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Many theories of neural network function assume linear summation. This is in apparent
conflict with several known forms of non-linearity in real neurons. Furthermore, key net-
work properties depend on the summation parameters, which are themselves subject
to modulation and plasticity in real neurons. We tested summation responses as mea-
sured by spiking activity in small groups of CA1 pyramidal neurons using permutations of
inputs delivered on an electrode array. We used calcium dye recordings as a readout of
the summed spiking response of cell assemblies in the network. Each group consisted of
2–10 cells, and the calcium signal from each cell correlated with individual action poten-
tials. We find that the responses of these small cell groups sum linearly, despite previously
reported dendritic non-linearities and the thresholded responses of individual cells.This lin-
ear summation persisted when input strengths were reduced. Blockage of inhibition shifted
responses up toward saturation, but did not alter the slope of the linear region of summa-
tion. Long-term potentiation of synapses in the slice also preserved the linear fit, with
an increase in absolute response. However, in this case the summation gain decreased,
suggesting a homeostatic process for preserving overall network excitability. Overall, our
results suggest that cell groups in the CA3-CA1 network robustly follow a consistent set
of linear summation and gain-control rules, notwithstanding the intrinsic non-linearities
of individual neurons. Cell-group responses remain linear, with well-defined transforma-
tions following inhibitory modulation and plasticity. Our measures of these transformations
provide useful parameters to apply to neural network analyses involving modulation and
plasticity.
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INTRODUCTION
The characterization of input–output (I –O) transformations of
neurons is a key step in tying together connectivity data with net-
work properties. Despite considerable progress in understanding
the biophysics of single neurons (Koch and Segev, 2000; Magee,
2000), their responses in a network context with high activity
remain difficult to estimate due to complex summation of multiple
excitatory and inhibitory inputs, as well as plasticity.

The hippocampal CA3-CA1 network has a simple feed-forward
projection circuit and is believed to play a role in hetero-associative
memories (Rolls, 2010). This function relies on weighted linear
summation of multiple inputs to hippocampal neurons. How-
ever, hippocampal CA1 neurons and other pyramidal neurons are
known to integrate sub-threshold inputs in a linear or non-linear
manner depending on the spatio-temporal nature of the inputs
that the dendrites receive (Cash and Yuste, 1999; Polsky et al., 2004;
Gasparini and Magee, 2006; Losonczy and Magee, 2006; Spruston,
2008; Branco et al., 2010).

In contrast, network computation theories consider conver-
gence of hundreds of excitatory and inhibitory synaptic inputs,
culminating in the highly non-linear thresholding operation of

spiking. Upon spiking all analog information about the inputs
embodied in the EPSPs as a result of dendritic integration gets
digitized. Does the neuron lose all analog input information as a
result of thresholding? Many network theories simply discard neu-
ronal spiking and treat“units”as analog summation entities, which
may be linear (McCulloch and Pitts, 1943). Other analyses con-
sider population averages of spiking (Gerstner, 2000; Rasch et al.,
2009). In each case a common assumption is the transformation of
spiking activity of cells into some analog code. The current study
addresses the question: Do real neural networks exhibit such pop-
ulation analog activity, and is this encoding a linear transformation
of inputs?

Even within the assumptions of linearity, network properties
such as sensitivity to input and ability to propagate depend on
the input–output transformation parameters (Salinas and Abbott,
1995; Holt and Koch, 1997; Chance et al., 2002; Rothman et al.,
2009). While there is a wealth of data on these modulations at the
sub-cellular and single-neuron level (Turrigiano and Nelson, 2000;
Chance et al., 2002; Rothman et al., 2009), it is important to estab-
lish what happens to spiking properties of cell groups undergoing
network-level modulation.
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In the current study, we stimulate upstream CA3 axons using
an electrode array to give synchronous, near-threshold synaptic
inputs at multiple sites on CA1 neurons. We monitor summed,
multi-neuron calcium responses, and show that these provide a
readout of spiking and exhibit a linear summation of inputs across
the recorded CA1 cell groups. We show that this linear summation
rule remains robust and obeys consistent scaling rules for differ-
ent network contexts, including modulation of activity, inhibition,
and synaptic plasticity.

MATERIALS AND METHODS
All of the experimental procedures were approved by the National
Centre for Biological Sciences institutional animal ethics com-
mittee, in accordance with the guidelines of the Government of
India.

DYE LOADING
Four hundred micrometers of transverse hippocampal slices were
prepared from 4 to 6-week-old male Wistar rats using a vibra-
tory microtome (Vibratome 1000 classic series, Vibratome, USA)
in ice-cold artificial cerebro-spinal fluid (aCSF) containing (in
mM) – 118 NaCl, 2.5 KCl, 2.5 CaCl2, 1.25 MgSO4, 1.25 NaH2PO4,
26 NaHCO3, and 10 glucose, saturated with 95% O2/5% CO2.
Slices were equilibrated in aCSF at room temperature for 120 min.

Slices were loaded using ballistic delivery of fluorescent dye.
Ballistic loading sparsely loaded tens of neurons with the dye in
comparison to the AM-ester dyes where many hundreds of neu-
rons get loaded simultaneously. Calcium-green-1 dextrans conju-
gated dye (Molecular Probes C-6765) was coated on gold particles
(1–1.5 µm radius, Aldrich 326585) and delivered into the slice
preparation with a “gene-gun.” This method results in loading
of individual cells contacted by these particles (Kettunen et al.,
2002). Metal filters were used to protect the tissue from shock
wave generated by the gun at high pressure (60–80 psi).

An Olympus microscope (IX 50) with fluorescence attachment
was used to image the labeled structures. Three objectives 10×,
40× (oil immersion objective), and 60× (oil immersion objective)
were used in the study to get various levels of spatial resolution
(Figures 1A,B). Videos were captured on a high speed cooled CCD
camera (Andor DV iXON 887 BI) at 122 Hz.

ANALYSIS OF NEURONAL OVERLAP
In an independent dataset, we loaded hippocampal slices bal-
listically as described above. We imaged Z-stacks of the loaded
CA1 neurons using a custom-made two-photon microscope
(Figure 1C). Two-photon exposure times of ballistically loaded
slices were limited because of heating of the gold beads. There-
fore the ballistically loaded slices could not be imaged during the
actual experiment using a two-photon microscope. The intensity
profile along the depth of the Z-stacked images was plotted for 67
regions of interest (ROI; Figure 1D). The number of peaks and
the width of the intensity profile (<30 µm was considered as a
single neuron) was used as a measure of number of overlapping
neurons in each ROI. We obtained Z-stacks for an average depth of
150 µm of healthy tissue. Our full slice thickness was 400 µm, and
by excluding the bottom and top 50 µm we estimate it had a total
of 300 µm of healthy slice. We therefore scaled our cell counts for

each ROI by a factor of ∼2 to estimate the total number of loaded
cells in the slice (5 slices, 67 ROIs). The scaling was based on the
assumption that the distribution of loaded neurons remained uni-
form across the cross-section of the slice. Our extrapolation for 67
ROIs yield an estimated range of 2–10 cells per ROI (on an average
a readout from 4.1 neurons/ROI) as recorded by our CCD camera
(Figure 1E).

CURRENT CALIBRATION AND INPUT PROTOCOL
The stimulating electrodes consisted of an array of 3–5 twisted
bipolar electrodes (Nichrome, 50 µm outer diameter). The elec-
trodes were arranged in a straight line and placed along the
dendritic axis (Y -axis).

We calibrated all stimulating electrodes using fluorescence
responses and field EPSP recordings. We adjusted currents for
minimal overlap between axons stimulated by different electrodes
by using cross-electrode paired-pulse stimulation (Creager et al.,
1980).

These currents were fixed for the rest of the experiment,
including the high frequency stimuli (HFS) stimuli used for LTP
(19 slices, 217 cell groups). In some experiments we reduced
the current to 0.75 of the reference value in order to deliver
lower-amplitude stimuli (6 slices, 48 cell groups).

Input patterns were delivered using a Master-8 (A.M.P.I.). Each
pattern was a single pulse of current (60 µs) delivered synchro-
nously through several electrodes. The network was stimulated
with all possible binary combinations

(
2NEL
− 1

)
of the inputs

with N EL electrodes and the normalized fluorescence responses
were recorded. We were able to deliver a maximum of 31 patterns
with five electrodes. Each input pattern was repeated for three tri-
als. LTP was induced by using a three HFS (100 Hz for 1 s) pattern
with inter tetanic interval (ITI) of 300 s (spaced tetanic stimuli;
9 slices, 65 cell groups). The potentiated network responses were
recorded at least 15 min after the last tetanic stimuli in order to
give the responses time to stabilize.

FLUORESCENCE MEASUREMENTS
Regions of interest were selected as rectangular areas around the
dye-filled neuron. The size of the ROI was ∼20 µm× 20 µm.
All responses were calculated as a mean change in fluorescence
amplitude measured as ∆F /F in the ROI.

∆F

F
=

(
Fpeak − Fbaseline

)
Fbaseline

(1)

Where F baseline is the mean fluorescence measured over 500 ms
baseline before the stimulus is induced, F peak is the maximum
fluorescence recorded in the 100 ms window after the stimulus.
We also computed area under the calcium curve. The area under
response curve was calculated in the 100 ms window after the stim-
ulus. As the area was proportional to the peak, we used the simpler
peak estimate for all our analyses.

LINEAR SUMMATION MODELS
The calcium response of a single neuron can be defined as

Single neuron response, rj = 0, if f (I • w) < Tj

= 1, if f (I • w) > Tj
(2)
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FIGURE 1 | Calcium signals report spiking of small cell groups. (A)
Fluorescence image showing CA1 neurons (encircled by the dotted line)
loaded with Calcium-green-1 dextrans (10×, scale bar 100 µm). The arrow
points toward a clump of dye-coated gold particles. (B) Dye-loaded CA1
somas imaged at 40× (scale bar 20 µm). The dashed boxes around the
neurons show two ROIs. (C) Z-stack of 2-Photon image of CA1 neurons
loaded ballistically showing low overlap (scale bar 50 µm). (D) Intensity
profile of 2-photon Z-stacks for three ROIs. The number of peaks in the
intensity profile is a readout of the number of overlapping neurons (scale
bar 100 µm, Y -axis represents intensity). (E) Histogram of the overlapping
neurons in each cell group estimated using 2-photon Z-stack images of
ballistically loaded slices, and scaled to the full slice thickness (N =5

slices). On an average each ROI was a readout from 4.1 neurons. (F) Show
two trials of simultaneous whole-cell patch voltage (above) and calcium
(below) recordings from CA1 neurons. Calcium activity correlates with the
spiking response. In the voltage trace the initial glitch represents the
stimulus artifact. Panel on the left shows a non-spiking EPSP response and
no calcium response. Panel on the right shows spiking responses and the
corresponding calcium activities (scale bar X -axis 5 ms, Y -axis 20 mV, 1%
∆F /F, cell #130710s1c1). (G) Calcium peak response from an example
neuron to a series of increasing input strengths. X -axis represents
summed single electrode responses (SSER). Calcium response correlates
with neuronal spiking (Both X, Y -axes represent arbitrary units, cell
#220710s1c1).

where rj is a binary variable that represents the calcium response
of a single neuron j, Tj is the spiking threshold for neuron j, and
w is neuron specific synaptic weights vector of neuron j for a
given binary input vector I. The function f(I•w) is the transform
between the dendritic and somatic membrane voltage at each CA1
neuron.

We assumed that each cell group consisted of 2–10 neurons,
each of which could respond to stimuli with a single spike if
the combined inputs crossed threshold (Eq. 2). The fluorescence
change recorded from a cell group is the sum of the fluorescence
change of individual neurons.

Cell group output, O =
Neurons∑

j=1

(∆F /F)j · rj (3)

(∆F /F)j represents the normalized fluorescence change associated
with neuron j, rj represents whether the neuron spikes and O rep-
resents the overall fluorescence change recorded in the ROI/cell
group.

We used two models to analyze linear summation in the CA1
cell groups to the 31 input patterns delivered through the five
electrodes (Figure 3). These models apply to cell groups and do
not imply linearity in the constituent cells.

Model 0: weights were determined by optimizing to get the best
fit for linear weighted summation:

O k estimated =
∑

input electrodesi

Ii ·W (k)i (4)

Error =
∑

input patterns

(Ok actual − Ok estimated)
2 (5)

Where Ii represents binary input to electrode i and Okactual rep-
resents the calcium response of cell group k. The weight vector
W (k) specific to cell group k was calculated in order to minimize
the error in the estimated output.

Model 1: here we compared the observed response to multi-
electrode input to the linear sum of responses to single electrode
inputs. Since the precise value of the input from a given electrode is
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a complex composite of electrode geometry, current, axons stimu-
lated, and synaptic weights of these axons onto target neurons, we
were not able to measure it directly. Instead we used the efficacy
of this electrode in eliciting an output on the target cell group
as an indirect but consistent measure of the effective input that
incorporated all these factors. Specifically, we defined the optically
measured response of a given cell group to the stimulus delivered
at a single electrode as the single electrode response (Eq. 3). Using
this as a basis, we could express the effective input delivered at mul-
tiple electrodes by summing up the contributions of each single
electrode. We used the summed single electrode response (SSER)

SSER =
∑

input electrodes i

Oi (6)

as a surrogate for the total input delivered on multiple electrodes,
and for subsequent tests for linearity. Oi represents recorded
calcium response to input through a single electrode I for a
given cell group. SSER was calculated independently for each cell
group.

Linear systems are mathematically characterized by two prop-
erties – scaling and superposition. If y = f(x) represents a linear
system then it should satisfy the following criteria:

1. Scaling, y1= f (x1) then a·y1= f (a·x1) where a is a constant.
2. Superposition, y1= f (x1) and y2= f (x2) then f (x1+ x2)=

f (x1)+ f (x2).

We first analyzed system linearity by comparing the actual
responses (∆F /F)ij to the SSER (from Eq. 6) over all permutations
of inputs (for 31 data points delivered through five electrodes).
We refer to this as the I –O transform curve. According to the
above mathematical characterization, SSER represents the sum
of responses over different combinations of x individual inputs(

or
∑

i
f (xi)

)
,and the actual measured response (∆F /F) repre-

sents f

(∑
i

xi

)
. If the I –O curve remains along a straight line

with a slope of 1, then the summation is perfectly linear. We used
Model 0 and Model 1 to test for the linearity. We also analyzed the
scaling feature of linearity, by reducing the inputs. Here we used
the scaling factor a= 0.75.

In addition to the analysis of system linearity, we also employed
the linear regression statistic to study slope transformations. Here
we use the term linear fit to refer to a tight fit using the linear regres-
sion statistic. If a single electrode input did not elicit a response, its
response was assigned as zero. All data fitting in the I –O transform
curves was done using a linear regression statistic. The I –O data
was fit to a straight line passing through zero. Data points with
zero calcium response and zero SSER were not considered while
calculating the regression fit. This gave us the slope measure. The
cell group was classified as linear if the scatter was low (R2 > 0.75).
Scatter was calculated as follows

R2
=

1−
∑[

(∆F/F)ij − Regression slope x
(∑

Wij Ii
)]2

∑
(∆F/F)2

ij

(7)

To look for changes in slope, we calculated log(Output/SSER)
for each data point normalized according to Model 1. Significance
was calculated using Student’s t -test. To look for equivalence in
slope, we used the Student’s t -test as above (p > 0.05). Additionally
we checked whether the regression slope after network perturba-
tion was within 95% confidence intervals of the regression fit prior
to perturbation.

All analysis was done using MatlabR2007.

RESULTS
We measured calcium responses of multiple CA1 neurons to
summed synaptic input. We investigated two attributes of lin-
earity in the summed responses. First, are these summed spiking
responses linear? Second, how do these responses scale when net-
work parameters change due to synaptic plasticity and inhibitory
modulation?

CALCIUM SIGNALS REPORT SPIKING OF SMALL CELL GROUPS
We positioned an array of five stimulating electrodes on the Schaf-
fer collaterals (SC) of rat hippocampal brain slices. In each slice we
recorded from 7 to 20 CA1 pyramidal cell groups, using calcium
dye recording. The slices were ballistically loaded with calcium-
green-1 dextrans (Kettunen et al., 2002), and imaged using an
EMCCD camera (see Materials and Methods; Figures 1A–C).
The ballistic loading technique strongly loads relatively few cells,
leaving others unaffected. Our readouts were from small cell
groups comprising of 2–10 neurons (see Materials and Meth-
ods; Figures 1D,E). Each ROI was an average readout from ∼4
neurons.

We used peak calcium response as readout to record single neu-
ron and network integration of synaptic inputs. Calcium responses
have been reported to correlate with the action potentials (Smet-
ters et al., 1999; Yaksi and Friedrich, 2006). We used simultaneous
calcium dye imaging and whole-cell patch recordings from sin-
gle CA1 neurons to test this result. In our preparation, somatic
calcium responses correlated with spiking response and were not
visible at small cellular depolarizations (Figure 1F). Furthermore,
the peak calcium response from individually patched neurons was
a step-function that did not rise further with increased input
strength in our stimulus range (Figure 1G). This set a mini-
mum threshold of cellular activation that could be detected in
our measurements.

SYNAPTIC INPUT ELICITS DISTINCT CALCIUM RESPONSES FROM
SMALL CELL GROUPS
We stimulated our electrodes one at a time and measured cal-
cium signals to obtain weight matrix (see Materials and Methods;
Eqs 1 and 2; Figure 2). This gave us a lumped weight matrix W,
where each entry represents the effective weight of many synapses
converging onto the small group of cells in our calcium readout
(see Materials and Methods). We tested for overlap between fiber
bundles stimulated using cross-electrode paired-pulse facilitation
and found that overlap was small. The cross-electrode facilitation
was 1.04± 0.04 SEM, whereas the same-electrode facilitation was
3.5± 0.5 SEM, p < 0.05; see Materials and Methods; Figure 2A;
Creager et al., 1980). Our weight matrices were stable over time.
We repeated our weight matrix estimation process over a period
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FIGURE 2 | Synaptic input elicits distinct calcium responses. (A)
Overlap between axons stimulated using different electrodes was tested by
measuring fluorescence responses to paired-pulse stimuli (50 ms interval).
Examples with two electrodes (E1, E2) shown. Dashed line is extrapolated
fluorescence decay curve for a single pulse. Cross-electrode facilitation is
low (cross-electrode facilitation 1.04±0.04 SEM; same-electrode
facilitation of 3.5±0.5 SEM, p < 0.05). (B) Four representative single trial
fluorescence traces in response to stimulation on five electrodes. (C)
Color-coded matrix of peak calcium responses (five electrodes and 15 cell
groups). The asterisk indicates the four neurons from (B).

of 100 min and observed <10% drift. We observed a wide range
of effective weights, indicating that the synaptic connections were
inhomogenous on the scale of the axon bundles we stimulated,
and the small cell groups we monitored (Figures 2B,C).

SUMMATION: A LINEAR MODEL FITS RESPONSES TO INPUT
COMBINATIONS
We next asked if a simple linear summation model could account
for responses to all combinations of inputs. As we stress in the
discussion, our readouts and inputs were to cell groups, and there-
fore linearity in these groups does not necessarily imply linearity
of summation at the single-neuron level. Using five electrodes
we could generate 31 distinct input patterns at a given stimulus
amplitude (see Materials and Methods). A simple linear weighted
summation rule has the form:

Oj =
∑

Ii ·Wij (8)

where Oj is the estimated output of the jth cell group, Ii specifies
the ith input, and Wij is the connection weight. There are sev-
eral ways to estimate connection weight matrix W given the 31

FIGURE 3 | Linear model fits responses to input combinations. SSER
plotted on the X -axis represents summed single electrode response in all
plots. (A) Model 0: weights were optimized to get a linear fit. Ninety-one
percent of ROIs responses can be fit using linear regression. (B) I–O plot
for two example ROIs fit using Model 0. (C) Model 1: simple linear model in
which the calcium responses to all input patterns are normalized to the
mean calcium response for each ROI. Seventy-eight percent of single ROI
responses can be fit using linear regression. (D) I–O plots for two example
ROIs fit using Model 1 [same ROIs as in (B)]. Both calcium response and
SSER are dimensionless, similar to ∆F /F.

input combinations in our dataset. One approach, which weights
each of the 31 combinations equally, is to do a least-squares
minimization calculation to find the optimal set of weights W
that will fit all 31 points to a straight line (see Materials and
Methods). Using this method we obtained a tight linear regression
fit (R2 > 0.75) for 91% of ROIs around the 45˚ line (overall fit
of all points R2

= 0.92, slope= 1.01). We thus conclude that the
actual response scales with the SSER (see Materials and Methods;
Eq. 6) close to the 45˚ straight line, qualifying the summation as
linear (see Materials and Methods). We refer to this as Model 0
(Figures 3A,B).

A less numerically ponderous approach is to read weights
directly from the fluorescent responses of a cell group to a given
input. Again, in order to balance the contributions of each of the
31 combinations of input, we normalized the outputs to the mean
response of all input patterns. This gave a good linear regression fit
in 78% of the cell groups (R2 > 0.75 for a linear regression fit and
overall slope of 0.95; see Materials and Methods; Figures 3C,D).
Again, the actual response scales linearly with the SSER (see Mate-
rials and Methods; Eq. 6). We refer to this as Model 1. We used
Model 1 for all further analyses of I –O transform.

We also investigated several more complex models of summa-
tion, including a non-linear conductance-based model (see text;
Figure S2 in Supplementary Material). These did not improve on
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these fits, but were valuable in confirming that the responses of
most cell groups were well approximated by a weighted linear sum
of inputs for the physiological dynamic range before the response
saturates.

SUMMATION REMAINS LINEAR AT REDUCED LEVELS OF EXCITATORY
INPUT
We next delivered a second set of input stimuli, where the cur-
rent on each electrode was scaled down by the same factor (0.75).
The Ca2+ responses of the reduced stimulus (I LO= 0.75 I HI)
patterns fell around a straight line (Figures 4A,B), which was
truncated at zero because many of the reduced responses were
below threshold. We found that the slope of the I –O curve did not
change significantly in 67% of the cell groups (see Figure 4B; 95%
confidence intervals; Materials and Methods). Reduced stimula-
tion current is expected to activate smaller numbers of axons. A
comparison of the calcium responses to the same input patterns
before and after the reduction of current gave us a straight line
with a negative y-offset and a slope of 0.7 that closely matched
the input current scaling factor of 0.75 (linear regression fit,
R2
= 0.81). This supports the scaling property of linear summa-

tion. Thus the same linear summation rule applied when smaller
numbers of input synapses were activated on each electrode
(Figure 4C).

In summary a reduction of input number maintaining the
excitation-inhibition ratio causes a reduction in responses but does
not affect the gain of the I –O relationship. This provides evidence
for the scaling property in linear systems. It should however be
noted that the scaling property breaks down when the response of
the cell group falls below spiking threshold.

SUMMATION REMAINS LINEAR WITH THE SAME SLOPE, WHEN
INHIBITION IS BLOCKED
The CA1 network includes a substantial number of inhibitory
inter-neurons (Megias et al., 2001). We tested the role of inhibition
in network responses by applying the GABA-A blocker picro-
toxin (20 µM, 7 slices, 40 cell groups) in the bath. This treatment
increased neuronal responses (Figure 5A). We analyzed linear-
ity by repeating the combinatorial input patterns in the presence
and absence of picrotoxin. It should be noted that on blocking
inhibition the network activity tends saturate at higher inputs.
We used two approaches to test if the network summation rules
changed with inhibition, within the non-saturating range. First, we
plotted the pre-picrotoxin and post-picrotoxin responses (inhi-
bition blocked) against SSER estimated using Model 1 (Eq. 8).
We found that 78% of cell groups integrated inputs in a linear
weighted manner even when inhibition was blocked (R2 > 0.75
for a linear regression fit; Figure 5B). Furthermore, the slope of
the I –O curve did not change significantly in 78% of these cell
groups after the inhibition block (within 95% confidence intervals;
see Materials and Methods). Second, we plotted post-picrotoxin
responses against pre-picrotoxin responses. Eighty-one percent of
these response curves were linear (R2 > 0.75 for a linear regres-
sion fit, Figure 5C). This analysis does not depend on any of
our input–output models. We obtained a positive y-offset with
this model-independent readout of linearity. The mean offset
in calcium response on application of 20 µM GABA-A blocker

FIGURE 4 | Summation remains linear at reduced levels of excitatory
input. (A) Example fluorescence traces of the response to low (thick) and
high (thin) currents. (B) Calcium responses from 15 cell groups in slice
#100308s2 plotted against SSER (Model 1) at low (filled circles) and high
(empty circles) currents (ILO =0.75 IHI) for 31 input patterns. The two
distributions appear continuous with each other, suggesting linearity of
input summation. Insets for two cell groups are shown. (C) Comparison of
Ca2+ responses at basal (high) and reduced input stimulus currents. The
scatter plot is linear with the exception of several points where the reduced
stimulus was below threshold. The best fit line has a negative offset on the
Y -axis. Both calcium response and SSER are dimensionless, similar to
∆F /F.

FIGURE 5 | Summation remains linear at different levels of inhibitory
input. (A) Single trial calcium response traces before (thick) and after (thin)
application of picrotoxin. (B) Calcium responses (∆F /F ) to the same input
before (filled circles) and after (empty circles) the application of picrotoxin.
The I–O curve remains linear for a large portion of the stimulus range, and
then saturates (slice #180808s1). Insets for two cell groups are shown. (C)
Comparison of Ca2+ responses before and after picrotoxin application. The
relationship is linear (regression fit R2 > 0.87). The post-picrotoxin response
is larger and there is a positive y -offset due to spiking of previously
inhibited cells. The best fit line has a positive offset on the Y -axis. Both
calcium response and SSER are dimensionless, similar to ∆F /F.

picrotoxin was 38± 33% (mean± SD) of the maximum baseline
response.

We therefore conclude that inhibition does not affect the
gain of the I –O relationship, but instead introduces an offset in
responses. We consider the implications of this observation in the
discussion.
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SUMMATION MAINTAINS A LINEAR FIT FOLLOWING PLASTICITY, BUT
UNDERGOES GAIN CONTROL
We next examined how synaptic plasticity might affect network
summation rules. We did so by modifying synaptic weights using
long-term potentiation (LTP) on the SC inputs (Bliss and Lomo,
1973). We first established the baseline response matrix using
single-pulse stimuli on each of the five electrodes. We repeated
the baseline measurement at least two times. We then induced
LTP on one of the electrodes using a spaced HFS protocol with
three tetani for 1 s at 100 Hz, separated by 5 min (Ajay and Bhalla,
2004). We waited 15 min for the synaptic weights to stabilize,
and then repeated our baseline single-pulse stimuli on each elec-
trode, to record the modified response matrix (Figures 6A,B).
In a few cases we induced a second round of LTP on the same
electrode. We found that the average calcium responses did not
increase further on the second HFS stimulus, similar to the
known phenomenon of saturation of LTP (Figure 6C). The
properties of plasticity measured with our protocol conformed
to known attributes of electrically measured LTP. On blocking
NMDA channels using APV and by reducing the ratio of extra-
cellular Ca2+/Mg2+, the effect of HFS in inducing LTP decreased
(Figure 6D).

Does plasticity change arithmetic rules? We considered two pos-
sibilities: that the rule might maintain a linear fit but that plasticity
might alter the scaling of neuronal responses to the same inputs, or
that the form of the rule itself might cease to be linear. We found
that 81% of cell groups integrated inputs in a linear weighted
manner even after LTP was induced (R2 > 0.75 for a linear regres-
sion fit). We then carried out an analysis of the slope change in
the calcium I –O curve following LTP (Figures 7A,B). We found
that in 43% of the cell groups the slope decreased significantly

following LTP, whereas in 13% of the cell groups it increased signif-
icantly (p < 0.05, using Student’s t -test; see Figure 7D; Materials
and Methods). The median decrease in the I –O slope was ∼25%.
On further potentiation the changes were much smaller. When we
compared calcium responses of individual cell groups before and
after LTP, we found that they lay on a tight straight line, with a
slope greater than 1 (Figure 7C, linear regression fit, R2

= 0.83).
Do the input–output parameters change in a manner depen-

dent on the extent of plasticity? Given that the shape of the
response remained mostly linear, we estimated the slope and off-
set for individual cell groups before and after LTP induction. We
did not find a strong dependence of slope on the amount of
plasticity (Pearson’s correlation coefficient R= 0.35, p= 0.014).
However, the offset in calcium response after plasticity scaled pro-
portionately to the percentage potentiation (Pearson’s correlation
coefficient R= 0.6, p < 10−5).

Thus the input–output function remained linear after induc-
tion of plasticity, but the gain and offset of the I –O curve
changed.

DISCUSSION
We have analyzed summation properties of groups of hippocampal
CA1 neurons in a network context. To do this, we have charac-
terized peak calcium responses for multiple synchronous input
patterns, tested input summation, and examined output transfor-
mations. We find that for most such cell groups, a surprisingly
simple linear description accounts for the summation of mul-
tiple inputs, under many conditions. We have characterized the
transformations of the linear input–output functions when we
manipulate the number of synaptic inputs, modulate inhibition,
and induce plasticity.

FIGURE 6 | Network plasticity and summation. (A) Peak calcium
response of 15 cell groups to 31 input patterns (left) from five electrodes.
Active electrodes are in black. A subset of responses is reordered below to
show interactions between electrode 1 and other electrodes. (B)
Responses of same network following HFS on electrode 1 (red block).
Responses increase, but summation properties also change. For example,
responses of cell groups 7 and 14 were dominated by electrode 1 before
HFS, but become more uniform after HFS. (C) Averaged calcium

responses increase following repeated HFS (N =13 slices). p < 0.005 for
LTP1, and p < 0.025 for LTP2 using a two-tailed t -test. (D) Effect of
pharmacological agents on single electrode calcium responses upon
inducing plasticity. Plot shows the % of cell groups categorized as cell
groups whose response increases, decreases, or remains constant.
Potentiation decreases on application of 50 µm APV (NMDA receptor
blocker), reduced ratio of Ca2+ in the extracellular solution to 25% and
10 µm Nifidipine (VGCC-L blocker).
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FIGURE 7 | Summation gain following plasticity. (A) Single trial calcium
response traces before (thick) and after (thin) induction of LTP. (B) Linear
model fit before and after LTP (slice #030108s2). Axes are normalized to
pre-LTP input and output ranges. The post-LTP slope (right frame, linear
regression fit) is smaller than baseline. (C) Model-free comparison of the

responses following HFS protocol with responses prior to the stimulation. The
best fit line has a positive offset on the Y -axis. (D) Changes in the slope of the
I–O curve following LTP1 shows a median decrease of 25% (N =113 cell
groups). Changes after LTP2 are low. Both calcium response and SSER are
dimensionless, similar to ∆F /F.

NETWORK VS. SINGLE-NEURON LINEARITY
Our results demonstrate linear summation of inputs at the level
of small cell groups. This contrasts with the extensive literature
on non-linear summation within individual neurons, especially
for spatially and temporally clustered dendritic inputs (Cash and
Yuste, 1999; Koch and Segev, 2000; Gasparini and Magee, 2006;
Branco et al., 2010; Lovett-Barron et al., 2012). What does this
dichotomy imply for network computation? Given a group of
cells with distinct thresholds, distinct synaptic weights, and indi-
vidual non-linear summation, the combined output signal to a
common set of inputs can approximate a linear sum, with a key
requirement being that the input weights are not tightly cor-
related. It is theoretically possible to construct cell groups and
summation rules where this does not work (Jolivet et al., 2006;
Ostojic and Brunel, 2011). For example, non-linearity emerges
from a network where all neurons obey the same non-linear sum-
mation rule, if the cells in the group have correlated synaptic
weights for their inputs (data not shown). It is therefore signif-
icant that, at least in the hippocampal CA3-CA1 neural network,
the linear outcome applies. Interestingly, the main selection bias
in our cell groups was their spatial proximity. Thus one does
not need to invoke specifically interconnected “cell assemblies”
to achieve linearity of cell-group responses. Our results show
that the inherent heterogeneity among neurons could be suf-
ficient to produce a linear readout of inputs (Koulakov et al.,
2002).

This linear result has a useful interpretation for neural network
computation. The majority of theoretical results for neural net-
works assume linear summation (Koulakov et al., 2002; Truccolo
et al., 2005; Ostojic and Brunel, 2011). Thus our result suggests that
one can apply many theoretical results for neural networks to real
networks, with the simple proviso that the neural network results
apply to small groups of cells and their lumped synaptic inputs. At
the same time, the subtleties of individual neuronal computation
may provide another layer of computational capabilities to the
real system. For example, one can envision the CA3-CA1 network
exhibiting hetero-associative network properties at the cell-group
level, while individual neurons obey non-linear dendritic sum-
mation and activity-dependent scaling of dendritic excitability
(Polsky et al., 2004; Gasparini and Magee, 2006; Spruston, 2008).

In our recordings, we have focused our analyses on the linear
summation properties that were found in 78% of the cell groups.
However, 22% of the cell groups did not have a good linear fit. This
suggests the existence of non-linearities in the CA3-CA1 network.
Such non-linearities may be caused due to two reasons – one, these
cell groups may have contained small number of cells (1–3 neu-
rons). Two, as suggested by the theoretical model presented above
these cell groups may have received correlated synaptic inputs.

CHARACTERIZING TRANSFORMATIONS OF SUMMATION RULES
Real neurons undergo dynamic modulation of many summa-
tion properties, which have been extensively characterized. These
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extend from synaptic plasticity rules, to local dendritic excitabil-
ity, activity homeostasis, through to cell-wide neuromodulation
(Cash and Yuste, 1999; Turrigiano and Nelson, 2000; Spruston,
2008; Carandini and Heeger, 2011). Such studies typically stim-
ulate individual cells and do not address what happens around
them. Some studies have gone further and considered the ques-
tion of how network-level context affects properties of single
cells embedded in the network (Chance et al., 2002; Anastas-
siou et al., 2011). In the current study we step further back still.
Through our readout of spiking activity in small cell groups,
we ask how network-level modulation and plasticity affect the
distribution of summation properties across local cell groups.
While the first-order finding of robust linearity is useful, as dis-
cussed above, the specific parameters of input–output transfor-
mations are crucial for analyzing network function (Arieli et al.,
1996; Koch, 1999; Fernandez and White, 2010; Kumar et al.,

2010; Carandini and Heeger, 2011). We have characterized these
for three cases.

First, we show that a balanced reduction of input, maintaining
the excitation-inhibition ratio, introduces additive effects on the
I –O relationship. We did not find slope transformation in the I –O
curves in 67% of the cell groups (Figure 8A).

Second, even an unbalanced change that we introduced by
blocking inhibitory GABAergic channels also introduces an addi-
tive effect in the I –O curves of 78% cell groups. Our results
in spiking CA1 neurons tie in with earlier studies have shown
that in the absence of variable background input, inhibition
does not cause a gain change (Chance et al., 2002; Fernandez
and White, 2010). Additionally, modeling studies have shown
that blocking inhibition has an additive effect on spiking cells
especially in the case when the inhibitory synapses are proxi-
mal to the soma. Mechanistically, the proposed mechanism is

FIGURE 8 | Network summation hypothesis. Schematic interpretation of
results for the three network perturbations in terms of a linear summation
model. Traces on row (i) represent summed EPSPs relative to the spiking
threshold (horizontal line). Row (ii) shows a summary of the calcium
responses as a function of normalized total synaptic input (using Model 1)
from the perturbation experiments shown in Figures 4B, 5B, and 7B. Row
(iii) presents the relationship between calcium responses after and before
the network perturbations from the perturbation experiment results in
Figures 4C, 5C, and 7C. The bottom row (iv) represents a schematic of the
derived I–O curves. Here X -axis is a correlate of the number of input axons
stimulated. In all panels thick lines/filled circles represent response prior to

perturbation and dashed lines/open circles represent responses post
perturbation. (A) On reducing the SSER, the EPSP amplitude decreases
causing a downward shift in the I–O curve without a change in slope. Our
data is consistent with additive scaling in this case. (B) On blocking inhibition
the basal membrane voltage is pushed closer to the threshold, but the size of
the EPSP and hence the slope of the input/output line does not change. This
too represents an additive shift in the I–O curve. (C) On inducing LTP the
input strength increases, resulting in a larger EPSP for the same stimulus. We
also see a homeostatic downward multiplicative shift in the I–O relationship.
This can be accounted by an increase in spiking threshold. In all three cases,
the input–output relationship remains linear.
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that the inhibitory current is limited by the membrane voltage
at threshold and can be replaced by a constant offset current
in spiking neurons. Thus, unless the excitatory conductance is
small compared to inhibitory conductance, inhibition has an
additive effect on the I –O relationship in spiking CA1 neu-
rons (Holt and Koch, 1997). Most of these studies focus their
attention on the firing rate changes to asynchronous inputs.
Our study confirms that a similar behavior adopted for spik-
ing activity to synchronous inputs in the CA3-CA1 network
(Figure 8B).

Third, synaptic plasticity leads to changes both in slope and in
offset of the I –O curve. We find that neuronal summation itself
rescales following gain changes in the I –O relationship that fol-
low plasticity. Changes in gain represent multiplicative effects, as
the output response of the cell groups is reduced (or increased)
by a factor (Isaacson and Scanziani, 2011). We interpret this as
a decrease in intrinsic neuronal excitability rather than synap-
tic rescaling because our weights are typically larger after the
LTP induction (Burrone and Murthy, 2003; Wang et al., 2003;

Campanac et al., 2008). This decrease in neuronal excitability may
be caused by mechanisms such as increase in spiking threshold
or a decrease in the probability of release (Figure 8C). As an
extension of this hypothesis, we predict to find a positive gain
change with a negative offset in the I –O transform when LTD is
induced. Such homeostatic mechanisms have been proposed to
promote network stability (Bear, 1995; Turrigiano and Nelson,
2000).
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