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Adaptive changes in behavior require rapid changes in brain states yet the brain must
also remain stable. We investigated two neural mechanisms for evoking rapid transitions
between spatiotemporal synchronization patterns of beta oscillations (13–30 Hz) in motor
cortex. Cortex was modeled as a sheet of neural oscillators that were spatially coupled
using a center-surround connection topology. Manipulating the inhibitory surround was
found to evoke reliable transitions between synchronous oscillation patterns and traveling
waves. These transitions modulated the simulated local field potential in agreement with
physiological observations in humans. Intermediate levels of surround inhibition were also
found to produce bistable coupling topologies that supported both waves and synchrony.
State-dependent perturbation between bistable states produced very rapid transitions
but were less reliable. We surmise that motor cortex may thus employ state-dependent
computation to achieve very rapid changes between bistable motor states when the
demand for speed exceeds the demand for accuracy.
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INTRODUCTION
Spatiotemporal waves of electrical activity are a ubiquitous phe-
nomena in the cortex yet the functional relevance of these activity
patterns remains unknown (Wu et al., 2008). Task-related waves
have been observed in hippocampus (Lubenov and Siapas, 2009),
sensory brain regions (Delaney et al., 1994; Arieli et al., 1996;
Prechtl et al., 1997), and motor cortex (Rubino et al., 2006).
Spontaneous waves have also been observed in cortex in the
absence of stimuli (Nauhaus et al., 2009, 2012). Indeed, spa-
tiotemporal wave activity appears so prevalent in the brain that
some researchers suggest that it may be a fundamental aspect of
neural computation itself (Coombes et al., 2003; Gong and van
Leeuwen, 2009).

Waves arise naturally in oscillatory media and nearly all aspects
of brain function exhibit some form of oscillatory neural activ-
ity (Buzsáki, 2006; Huang et al., 2010). Neural oscillations can
occur at the level of a single neuron’s membrane potential or
at the network level where it arises from the interplay of recur-
rently connected populations of excitatory and inhibitory neu-
rons (Wilson and Cowan, 1972). Synchronization of oscillatory
activity in the brain has received a great deal of interest as a
putative mechanism behind perceptual feature-binding (Eckhorn
et al., 1988; Sompolinsky et al., 1990; Singer and Gray, 1995) and
long-range neuronal communication (Varela et al., 2001; Fries,
2005). Historically these theoretical accounts have tended to focus
on the special case of in-phase synchronous locking where the
phases of all neural oscillators converge to the same (coherent)

value. Yet systems of coupled oscillators, such as weakly cou-
pled neural networks (Hoppensteadt and Izhikevich, 1997), may
also synchronize with arbitrary phase shifts (out-of-phase locking)
depending on the sign and relative strengths of the coupling coef-
ficients (see Pikovsky et al., 2001, for a review). Spatiotemporal
wave patterns represent the special case of synchronized out-
of-phase locking where the phase shifts between oscillators are
proportional to the spatial distance between them. In the present
study, we suggest that spatiotemporal waves in motor cortex may
play a role in voluntary motor movements.

There is abundant empirical evidence for the role of synchro-
nized oscillations in motor cortex. Voluntary movement pro-
duction coincides with task-specific increases in the long-range
synchronization of beta bandwidth (13–30 Hz) oscillations com-
mon to the motor cortex, the pyramidal tract neurons which
project from the motor cortex to the spinal motor neurons, as
well as the contra-lateral muscles recruited by the movement
(Baker et al., 1999). Movement initiation also coincides with a
reduction in the observed spectral power of beta bandwidth oscil-
lations in motor cortex (Sanes and Donoghue, 1993; Murthy and
Fetz, 1996) followed by a rebound in beta power upon termi-
nation of the movement (Neuper and Pfurtscheller, 1996). The
cortical idling hypothesis (Pfurtscheller et al., 1996) attributes
such transient fluctuations in the spectral power of oscillatory
cortical activity to dynamic re-organization of the phases of the
underlying neural activity, where low spectral power is thought
to reflect functionally active cortical processes and high power is
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thought to reflect functionally inactive (idle) cortical processes. In
these accounts, high and low spectral power regimes are typically
equated with synchronized and desynchronized neural activity,
respectively (e.g., Pfurtscheller and Lopes da Silva, 1999). In
the present study, we consider that equivalent changes in spec-
tral power might also occur when spatially synchronous patterns
transition to wave patterns due to the net cancellation of phases
in the latter.

Networks of phase-coupled oscillators are ideal for modeling
the synchronization of oscillatory neural activity in a simpli-
fied mathematical form (Ermentrout, 1994). In this approach,
the limit cycle of intrinsically spiking neural activity is reduced
to a description of spike timing in terms of the phase of firing
alone. The reduction to a phase-only description is valid pro-
vided that interactions between coupled oscillators are sufficiently
weak not to drive the membrane potential far from the limit
cycle so that higher order effects come into play (Hoppensteadt
and Izhikevich, 1997). The synchronization characteristics of
canonical neural models (type I and type II membrane mod-
els) are well described by the phase interaction function which
defines how the timing of an oscillator is either advanced or
retarded by an external perturbation depending on the time of
arrival (Ermentrout and Kopell, 1986; Rinzel and Ermentrout,
1989; Hansel et al., 1995; Ermentrout, 1996; Izhikevich, 1999,
2007). Type I neural models have non-negative phase interac-
tion functions which do not readily lead to synchronization under
excitatory (positive) coupling. Conversely, type II neural models
have phase interaction functions that span both negative and pos-
itive values and always lead to synchronization under excitatory
coupling.

The Kuramoto oscillator (Kuramoto, 1984) represents the
simplest model of a type II neural oscillator where the phase
interaction function is approximated by a sinusoidal function
that represents the first mode of a broad class of type II phase
interaction functions. Spatially coupled Kuramoto oscillators can
be considered a canonical model of oscillatory cortical popu-
lations with broad excitatory coupling modulated by a narrow
inhibitory surround (Breakspear et al., 2010). Ermentrout and
Kleinfeld (2001) showed that Kuramoto oscillators which are
spatially coupled using short-range excitatory coupling and long-
range inhibitory coupling will produce self-organized patterns of
synchrony or waves depending upon the strength of the inhibitory
connections. They suggest that synchrony in sensory cortex corre-
sponds to a state of sensory recognition whereas waves represent
a state of sensory readiness where the waves serve to period-
ically modulate the sensitivity of stimulus-specific regions of
cortex.

Building on Ermentrout and Kleinfeld (2001), we propose that
switching between waves and synchrony in motor cortex may
likewise play a role in the onset and offset of motor behavior,
although in our proposal the functional assignment of waves and
synchrony is reversed. Spatial wave patterns have greater informa-
tion capacity than synchronous patterns which are highly spatially
redundant. This is because the spatially uniform pattern can be
reconstructed from the known phase of any oscillator whereas
reconstructing a wave pattern requires additional information
regarding the direction and wavelength. Even more information

is required to reconstruct specific deviations in the pattern from
a regular planar wave. We therefore, posit that the morphology
of wave patterns may be used to encode distinct movement states
in motor cortex and that synchrony encodes for the absence of
movement. Voluntary switching between motor movement and
motor rest may thus be achieved by switching the motor cortex
between patterns of waves and synchrony by manipulating the
lateral inhibitory connections in the motor cortex. In physiolog-
ical terms, we suggest that modulation of the lateral inhibitory
connections may be performed by the excitatory glutamatergic
neurons that project into the motor cortex from the thalamus
and are known to play a role in the initiation of voluntary move-
ment (Alexander and Crutcher, 1990). Glutamate modulates the
precise balance of long-range excitatory and inhibitory lateral
connections in primary motor cortex. This balance is thought
to be crucial to the function of the intrinsic circuitry within the
primary motor maps (Keller, 1993; Sanes and Donoghue, 2000).

The present cortical model adopts a center-surround style
connection topology rather than sparse long-range inhibitory
connections. Center-surround connection topologies are widely
regarded as a neurobiologically realistic model of the lateral con-
nectivity in cortex and are known to induce both synchrony and
wave patterns in oscillatory neural networks (e.g., Ermentrout,
1998; Ermentrout and Terman, 2010). Center-surround coupling
can even support both synchronous and wave solutions simulta-
neously under identical parameter values (Ermentrout, 1985). By
manipulating the strength of the inhibitory surround in the lateral
coupling topology, we seek to demonstrate a putative mechanism
for controlled switching between distinct cortical states (waves
versus synchrony) in an equivalent (small) patch of motor cor-
tex. We also explore the efficacy of anisotropic center-surround
coupling topologies for controlling the spatial morphology of
the emergent wave patterns. Finally, we provide a framework for
relating these findings to observations of oscillating field poten-
tials during repetitive movements in human subjects (Boonstra
et al., 2007).

RESULTS
Center-surround coupling was modeled with a smooth coupling
kernel G(x, h) based on the fourth derivative of the Gaussian
surface, where x is spatial distance and h ∈ [0, 1] controls the
strength of the inhibitory surround. When h = 0 this kernel is
exactly Gaussian and represents the spatial distribution of only
excitatory lateral connections. When h = 1 this kernel equates to
the fourth derivative of the Gaussian and represents the recruit-
ment of a ring of inhibitory lateral connections in the local
surround while retaining an outer ring of weak excitatory cou-
pling. Manipulating h ∈ [0, 1] thus equates to manipulating the
recruitment of the inhibitory lateral connections in the local
coupling topology (see Figure 1A).

THE EFFECTS OF ISOTROPIC CENTER-SURROUND COUPLING
Systematic manipulation of parameter h revealed that syn-
chronous patterns emerge exclusively for weak inhibitory sur-
rounds (h < 0.49) whereas wave patterns emerge exclusively for
strong inhibitory surrounds (h > 0.59). Exemplar patterns of
synchrony and waves are shown in Figure 1 in both the spatial
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FIGURE 1 | Manipulating the inhibitory surround evokes spatial

synchrony, ripple and wave patterns. (A) The isotropic coupling kernel in
one spatial dimension. The strength of the inhibitory surround is controlled by
kernel parameter h ∈ [0, 1]. (B) Shows hysteresis in the phase coherence (r)
of the spatial pattern when the strength of the inhibitory surround is slowly
manipulated between h = 0.3 and h = 0.7. Dark line indicates the maximal
extent of hysteresis observed. It confirms the existence of bistable patterns
for inhibitory surrounds in the range 0.41 � h � 0.59. Light gray lines indicate
early transitions from waves to synchrony due to heterogeneities in the
pattern. (C) Exemplar spatial patterns for 128 × 128 oscillators. Color indicates
the phase of each oscillator. Synchronous patterns exhibit high phase

coherence (r ≈ 1) and occupy the upper branch of the hysteresis plot (e.g.,
labels a and b). Wave patterns exhibit weak phase coherence (r ≈ 0) and
occupy the lower branch of the hysteresis plot (labels d–f ) although only planar
waves are stable near the transition boundary (label d). Ripple patterns exhibit
medium-high coherence (r > 0.5) and only occupy the upper branch of the
hysteresis plot (e.g., label c) where h > 0.54 . (D) The same exemplars shown
in polar form using the same color scale. Radial dispersion of the phase points
is for visual clarity only. The true radius of every phase point is always r = 1
which corresponds to the inner ring. The yellow circle indicates the centroid of
all oscillator phases. The polar angle of the centroid corresponds to the mean
phase (ψ) and its radial length corresponds to the phase coherence (r).

domain and the phase domain. The observed patterns of syn-
chrony and waves are consistent with those of Ermentrout and
Kleinfeld (2001) and confirm that center-surround coupling
produces equivalent spatial patterns to that produced by short-
range excitatory coupling combined with long-range inhibitory
coupling.

The nature of the transition boundary between synchrony and
waves was explored further by numerical continuation of sta-
ble solutions between h = 0.3 and h = 0.7. The resulting spatial
patterns were classified according to phase coherence (r) using
Kuramoto’s (1984) order parameter, where synchronous patterns
were identified by high phase coherence (r ≈ 1) and wave pat-
terns were identified by low phase coherence (r ≈ 0). A definition
of the Kuramoto order parameter (Equation 19) is provided in
the Methods.

Transitions between synchronous and wave patterns thus cor-
respond to transitions between high and low values of phase

coherence. The observed transitions in coherence are shown in
Figure 1B where the upper branch represents stable synchronous
patterns (marked by labels a and b) and the lower branch repre-
sents stable wave patterns (marked by labels d–f ). The hysteresis
loop in the transitions between synchrony and waves is a hall-
mark of a bistable dynamical system. Here, bistable wave and
synchronous solutions are observed for inhibitory surrounds with
intermediate strengths (0.41 � h � 0.59). Bistable synchroniza-
tion patterns are of interest because they suggest how a fixed
anatomical brain network is capable of supporting distinct, yet
stable, brain states.

The extent of the observed bistable region in Figure 1B varies
according to the presence of irregularities in the spatial patterns.
Wave patterns are especially prone to spatial heterogeneities.
Those which are highly regular, such as planar waves, maintain
stability nearer to the leftmost transition boundary (e.g., label d)
than do irregular wave patterns. The latter tend to escape to
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the synchronous state much earlier, as shown by the light gray
trajectories in Figure 1B.

Yet another type of bistable spatial pattern was also observed,
which we call ripple. Ripple patterns are an intermediate state
between waves and synchrony that have the appearance of near-
synchronous solutions with small amplitude spatial modulations
(see Figure 1). They evolve from synchronous patterns when
the strength of the inhibitory surround is increased above h ≈
0.54 and are strongly coherent (0.5 < r < 1). Ripples occupy the
downward sloping branch (c) of the hysteresis loop in Figure 1B.
They lose stability above h ≈ 0.59 whereupon they collapse to
full wave solutions. Although, ripple patterns appear similar to
waves in the spatial domain, they are distinct from waves because
the phase pattern does not span the entire unit circle. Similar
patterns have been previously reported in one-dimensional rings
by Kazanci and Ermentrout (2006). Ripple patterns are of inter-
est in the present study because they break the symmetry of
the purely synchronous pattern and facilitate transitions away
from synchrony toward waves, as will be discussed in the next
section.

PERTURBATION-DRIVEN TRANSITIONS UNDER BISTABLE
CENTER-SURROUND COUPLING
The existence of bistable wave and synchronous solutions implies
that the cortex can support both states using a fixed coupling
topology. In this regime, the requirement for a physiological
mechanism to modulate the activity of the inhibitory surround
would vanish since transitions between waves and synchrony
could instead be achieved by direct perturbation of the oscillator
phases between the co-existing attractor basins.

RANDOM PERTURBATION
Random perturbation of the oscillator phases failed to elicit
state transitions between waves and synchrony. In light of the
growing evidence for state-dependent computation in the brain
(Buonomano and Maass, 2009) we instead sought a state-
dependent perturbation scheme that could exploit the properties
of the current state to push the system toward the alternative
attractor basin in a directed manner.

STATE-DEPENDENT PERTURBATION
We conjectured that a perturbation of each oscillator phase away
from the phase of the mean field could selectively push the system
toward either waves or synchrony in a state-dependent fashion.
The mean field (ψ, r) is defined by the centroid of all oscillator
phases mapped onto the unit circle, where ψ is the mean phase of
all oscillators and r is the radial length of the centroid (Mardia,
1972). The radial length r corresponds to the phase coherence
of the oscillator distribution which, as previously mentioned, is
markedly distinct for waves (r ≈ 0) and synchrony (r ≈ 1). The
mean field of each exemplar pattern in Figure 1D is indicated by
a yellow circle.

A simple state-dependent perturbation scheme was proposed
that repels the phase of each oscillator away from the mean field
phase by the amount

�θx = k sin(θx − ψ) (1)

where k > 0 is the amplitude of the perturbation, θx is the phase
of the oscillator at spatial position x and ψ is the mean phase of all
oscillators. Intuitively, this perturbation scheme breaks the sym-
metry of the current solution by amplifying deviations from the
mean phase to push the system toward the alternative attractor.
In mathematical terms, coupling to the mean field is equivalent to
all-to-all coupling between oscillators (Kuramoto, 1984; Strogatz,
2000). This perturbation scheme may therefore be realized phys-
iologically by the momentary activation of a dense network of
inhibitory inter-neurons that couple all oscillators in the local net-
work. The inhibitory basket cells which extend laterally in motor
cortex for more than 1 mm (Keller, 1993) could potentially serve
this role. It has previously been shown analytically that such all-
to-all inhibitory coupling will destabilize the synchronous state in
a one-dimensional ring of oscillators (Kazanci and Ermentrout,
2006). Here, we explore numerically that the same coupling may
likewise serve to destabilize waves.

The optimal value of the perturbation amplitude parame-
ter k depends upon the choice of coupling kernel parameter h
and the direction of the perturbation. Figure 2 illustrates suc-
cessful perturbation induced transitions between ripple and wave
patterns for a fixed kernel (h = 0.57) where the optimal pertur-
bation amplitude for reliable wave-to-ripple transitions is k =
2.7 (SE 0.050) and that for ripple-to-wave transitions is k = 4.0
(SE 0.051). The optimal perturbation amplitude for each uni-
directional transition was determined by first using an adaptive
Bayes method (Kontsevich and Tyler, 1999) to estimate the upper
and lower limits (klow < k < khigh) of the perturbation amplitude
where state transitions occurred at 50% probability or better—we
refer to this range of k values as the transition zone of the pertur-
bation. The geometric midpoint of the transition zone was then
nominated as the optimal perturbation amplitude k for the given
coupling kernel h. The standard error (SE) of the optimal pertur-
bation amplitude was estimated by pooling the SEs of the upper
and lower limits of the transition zone (see Methods).

Achieving reliable perturbations from synchrony to waves (not
shown) is also possible with this method but these perturbations
require very large amplitudes (k � 6) in order to amplify the
inherently small phase deviations in the synchronous solution
enough to break the symmetry of the initial solution.

BI-DIRECTIONAL STATE-DEPENDENT PERTURBATION
To constrain the choice of parameters in the state-dependent
perturbation method, we surveyed the parameter space seek-
ing the optimal combination of k and h that permitted reli-
able bi-directional transitions between waves and synchrony.
This required identifying the coupling kernel configuration for
which the optimal perturbation amplitude for the uni-directional
transitions was the same in both directions. This constraint
immediately excluded coupling kernels that support synchronous
patterns since the amplitude of the perturbation required to
escape a synchronous solution far exceeds that required to escape
a wave solution. The parameter survey was therefore restricted
to the range of coupling kernels (0.56 < h < 0.59) that support
ripple solutions.

Figure 3A shows the effect of perturbation amplitude on the
outcome of perturbation trials applied to randomly selected
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FIGURE 2 | Perturbation-driven transitions between wave and ripple

patterns. Top row illustrates the application of the state-dependent
perturbation (k = 2.7) to an initial wave pattern (r = 0.05) resulting in
convergence to a stable ripple pattern (r = 0.88). Bottom row illustrates a

transition in the reverse direction, namely, perturbation (k = 4.0) of a ripple
pattern (r = 0.90) to a wave pattern (r = 0.02). In both cases the connection
topology is held fixed (h = 0.57) and convergence to the final state is
achieved within 500 ms.
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FIGURE 3 | Parameter survey of the perturbation method. (A) Shows the
effect of manipulating perturbation amplitude (0 < k < 6) when perturbing
randomly selected ripple patterns within a network coupling topology fixed at
h = 0.58. Vertical axis represents the phase coherence (r) of the resultant
pattern at t = 4 s post-perturbation. Resultant patterns with r > 0.5 were
classified as ripple and those with r < 0.5 were classified as waves. The
shaded blue region indicates the range of perturbation amplitudes
(1.6 < k < 3.2) where transitions from ripple to waves occurred with 50%
success rate or better. We refer to this region as the transition zone. The
midpoint of the transition zone (k = 2.4) marks the optimal k for achieving
transitions from ripple to waves for the given network coupling topology.

(B) Same as above, except here the transitions are from waves to ripple. The
transition zone in this case is 2.2 < k < 2.6 and the optimal perturbation
amplitude is k = 2.4. (C) Shows the combined transitions zones for both
ripple-to-wave (blue) and wave-to-ripple (green) transitions for all coupling
kernel configurations in the range 0.56 < h < 0.59. The mid-lines of the
transition zones indicate the optimal perturbation amplitudes for each
kernel h. Error bars indicate the standard error of the estimates (all are
smaller than ±0.07). The intersection of the mid-lines (indicated by the black
circle) occurs at h ≈ 0.58 and k ≈ 2.4. It corresponds to the optimal
combination of kernel h and perturbation k parameters for bi-directional
perturbations between wave and ripple patterns.
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ripple patterns that arise within a fixed bistable coupling topol-
ogy (h = 0.58). Each cross marks the outcome of a single per-
turbation trial. As before, resultant spatial patterns with phase
coherence r < 0.5 were classified as waves. Those patterns with
r > 0.5 were classified as ripple. In the example shown, the upper
and lower limits of the transition zone (shaded blue region) were
estimated as klow = 1.6 (SE 0.049) and khigh = 3.2 (SE 0.052).
The midpoint of the transition zone k = 2.4 (SE 0.051) marks
the optimal perturbation amplitude for inducing ripple-to-wave
transitions within the given coupling topology.

Similarly, Figure 3B shows the estimated transition zone
(shaded green region) for perturbing waves to ripple within the
same coupling topology (h = 0.58). In this example, the optimal
perturbation amplitude for inducing wave-to-ripple transitions is
k = 2.4 (SE 0.049) which corresponds to the midpoint of klow =
2.2 (SE 0.049) and khigh = 2.6 (SE 0.049).

The survey of all such transition zones across a range of cou-
pling topologies is shown in Figure 3C. It shows the combined
transition zones for both ripple-to-wave (blue) and wave-to-
ripple (green) transitions for coupling kernel parameters in the
range 0.56 < h < 0.59. The mid-lines of the transition zones rep-
resent the estimates of the optimal perturbation amplitudes k
for each kernel h. The error bars along the mid-line represent
the SEs of those estimates and are less than ±0.07 in all cases.
The point where the mid-lines intersect (indicated by the black
circle) indicates the optimal choice of parameters (h = 0.58,

k = 2.4) for inducing bi-directional transitions between ripple
and waves. This corresponds to evoking bidirectional state transi-
tions between points (c) and (e) in Figure 1B.

COMPARISON WITH HUMAN DATA
The validity of the present model was verified by comparing the
time course of state transitions in the simulated local field poten-
tial with previously published magnetoencephalogram (MEG)
data showing modulated beta oscillations (20–25 Hz) in human
motor cortex during a repetitive finger-tapping task (Boonstra
et al., 2007). In that experiment, subjects followed ipsilateral
auditory cues to isometrically contract their left and right index
fingers at a target frequency ratio of 3:5 for multiple trials lasting
45 s at a time. MEG has high temporal resolution but lacks the
spatial resolution needed to detect the small spatial wavelengths
(approximately 10 mm) reported by Rubino et al. (2006). The
comparisons of the model with human data are therefore lim-
ited to the time course of the modulations of the simulated field
potential during state transitions induced by (1) manipulating
the strength of the inhibitory surround in the coupling topol-
ogy and (2) bi-directional state-dependent perturbation while the
coupling topology was held fixed in the optimal bistable regime.
Here, the simulated local field potential is a gross approximation
of the net membrane potential of synchronized neural activity.
We refer to it as the pseudo field potential (PFP) to distinguish it
as a hypothetical measure (Equation 20 in Methods).

AMPLITUDE MODULATION OF BETA OSCILLATIONS
Figure 4A shows a representative time course of beta oscilla-
tions (20–25 Hz) in the MEG signal reconstructed from the
hand region of human motor cortex by Boonstra et al. (2007).

The times of peak muscle force production during the finger-
tapping task are indicated by the labels on the time axis. Notice
these times tend to coincide with periods of minimal power
(amplitude) in the beta oscillation. These observations are con-
sistent with previous reports of task-related beta modulation in
motor cortex (Sanes and Donoghue, 1993; Murthy and Fetz, 1996;
Pfurtscheller et al., 1996).

Figure 4B shows the time course of the PFP generated by
the present model when the spatial coupling kernel was toggled
between monostable regimes of synchrony (h = 0.4) and waves
(h = 0.7) at regular 0.5 s intervals. The toggling interval was cho-
sen to be consistent with the finger-tapping task in Boonstra et al.
(2007). The resulting PFP exhibits a baseline 22.5 Hz oscillation
frequency that reflects the natural frequencies (22.5 ± 0.5 Hz)
of the individual oscillators in the model and matches the beta
bandwidth (20–25 Hz) oscillations observed in the human motor
cortex by design. More importantly, the amplitude envelope of
the PFP (shown by the heavy black line in Figure 4B) reflects the
phase coherence of the spatial pattern and is an emergent property
of the self-organized phase patterns. Specifically, synchronous
patterns are highly coherent and therefore yield large amplitude
oscillations in the PFP whereas wave patterns are weakly coher-
ent and therefore yield small amplitude oscillations in the PFP.
These modulations of the PFP amplitude are qualitatively simi-
lar to the task-related modulations of beta oscillations observed
in human motor cortex (Figure 4A) yet they do not entail desyn-
chronization as is often supposed to be the case. Furthermore, the
observation that low amplitude oscillations tend to occur during
motor movement and high amplitude oscillations tend to occur
in the absence of movement lends support to our postulate that
waves encode motor action states and synchrony encodes motor
rest.

Figure 4C shows the time course of the PFP when the cou-
pling topology is held fixed in the bistable regime (h = 0.58)

while state-dependent perturbations (h = 2.4) are applied at reg-
ular 0.5 s intervals. These transitions also modulate the amplitude
envelope of the PFP in the same qualitative manner as those
observed in human motor cortex except here the transitions
between states are noticeably faster. This is a known property
of bistable systems which, unlike monostable systems, can avoid
protracted convergence times by perturbing the state variables
directly between co-existing stable attractor basins. However, this
speed comes at the expense of reliability since the perturbation-
driven transitions do not always succeed, as can be seen in the
lower panel of Figure 4C. It shows the amplitude envelope of
the PFP for the entire 48 s simulation (superimposed as four
12 s blocks) which contains some examples of perturbations that
failed to elicit a successful transition (such as at t = 8.5 s). These
occasional failures illustrate an inherent variability in the state-
dependent perturbation method—that are quite comparable to
the empirical data—even though the system itself is entirely
deterministic.

We note that the fast time scale of the oscillatory rhythms
in the model is naturally defined by the autonomous frequency
of the oscillators (22.5 ± 1 Hz). However, the slower time scale,
at which synchronization occurs, scales linearly with the mag-
nitude of the coupling weights. Since, the coupling weights
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FIGURE 4 | Movement-related modulations of beta oscillations.

(A) Representative trial of movement-related modulation of beta
oscillations in the MEG signal of the contra-lateral hand region of human
motor cortex during a repetitive finger tapping task (adapted from
Boonstra et al. (2007) and bandpass filtered at 20–25 Hz). Minimal
amplitude oscillations tend to coincide with times of peak muscle force
which are indicated by the time labels. (B) Time course of the pseudo
field potential (PFP) generated by the cortical model when spatial

coupling was toggled between conditions of weak (h = 0.4) and strong
(h = 0.7) inhibitory surrounds at regular 0.5 s intervals. Heavy line
indicates phase coherence (r) which corresponds to the amplitude
envelope of the PFP by definition. (C) Same as above except here the
coupling kernel is held fixed in the bistable regime (h = 0.58) while the
oscillator phases are subjected to state-dependent perturbations (k = 2.4)

at regular 0.5 s intervals. Lower panel shows the phase coherence for
the entire run of 48 s superimposed in 4 × 12 s blocks.

were arbitrarily normalized to unity, the absolute transition
times between different synchronization states should not be
over-interpreted. Nonetheless, the relative transition times of
kernel-driven versus perturbation-driven transitions can still be
meaningfully compared.

TRIAL-AVERAGED SPECTROGRAMS
To compare the simulations results with physiological data as well
as illustrate the difference in average transition times between
kernel-driven and perturbation-driven transitions, we followed
the methods of Boonstra et al. (2007) to compute the trial-
averaged spectrograms of the simulated PFP signals previously
shown in Figure 4. These results also confirm that beta power
modulation in the present model is consistent with that observed
in humans although we stress that the PFP is only a gross approxi-
mation of local field potential and should not be over-interpreted.

Figure 5A (reproduced from Boonstra et al., 2007) shows the
trial-averaged wavelet spectrogram of MEG source data recon-
structed from the hand region of human motor cortex during
the repetitive finger-tapping task. High beta bandwidth power

(red) coincides with low muscle force production whereas low
beta power (blue) coincides with high muscle force production
(muscle force is not shown).

Figures 5B,C show corresponding wavelet spectrograms of
the simulated PFP for both the kernel-driven and perturbation-
driven state transitions, respectively. The model reproduces
the gross modulation of beta power observed in the empir-
ical MEG data in both cases—only the transition times dif-
fer. Specifically, kernel-driven transitions (Figure 5B) required
approximately 200 ms to converge whereas the perturbation-
driven transitions (Figure 5C) appear to be nearly instantaneous.
The relative differences in convergence time demonstrates that
the method of perturbing the cortical model between bistable
states does permit substantially faster transitions than can be
achieved by manipulating the coupling topology between monos-
table regimes.

THE EFFECTS OF ANISOTROPIC COUPLING
The isotropic form of the center-surround coupling topology
investigated thus far does not constrain the spatial orientation
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FIGURE 5 | Trial-averaged spectrograms of state transitions.

(A) Trial-averaged spectrogram of the first principle component (accounting
for 50% of the variance) of MEG signals reconstructed from the
contra-lateral hand region of human motor cortex during a repetitive finger
tapping task (reproduced from Boonstra et al., 2007). (B) Trial-averaged
spectrogram of the pseudo field potential data presented in Figure 4B.

Vertical dashed lines indicate the onsets of kernel transitions. Wave
patterns have low spectral power (blue) and synchrony has high spectral
power (red). (C) Corresponding spectrogram of the pseudo field potential
for the perturbation-driven transitions presented in Figure 4C. Dashed lines
indicate the perturbation times. Spectral power has a linear color scale in
all panels.

of the emergent wave patterns, which instead show little spa-
tial ordering and change from simulation to simulation. Having
assumed that distinct motor actions are encoded by the mor-
phologies of distinct spatial wave patterns we now introduce
an anisotropic form of the center-surround coupling topology
(illustrated in Figures 6A,B) and show that it evokes wave pat-
terns with a pre-determined spatial orientation. The anisotropic
coupling kernel allows the strength of inhibitory surround
h(α, h0, h1) to vary as a function of the angular orientation (α ∈
[0◦, 360◦]) of the coupling direction where parameter h0 defines
the inhibitory strength along the major axis and parameter h1

defines the inhibitory strength along the minor (orthogonal) axis
of the kernel.

We sought the minimum degree of anisotropy in the kernel
that reliably evoked spatially oriented waves without departing far
from the optimal bistable coupling (h = 0.58) previously iden-
tified for the case of the isotropic kernel. However, we found
no obvious threshold that distinguished the emergence of ori-
ented waves from non-oriented waves since oriented waves were
merely slower to emerge when the anisotropy was small. We
instead used the kernel’s spatial frequency response (Figure 6C)
to nominate those kernel parameter values (h0 = 0.52 and h1 =
0.64) that produced a 2:1 ratio in the peak spectral power of
the minor axis relative to the major axis, while satisfying the
constraint that 1

2 (h0 + h1) = 0.58 (Figure 6C). Under these con-
straints, the anisotropic kernel produced both oriented ripple
(Figure 6D) and oriented waves (Figure 6E), depending upon
initial conditions.

STABILITY ANALYSIS OF PLANAR WAVES
A linear stability analysis was undertaken to ascertain those con-
ditions under which isotropic coupling supports stable waves and
synchrony. The analysis was restricted to the case of planar waves,

θ(x, t) = Ωt + mx, (2)

with wavenumber m (cycles/node) and homogeneous oscilla-
tor frequencies, Ω (Hz), following the method of Kazanci and
Ermentrout (2006) for the one-dimensional ring. Synchrony is
represented by the special case of m = 0.

The stability of the planar wave was determined by considering
the growth in time of the spatial perturbation,

ψ(x, t) = einxeλnt , (3)

where n is the wavenumber of the perturbation and λn is its eigen-
value. The real part of λn is the growth rate of the perturbation
and must be non-positive for all n for the planar wave to be sta-
ble. In the present model, the eigenvalues are readily computed as

λn = FT
[
J(x, h)

]
n − FT

[
J(x, h)

]
0 (4)

where J(x, h) = G(x, h) cos(mx) is a product of the coupling ker-
nel and FT represents the Fourier transform. The homogeneous
oscillator frequency, Ω, has no bearing on stability. The derivation
of Equation (4) is presented in the Methods.

Figure 7A highlights the relationship between the Fourier
transform (FT) of J(x, h) and the spatial frequency of the patterns
observed in the model. A typical spectrum of spatial frequencies
in a one-dimensional ring of oscillators is shown by the shaded
region marked “observed.” The Fourier coefficients of J(x, h) are
shown by the heavy black curve labeled “theoretical.” The hori-
zontal dashed line indicates the magnitude of the zero’th Fourier
coefficient. The largest Fourier coefficient above that line repre-
sents the most unstable spatial mode of the perturbation. It is that
mode which grows fastest and predicts the dominant spatial wave-
length of the emergent wave pattern. If all Fourier coefficients
of J(x, h) are smaller (more negative) than the zero’th coefficient
then the planar wave is stable against all perturbations.

The spatial stability is formalized by the so-called dispersion
relations shown in Figure 7B. These plot the eigenvalues of a
range of spatial perturbations (n ∈ [0, 0.3]) applied to a planar
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FIGURE 6 | Anisotropy in the kernel influences the spatial orientation of

the wave patterns. Panels (A) and (B) show an anisotropic kernel which has
weakest inhibitory coupling along the major axis (dashed line in B) and
strongest inhibitory coupling along the minor axis (dotted line in B). The major
axis is oriented at β = 60◦. Panel (C) shows the spatial frequency response of
this kernel where color indicates power on a linear scale (blue is minimum,
red is maximum). The kernel parameters h0 = 0.52 and h1 = 0.64 were

chosen so that the peak power response along the minor axis is twice that of
the major axis while keeping the mean value of h0 and h1 centered on the
optimal h = 0.58 value previously identified for the case of the isotropic
kernel. Panels (D) and (E) show exemplar ripple and wave patterns that arise
with this kernel from near-synchronous and uniform random initial conditions,
respectively. Notice the predominant orientation of the wavefronts in both
patterns are aligned with the major axis of the kernel.

wave with a given wavenumber. In this example, the wavenum-
ber was specified as m = 0.064. The dispersion relations for a
range of selected kernels (h = 0, 0.32, 0.54, 0.75, 1) are shown.
The planar wave is only stable for those dispersion curves that are
non-positive for all n. In this example, that corresponds to cou-
pling kernels with h < 0.54. The emergence of instabilities with
non-zero wavenumber (m = 0.065) indicates that stability is lost
via a sub-critical Turing bifurcation.

Figure 7C extends the analysis by mapping the stability of
all planar waves with wavenumbers m ∈ [0, 0.15] for all ker-
nel parameters h ∈ [0, 1]. Two distinct regions of stability are
observed (shaded green). The region marked S represents sta-
ble synchronous and near-synchronous solutions that have small
spatial frequencies (m < 0.041). The region marked W repre-
sents stable planar waves with spatial frequencies in the range
0.044 < m < 0.091. There is a clear region of overlap between
these regions where coupling kernels with 0.32 < h < 0.54 sup-
port both waves and synchrony in a bistable fashion. Within the
bistable zone, near-synchronous patterns are restricted to spa-
tial wavelengths of 43.5 nodes or greater (m < 0.023) whereas
wave patterns are restricted to wavelengths of between 11.1
and 21.7 nodes (0.046 < m < 0.090). The heavy black line in
Figure 7C tracks the spatial frequency of the most unstable com-
ponent of the purely synchronous solution (m = 0). It predicts
the frequency of the stable wave pattern that is most likely to
emerge from synchronous initial conditions for a given kernel
h ∈ [0, 1].

DISCUSSION
Spatiotemporal synchronization patterns in cortex were modeled
using an array of Kuramoto phase oscillators that were spa-
tially coupled using a neurobiologically inspired center-surround
coupling topology. Controlled switching between self-organized
patterns of waves and synchrony was achieved by manipulat-
ing the strength of the inhibitory connections in the coupling
topology. This controlled switching reproduced the characteristic
fluctuations in the spectral power observed in the beta band-
width (20–25 Hz) oscillations in human motor cortex during a
finger tapping task (Boonstra et al., 2007). Specifically, the simu-
lated local field potential of the model exhibited high beta power
during synchronous solutions and attenuated beta power dur-
ing spatiotemporal wave solutions. The cortical idling hypothesis
(Pfurtscheller et al., 1996) attributes such fluctuations in spectral
power to switching between synchronized versus desynchronized
modes of oscillatory activity in cortex. Yet in this case the sim-
ulated cortical activity was never actually desynchronized but
was synchronized either as spatially coherent patterns or as wave
patterns. These results emphasize that spatial phase locking of
neural oscillators can involve much richer synchronization pat-
terns than is usually considered under the traditional notions of
global synchrony versus desynchrony.

THE FUNCTIONAL ROLE OF WAVES AND SYNCHRONY
We propose that spatiotemporal wave solutions represent active
states in motor cortex whereas synchrony represents inactive
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FIGURE 7 | Stability analysis of planar waves. (A) Relationship between
the Fourier transform of the coupling kernel (heavy line) and the observed
spatial frequencies (shaded) of a typical solution of the model. The
horizontal dashed line indicates the magnitude of the zero’th Fourier
component of the kernel. The largest Fourier component above this line
predicts the frequency of the emergent spatial pattern. (B) Dispersion
relations show the stability of a given planar wave solution (m = 0.064) to
perturbations at various spatial frequencies n ∈ [0, 0.3]. Perturbations with
any λ > 0 are unstable. Dispersion relations for selected kernel parameter
values are shown superimposed. In this example, the planar wave is stable
for all kernels with h < 0.54. (C) Stability map showing which planar waves
m ∈ [0, 0.15] are stable for kernel parameters h ∈ [0, 1]. The shaded region
marked “S” represents stable synchronous and near-synchronous solutions
(m ≈ 0). The region marked “W” represents stable wave solutions. Kernels
with 0.32 < h < 0.54 support both waves and synchrony in a bistable
fashion. The heavy black line predicts the frequency of the stable wave
pattern that is most likely to emerge from synchronous initial conditions.

motor states. This proposal finds support on information theo-
retic grounds because spatial wave patterns afford greater infor-
mation capacity than do spatially synchronous patterns. The
general agreement between the simulation results and experi-
mental observations of attenuated beta power during movement
production (Sanes and Donoghue, 1993; Murthy and Fetz, 1996)
followed by a rebound of beta power upon movement termina-
tion (Neuper and Pfurtscheller, 1996; Boonstra et al., 2007) gives
some empirical validity to these assumptions. The pathology of
Parkinson’s disease provides further support for these assump-
tions where pathological synchrony of beta oscillations in the
basal ganglia thalamocortical motor loop is known to prevent
the initiation of voluntary movements (Schnitzler and Gross,
2005). Disrupting that pathological synchrony restores voluntary
movement (Tass, 2003).

We suggest that switching spatially synchronous oscillatory
neural activity to a specific spatiotemporal wave pattern may
be governed by excitatory thalamocortical projections modulat-
ing the lateral inhibitory connections within the motor cortex.
Voluntary movements are known to be initiated in cortex when
these thalamocortical projections are dis-inhibited by the basal
ganglia which is itself implicated in movement selection (see
Alexander and Crutcher, 1990). Our simulation results with
anisotropic coupling topologies also suggest that the spatial mor-
phology of the emergent wave patterns may likewise be governed
by modulating the lateral inhibitory connections in the motor
cortex. The local coupling topology in motor cortex can thus be
manipulated to control not only switching between waves and
synchrony but also to control the spatial wavelength and orien-
tation of the wave patterns that emerge. The spatial morphology
of such patterns could plausibly be discriminated by the pyra-
midal tract neurons which descend from the motor cortex and
innervate the motor neurons within the spinal cord. The dendritic
tree of pyramidal neurons has recently been shown capable of
actively discriminating spatiotemporal patterns of synaptic input,
including the speed and direction of propagating waves of activity
(Branco et al., 2010). In this way, distinct spatiotemporal patterns
in motor cortex may thus be translated into distinct patterns of
muscle movements.

THE ROLE OF BISTABILITY
Bistable cortical processes have previously been implicated in
spontaneous switching between two distinct modes of alpha
activity (Freyer et al., 2011). We considered that bistability might
also play a role in motor control and we explored the feasi-
bility of motor cortex using a bistable coupling topology as a
means of evoking very rapid onset and offset of movements.
Bistable dynamical systems can potentially achieve rapid transi-
tions between co-existing stable states through perturbation of
the state variables although the nature of the perturbation is cru-
cial when many state variables are involved, as is the case here.
We proposed a state-dependent perturbation scheme that repels
each oscillator from the global mean field of the current solu-
tion state. This perturbation scheme serves to push wave solutions
toward synchrony and vice versa, thus permitting bidirectional
transitions between waves and synchrony with the same form of
perturbation. The perturbation is mathematically equivalent to
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an instantaneous burst of inhibitory coupling between all neural
oscillators in the cortex.

The optimal bistable coupling topology (h = 0.58) for bidi-
rectional perturbation (k = 2.4) supports co-existing wave and
ripple solutions rather than waves and synchrony. The ripple pat-
terns represent a branch of near-synchronous solutions with small
spatial variations that break the symmetry of the synchronous
pattern and facilitate the effects of the state-dependent pertur-
bation. Like synchronous patterns, ripple patterns exhibit strong
spectral power in the simulated local field potential which we
equate with the state of motor inaction. Switching between waves
and ripple modulates the simulated local field potential in a com-
parable manner to that observed when switching between waves
and synchrony.

Simulation confirmed that repeated perturbation trials are
capable of producing sequential transitions between wave and
ripple patterns and that these transitions converge significantly
faster than those achieved by toggling the coupling topology
between monostable dynamical regimes. However, transition
speed comes at the cost of reliability since not all perturbation
trials successfully induce a state transition.

The general shape of the coupling kernel in the bistable regime
seems biologically plausible. For isotropic coupling, bistability is
observed in numerical simulation for h ∈ [0.41, 0.59] and analyt-
ically for h ∈ [0.32, 0.54]. The two findings are quite consistent
even though the analytical estimate is based on a one-dimensional
homogeneous simplification of the numerical model. In particu-
lar, the one-dimensional analysis is likely to exaggerate the extent
of the lower bound of bistability since it ignores the differing
responses of isotropic coupling along the two spatial axes of the
planar wave. We also note that the discrepancies in the upper
bound are due to the exclusion of ripple patterns from the sta-
bility analysis since ripples are not wave solutions. In this regard,
the numerical simulations show that ripples are onset at h ≈ 0.54
which is in perfect agreement with the analytic prediction for the
loss of waves.

CONCLUSIONS
Ermentrout and Kleinfeld (2001) originally proposed distinct
functional roles for waves and synchrony in sensory brain regions
where synchrony was equated with a state of perceptual recogni-
tion and waves were equated with a state of perceptual scanning.
We extend that general proposal and offer an account of the func-
tional roles of waves and synchrony in motor control where we
posit that waves in motor cortex encode motor actions and syn-
chrony encodes the absence of motor action. These functional
assignments are the reverse of those proposed by Ermentrout and
Kleinfeld (2001) since here we equate synchrony with inactive
cortical processes as suggested by the cortical idling hypothesis
(Pfurtscheller et al., 1996). Specifically, we posit that the distinct
spatial morphologies of wave patterns in motor cortex can encode
distinct motor action states which, we suggest, may be decoded
(discriminated) by the pyramidal tract neurons which descend
from the motor cortex and innervate the motor neurons in the
spinal cord.

Numerical simulation supports our functional assignments of
waves encoding motor action and synchrony encoding motor

rest. Controlled switching between self-organized patterns of
waves and synchrony in the cortical model reproduces the gen-
eral character of task-dependent fluctuations of beta bandwidth
oscillations observed in the local field potential of human motor
cortex. Such task-dependent fluctuations are widely interpreted
as dynamic reorganizations of the phases of the neural oscillatory
activity underlying the local field potential. This reorganization
is typically envisaged as a shift between in-phase synchronization
and desynchronized modes of operation. This view is exemplified
by the cortical idling hypothesis, however, it lacks a theoretical
account of the neural mechanism behind these modes of corti-
cal synchronization. Nor does it explain how the cortex might
encode information within the desynchronized state. The present
model demonstrates that task-dependent fluctuations of the local
field potential can be achieved by switching cortex between modes
of spatial synchrony and spatiotemporal wave patterns without
resort to desynchronization.

The present model also offers a theoretical neural mechanism
by which information may be encoded within the morphology
of the spatial synchronization patterns. Numerical simulation
demonstrates that the spatial morphology of the wave patterns
can be manipulated by using an anisotropic local coupling topol-
ogy to potentially encode a variety of motor movement states
within the same patch of motor cortex. We suggest the later-
ally spreading inter-neurons of the motor cortex may likewise be
modulated by cortico-thalamic projections that selectively enable
a target motor action as instructed by the basal ganglia. The motor
cortex may also exploit bistable cortical topologies to evoke rapid
transitions between motor rest and the target motor action. In
this case, fast-onset instructed-delay movements may be primed
in motor cortex as a bistable ripple pattern (representing the
motor ready state) which is later perturbed into a full wave pattern
causing the target movement to unfold rapidly. However, such
rapid transition speed comes at the cost of reliability since pertur-
bation does not always induce a successful transition from ripple
to wave. Perturbation between bistable cortical states may there-
fore only be a feasible mechanism for achieving rapid changes in
brain states when the demand for speed exceeds the demand for
accuracy. Whether the motor control system actually adopts such
a strategy is an open question.

Spatially-coupled phase oscillator models are appropriate
models to study the spatiotemporal synchronization patterns of
oscillatory cortical activity such as that observed in motor cor-
tex during movement production and motor preparation. In
such cases, the spatial extent of the lateral coupling topology
determines the spatial scale of the emergent patterns thus exper-
imental observation of such patterns in cortex depends crucially
on the spatial resolution of the recording sites. We anticipate that
cortical oscillatory activity which appears to be desynchronized
at course spatial resolution will likely reveal fine spatiotempo-
ral synchronization structure when observed at higher spatial
resolutions. Recent findings that the dendritic tree of corti-
cal pyramidal neurons can actively discriminate the speed and
direction of sequences of synaptic input suggests that the spa-
tial resolution of wave-like synchronization patterns may even
occur at scales below that of the network (Branco et al., 2010).
In future studies we plan to investigate further our assertion
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that the morphology of spatial wave patterns may be decoded
by the pyramidal cells that descend from the motor cortex
by modeling the pyramidal cells as coincidence detectors that
can act as matched filters of specific spatiotemporal activity
patterns.

METHODS
Motor cortex was modeled as a two-dimensional sheet of non-
locally coupled Kuramoto (1984) oscillators

∂θ(x, t)

∂t
= ω(x) −

∫
R2

G(|x − x′|) sin(θ(x, t) − θ(x′, t)) dx′

(5)

where θ(x, t) is the instantaneous phase of the oscillator at spa-
tial position x ∈ R

2, ω(x) is its natural frequency and G(|x − x′|)
denotes the spatial coupling kernel. Two forms of kernel were
investigated—an isotropic form and an anisotropic form. The
isotropic kernel was defined as

G(z) = e−bz2 + 4 h e−bz2
(

1

3
b2z4 − bz2

)
(6)

where z = |x − x′| represents spatial distance and parameter h ∈
[0, 1] dictates the strength of the kernel’s inhibitory surround.
When h = 0 the kernel is purely Gaussian (with slope b) and
thus has no inhibitory (negative) coupling. When h = 1 the ker-
nel corresponds to the fourth derivative of the Gaussian which
has a strong inhibitory surround and an outer ring of weak
excitatory coupling. For intermediate values of h the kernel is a
mixture of the Gaussian and the fourth derivative of Gaussian (see
Figure 1A).

The anisotropic form of the kernel was also defined by
Equation (6) except in this case the fixed h parameter was rede-
fined as a 2π-periodic function of radial position relative to the
kernel origin,

h(α) = 1

2
(h0 − h1) cos(2(α − β)) + 1

2
(h0 + h1), (7)

where α is the orientation angle of (x − x′) in polar coordi-
nates and β is the orientation angle of the major axis of the
anisotropic kernel. Parameters h0, h1 ∈ [0, 1] define the strength
of the inhibitory surround along the major and minor (orthogo-
nal) axes of the kernel, respectively (see Figures 6A,B).

STABILITY ANALYSIS OF PLANAR WAVES
The linear stability of planar wave solutions,

θ(x, t) = Ωt + mx, (8)

of the isotropically coupled system with homogeneous oscilla-
tor frequencies, ω(x, t) = Ω, was analyzed following the method
of Kazanci and Ermentrout (2006). The spatial orientation of
the planar waves was ignored because of rotational invariance.
The spatial frequency of the wave along the axis of propa-
gation was described in one dimension by the wavenumber
m (cycles/node). The corresponding spatial wavelength being

2π/m (nodes). Equations (5) and (6) were therefore treated as
a one-dimensional ring of oscillators for the purpose of stability
analysis.

Stability of the wave solution was determined by considering
the growth in time of some spatial perturbation ψ(x, t) applied
to the wave,

θ(x, t) = Ωt + mx + ψ(x, t). (9)

Substituting Equation (9) into (5) yields

∂ψ(x, t)

∂t
= −

∫
G(|x − x′|) H(mx − mx′ + ψ(x, t)

− ψ(x′, t)) dx′ (10)

where H(θ) = sin(θ) is the Kuramoto phase interaction func-
tion. We note that the same analysis generalizes to any odd
2π-periodic phase interaction function that satisfies H(−θ) =
−H(θ). Substituting variables, y = x − x′, allows Equation (10)
to be rewritten as

∂ψx

∂t
= −

∫
G(y) H(my + ψy − ψx−y) dy, (11)

where the t subscripts have been omitted for brevity. Taylor series
expansion,

H(my + ψy − ψx−y) = H(my) + H′(my)[ψy − ψx−y]
+ O([ψy − ψx−y]2) (12)

allows the small non-linear terms in [ψy − ψx−y] to be ignored.
Substituting Equation (12) back into (11) yields the linearized
growth rate of the perturbation as

∂ψx

∂t
= −

∫
G(y) H(my) dy −

∫
G(y) H′(my) [ψy − ψx−y] dy,

(13)

where
∫

G(y) H(my) dy = 0 because G(y) is even and H(y) is
odd. For the case of the Kuramoto phase interaction, H′(my) =
cos(my).

Since, Equation (13) is a linear differential equation in ψ, we
apply the well-known solution,

ψx = einxeλnt, (14)

where n is the spatial wavenumber of the perturbation and λn is its
eigenvalue. The real part of the eigenvalue represents the growth
rate of the perturbation. Substituting Equation (14) in (13)
gives

∂

∂t

[
einxeλnt] = −

∫
G(y) H′(my) [einxeλnt − ein(x−y)eλnt] dy

(15)

which simplifies to

λn =
∫

G(y) H′(my) e−iny dy −
∫

G(y) H′(my) e−i0y dy

= FT
[
J(y)

]
n − FT

[
J(y)

]
0 (16)
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where J(y) = G(y)H′(my) and FT represents the Fourier trans-
form.

Equation (16) thus describes the growth rate of a spatial
perturbation (with wavenumber n) applied to a planar wave
state (with wavenumber m). The planar wave is stable provided
Real(λn) < 0 for all n. Loss of stability results in a Turing bifur-
cation of the spatial pattern in which case the most unstable
wavenumber of the perturbation tends to dominate the new pat-
tern that emerges (see Cross and Greenside, 2009). This is readily
computed for all n simultaneously using the FT for a given m.
The special case of m = 0 represents the spatially uniform syn-
chronous state. Dispersion curves for a given planar wave m were
obtained by plotting λn versus n. The stability map of all pla-
nar wave solutions was obtained by determining the stability of
each wavenumber m separately for a range of kernel parameters
h ∈ [0, 1].
NUMERICAL INTEGRATION
For computational efficiency, Equation (5) was reformulated as

∂θ

∂t
= ω + cos(θ)

∫
R2

G(|x − x′|) sin(θ) dx′ − sin(θ)

∫
R2

G(|x − x′|) cos(θ) dx′ (17)

by applying the trigonometric identity sin(u − v) = sin u cos v −
cos u sin v and then integrated in the form

d�θ
dt

= �ω + cos(�θ)
[�G ∗ sin(�θ)

]
− sin(�θ)

[�G ∗ cos(�θ)
]

(18)

using a variable time step Runge–Kutta method where �θ and �ω
are both (m × n) matrices, �G is a (p × q) matrix of kernel cou-
pling coefficients and ∗ denotes two-dimensional convolution. In
all cases, the size of the oscillator array was fixed at (m × n) =
(128 × 128) with wrapped boundary conditions. The size of the
kernel was fixed at (p × q) = (41 × 41) with a Gaussian full-
width-half-height of eleven nodes (i.e., b = −4 log(0.5)/112).
The natural oscillator frequencies �ω were randomly selected from
a Gaussian distribution with a mean of 22.5 Hz and standard
deviation of 0.5 Hz.

NUMERICAL CONTINUATION
Hysteresis curves (Figure 1) were computed by numerical contin-
uation of steady-state solutions by stepping the kernel h parame-
ter from h = 0.4 to h = 0.7 (and vice versa) by a fixed increment
(�h = 0.001) upon convergence of the current step. The conver-
gence criterion was satisfied when the root-mean-square of the
instantaneous d�θ/dt values fell below 0.2 rad/s.

PHASE METRICS
The instantaneous phase coherence r(t) and mean phase ψ(t)
of the oscillator array were computed by equating the real and
imaginary parts of Kuramoto’s (1984) complex order parameter,

r(t) eiψ(t) =
∫

R2
ei θ(x,t) dx, (19)

at a given time t. Geometrically, the values r and ψ correspond to
the radius and phase of the centroid of the oscillator phases when
mapped onto the unit circle.

PSEUDO FIELD POTENTIAL
The PFP was defined as the sum of the cosine components of
the oscillator phases. It serves as a gross approximation of the
local field potential for an equivalent patch of cortex by regarding
the cosine of oscillator phase as analogous to membrane volt-
age potential. It can also be expressed exclusively in terms of r(t)
and ψ(t) by substituting Euler’s formula into Equation (19) and
equating the real parts to obtain

PFP(t) =
∫

R2
cos(θ(x, t)) dx = r(t) cos(ψ(t)). (20)

SPECTROGRAMS
Spectrograms of the time-varying PFP signal (Figure 4) were
computed by the same method as Boonstra et al. (2007)
using a continuous wavelet transform with a complex Morlet
wavelet (Fc = 5, Fb = 1) that was scaled from 5 to 45 Hz
using regular 0.5 Hz increments. Sampling frequency was
1000 Hz.

STATE-DEPENDENT PERTURBATION
The state-dependent perturbation applied to each oscillator phase
was defined as

�θ(x, t) = k sin(θ(x, t) − ψ(t)) (21)

where k > 0 is the amplitude of the perturbation and ψ(t) is
the mean phase of all oscillators. This perturbation repels each
oscillator away from the centroid of the phase field. For the
case of ripple patterns, the radial position of the centroid is
shifted from r > 0.5 toward r ≈ 0. For the case of full wave pat-
terns, the radial positions shifts from r ≈ 0 toward r > 0.5 in
the anti-phase orientation. This form of perturbation may there-
fore be used to induce bi-directional transitions between ripple
and waves for an appropriate choice of perturbation amplitude
parameter k.

BAYESIAN ESTIMATION OF THE TRANSITION ZONES
We separately estimated the optimal values of perturbation
amplitude k for achieving uni-directional transitions from both
(1) ripple to waves and (2) waves to ripple for a range of ker-
nel parameters 0.56 ≤ h ≤ 0.59. The phase coherence r of the
oscillator array was measured at t = 4 s post-perturbation to
quantify the outcome of each perturbation trial. Outcomes with
phase coherence r > 0.5 were classified as ripple and those with
r < 0.5 were classified as waves. These outcomes (waves ver-
sus ripple) toggle periodically as a function of k due to the
circular nature of phase perturbations (see Figures 3A,B). We
estimated the lower and upper bounds of the smallest val-
ues of k need to achieve a state transition at 50% probabil-
ity. We called this range of k values the transition zone of the
perturbation.
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The upper and lower transition boundaries were estimated
separately by fitting a transition probability curve with the logistic
form

Prob(transition|k) = 1/(1 + exp(−β × (k − α))) (22)

where α is the 50% threshold of the logistic curve and β is
its slope. The slope was fixed at β = 10 following pilot stud-
ies. Fixing β reduced the variability in the final α estimates.
The α estimates were obtained by adaptive Bayesian estimation
using the Psi method (Kontsevich and Tyler, 1999) as imple-
mented by the Palamedes Psychometric Toolbox for Matlab
(Prins and Kingdom, 2009). A total of n = 20 perturbation tri-
als were used to fit each logistic curve. Efficiency of each Psi
run was improved by specifying normally distributed α pri-
ors (with unity standard deviation) that were centered on the
α estimate previously obtained for the neighboring kernel h
value. Initial conditions were randomized on each trial and tran-
sients were given t = 4 s to converge prior to the onset of the
perturbation.

We nominated the mid-line of the transition zone as the opti-
mal k value to achieve uni-directional transitions for a given
kernel h. The point at which the mid-line of the ripple-to-wave
transition zone crossed the mid-line of the wave-to-ripple transi-
tion zone marked the optimal kernel configuration h = hopt for
achieving bi-directional transitions using the same perturbation
amplitude k = kopt. The SEs of the mid-lines were estimated by

pooling the SEs of the upper and lower bounds of the transition
zones, respectively (see Figure 3C).

TUNING THE ANISOTROPIC KERNEL
We sought the minimal level of asymmetry needed in the
anisotropic coupling kernel (Figures 6A,B) to achieve spatial
wave patterns with a predetermined orientation. Starting with
the optimal bistable symmetric kernel (h = hopt) we manip-
ulated the degree of discrepancy �h between the anisotropic
kernel parameters by setting h0 = hopt − �h and h1 = hopt + �h
for a range of �h ∈ {0.00, 0.01, 0.02, . . . } values. The spatial
frequency response spectrum of the kernel (Figure 6C) was com-
puted using the two-dimensional discrete FT with 1024 × 1024
samples. The frequency response of the kernel predicts the spatial
frequency and orientation of the spatial wave patterns. However,
the frequency responses change smoothly with �h so there is no
obvious choice for the minimal anisotropy. We therefore arbitrar-
ily chose that value of �h which produced a spatial frequency
response spectrum whose peak power along the kernel minor
axis was twice that of the major axis at the matching radial
frequency band.
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