating for plausible model parameters (e.g., LTP amplitude A, larger than
LTD amplitude A_; see Discussion; see Figures 6B,D).

Cecchi, 2008; Lubenov and Siapas, 2008; Clopath et al., 2010),
unless axonal propagation delays are very large (Swadlow, 20005
Knoblauch and Sommer, 2003, 2004), or dendritic delays domi-
nate over axonal delays (Morrison et al., 2007). Intuitively, Heb-
bian STDP will consistently induce LTD in synapses that connect
two neurons firing in synchrony because, at the synaptic site,
the presynaptic spike arrives after the postsynaptic spike due
to axonal transmission delays (Figure 1B). As pointed out by
Fell and Axmacher (2011; Box 2) it is therefore an open ques-
tion how unequivocal LTP is accomplished by zero-lag phase
synchronization.

Still, strong unidirectional connections will result for non-
synchronous temporal correlations, for example, if neuron i always
fires briefly before neuron j. Then STDP induces long-term poten-
tiation (LTP) for the connection from neuron i to neuron j, but
LTD for the reverse direction (Markram et al., 1997b; Bi and Poo,
1998; Sjostrom et al., 2001; Froemke and Dan, 2002). Together, for
synfire-chain-type dynamics (Griffith, 1963; Abeles, 1982; Dies-
mann et al., 1999) with sequentially activated neuron pools as
investigated in the recent paper of Clopath etal. (2010),LTD occurs
for within-pool synapses between synchronized neurons, whereas
LTP occurs for synapses from one pool to its successor pool. This
results in a dominance of unidirectional connections as reported
for somatosensory cortex (Lefort et al., 2009; but see Markram
et al., 1997a for opposite findings). Explaining the bidirectional
connections of visual cortex (Song et al., 2005) has proven more
difficult for simple doublet STDP models (Song and Abbott, 2001;
Clopath et al., 2010). At least Clopath et al. (2010) have demon-
strated stable bidirectional connections for realistic voltage-based
STDP models and rate coding where signals are transmitted by
neuron pools elevating Poissonian firing rates on a larger time scale
of perhaps several hundred milliseconds. It is thus tempting to
conclude that unidirectional and bidirectional connections could
be signatures of temporal and rate coding, respectively (Clopath
etal., 2010).

In this study we question such conclusions by showing that,
for realistic model parameters, zero-lag synchronization leads
to unequivocal potentiation of synapses connecting coactivated
neurons. This answers the question of Fell and Axmacher and
reconciles STDP with the ideas described above that neuronal
synchronization has an essentially constructive role, for exam-
ple, for associative learning and memory formation. Specifically,
the following shows that STDP consistently couples synchronized
neurons if key model parameters are matched to physiological
data: First, synaptic potentiation must be significantly stronger
than synaptic depression for small (positive or negative) time lags
between presynaptic and postsynaptic spikes. Second, spike syn-
chronization must be sufficiently imprecise, for example, within
a time window of 5-10 ms instead of 1 ms. Third, axonal prop-
agation delays should not be much larger than dendritic delays.
Under these assumptions synchronized neurons will be strongly
coupled leading to a dominance of bidirectional synaptic connec-
tions even for simple STDP models and low mean firing rates
at the level of spontaneous activity. Our conclusions are sup-
ported by analyses and simulations of various different STDP
models (Morrison et al., 2008; Clopath et al., 2010). Section
2.1 reevaluates prior studies (Lubenov and Siapas, 2008; Clopath
et al., 2010) claiming that STDP would generally decouple syn-
chronized neurons and presents modified simulation experiments
that put these earlier findings into perspective by demonstrat-
ing a strong coupling force of coarse synchronization that can
easily explain the dominance of strong bidirectional connections
both for sequential and non-sequential temporal codes. Section
2.2 works out the basic mechanism for this effect by analyzing
and simulating various STDP models. This includes simple linear
doublet models, non-linear doublet models, and the more real-
istic triplet STDP model (Pfister and Gerstner, 2006; Morrison
etal., 2008) fitted to physiological data from visual cortex and hip-
pocampus. Finally, the results are summarized and discussed in
Section 3.
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2. RESULTS
2.1. DECOUPLING THROUGH SYNCHRONY? A REEVALUATION OF
PRIOR STUDIES

We first investigated a realistic voltage-based STDP model pro-
posed by Clopath et al. (2010). This model has been shown to
be consistent with a vast literature of physiological experiments
on STDP. It has also been used to explain different patterns of
synaptic connectivity that seem to occur in different cortical areas
(Lefort et al., 2009; but see Markram et al., 1997a) and to relate
these connectivity patterns to the underlying neural code. Specifi-
cally, they observed strongly unidirectional connections if synaptic
inputs were highly structured on the spike time scale according
to a synfire-type sequential temporal code, whereas bidirectional

connections could be reproduced only for rate coding using sta-
tionary stimulation on a larger time scale. For the latter, they
emphasized the importance of using their realistic STDP model as
commonly used simpler doublet STDP models would be gener-
ally unable to stabilize bidirectional connections even under rate
coding. In any case, their results suggest that unidirectional and
bidirectional connections could be signatures of temporal and rate
coding, respectively.

In the following we reproduce and extend one of the simu-
lation experiments by Clopath and colleagues in order to show
that the hypothesized one-to-one relation between connectivity
and coding is rather unlikely to hold true (Figures 2 and 3). For
this we have implemented the voltage-based STDP model and
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FIGURE 2 | Strong bidirectional connections can develop both for rate
coding and for temporal coding based on spike synchronization
assuming realistic STDP models fitted to data from visual cortex
(Clopath et al., 2010). (A) Rate code. Eight neurons fired randomly at
different frequencies as indicated (top and middle). Synaptic weights w;
after 100 s (bottom) indicate that neurons firing at high rates (#5—#8)
develop strong bidirectional connections, similarly as reported previously
(cf., Clopath et al., 2010, Figure 4). (B) Temporal code based on spike

B  Synchrony code (time window T, low rate 4Hz)

1 ms

10 ms
Before After 100 sec
L 1 T T R
|
§2 | -
€3 1 \ I L
c4
§ 2l [ 1] [
e | 11 [
2o | [ L1
A I TR 1]
0 250 500 750 1000 1250 1500 1750 2000
time t [msec]

index of presynaptic neuron

1 2 3 4 5 6 7 8
index of postsynaptic neuron

synchronization. Eight neurons fired at a low rate (4 Hz) but in synchrony
with different synchronization windows T. The weights averaged over 100 s
indicate that neurons that are coarsely synchronized (T = 10 ms; #5-#8)
develop strong bidirectional connections in spite of low firing rates. No
strong connections develop for either too precise (T =1 ms; #1-#4) or too
coarse synchronization [cf. (A)]. Synaptic weights were initially w;(0) =1
and clipped throughout the simulations, 0 < w;(t) <3. Synaptic delays
were d=1ms.
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FIGURE 3 | Strong bidirectional connections can develop also for a
synfire-type sequential temporal code. This figure shows spike
recordings (top panels) and final weight matrices (bottom panels, initial
weights were 1, no weight clipping) after 100 s simulation of a realistic
voltage-based STDP model (Clopath et al., 2010). Simulations are similar as
in Figure 2 but here the network comprised 100 neurons divided into 10
pools of 10 neurons (first pool consists of neurons 1-10, second pool of
neurons 11-20, etc.). Neuron pools were activated successively every
10ms (first pool, followed by second pool 10 ms later, followed by third
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pool 10 ms later, etc.). Neurons within each pool fired synchronously within
a time window T. For precise within-pool synchronization (left panels,

T =1 ms) strong unidirectional connections dominate in the resulting
network (cf., Clopath et al., 2010, Figure 4), whereas for coarse
synchronization (right panels, T =5 ms) bidirectional connections
dominate. Spike recordings show activity for neurons 1-30 during first
500 ms of simulations. All neurons fired with 10 spikes/s on average.
Effective delays were d =1 ms. Results for coarse synchronization with

T =10ms were similar to results with T =5ms (not shown).

simulated a small network of eight neurons with complete recur-
rent synaptic connectivity including axonal transmission delays,
as described by Clopath et al. (2010, Figure 4). Then we stim-
ulated neurons in accordance with different assumptions on the
neural code and evaluated the resulting modification of synaptic
strengths.

Consistent with the results of Clopath and colleagues, our
simulations confirm that strong bidirectional synaptic connec-
tions could be explained by a rate code (Figure 2A). Specifi-
cally, stimulation leads to LTD and LTP of synapses that connect
neurons firing at low and high rates, respectively. In a second
experiment, we repeatedly stimulated the neurons with strong
but brief inputs such that all neurons had low average firing
rates, but different subgroups of the neurons synchronized their

spikes within time windows of different widths T (Figure 2B).
Again consistent with the previous reports (Song and Abbott,
2001; Knoblauch and Sommer, 2003; Lubenov and Siapas, 2008;
Clopath et al., 2010), it was possible to observe LTD and, thus,
decoupling of neurons firing in synchrony. Surprisingly, decou-
pling occurred only if synchronization was very precise (T = 1 ms,
cells 1-4), whereas synapses connecting coarsely synchronized
neurons (intermediate T =10ms, cells 5-8) were potentiated
and the corresponding neuron groups developed strong bidirec-
tional connections. A similar result is actually visible, although
not discussed, in Clopath et al. (2010, Figure 2 SA, lowermost
matrix row).

Next we investigated synfire-chain-type sequential dynamics
in a larger network of 100 neurons using the same voltage-based
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FIGURE 4 | Synaptic coupling and decoupling in a simple recurrent
network model of 100 excitatory neurons with a broad distribution of
axonal delays similar as described by Lubenov and Siapas (cf., Lubenov
and Siapas, 2008, Figure 4). Left panels show spike activity within a 10 ms
sliding time window summed over all neurons of a single simulation. Right
panels show corresponding histograms for the distribution of summed
synaptic strength over propagation delay d before switching on STDP at
t=3s (green curve) and after 7 s simulation including STDP at t =10's (blue
curve). Delays were drawn randomly from clipped Gaussians
(mean+s.d=5+20ms, clipped to 1 < d <20ms). Top panels correspond to

delay d [msec]

unbiased Hebbian doublet STDP (all-to-all linear model with A, =A_=0.5,

T, =1_=20ms) similar as in (Lubenov and Siapas, 2008). Consistent with
their results, oscillatory synchronization (f =4 Hz) decouples neurons. Middle
and bottom panels correspond to similar simulations but using more realistic
triplet STDP models fitted to data from visual cortex (middle) and
hippocampus (bottom). Here bidirectional couplings are even strengthened
and oscillations are preserved. As in (Lubenov and Siapas, 2008), individual
synaptic weights are clipped to the range 0 < w < 10 (initially w=840.8).
Without clipping, synaptic weights (and oscillation amplitude) would increase
even further for triplet STDP (data not shown).
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STDP model as before (Figure 3). For this, we divided neu-
rons into ten pools of ten neurons and implemented a cyclic
activation of neuron pools, similar as described by Clopath et al.
(2010). Neurons within a pool were stimulated such that spikes
were synchronized within a time window of width T. The time
interval between stimulation of two successive pools was 10 ms
such that one stimulation cycles lasts 100 ms. Again consistent
with the results of Clopath and colleagues, precise spike synchro-
nization of within-pool neurons (7 =1ms) resulted in decou-
pling of synchronized within-pool neurons and a dominance
of strong unidirectional between-pool connections (Figure 3,
left panels; cf. Clopath et al., 2010; Figure 4). However, already
slight increases of synchronization width toward more realis-
tic values (e.g., T=>5ms; see Discussion) resulted in a dom-
inance of strong within-pool bidirectional connections over
strong between-pool unidirectional connections (Figure 3, right
panels).

Our results imply that strong bidirectional connections as
observed in visual cortex are consistent with both rate cod-
ing and temporal coding based on coarse spike synchroniza-
tion with sequential or non-sequential spatio-temporal correla-
tions. This contradicts speculations that bidirectional connec-
tivity would be evidence for rate coding and that synchroniza-
tion would generally have a decoupling effect on coactivated
neurons.

As thelatter idea was emphasized in another influential study by
Lubenov and Siapas (2008) we have also reevaluated their model
in order to confirm our conclusion. In a first simulation exper-
iment illustrated by Figure 4, we have implemented a network
of 100 recurrently connected regularly spiking excitatory neurons
with transmission delays (1 < d < 10ms), similarly as described
by Lubenov and Siapas (2008, Figures 4 and 7). Without STDP
(0 < t < 3 5) neurons engage in slow collective oscillations around
4Hz. As no inhibitory neurons are included, recurrent excita-
tion induces high-frequency bursts where, during each oscillation
period, each neuron emits multiple spikes until activity ceases due
to habituation. At time t = 3 s, STDP is switched on. As previously
reported by Lubenov and Siapas using an unbiased Hebbian STDP
rule, we observed strong LTD of recurrent synapses leading to a
decoupling of neurons and, correspondingly, a desynchronization
of spike activity. However, for any biologically more realistic STDP
rule, recurrent connections became even stronger (and oscillations
were preserved), as shown for the triplet STDP model fitted to
data from visual cortex (middle panels) or hippocampus (bottom
panels). Similar results can be obtained even for the much sim-
pler doublet STDP model if using plausible parameters that are
compatible with experimental data (Figure S2 in Supplementary
Material; see Discussion). Additional simulations confirmed that
it is very difficult to obtain LTD for realistic STDP models and
parameters under the described neural dynamics. We observed
unequivocal decoupling and desynchronization only for modified
neuronal habituation parameters preventing bursting and very
precise spike synchronization that could be achieved only by apply-
ing precisely timed external low frequency stimulation (Figure S3
in Supplementary Material). This result is actually consistent with
the therapeutic effects of deep brain stimulation in patients suf-
fering from Parkinson’s disease (where we do not have to assume

an abnormal STDP rule as suggested by Lubenov and Siapas, 2008,
Figure 7).

In a further simulation we have investigated more realistic
networks including excitatory and inhibitory conductance-based
neuron models (for details see Knoblauch and Palm, 2001, 2002b)
and triplet STDP models fitted to visual cortex data (Pfister
and Gerstner, 2006; Morrison et al., 2008). Neurons are driven
by external Poissonian stimulation such that initial firing rates
are significantly above spontaneous level (approx. A = 6 spikes/s).
Initial synaptic weights are such that the network is in an asyn-
chronous firing regime. When STDP is switched on (at time
t =3s), synaptic strength generally increases independently of the
delay (lower left panel, green curve for t=5s). With increas-
ing synaptic strengths, activity becomes more and more syn-
chronous and oscillatory (at about f=10Hz). Around t=10s
(blue curves), synchrony is still coarse enough such that LTP
dominates for almost any delay d. However, as synchronization
becomes more and more precise, connections with large transmis-
sion delays become weaker, whereas connections with short delays
still increase strengths (cyan curves). Even for very strong synap-
tic weights, synchronization is never precise enough to evoke LTD
in short-delay connections. We observed corresponding results
also for larger oscillation frequencies, STDP fitted to hippocam-
pal data, and even simple doublet STDP models for plausible
sets of parameters (see Figures S4, S5, and S2 in Supplementary
Material).

To summarize our simulations, the decoupling force of STDP
for synchronized neural activity seems not as general as empha-
sized in previous studies (Lubenov and Siapas, 2008; Clopath et al.,
20105 cf. Figure 1). Instead, our simulations of plausible doublet,
triplet, or voltage-based STDP models reveal that physiological
spike synchronization consistently couples coactivated neurons
by growing strong bidirectional connections even for large axonal
propagation delays, synfire-type sequential neural dynamics, and
low average firing rates. To understand and verify the generality of
our results, the following sections present analyses and additional
simulations for various doublet and triplet STDP models (Song
and Abbott, 2001; Morrison et al., 2008) in order to determine
conditions when synchronization of neural activity leads to either
coupling or decoupling.

2.2. THEORETICAL CONDITIONS FOR COUPLING OR DECOUPLING OF
SYNCHRONIZED NEURONS

In recurrent networks, there is a mutual dependency between
synaptic plasticity and neuronal dynamics. For example, in the
simulations of Figure 5 uncorrelated spike activity above sponta-
neous level increased synaptic weights which caused an increase
in spike synchrony and, in turn, an even stronger increase of
synaptic strength. Previous studies have attempted to analyze this
mutual dependency in a common theoretical framework (Levy
et al., 2001), however, at the price of making numerous pre-
sumptions and approximations, for example, on network circuitry,
neuronal firing patterns, plasticity model, and distribution of
propagation delays. Moreover, generality of such approaches is
further limited because neuronal dynamics will depend crucially
on further assumptions on anatomy and plasticity of inhibitory
circuits (Markram et al., 2004; Lu et al.,, 2007; Lamsa et al.,
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FIGURE 5 | Synaptic coupling in a more realistic recurrent network of

excitatory and inhibitory conductance-based neurons using triplet STDP

fitted to visual cortex. Top panels show population spike recordings as
function of time t (225 excitatory cells driven by external Poissonian
stimulation). As in Figure 4, STDP is switched on at t =3s. Middle panels
show lag distribution (middle left) and power spectrum (middle right) for
different segments of the spike recordings (as indicated by colors). Bottom

panels show distribution of synaptic strength as a function of delay (lower left)
and average firing rate (A), oscillation frequency (f) and oscillation amplitude
(a) as a function of time (lower right). Note that, initially, the neurons fire
asynchronously (red curves). STDP slowly increases recurrent synaptic
strengths (green) until activity becomes oscillatory (f =4 Hz) and coarsely
synchronized. Then synaptic weights quickly increase, in particular, for
connections with small delays (blue and cyan).

Frontiers in Computational Neuroscience

www.frontiersin.org

August 2012 | Volume 6 | Article 55 | 7


http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Knoblauch et al.

Does STDP (de)couple synchronized neurons?

2010 Vogels et al., 2011)!. The following pursues a much sim-
pler approach by separating the theory on weight change as
a function of neuron dynamics from other theories on neu-
ron dynamics as a function of synaptic strength. For the lat-
ter there are in fact already numerous prior results that ana-
lyze how firing dynamics depends on the strengths of excitatory
and inhibitory synapses in simple recurrent networks (e.g., see
Brunel, 2000). To complement these prior analyses, we compute
mean weight change Aw for different STDP models under the
assumption of simple stationary firing regimes including syn-
chronization, oscillations, and uncorrelated Poissonian firing. The
benefit of this approach is that we can compute closed-form
expressions for Aw which, together with the previous theories,
give us an overview of conditions when synchronization leads to
either coupling or decoupling of coactivated neurons in simple
circuits.

22.1. Linear doublet STDP models

In linear doublet STDP models (Gerstner et al., 1996; Song et al.,
2000; Izhikevich and Desai, 2003; Morrison et al., 2008), the change
of synaptic weight depends only on the time lags At: = tpost — fpre
of relevant presynaptic and postsynaptic spike pairs according to
an experimentally measured STDP function F(At) (Figures 6A,B;
cf., section 4.2). For cortical areas there are numerous reports of
Hebbian STDP with LTP for At >0 (pre-before-post pairing),
and LTD for At <0 (post-before-pre pairing; Bi and Poo, 1998;
Froemke and Dan, 2002; Froemke et al., 2005). Typically, there
is a sharp transition zone around zero time lag where LTP and
LTD are maximal, F(¢) > Ay >0 and F(—€) - —A; <0 for
0 <€ — 0. For larger time lags, |Atl — 00, it is typically assumed
that LTP and LTD decay exponentially with time constants 7
and 7_, respectively. Virtually all experiments demonstrate that
the LTP amplitude is significantly larger than LTD amplitude,
Ay > A_, and that the time window for LTP is significantly
shorter than for LTD, 4 <« v_ (Bi and Poo, 1998; Song et al.,
2000; Froemke and Dan, 2002; Froemke et al., 2005). By con-
trast, many theoretical studies assume Ay = A_ and/or t4 =7_
to reduce the number of free parameters or to ease analyses (Levy
et al., 2001; Morrison et al., 2007; Lubenov and Siapas, 2008).
Unless noted otherwise, we use experimental parameters from
Froemke and Dan, 2002; Ay =0.0147, A_ =0.0073, T4+ = 13 ms,
T_ =34 ms).

If the distribution of the time lags, G(At), is known, then the
expected weight change is determined by the integral of the prod-
uct of F and G. For all-to-all (AA-) STDP (Song and Abbott,
2001), all spike pairs contribute equally and G is essentially the
cross correlation function of presynaptic and postsynaptic spike
recordings (Singer and Gray, 1995). Thus, rate coding implies flat
G for relevant time lags, whereas temporal coding by synchro-
nization implies that G has a central peak. To simplify analysis

For example, even without considering plasticity of inhibitory neurons, increasing
synaptic strength of recurrent excitatory connections can either increase or decrease
neuronal synchrony, depending on relative connection strengths between multiple
excitatory and inhibitory neuron populations (e.g., for a local circuitry as described
by Knoblauch and Palm, 2001 including multiple inhibitory neurons populations;
simulation data not shown).

we assume lag distributions with rectangular central peaks of
width T shifted by effective transmission delays d = dax — dpap.
We consider both positive and negative delays as axonal delays,
dax, and dendritic delays of the backpropagating action potential,
dypap, may compensate each other, where small positive delays (e.g.,
d~1ms) seem most realistic for local connections (Girard et al.,
2001; Kampa and Stuart, 2006; see Figure S6C in Supplementary
Material). A simple analysis gives closed-form expressions for the
expected weight change, Aw = [F(t)G(t)dt, as function of STDP
parameters, transmission delay, and precision of synchronization
[see equation (10)].

Figure 6 illustrates some results of the analysis for lag distribu-
tions with single peaks of width T. As expected from the previous
simulations of realistic STDP, precise spike synchronization (small
T — 0) induces LTD for realistic positive delays d. However, with
decreasing precision of synchronization (i.e., increasing T') LTP
becomes possible even for large d > 0. The reason is that suf-
ficiently large T > 2d allows the peak of the lag distribution G
to overlap with the LTP window of the STDP function F. Then
the expected weight change Aw can become positive if the LTP
amplitude Ay of F is significantly larger than the LTD ampli-
tude A_, where the resulting LTP is strongest for small delays
d. Still, particular parameter choices as by Lubenov and Siapas
(2008, AL ~ A_, T4 =1_; see Figure 6C) can lead to the wrong
ideas that LTP would be possible only in a very restricted para-
meter range, that LTP would monotonically decrease with smaller
T, and that synchronization would have a generally destructive
effect on connections between coactivated neurons. However,
physiological experiments consistently demonstrate that A4 and
T_ are significantly larger than A_ and 7, respectively (e.g.,
Bi and Poo, 1998) implying a much larger parameter range
for LTP (Figure 6D). Specifically, realistic parameters imply a
non-monotonic relation between weight change and precision
of synchronization. For any reasonable positive delay d, there
is an optimal synchronization window T that maximizes LTP
(e.g., T~15ms for d=1ms). For larger T or uncorrelated fir-
ing, LTP turns again to LTD because [F(t)dt <0 for realistic
parameters (e.g., Bi and Poo, 1998; Song and Abbott, 2001). For
very large d, LTP is not possible, but there is still an optimal T
minimizing LTD.

Thus, this simple analysis of doublet STDP confirms and
explains our results obtained for realistic voltage-based STDP
models. Further, it disproves the prejudice that simple dou-
blet STDP models would be generally unable to produce bidi-
rectional synaptic connections in recurrent networks (Gerstner
et al., 1996; Song and Abbott, 2001; Kozloski and Cecchi, 2008).
Finally, our findings reject the hypothesis that spike synchro-
nization would generally exert a decoupling force on coactivated
neurons for Hebbian STDP and realistic axonal transmission
delays (Lubenov and Siapas, 2008). Instead, realistic STDP para-
meters imply an optimal time window (T ~ 10 ms) where syn-
chronization leads to maximal LTP and, thus, to bidirectional
connectivity patterns in local recurrent networks, whereas decou-
pling occurs only for particular parameters not supported by
experiments. The following subsections demonstrate the gener-
ality of our findings by investigating various further variants of
doublet STDP.
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FIGURE 6 | Simple linear doublet STDP induces potentiation of
synaptic weights for coarsely synchronized spike activity. (A)
Distribution G(At) of time lags At := t*** — t*° between presynaptic and
postsynaptic spikes for a mean effective transmission delay d =1 ms and
precise spike synchronization where lags are uniformly distributed within a
time window of width T =1 ms. Plot shows also STDP function F(At)
corresponding to experimentally measured weight changes for spike
pairings with lag At. We assume F(At)=A,exp(At/t,) for At >0 and
F(At)=—A_exp(At/z_) for At <0 with experimentally measured
parameters A, =0.0147 A_ =0.0073, r, =13 ms, t_ =34 ms of (Froemke
and Dan, 2002; see methods). Since T < 2d all spike pairs induce LTD. (B)
Same as (A), but for coarse synchronization with T =10 ms. LTP is possible
forT>2d and A, > A_ when the expected weight change per pairing,
Aw:= [F(t)G(t)dt, is positive. (C) Contour plot of expected weight change
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Aw-100% [equation (10)] as a function of effective transmission delay d
and synchronization window T using artificial STDP parameters similar as
(Lubenov and Siapas, 2008; A_=0.0073, A, =1.1A_; . =7_=20ms).
LTD dominates for plausible d > 0 unless T is very large (corresponding to
rate coding). LTD monotonically increases with decreasing T for any d > 0.
Thus, for such parameters, synchronization decouples coactivated neurons.
(D) Same as (C) but for realistic STDP parameters as in (A). Still, there is
strong LTD for precise synchronization (e.g., T <5ms). By contrast, for a
wide parameter range, coarse synchronization (e.g., 5 <T <50 ms)
induces LTP even when assuming d ~ d,, and realistic axonal delays for
local connections, 0.5 < d,, <5ms (see also Figure S6 in Supplementary
Material). For each d > 0 there is an optimal T that maximizes LTP (or
minimizes LTD if d is very large). Thus, for realistic parameters, coarse
synchronization consistently couples coactivated neurons.

222. Weight dependence and non-linear doublet STDP models

For simple linear doublet models discussed so far, individual
spike pairs add up linearly to total weight modification. This
implies some obvious inconsistencies with experimental findings:
For example, synaptic strength may diverge toward infinite val-
ues, w — =00, unless the range of synaptic strengths is artificially
clipped to a fixed interval [0,wmax] (e.g., Gerstner et al., 1996; Song
et al., 2000; Izhikevich and Desai, 2003; Morrison et al., 2008).
Moreover, there is evidence that weight modification depends on

the absolute weight such that for increasing w the effect of LTP
decreases whereas the effect of LTD increases (Liao et al., 1992;
Bi and Poo, 1998; Montgomery et al., 2001; Wang et al., 2005;
but see Sjostrom et al., 2001 for negative results)?. Such weight
dependence of STDP has led to non-linear models of STDP (e.g.,

2It has been pointed out that this weight dependence is more clearly visible in
experimental data for LTD compared to LTP (Bi and Poo, 1998; Morrison et al.,
2008).
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van Rossum et al., 2000; Rubin et al., 2001; Giitig et al., 2003;
Morrison et al., 2007, 2008).

We have analyzed two classes of non-linear doublet models,
the power-law model of Morrison et al. (2007), and a model pro-
posed by Giitig et al. (2003) that interpolates between additive and
multiplicative models (Rubin et al., 2001). By extending the linear
analysis to the non-linear model, we still can derive closed-form
expressions for the equilibrium weight wo, assuming rectangular
lag distributions G and infinite simulation time [see equations (13
and 16)].

Figure 7 shows contour plots of w as a function of synchro-
nization window T and effective transmission delay d. We first
investigated the model of Morrison et al. (2007) with their original
parameters, in particular, A} 3> A_ and 74 = v_ (Figures 7A,B).
This choice of parameters implies several peculiarities: First, due
to Ay > A_, there is a large parameter range of positive delays d
where coarse synchronization (T ~ 10 ms) implies large synaptic
weights and, thus, stable coupling of coactivated neurons. Sec-
ond, however, using equal time constants T = t_ implies again
that there is a monotonic relation between synchronization win-
dow T and the resulting equilibrium weight wso. For positive
delays, d > 0, synaptic strength decreases with increasing precision
of synchronization (smaller T') and finally vanishes for very precise
synchronization. Thus, due to this monotonic relation, one may
conclude that synchronization would have an inherently decou-
pling effect on coactivated neurons, similar as Lubenov and Siapas
(2008) have done using the linear doublet model (cf., Figure 6C).
Finally, for rate coding with large T — oo the equilibrium weight
becomes independent of T, d, and the firing rate. The theoret-
ical value woo &2 39.6 is consistent with network simulations of
Morrison and colleagues that reveal unimodal small-variance dis-
tributions of synaptic weights (cf., Morrison et al., 2007, Figure 2;
see also section 2.1).

Next, we have investigated the power-law model with more
realistic parameters such that, at reference weight w = wy, weight
modification matches the data of Froemke and Dan (2002), in par-
ticular, we used 7+ < 7_ (cf., section 4.2.1). The resulting contour
plots (Figures 7C,D) are qualitatively very similar to the corre-
sponding linear model (cf., Figure 6D). In particular, for each
positive delay d, there is an optimal synchronization window T
that maximizes equilibrium weight woo. Thus, these results con-
firm the coupling force of coarse synchronization (T on the order
of 10 ms) for the power-law model.

Similar is true also for the non-linear doublet model of Giitig
et al., 2003 (Figures 7E-H). By adjusting a parameter u € [0;1],
this model can continuously interpolate between additive models
(u=0) and multiplicative models (i =1). For realistic para-
meters (AL > A_; 14 < 7_), all models maximize equilibrium
weights weo for coarse spike synchronization. While the multi-
plicative model, similar as the previous models, shows a rather
gradual dependence of wo, on synchronization window width
T (see Figures 7E,F for u=1), coming close to the additive
model implies sharp threshold-like transitions between minimal
and maximal weights (see Figures 7G,H for ;« = 0.001).

Thus, concerning the question whether Hebbian STDP cou-
ples or decouples synchronized neurons, our analyses show that
non-linear doublet models behave qualitatively very similar as the

linear doublet models. In particular, they confirm our hypothesis
that, for realistic STDP parameters and transmission delays, spike
synchronization exerts an inherently coupling force on coactivated
neurons unless synchronization is unrealistically precise. So far,
our conclusions are based on theoretical analyses that assume sim-
ple rectangular distributions of time lags. This simplifies analyses,
but, similar as using Gaussian distributions (Lubenov and Sia-
pas, 2008), is not a plausible model for lag distributions resulting
from realistic spike trains (except for the limit T — oo and AA-
STDP corresponding to rate coding with flat lag distributions).
The next sections verify our qualitative analyses for more realistic
spike trains.

2.2.3. Dependence on rates and oscillation frequency: all-to-all
versus nearest-neighbor doublet STDP models
Lag distributions with single central peaks as assumed in the pre-
vious sections are plausible only for low mean firing rates. Since
synchronization in the brain occurs often together with states of
increased neural activity, the following analyses are based on lag
distributions computed from a two-state model of spike trains
(see Figure 14; Section 4.1). This model assumes the existence of a
background state where the neurons fire spontaneously at rate A¢
with Poissonian firing statistics (all following experiments assume
Ao = 1 spike/s). Additionally, there is an activated state where the
neuron fires with a higher rate A;. We further assume that acti-
vated states last for time T and are induced by stimulation events.
For non-oscillatory synchronization stimulation events occur irreg-
ularly with event rate A, (Poissonian statistics). For oscillatory
synchronization we assume that stimulation events occur regularly
with oscillation frequency f=A.. In both cases, we can compute
the resulting mean spike rate A from Xy, A1, T, and X, or f (for
details see Section 4.1). The following computes expected changes
of synaptic strength, Aw, dependent on A, A (or f), T, and effective
transmission delay d for different linear doublet STDP models.
Besides the AA-model used in the previous sections here we
will also consider nearest-neighbor (NN) variants of doublet
STDP (van Rossum et al., 2000; Bi, 2002; Izhikevich and Desai,
2003; Burkitt et al., 2004) which is more consistent with fre-
quency dependency of synaptic plasticity (Sjostrom et al., 2001).
For the all-to-all model (AA) of doublet STDP all spike pairs
are equally relevant and contribute to the lag distribution G. In
contrast, for nearest-neighbor (NN) STDP, for each presynap-
tic spike, only the both nearest postsynaptic spikes are relevant.
Thus, for NN-STDP, the pairing distribution G is in general not
equivalent to the cross correlation of the spike recordings. For
example, for regularly oscillatory spike synchronization the lag
distribution G will be oscillatory with multiple side peaks for
AA-STDP (Figure 8A), whereas for NN-STDP the side peaks are
masked by the nearest-neighbor constraint (Figure 8B). Similarly,
for non-oscillatory synchronization, AA-STDP implies lag distri-
butions composed of a single central peak and a significant flat
contribution that extends far beyond the time window of STDP
(Figure 8C), whereas lag distributions for NN-STDP are domi-
nated only by the central peak (Figure 8D). Correspondingly, for
rate coding with uncorrelated Poissonian firing, AA-STDP implies
flat lag distributions (Figure 8E), whereas NN-STDP still shows
single peaks (Figure 8F) that become narrow with high firing rate.
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FIGURE 7 | Equilibrium synaptic weights w, for various non-linear
doublet STDP models. Contour plots show w,, as function of effective
delay d and synchronization window width T assuming rectangular lag
distributions as in Figure 6. (A) Powerlaw STDP model [equation (11)] with
original parameters from (Morrison et al., 2007; u=0.4, wo=1pA, « =0.11,
7, =7_=20ms). Data computed from equation (13). (B) Same as (A), but
for a larger range of synchronization window width (0 <7 <500 ms). (C,D)
Powerlaw model as in (A,B), but with adapted parameters such that at the
reference weight, w = wy, the resulting STDP function F(At;w) is
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consistent with experimental data used for the additive model of Figure 6
(n=0.4, wo=1pA, «=0.0073/0.00147, 7, =13 ms, 7_ =34 ms). (E,F)
Multiplicative STDP [equation (15) with u = 1] using parameters consistent
with the additive model of Figure 6 (@ =0.0073/0.0147, t, =13 ms,
7_=34ms). Data computed from equation (16). (G,H) Almost additive STDP
(equation (15) with u =0.001). Other parameters are as in panels (E,F). LTP
and LTD as indiciated by arrows refers to equilibrium synaptic weights being
larger and smaller, respectively, than reference weights [w, =1 for panels
(A-D); w,=0.5 for (E-H)].
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rate A =50 spikes/s, background firing rate A, = 1 spikes/s, synchronization upper and middle panels because of non-zero delays d > 0 (cf., Figure 14).
window T =10 ms, and effective delay d =1 ms. Middle panels (C,D) show Each plot shows also the STDP function F(A) (red lines; same parameters as
corresponding results for non-oscillatory synchronization (Section 4.1.2) but in Figure 6; curves are scaled and shifted for sake of visibility) and the
otherwise same parameters as for top panels (with an event rate resulting theoretical weight modification Aw after 100 sec [upper right corner;
A, =50 events/s corresponding to ). Bottom panels (E,F) correspond to rate equation (7)]. Note that NN-STDP predicts LTP (strongest for non-oscillatory
coding with uncorrelated Poissonian spike activity at A =50 spikes/s. Left synchronization), whereas AA-STDP yields LTD.
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Thus, assuming realistic STDP parameters (A4 > A_ and
74 K 7_) there is a fundamental difference between AA and NN-
doublet models for larger average firing rates: The AA-model will
always have lag distributions that maintain a significant fraction
of large time lags favoring synaptic depression (since 74 K 7_)
both for oscillatory and non-oscillatory firing. By contrast, for
any coding paradigm, the NN-model produces lag distributions
that are dominated by narrow central peaks (still shifted by delay
d) that favor synaptic potentiation (since A, >> A_)*. Thus, even
for realistic parameters, AA doublet STDP has a general tendency
to underestimate LTP induced by synchronization, in particu-
lar for high firing rates or fast oscillations. This is visible in
Figure 8 where AA-STDP yields strong LTD at A = 50 spikes/s for
Poissonian firing as well as for oscillatory and non-oscillatory syn-
chronization (see also Figure S1 in Supplementary Material for
analytical results). By contrast, NN-STDP yields strong LTP for
all three regimes of neural dynamics. As found before for low
average firing rate, LTP is strongest for (non-oscillatory) coarse
synchronization.

Figure 9 shows more systematic evaluations for oscillatory and
non-oscillatory synchronization using the AA and NN-doublet
models. Each plot shows expected weight change as function of
transmission delay d and oscillation frequency f (or event rate A,)
for a given mean firing rate X and assuming that spikes are synchro-
nized within a quarter of the (mean) oscillation period, T = 1/(4f)
or T =1/(4A.). For low average firing rate (A = 4 spikes/s) AA and
NN variants produce qualitatively similar results. For plausible
delays d > 0, there is an optimal range of f (or A.) around 5-
10 Hz where LTP is maximal. For faster oscillations, LTP becomes
weaker and turns to LTD. At high rates (A = 30 spikes/s) the NN-
doublet model increases the range and amplitude of LTP, and
the optimal oscillation frequency comes close to zero. By con-
trast, for the AA-doublet-model the plots are independent of
average firing rate up to scaling. At least at higher firing rates,
non-oscillatory synchronization yields more LTP than oscillatory
synchronization®.

In summary, all doublet STDP models, if fitted to physiological
data (AL > A_, 74 < t_, relatively small effective transmission
delays), can easily couple coarsely synchronized neurons (time
scale T ~ 10 ms). This disproves hypotheses put forward in recent
studies that it would require realistic STDP models and rate coding

3For oscillatory firing there is one exception to this rule that is possibly relevant for
long-range cortico-cortical interactions. As visible in Figure S1C,D in Supplemen-
tary Material, AA-STDP can produce strong LTP if the oscillation period is close to
the propagation delays (e.g., d = 20 ms, f= 50 Hz; see also Knoblauch and Sommer,
2003, 2004 for detailed discussions of this effect). However, for local connections
under AA-STDP, the weight change (Aw will generally decrease with increasing f
for any reasonable ranges of d and f.

41t should be noted that NN-doublet STDP models predict depression for very high
firing rates when the peak width becomes smaller than the transmission delay d.
°Note that for the AA-doublet-model increasing firing rate by factor ¢ just means to
scale the time lag histograms G(At) of Figure 8 and, thus, also the weight change
Aw = [ FG by the same factor c.

The reason for this effect is that lag distributions have stronger central peaks
for non-oscillatory compared to oscillatory synchronization (see Figure 8). This
is because non-oscillatory stimulation implies a larger variance in the temporal
distance between neighboring stimulation periods (see Figure 14) which implies
blurring of side peaks and, correspondingly, strengthening of the central peak.

to explain bidirectional connectivity patterns observed in cortical
areas (Clopath et al., 2010), and that spike synchronization would
generally exert a decoupling force on the synaptic connections
between coactivated neurons (Lubenov and Siapas, 2008). The
major reasons why earlier studies arrived at these wrong conclu-
sions are as follows: First, to simplify analyses and to reduce the
number of free parameters, many previous studies used simplified
parameters sets, for example, Ay = A_ and/or 74 = t_ which are
inconsistent with experimental findings (Song et al., 2000; Levy
et al., 2001; Morrison et al., 2007; Lubenov and Siapas, 2008).
Second, in many models spike synchronization is unrealistically
precise which leads to strong LTD for synapses connecting coac-
tivated neurons (Levy et al., 2001; Knoblauch and Sommer, 2003,
2004; Clopath et al.,, 2010). Third, many models used regimes
of very regular oscillations which decreases LTP compared to
more realistic irregular oscillations (Levy et al., 2001). Finally,
many previous studies focused on the widely used linear AA-
model variant which is inconsistent with the known frequency
dependency of STDP (Gerstner et al., 1996; Levy et al., 2001;
Song and Abbott, 2001; Knoblauch and Sommer, 2003, 2004;
Kozloski and Cecchi, 2008; Lubenov and Siapas, 2008), and gen-
erally underestimates LTP unless spike activity is very low. By
contrast, NN-doublet STDP models are much more consistent
with the BCM-type (Bienenstock et al., 1982; Sjostrom et al,
2001; Izhikevich and Desai, 2003) frequency dependency of STDP
measured in physiological experiments. To further validate our
results, the following section investigates a more realistic STDP
model based on spike triplets that explicitly accounts for frequency
dependency.

2.24. Simulation and analysis of triplet STDP models

For simple doublet STDP models the weight change depends only
on the time lags between relevant pairs of presynaptic and postsy-
naptic spikes. It has been argued that these models, in particular the
AA variant, do not provide good fits to experimental data beyond
simple low frequency pairing protocols. To verify our qualitative
results obtained for doublet STDP, and to allow more quantita-
tive predictions about the outcome of STDP for oscillatory and
non-oscillatory synchronization with higher firing rates, the fol-
lowing considers the triplet model of Pfister and Gerstner (2006;
see Section 4.4). For this model, synaptic weight change depends
also on spike triplets in addition to doublets, and it has been shown
to fit a much larger set of experimental data including non-linear
dependencies on spike rates (Sjostrom et al., 2001) as well as triplet
and quadruplet experiments (Froemke and Dan, 2002; Wang et al.,
2005).

Here our analyses and simulations focus on the nearest-
neighbor (NN) variant of triplet STDP with parameters fitted to
data from visual cortex or hippocampus (see Pfister and Gerstner,
2006, Tables 3 and 4). Similar results can also be obtained for the
all-to-all (AA) variant of triplet STDP (data not shown). In fact,
Pfister and Gerstner have shown that, unlike doublet STDP, the
NN and AA variants of triplet STDP models are basically equiva-
lent in explaining the available experimental data (see Pfister and
Gerstner, 2006, Tables 3 and 4). For comparison, the following
shows also results from simulating the NN-doublet model fitted
to data from visual cortex (Froemke and Dan, 2002). Unless stated
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FIGURE 9 | Influence of oscillation frequency (or event rate) on weight
modification for given average firing rate and linear AA/NN doublet
STDP for Poissonian stimulation protocol (parameters as in Figures 6
and 8). Each contour plot shows weight modification Aw (normalized) as a
function of effective delay d and oscillation frequency f (or event rate A,) for
synchronization window T = 1/(4f) (or T = 1/(41,)). Left panels show results
for synchronized oscillations with frequency f (see Figure 14, Section 4.1.1).
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Right panels show corresponding results for non-oscillatory synchronization
with event rate A, (see Section 4.1.2). Top panels correspond to all-to-all (AA)
doublet STDPR The plots show results for low mean firing rate A =4 spikes/s,
but for AA-STDP results do not depend on A up to scaling of Aw (not shown).
Middle panels correspond to nearest-neighbor (NN) doublet STDP at low firing
rate A =4 spikes/s. Bottom panels correspond to NN doublet STDP at high
firing rate A =30 spikes/s.
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otherwise, all simulation experiments employ the Poissonian stim-
ulation protocol described in the previous section (cf., Figure 14;
see Section 4.1).

Figure 10 shows contour plots of the expected weight change
Aw (per postsynaptic spike) as a function of the synchronization
window width T and the effective delay d (similar to Figures 6
and 7) for low, medium, and high firing rates A. The simu-
lations confirm the main conclusions drawn from the simula-
tions so far. First, for each transmission delay d there is an
optimal synchronization window width T for which synaptic
potentiation is maximized. Second, for realistic positive d the
optimal T is in an intermediate range corresponding to coarse

synchronization (on the order of T ~ 10 ms). Third, precise syn-
chronization (T < 5ms) or uncorrelated firing (as expected for
rate coding; T >>50ms) typically produces LTD unless firing
rates are very high. There are some minor differences between
the models and stimulation protocols (data not shown). For
example, non-oscillatory synchronization yields more LTP than
oscillatory synchronization, and LTP increases with the A/, (or
Alf) ratio (see below). Otherwise, the NN-doublet model pro-
duces qualitatively very similar results as the two triplet model
variants.

Corresponding results are also visible in Figure 11 illustrating
Aw as function of average firing rate A and propagation delays
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FIGURE 10 | Contour plots of expected weight change Aw for visual cortex (left panels; see Section 4.2; parameters from Froemke
NN-doublet and -triplet models. Plots show Aw (per postsynaptic and Dan, 2002; see Materials and Methods), NN-triplet STDP fitted
spike; initial weight w =1) as a function of synchronization window to data from hippocampus (middle panels; see Section 4.4.1),
width T and effective transmission delay d corresponding to low NN-triplet STDP fitted to data from visual cortex (right panels; see
activity (top panels; A =4 spikes/s), medium activity (middle panels; Section 4.4.1). All simulations used the Poissonian stimulation
A =10spikes/s), and high activity (bottom panels; » =30 spikes/s). protocol described in Section 4.1.2 (non-oscillatory synchronization;
Simulations implemented linear NN doublet STDP fitted to data from Mre=2; o=1H2z).
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Poissonian firing). Simulations implemented NN doublet STDP fitted
to data from visual cortex (left panels; see Section 4.2), NN-triplet
STDP fitted to data from hippocampus (middle panels; see

Section 4.4.1) NN-triplet STDP fitted to data from visual cortex (right
panels; see Section 4.4.1). All simulations used the Poissonian
stimulation protocol described in Section 4.1 (non-oscillatory
synchronization; A/A. =2; 1, =1 Hz).

d for various firing regimes (whereas Figure 12 assumes a fixed
delay d=1ms). For precise synchronization (small T =1ms,
top panels) synaptic weights get generally depressed for realis-
tic positive delays unless firing rates are very high. Although we
assumed A/A,=2 minor LTP occurs only for A > 20Hz (visual
cortex) or A > 30 Hz (hippocampus)”. For coarse synchronization
(intermediate T =10 ms, middle panels), by contrast, it is possi-
ble to obtain significant potentiation of synaptic weights even for

7Note that A/Ae = 2 means bursting with two spikes per stimulation event on aver-
age corresponding to a high instantaneous firing rate which should support LTP
rather than LTD in the triplet model.

realistic transmission delays and low firing rates. In fact, coarse
synchronization at low rates near spontaneous activity is simi-
larly effective for synaptic potentiation as employing uncorrelated
Poissonian spike firing at high rates (as expected for rate coding;
bottom panels).

The simulations of Figures 10 and 11 assumed a particu-
lar firing regime induced by non-oscillatory stimulation with
an average spike count per stimulation event of A/A,=2 (see
Section 4.1.2). Qualitatively similar figures can be obtained for
other firing regimes (data not shown; cf., Knoblauch and Hauser,
2011). Figure 12 shows some results for oscillatory and non-
oscillatory firing and different A/A, for delay d =1ms. It can
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window of T =1ms (blue), coarse synchronization with T =10ms
(cyan), and rate coding with uncorrelated Poissonian firing (black).
Results are shown for regular oscillatory (dashed; frequency f) and
non-oscillatory synchronization (solid lines; event rate 1,) assuming
effective delay d =1 ms and background firing at A, =1 Hz (see
Section 4.1). Note that coarse synchronization boosts synaptic
potentiation at low firing rates. Doublet and triplet models yield
qualitatively similar results.

Frontiers in Computational Neuroscience

www.frontiersin.org

August 2012 | Volume 6 | Article 55 | 17


http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Knoblauch et al.

Does STDP (de)couple synchronized neurons?

be seen that coarsely synchronized (T = 10 ms; cyan lines) non-
oscillatory (solid lines) firing with bursting (A/A, =2, top panels)
is most effective for inducing strong LTP and coupling of coacti-
vated neurons. By contrast, to induce strong LTD and decoupling,
it is most effective to have precisely synchronized (T = 1 ms; blue
lines) oscillatory (dashed lines) firing with bursting (top pan-
els). At low firing rates, oscillatory and non-oscillatory firing is
nearly equivalent. However, for coarse synchronization at high fir-
ing rates, non-oscillatory firing strongly increases LTP compared
to oscillatory firing. Similarly, for precise synchronization at high
rates, non-oscillatory firing strongly decreases LTD compared to
regular oscillatory firing.

It should be noted that, due to neuronal refractory periods, the
assumption of bursting (e.g., /A, =2) within the time window
of precise synchronization (e.g., T = 1 ms) may be implausible for
most neuron types. Nevertheless, smaller /A, <1 (middle and
bottom panels) yield similarly strong decoupling for precisely
synchronized oscillations. Although LTP is somewhat reduced
compared to bursting, coarse synchronization has still a strong
coupling force on coactivated neurons even at low rates. Rate cod-
ing with Poissonian firing statistics (black lines) can also induce
strong LTP, however, only at the price of much higher firing rates
and, thus, much higher energy expenditures (Attwell and Laughlin,
2001; Laughlin and Sejnowski, 2003; Lennie, 2003)8.

Even for A/A, <1 and coarse synchronization, it may seldom
occur for our Poissonian stimulation model (see Section 4.1)
that a neuron fires two or more spikes within its small absolute
refractory period. However, because they are seldom, these bursts
will have only a minor influence on the resulting weight change.
We have verified this arguments by an analysis of the NN-triplet
model assuming oscillatory firing where each neuron emits exactly
one spike per oscillation period (corresponding to A/A,=1; see
Figure 16). This analysis provides a closed-form expression for
the expected weight change given triplet STDP parameters, delay,
precision of synchronization, and oscillation frequency [see equa-
tion (22)]°. The analytical results are well consistent with the
Poissonian simulation experiments described above. Figure 13
shows data obtained from evaluating equation (22) to compute
expected weight change Aw as function of synchronization win-
dow T, effective propagation delay d, and oscillation frequency f
(which is here identical to firing rate 1). These theoretical results
are qualitatively similar to the results obtained from the more
general “Poissonian” stimulation protocols (see Figures 10-12;
cf., Figure 14), for example, coarse synchronization generally
increases Aw compared to precise synchronization or uncorre-
lated firing. However, there is significantly less LTP compared to
the previous stimulation protocols. In particular, for visual cor-
tex parameters and low activity (f= 5 Hz, upper right panel) it is
impossible to get LTP for positive propagation delays. This dis-
crepancy can be attributed to several factors. Most importantly,

8Note that at high firing rates (e.g., » > 40 Hz for the triplet model with A/A, = 1)
Poissonian firing can more effectively induce LTP than coarsely synchronized reg-
ular oscillations. Still, non-oscillatory coarse synchronization induces significantly
more LTP than uncorrelated firing even at high rates.

9As the NN-doublet model is a special case of the NN-triplet model, this analysis
can also be applied to the NN-doublet model for regular oscillations.

due to A4 =0, LTP can occur only for spike triplets (parameter
Az > 0) if postsynaptic interspike intervals At; are sufficiently
small (Figure 15, left). For Poissonian stimulation small At occur
due to occasional bursting (with multiple spikes per cycle even
for A < f), whereas the “exactly one-spike-per-cycle” protocol pre-
vents bursts and, thus, LTP'?, Other factors include the absence
of spontaneous activity outside the stimulation events of length
T and the very precise “jitterless” oscillation of the postsynaptic
cell'!,

3. DISCUSSION

We have simulated and analyzed various STDP models in order to
derive conditions when STDP leads to either coupling or decou-
pling of neurons firing in synchrony. Our results demonstrate that
STDP consistently couples synchronized neurons if key model
parameters fit physiological data.

1. Synaptic potentiation must be significantly stronger than
synaptic depression for small (positive or negative) time
lags between presynaptic and postsynaptic spikes, e.g., A4
significantly larger than A_ for doublet models.

2. Spike synchronization must be sufficiently imprecise, for
example, within a time window of T =5-50ms instead of
T =1ms.

3. Axonal propagation delays should not be much larger than
dendritic delays.

Condition 1 guarantees that averaging weight change Aw over
time lags At around zero will result in significant LTP. It is
supported by much of the available data using low frequency stim-
ulation protocols (Bi and Poo, 1998; Bi and Wang, 2002; Froemke
and Dan, 2002; Froemke et al., 2005; Dan and Poo, 2006). Some
experiments, however, report a pronounced BCM-type frequency
dependency of LTP and LTD amplitudes where there is only LTP
(A— < 0) at high stimulation rates, and only LTD (A} < 0) at low
rates (Bienenstock et al., 1982; Sjostrom et al., 2001; Izhikevich and
Desai, 2003). The latter seems to generally exclude coupling of syn-
chronized neurons firing at low rates and is also reflected by more
realistic triplet STDP models, for example, when stimulating with
one spike per stimulation event at a low event rate (Figure 13)!2.
Nevertheless, more realistic firing patterns that include occasional
bursting during brief and coarsely synchronized firing events (with
high instantaneous firing rates) are sufficient to restore strong
LTP even at low average firing rates near spontaneous activity

197t should be noted that LTP for coarse synchronization for the Poissonian pro-
tocol does not crucially depend on very small interspike intervals that would be
inconsistent with neuronal refractory periods. In fact, such small interspike inter-
vals are extremely seldom for small firing rates and, thus, have only little effect on
weight change (data not shown). Consistent with this idea, Figures 4 and 5 proves
that triplet STDP fitted to visual cortex data can easily produce LTP even for low
firing rates A &~ f~ 4 Hz, regular oscillations, and non-bursting neurons including
absolute refractory periods of several milliseconds.

"The latter implies that the maximal time lag between presynaptic/postsynaptic
spikes (within the same cycle) is actually T/2 instead of T.

12This is so because spike doublets alone are insufficient to evoke LTP due to triplet
parameter A} = 0. Thus, LTP can be evoked only by a full “LTP triplet” with
sufficiently small postsynaptic inter-spike-interval At; (see Figure 15, left panel).
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FIGURE 13 | Analytical weight change Aw for regular
oscillations. Contour plots show expected weight change Aw per
pairing as computed from equation (22) as a function of effective
delay d and synchronization window T for NN-triplet STDP with
different oscillation frequencies f (being identical to firing rates A).

triplet STDP / visual cortex
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Data is shown for f =1 =5Hz (top panels) and f =1 =20 Hz (bottom
panels). Model parameters are fitted to data from hippocampus (left
panels) or visual cortex (right panels) as described by Pfister and
Gerstner (2006, Table 4, minimal models), see Section 4.4 for
details.

2 d T
PRE
Do
1/f
A T
POST
Ho |

/£

FIGURE 14 | General Poissonian stimulation protocol to evaluate
modification of synaptic weights for oscillatory synchronization.
Neurons are synchronously stimulated for a time period of length T where
they fire with rate A,. Stimulation periods are repeated with frequency f
(corresponding to an oscillation period 1/f). Without stimulation, neurons fire

at a background rate A,. Signal transmission causes an effective transmission

delay d at the synaptic site. At time t = idt a spike is emitted with probability

Alt)dt where A(t) is the firing rate at time t, dt =0.1 ms is the simulation step

size, and i=0,1,2. ... Similar stimulation protocols are used for non-oscillatory
synchronization and uncorrelated firing (see Section 4.1 for details).
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A LTP triplet B LTD triplet

PRE PRE

Aty At,

POST POST

At, Aty

FIGURE 15 | Relevant time lags At, and At, between presynaptic and
postsynaptic spikes (measured at the synaptic location) for NN-Triplet
STDP (A) Potentiation (LTP) occurs after each postsynaptic spike as a
function of the time lag At, to the previous presynaptic spike and the time
lag At, to the previous postsynaptic spike [see equation (18)]. (B)
Depression (LTD) occurs after each presynaptic spike as a function of the
time lag At, to the previous postsynaptic spike and the time lag At, to the
previous presynaptic spike [see equation (19)].

(Figures 11 and 12)'3. Strong LTP is also possible for uncorrelated
Poissonian firing, however, only at the price of much higher fir-
ing rates and, thus, much higher energy expenditures (Attwell and
Laughlin, 2001; Laughlin and Sejnowski, 2003; Lennie, 2003).

Condition 2 of coarse synchronization is necessary to escape
strong LTD that would occur for very precise synchronization
(T — 0) due to positive propagation delays d > 0 as illustrated
by Figures 1 and 6. In fact, the assumption of coarse synchro-
nization is uncontroversial since experiments report synchroniza-
tion at zero time lag only when averaging over several synchro-
nization events, whereas individual synchronization events can
have significant time lags well on the order of 10ms (Singer
and Gray, 1995; Eckhorn et al., 2001; Yen et al., 2007). Sim-
ilarly, in simulations of plausible recurrent network models it
is impossible to obtain arbitrarily precise synchronization (even
for extremely strong recurrent synaptic weights) due to propa-
gation delays, finite synaptic strengths, and neuronal integration
properties (see Figure 5; Knoblauch and Palm, 2002a). Only for
strong and precisely timed feed-forward or external stimulation
at low rates it appears possible to achieve the synchronization
precision necessary for induction of strong LTD (Figure S3 in
Supplementary Material; Lubenov and Siapas, 2008; Benabid et al.,
2009).

Condition 3 of small effective propagation delays d is also nec-
essary to escape strong LTD. For local connections (e.g., within a
macrocolumn of 1 mm diameter) axonal delays d,x of the major-
ity of connections lie in the range of 0.5-5 ms (Girard et al., 2001).
Because there are similar dendritic delays for the backpropagat-
ing action potential in the postsynaptic cell (Kampa and Stuart,
2006), the effective delays relevant for STDP may be quite small,
e.g., 0-2 ms for the majority of local connections (see Figures S6

13Here LTP is restored because bursting decreases effective At, of “LTP triplets” (see
Figure 15, left panel). Spike bursting is actually necessary only for the triplet STDP
model (and other higher-order STDP models where weight change depends only on
spike timing configurations of three or more spikes). By contrast, for the voltage-
based STDP models, subthreshold synaptic inputs preceding the postsynaptic spike
(or tonic subthreshold inputs) can play an equivalent role in promoting LTP at low
firing rates.

and S7A in Supplementary Material). By contrast, for more dis-
tant neurons or neurons from different cortical layers, d,x and
dyqp should strongly differ. For neurons from different cortical
layers, the asymmetry in dax and dp,p, would support unidi-
rectional rather than bidirectional connections for synchronous
firing at low rates (Figure S7B in Supplementary Material). Even
then, strong bidirectional coupling would still be possible for
larger average firing rates. For horizontally more distant cells,
increasing effective delays could be compensated for by coarser
synchronization with increasing T as described in experiments
and network simulations (Eckhorn et al., 2001; Knoblauch and
Palm, 2002a)14.

There is actually another implicit assumption (made by vir-
tually all STDP models) that all spike pairings would con-
tribute linearly to weight change on the short time scale of
plasticity induction, whereas there is evidence that the initial
phase of LTP or LTD is highly non-linear involving transitions
between a small number of discrete synaptic states (Petersen
et al., 1998; Montgomery and Madison, 2004; O’Connor et al.,
2005). As current experimental protocols for investigating STDP
test each synapse by repeated spike pairing with only one fixed
time lag one may question the relevance of these experiments
for predicting weight change for coarsely synchronized pair-
ings. Therefore, future experiments should directly test individ-
ual synapses with distributed time lags, for example, randomly
drawn from an interval [—T/2; T/2] (see also Supplementary
Material).

Our results bear several important implications: First, they
disprove an established prejudice that temporal coding by spike
synchronization would be generally incompatible with STDP and
bidirectional synaptic connectivity (Gerstner et al., 1996; Song and
Abbott, 2001; Knoblauch and Sommer, 2003; Kozloski and Cecchi,
2008; Lubenov and Siapas, 2008; Clopath et al., 2010). This prej-
udice originates from the intuition that, due to the asymmetric
temporal profile of STDP, spike synchronization would neces-
sarily decouple coactivated neurons (as illustrated by Figure 1)
and received some confirmation from earlier simulation studies
using the AA-doublet STDP model to demonstrate the instability
of bidirectional synaptic connections (Knoblauch and Sommer,
2003; Clopath et al., 2010), the decoupling force of spike synchro-
nization (Lubenov and Siapas, 2008), and the self-organization
of neuron dynamics into synfire-type sequential neuron dynam-
ics with a domination of strong stable unidirectional connections
(Levy et al,, 2001). In the light of our study, these previous results
appear as artifacts from using the simple AA-doublet STDP model
with unrealistic parameters (e.g., Ay =A_, T4 =7_) and/or
unrealistically precise synchronization (e.g., T < 5ms) and seem

4Our model may also explain why small latency synapses are typically stronger than
longlatency synapses (cf., Figure 5,lower left panel),and why there is a threshold-like
decrease of synaptic efficacy (e.g., around 600 ;«m distance as reported by Yoshimura
etal.,2000). As axons can be much longer than dendrites, the compensation of axonal
by dendritic delays in neurons from the same layer (Figure S7A in Supplementary
Material) will cease at the latest when d,x equals the maximal dendritic delay. At
this threshold (which may well correspond to the 600 m distance reported in the
experiments) there should be a drop in the coupling force of synchronization. Minor
bidirectional coupling of longer distance neurons may still be possible because T
increases with distance as explained above.
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A |d|<T/2
1£-T/2+d T/2+d LTP triplet:
Aty € [0;T/2-d] U [1/-T/2-d;1/f+T/2~d]
PRE Aty = 1/f
POST LTD triplet:
I . Aty € [0;T/2+d] U [1/f-T/2+d;1/f]
Ti2—d At, irrelevant for A3 =0
1/f-T/2—d
1/f+T/2—d

B T/2<d<1/f-T/2

PRE

d+T/2

LTP triplet:
Aty € [Uf=d=T/2;1/f=d+T/2]
At, = Uf

LTD triplet:

POST

/£

1/f=d-T72
1/f-d+T72

c -(1/£-T/2)<d<-T/2
1/f+d+T/2

Aty € [d-T/2;d+T/2]

At, irrelevant for A3 =0

1/f+d-T/2

PRE

LTP triplet:
Aty € [-d-T/2;—d+T/2]
At, = Uf

—d

LTD triplet:

POST

1/f

Aty € [U/f+d=T/2;1/f+d+T/2]

-d-T/2 At, irrelevant for A3 =0

FIGURE 16 | Relevant triplet configurations for computing expected
weight change for NN triplet STDP and oscillatory synchronization. The
plots assume oscillation frequency f and effective transmission delays d. For
analytical ease, it is assumed that the postsynaptic neuron has constant
inter-spike-intervals of length 1/f. The spikes of the presynaptic neuron are

—d+T/2

coarsely synchronized with the spikes postsynaptic neuron within a time
window of width T (interval indicated by shaded blocks). (A) Spike
configuration for small absolute delays, |d| < T/2. (B) Spike configuration for
large delays, T/2 <|d| < 1/f —T/2. (C) Spike configuration for extremely
negative delays, —1/f+T/2 <d <-T/2.

unlikely to hold when using more realistic STDP models (see
Section 2.1). By contrast, we have shown for various simple
and realistic model variants that STDP will typically stabilize
bidirectional connections between synchronized neurons if the
above mentioned conditions are fulfilled.

Second, our results show that network connectivity will not
be as closely related to the underlying neural code as discussed
in prior works (Clopath et al., 2010). In particular, we have
shown that a dominance of bidirectional synaptic connections
is not a reliable indicator of rate coding as such connectiv-
ity patterns can result as well from synchronous or sequential
temporal codes (Figures 2 and 3) Neither is dominance of uni-
directional connections a reliable indicator of a sequential tem-
poral code, because unidirectional connections can result as well
from (non-sequential) synchronization, for example, if axonal and

dendritic delays are asymmetric as may occur for synapses con-
necting neurons from different cortical layers (see Figure S7B in
Supplementary Material)!>.

151t is interesting to note that the synaptic connectivity patterns reported for rat
visual cortex compared to rat barrel cortex are actually not as different as discussed
by Clopath et al. (2010). In fact, Lefort and colleagues suggest that the lower fraction
of bidirectional connections in barrel cortex (at chance level) could be due to the
larger heterogeneity of cell types involved in their study (Lefort et al., 2009, Table 2)
compared to the study of Song et al. (2005) which included only thick tufted layer
5 pyramidal neurons in visual cortex. This seems plausible because there is an ear-
lier study investigating thick tufted layer 5 pyramidal neurons in barrel cortex that
reported three times more bidirectional connections than expected from random
connectivity (Markram et al., 1997a). This is almost the same result as the factor
four dominance reported for visual cortex (Song et al., 2005). Thus, the differences
in reported connectivity patterns may well be a result of different experimental
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Third, we give an answer to the open question formulated by
Fell and Axmacher (2011) how unequivocal LTP is accomplished
by zero-lag phase synchronization. As explained above, the key
insight is that coarse spike synchronization has a strong unequivo-
cal coupling force on coactivated neurons for any plausible model
parameters. Mutual coupling will be strongest if the time win-
dow of synchronization is in an intermediate range of perhaps
5-50 ms, whereas LTP is not possible for very precise synchroniza-
tion or uncorrelated firing at low rates. Such coarsely synchronized
spike activity is indeed consistent with irregular firing observed in
numerous studies of cortical dynamics and natural stimulation
which has been attributed to a “high conductance” activity state
where excitation and inhibition are approximately balanced (e.g.,
Shadlen and Newsome, 1994; Vogels et al., 2005). Coarse spike syn-
chronization fits as well to response properties of cortical neurons
under natural stimulation (DeWeese and Zador, 2006; Yen et al.,
2007; Jadhav et al., 2009) and the required synchronization win-
dow is consistent with a number of well known physiological time
windows including duration of postsynaptic potentials, neuronal
integration time constant, gamma oscillation period, and optimal
peer prediction time (cf., Buzsaki, 2006, p. 163).

Thus, our results reconcile STDP with experimental find-
ings that fast synchronized oscillations reflect feature integration
(Singer and Gray, 1995), attention (Fries et al., 2001), and associa-
tive learning (Miltner et al., 1999), which suggests a constructive
rather than destructive role of spike synchronization for memory
(Jutras and Buffalo, 20105 Fell and Axmacher, 2011) and the for-
mation of Hebbian cell assemblies (Hebb, 1949; Braitenberg, 1978;
Palm, 1982; Knoblauch and Palm, 2002a; Lansner, 2009; Buzsaki,
2010). Moreover, a better understanding of conditions when spike
synchronization leads to either coupling or decoupling of coac-
tivated neurons may help to develop improved (e.g., deep brain)
stimulation protocols for the therapy of diseases such as epilepsy,
tinnitus, and Parkinson (Lubenov and Siapas, 2008; Benabid et al.,
2009; Pfister and Tass, 2010).

4. MATERIALS AND METHODS

4.1. POISSONIAN STIMULATION PROTOCOLS FOR SIMULATION
EXPERIMENTS

To investigate the effect of STDP as a function of synchronization

window T, effective propagation delay d, and mean firing rate A we

used the following neuronal stimulation protocol (cf., Figure 14).

1. Neurons generally have Poissonian firing characteristics.

2. Without any stimulation, neurons fire at a background rate
Ao = 1 spike/s.

3. During a stimulation event of length T, neurons fire with an
increased rate A > Ag.

selection protocols rather than different coding principles. As long as connectivity
analyses do not include individual synaptic strengths, remaining differences in con-
nectivity patterns may also attributable to differences in the dynamics of structural
plasticity (Holtmaat and Svoboda, 2009; Knoblauch, 2009; Knoblauch et al.,2010; Fu
and Zuo, 2011), i.e., the seemingly random connectivity pattern reported by Lefort
et al. (2009) could also be explained by a lower degree of structural plasticity in
certain cortical areas, e.g., without any structural plasticity the connectivity pattern
remains fixed and random from the beginning and, in particular, does not depend
on the neural code.

4. Stimulation events are synchronized for presynaptic and post-
synaptic neurons. That is, presynaptic and postsynaptic neu-
rons increase firing rates during the same time interval of
length T.

5. Effective propagation delay at the synaptic site is d. That is, if
presynaptic and postsynaptic spikes occur synchronously in the
cell soma, then the presynaptic spike lags by time d behind the
postsynaptic spike at the location of the synapse.

4.1.1. Oscillatory synchronization
To investigate firing regimes of oscillatory synchronization we
additionally assume that stimulation events occur repetitively with
oscillation frequency f. That is, the time difference between onsets
of two successive stimulation events is always 1/f as illustrated by
Figure 14. Then the neurons have a mean firing frequency
T 1f =T
A=+
1/f 1/f

Vice versa, given the mean firing frequency A and the back-

ground rate Ao, it is

Al:kfiT_ko<fiT_1> (2)

4.1.2. Non-oscillatory synchronization and rate coding

To investigate firing regimes of non-oscillatory synchronization
we can slightly modify the stimulation protocol described above.
As before, there are stimulation phases of length T where neu-
rons fire at a high rate A}, whereas without stimulation neurons
fire at a background rate Ao = 1 spike/s). However, unlike before,
the intervals between stimulation events are not fixed. Instead,
a stimulation event can start at each time step with probability
Adt (independently of previous stimulation events) where we call
A the stimulation event rate and dt is the simulation step size.
Note that different stimulation events may overlap in time. Note
that A, has the same role as f for the oscillatory protocol, and
different stimulation events (each of length T') may overlap in
time. Then the probability that a given time point is not contained
within a stimulation event equals the probability that there was no
stimulation event starting in the previous T/dt time steps,

A0 - (1)

po:=pr [no starting event in previous T /dt steps]

= (1= hedt) /¥ (3)
and the mean firing rate of a neuron is thus

P2 [spike at simulation step i] (1- po) Ardt + porodt
B dt B dt

= (l — PO))LI + poAo - (4)

Therefore, for given background rate Ao and given mean firing
rate A the firing rate during the stimulation phases is

A — poA
A= Poro
1— p()
The same stimulation protocol can also be employed to investigate

rate coding. Here T is typically large (e.g., on the order of several
hundred milliseconds), and A, much smaller than 1/T.

©)
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4.1.3. Simplifying assumptions for analyses

Below we conduct two theoretical analyses of the doublet STDP
model (see Sections 4.2 and 4.3) and the triplet STDP model (see
Section 4.4) where we use a simplified version of the described
stimulation protocol.

For the analysis of the doublet STDP model (see Sections 4.2
and 4.3) we consider simple rectangular distributions G(At) of
time lags At between presynaptic and postsynaptic spikes (cf.,
Figures 6A,B). With the exception of rate coding, such distribu-
tions are only raw approximations within the Poissonian stimu-
lation framework described above (as are the Gaussians used by
Lubenov and Siapas, 2008; cf., Figure 8). Nevertheless, they allow a
simple analysis for both linear and non-linear doublet STDP mod-
els that is confirmed at least qualitatively by additional simulation
experiments (see below).

For the analysis of the triplet STDP model (Section 4.4) we
assume an oscillatory stimulation protocol similar as described
above, but make three further assumptions (cf., Figure 16): First,
both presynaptic and postsynaptic neurons fire exactly once per
oscillation period (of length 1/f). Second, the firing of the post-
synaptic neuron is precisely time-locked to the oscillation, i.e.,
postsynaptic spikes occur at times #; =i/f for i=0, 1,.... Third,
firing times of the presynaptic neuron are uniformly distributed
around the firing of the postsynaptic neuron within a time inter-
val of length T, i.e., presynaptic spikes occur in time intervals
tielil/f— T12; i/f+ T/2].

Due to the simplifications, both analyses lead to closed-form
expressions of synaptic weight change (or asymptotic synap-
tic weights). This allows to overview large parameter ranges to
judge whether spike synchronization will lead to either coupling
or decoupling of coactivated neurons, and thereby extends the
generality of our arguments.

4.2. ANALYSIS OF DOUBLET STDP

42.1. Weight change depends on STDP function F and lag
distribution G

For simple doublet STDP models, modification of synaptic weights

depends only on the arrival times " and ¢/ ! of relevant presy-

naptic and postsynaptic spike pairs (Gerstner et al., 1996; Song

etal.,2000; Izhikevich and Desai, 2003; Morrison et al., 2008). Each

relevant spike pair with time lag At := ot _ P contributes to

weight modification Aw according to an STDP function F(At),

for example,

At >0
At <0’

—A
A+e t/f+’

F(At) = _A_eAt/T-

(6)

where typically Ay >A_ and t4 <t_ such that the integral
ffooo F(t)dt is negative (Bi and Poo, 1998; Song et al., 2000;
Froemke and Dan, 2002; Froemke et al., 2005). All our numeri-
cal experiments implementing doublet STDP use parameters from
Froemke and Dan (2002): Ay =0.0147, A_ =0.0073, T+ = 13 ms,
T_=34ms.

Assuming that the time lags of relevant spike pairs follow a
probability distribution with density G(At), then the expected
weight change Aw per pairing is

Aw:/oo F (1) G(t)dt. (7)

A simple example for G is a uniform distribution between time
lags t1 and t;

6 h=t=h
(8)

G (t) =rect(t;c, 1, ) := -
0, otherwise

where ¢ is a scaling factor [e.g., c = 1/(t, — t1)]. Then the expected
weight change is

CApty (e7/m —e7h/T), 0<h <t

Ay — | AT (e?/= —e/™=) , n<h< o ©)
CA+'L'+ (1 — e_tZ/“r)
—cA_t_(1— etl/f‘) n<0<n

From this we can compute the expected weight change for vari-
ous interesting pairing distributions. For example, all-fo-all (AA)
STDP models assume that all spike pairs contribute equally to
weight modification (e.g., Gerstner et al., 1996; Song et al., 2000,
Knoblauch and Sommer, 2004; Morrison et al., 2008). Then the lag
distribution G is basically, up to normalization and a time shift d
due to transmission delays, the cross correlation function of the two
spike recordings. For example, for independent Poissonian firing
G is flat and one can use t; — —oo and t; — 00. More interest-
ingly, for occasional epochs of synchronous firing one may choose
t1=—T/2—d and t, = T/2 — d where T specifies the width of
the synchronization window and d specifies an offset correspond-
ing to transmission delays and/or a delay between the firing of the
presynaptic and postsynaptic neurons. Then

CAyTy (e(T/2+d)/f+ _ e(—T/2+d)/f+) d<—-T)2
—CcA_T_ (e(T/2*d)/L _ e(*T/Zfd)/L) , d>T)2
Aw =
CA+T+ (1 — e_(T/z_d)/T"')
—cA_t_(1— e~ (T/2+d)/e) |d < T/2
(10)

as used for Figure 6 (with c =1/T). Since Aw is linear in G, equa-
tion (10) can also be used to compute weight changes for cases
where G is the sum of multiple rectangle functions, for exam-
ple, a combination of Poissonian background firing, synchroniza-
tion, and oscillatory components (cf., Figure S1 in Supplementary
Material; see also Knoblauch and Hauser, 2011).

4.3. NON-LINEAR DOUBLET STDP

4.3.1. Equilibrium weights for power-law doublet STDP

The power-law model of Morrison and colleagues has the same
form as equation (6) except that A, and A_ depend on the
synaptic weight w [cf., Morrison et al., 2007, equation (2.3)]

A_ = law (11)

AL = Awé_ﬂw“ and
where reasonable fits to experiments have been obtained for
nw=0.4,wop=1pA, 1A =0.1,=0.11 assuming T =7_ =20ms.

With this we can analyze the effect of coarse synchronization in
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analogy to equation (10). The following shows that non-linear
STDP yields qualitatively similar results as before. First note that
d < —T/2 and d > T/2 yield unequivocally LTP and LTD, respec-
tively. Notably, in the former case, such models predict unlimited
supra-linear LTP during prolonged periods of synchronized activ-
ity (whereas LTD is sub-linear). More interesting, for 1dl < T/2,
there is an equilibrium weight wo, where the expected weight
change Aw is zero,

A (i- ¢ (T/2=d)/%s) | )
Ay T (1= e T/

Thus, solving for w yields the equilibrium weight of the
power-law model,

1
ngwer _ T (1 _ e—(T/Z—d)/tJr) 1—p (13)
wy at_ (1 — e~ (T/2+d)/7-)
1
T 1-
= (—Jr) * for d=0,74 =1_ . (14)
- \aT- T—o00

Note that in the limit of rate coding and uncorrelated firing
(T — 00) all synaptic weights will evolve toward a single value
given by equation (14) [which is why " 2 39.6 for the parame-
ters given below equation (11)]. Similar is true for the particular
case of small delays (d~0) and equal time constants for LTP
and LTD (74 =t _). This is consistent with network simulations
of Morrison and colleagues that reveal unimodal small-variance
distributions of synaptic weights with mean values close to the
theoretical value of equation (14)'®. Surprisingly, the equilib-
rium synaptic weight wq is independent of firing rate (assuming
all-to-all STDP) and, therefore, it seems not reasonable to store
information merely by rate coding with uncorrelated firing.

4.32. Multiplicative/interpolating doublet STDP

An alternative non-linear STDP model proposed by Giitig et al.
(2003) interpolates between additive and multiplicative rules

A =21 —wH and A = rawh . (15)
For example, =1 yields a multiplicative rule (Rubin et al,
2001), whereas u =0 yields the additive rule of section 4.2. Here
0 <w <1 for u > 0. Similarly as before, we obtain the equilibrium
weight w, for the interpolating model from equations (10 and
12). For d < —T/2 and d > T/2 there is unequivocally LTP and

16For example, simulation experiments of Morrison et al. (2007, Figure 2) yield
Woo = 45.5 = 4.0 pA, whereas equation (14) yields whs "~ = 44.83 pA (for that par-
ticular simulation experiment, Morrison and colleagues used o =0.1201 instead
of a =0.11). Interestingly, Morrison and colleagues report a dependence on firing
rates, whereas our theory suggests (for all-to-all doublet STDP) that the equilibrium
weight is independent of firing rate (and, thus, it seems not a good idea to use firing
rates as a means to store information in synaptic weights). Our interpretation is
that the dependence on firing rate observed by Morrison and colleagues is rather a
transient due to spike correlations induced by switching on input currents during
simulations to modify firing rates (whereas weights should actually return to the
equilibrium value for sufficiently long simulation times).

LTD with wi" — 1 and w2" — 0, respectively, whereas

1

1 otr,(lfg*(T/Zer)/r,) 1/u
1
 far \Ve
oaT—
1+ (%)
is a sigmoid logistic function for Idl <T/2. As discussed for the
power-law model, all synaptic weights will evolve toward a single

value given by equation (17) in the limits of rate coding (T — 00)
or small delays and equal time constants (d ~0, 74 =7_).

inter __
Weo =

(16)

for d=0,74 =1_ (17)

T—o00

4.4. ANALYSIS OF TRIPLET STDP

4.4.1. NN-triplet STDP model

For simple doublet STDP models the weight change depends only
on the time lags between relevant pairs of presynaptic and postsy-
naptic spikes. It has been argued that these models do not provide
good fits to experimental data beyond simple low frequency pair-
ing protocols. To allow meaningful predictions about the outcome
of STDP for stimulation protocols including oscillatory and non-
oscillatory synchronization with high firing rates, the following
considers the triplet model of Pfister and Gerstner (2006). For this
model, synaptic weight change depends also on spike triplets in
addition to doublets, and it has been shown to fit a much larger
set of experimental data including non-linear dependencies on
spike rates (Sjostrom et al., 2001) as well as triplet and quadru-
plet experiments (Froemke and Dan, 2002; Wang et al., 2005).
For the following analyses and numerical evaluations we con-
sider the nearest-neighbor (NN) variant of triplet STDP described
below. Pfister and Gerstner have shown that the NN and all-to-all
(AA) variants of triplet (but not doublet) STDP models are basi-
cally equivalent in explaining the available experimental data (see
Pfister and Gerstner, 2006).

For NN-triplet STDP, each postsynaptic spike at time £

post
leads to synaptic potentiation depending only on the last presy-
naptic spike time tég = max [té]ré : tlgjri < tégst and the last

postsynaptic spike time téz;tl),

Aw =exp (—At/14)
X (A2+ + A;r exp (—An/1,)) for each postsynaptic spike
(18)

() _ G-1)

where Ay = fpre — Tpost and Ap = £

post — té?e (see Figure 15A).
Similarly, each presynaptic spike at time tlgz induces synaptic
depression depending on the last postsynaptic spike time ¢

post " —
t(i) t(j) (i) (i—1)

max [ post © Tpost < tpre] and the last presynaptic spike time fpre

Aw = —exp (—At /1)
x (A] + A3 exp (—Any/7y)) for each presynaptic spike
(19)

where Aty := trgf))st - téi;l) and Ap = t}g)e - tlgf))st (see Figure 15B).

Note that for zero triplet terms, AT = A; = 0, the model
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becomes equivalent to the NN-doublet STDP model (note further
that equivalence holds also for stimulation protocols employ-
ing very low pairing frequencies such that At; < 747,). The
following numerical experiments use parameters of Pfister and
Gerstner (2006, Tables 3 and 4; minimal parameter sets), fitted
to physiological data from hippocampus (Wang et al., 2005), and
visual cortex (Sjostrom et al., 2001). The hippocampus parame-
ters are A’ = 0.0046, A7 = 0.0091, A, = 0.003, A; = 0,
Tx=575ms, T,=48ms, Ty =16.8 ms, T_ =33.7 ms. The visual
cortex parameters are A;‘ =0, A;‘ = 0.05, A, =0.008, A; =0,
T,=714ms, Ty= 40 ms, T4+ = 16.8 ms, 7_ = 33.7 ms. For the spe-
cial case of doublet STDP we used parameters as described
above from Froemke and Dan (2002) (A;' = 0.0147, A, =
0.0073, 74 = 13ms,7_ = 34ms, A = A; =0).

In some simulations we scaled these amplitude parameters
(A;' Ay ,A;‘ A3 ) by a certain factor s to have relevant synap-
tic changes on a time scale comparable to some reference model
(e.g., Lubenov and Siapas, 2008; in Figure 4) or to avoid unneces-
sarily long simulation times'”. For the triplet STDP simulations of
Figures 4 and 5 and Figures S4 and S5 we used scaling factor s = 5.
In Figure S2 in Supplementary Material we scaled the amplitude
parameters of Froemke and Dan (middle and bottom panels) by
s =40. For Figure S3 in Supplementary Material we used s = 50.

4.4.2. Analysis for oscillatory synchronization

We can compute the expected synaptic change (per presynaptic or
postsynaptic spike) from the distribution of time lags At and At,
(see Figure 15). The following determines such distributions for
a stimulation protocol of oscillatory synchronization. For this we
make the following assumptions (see Figure 16): (1) Both presy-
naptic and postsynaptic neurons have oscillatory spike activity
with oscillation frequency f. (2) Each neuron fires exactly once
during each period of the oscillation (i.e., fis equal to the neurons’
spike rate 1). (3) The postsynaptic neuron fires without any jitter
at times i/f (i=0,1,2,...). (4) The spike times of the presynaptic
neuron are uniformly distributed on the time interval [i/f— T/2;
i/f+ T/2) where T < 1/f defines the synchronization window. (5)
There is an effective transmission delay d between presynaptic and
postsynaptic neurons with Idl < I/f— T/2. (6) We finally assume
Ay = 0 as suggested by optimal fits to experimental data (see
Tables 3 and 4 in Pfister and Gerstner, 2006).

Let us first consider the distribution of time intervals At; and
At for each postsynaptic spike corresponding to LTP events [see
equation (18) and Figure 15A]. As illustrated by Figure 16, we
have to consider the three cases |dl < T/2, T/2 <d <1/f—T/2,
and —(1/f— T/2) <d< —T/2. In any case, it is Aty =1/f since
the interspike interval of the postsynaptic neuron is constant. For
ldl < T/2,with probability (T/2 — d)/T there is a preceding presy-
naptic spike within the same oscillation period such that At is
uniformly distributed in the interval [0;T/2 — d]. With probability
(T/2+ d)/T the preceding presynaptic spike belongs to the pre-
ceding oscillation period such that At is uniformly distributed
in [1/f—T/2—d; 1/f+T/2—d]. For T/2<d<1/f—T/2, it
is Atye[l/f=d—T/2; 1/f—d+ T/2] uniformly. And for

7Note that, for linear STDP models, scaling of amplitudes is equivalent to increasing
simulation time.

—(1/f—-T2)<d<—=T/2,itis At € [—d — T/2; —d + T/2] uni-
formly. Thus, the expected potentiation per postsynaptic spike is

E(Aw|postsynaptic spike)
A + Afe V)

—d+T/2 e t/t+ 1 T T
i), St (-3 <d<—3
Tj2=d (T/2=d /% o

T Jo T/2—d

- T/2+d (l/f+T/2—d o~t/t+ T

+ 5 Nl STdts 1l < 3

1/f—d+T/2 e—t/t+ T 1 T
Vf—d-T/2 T g <d<i—-3

—(dI=T/2)/ty _—(dI+T/2)/t4
¢ € 1 T T
T+(1,e—<m—d>/r+)
= (T/2+ d)yty (e—(l/f—T/Z—d)/H
— e WUFHT =) )
T
T2 > |d| < 2
. +(e—<1/f—d—r/2>/r+ ,ef(l/ffd+T/2)/f+) T_ 41T
T » <4<y — 73
(20)

We can similarly determine the distribution of time inter-
vals At; and At, for each presynaptic spike corresponding to
LTD events [see equation (19) and Figure 15B]. We have to
distinguish between the same three cases as described above
(see Figure 16). In any case, we do not explicitly have to
compute the distribution of At;, because of the assumption
Ay = 0. For Idl < T/2, with probability (T/2+d)/T there
is a preceding postsynaptic spike within the same oscillation
period such that At; is uniformly distributed in the interval
[0;T/2 + d]. With probability (T/2—d)/T the preceding post-
synaptic spike belongs to the preceding oscillation period such
that A¢; is uniformly distributed in [1/f— T/2+ d;1/f]. For
T2 <d<1/f—T/2,itis Aty € [d — T/2;d + T/2] uniformly. And
for —(1/f—T/2) <d < TJ2, it is Aty € [Uf+d — TI%1/f+d+
T/2] uniformly. Thus, the expected potentiation is

E(Aw|presynaptic spike)
—A;

Vf+d+T/2 gt/ 1 T T
Njjra—ryy STdt (-3 <d<—3
T/2+d T/2+d ¢t/

=l T7aradt

B T/2—d 1/f et/ T

=7 Lj—1)21a TR=a > ldl <3

A+T/2 =t/ T 1T
Jatr)y Sr—dt , 3 <d<j—3
. (e—u/f—\d\—T/Z)/r_ _e—(l/f—\d|+T/2)/r_)

1 T T
T >—(f—j)<d<—§
(1= T2/
= +ef(1/f—T/2+d)/r, _ efl/g’z,)) T
T » ldl <5
—(d-T/2)/t— _ ,—(d+T/2)/t—
L(e ——e r) I<d<l_1
T ) F2
(21)
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per postsynaptic spike. Since we assumed that each neuron fires
exactly once per oscillation period, the expected weight change per
oscillation period (of length 1/f) is thus the sum of equations (20)

and (21)

E(Aw) = E(Aw]|postsynaptic spike)

+ E(Aw|presynaptic spike).

(22)

We have verified this result by comparison with sim-
ulation experiments as documented in a technical report
(see Knoblauch and Hauser, 2011, Figure 8). Note that
equation (22) applies both to NN-triplet and NN-doublet

models.
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