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Spike pattern classification is a key topic in machine learning, computational neuroscience,
and electronic device design. Here, we offer a new supervised learning rule based
on Support Vector Machines (SVM) to determine the synaptic weights of a leaky
integrate-and-fire (LIF) neuron model for spike pattern classification. We compare
classification performance between this algorithm and other methods sharing the same
conceptual framework. We consider the effect of postsynaptic potential (PSP) kernel
dynamics on patterns separability, and we propose an extension of the method to
decrease computational load. The algorithm performs well in generalization tasks. We
show that the peak value of spike patterns separability depends on a relation between PSP
dynamics and spike pattern duration, and we propose a particular kernel that is well-suited
for fast computations and electronic implementations.
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1. INTRODUCTION
Spike pattern classification has become an important topic
in several fields of research. For example, electrophysiologi-
cal recordings from neural networks on Multi-Electrode Arrays
(MEA) provide spatio-temporal spike patterns that remain
difficult to understand. In those setups, spike pattern classifi-
cation algorithms are useful to understand how spontaneous
network bursting activities that propagate through the neural net-
work are triggered in particular places (Kermany et al., 2010).
Experimental evidence tends to show that precise spike timing
plays a significant role in the encoding of sensory stimuli (Bohte,
2004; VanRullen et al., 2005), and theoretical considerations have
shown that spiking neuron models can have better computa-
tional capabilities for fast information processing than firing rate
based neuron models (Maas, 1997). Understanding how synap-
tic weights determine the neuronal input–output function is one
of the most important challenges of computational neuroscience.
Electronic devices based on temporal pulse coding have inter-
esting properties for sensors and neuroprosthesis development
(Boahen, 2002; Ambard et al., 2008; Chen et al., 2011), and recent
research on novel computer architectures focuses on low-power
spike based computing chips (Modha, 2011).

Previous methods for spike pattern classification can be sepa-
rated into two families. The first family uses spike train metrics
(for an overview, see Brown et al., 2004; Grün and Rotter, 2010).
Some of these methods are based on arbitrary features extracted
from the observed spike patterns such as rank order (Pan et al.,
2009), firing rate (Kermany et al., 2010), or inter-spike intervals
(ISI) (Abeles and Gerstein, 1988; Christen et al., 2004). These
methods run the risk of preselecting features that are not relevant
for biology. Others use metrics based on vector-space embed-
dings (van Rossum, 2001; Schrauwen and Campenhout, 2007;
Houghton and Sen, 2008). While those methods are well-known

and show good performance in classification tasks, their results
are difficult to understand in terms of neural mechanisms. The
second family is bio-inspired. It uses neuron models and sets
appropriate synaptic weights. Classification is done with a super-
vised learning rule to control the neural response for a given set of
spike patterns (Bohte et al., 2000; Gütig and Sompolinsky, 2006;
Kasiński and Ponulak, 2006; Voegtlin, 2007; Mc Kennoch et al.,
2009; Urbanczik and Senn, 2009). Those methods are particu-
larly interesting since their results can be easily linked to biological
processes.

In this paper, we present a method related to both families of
methods. It is based on spike train kernel convolution in the time
domain, in conjunction with Support Vector Machines (SVM) to
compute an optimal linear decision policy. Coefficients of the cor-
responding hyperplane can be interpreted as synaptic weights on
the dendrite of a leaky integrate-and-fire (LIF) neuron model. In
section 2 we describe our new method. We compare its general-
ization performance with other learning rules sharing the same
conceptual framework. We show a relation between spike pattern
separability and postsynaptic potentials (PSP) kernel dynam-
ics, and we introduce kernels optimized for fast computation.
Section 3 describes in detail the methods used in the simulations.
In section 4 we discuss limitations and possible improvements of
our approach.

2. RESULTS
2.1. SUPPORT VECTOR MACHINE USING POSTSYNAPTIC POTENTIAL

KERNELS
Trying to understand how spike patterns are discriminated in bio-
logical neural networks by selecting features or by mapping spike
trains in ad-hoc vector spaces requires assumptions on relevant
features used by neural information processing. Another method
takes a neuron’s point of view by modeling neuronal information
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processes and letting the neuron figures out which information
of spike patterns is relevant. One of the major aspects of the
neural processing is the temporal integration of postsynaptic exci-
tatory and inhibitory events that results in a temporal neural
response expressed by action potentials. In this scenario, the neu-
ral input–output function is determined by the modulation of
synaptic event amplitudes, called synaptic weights in numerical
models.

The present section describes a new supervised learning rule
that optimizes synaptic weights for robust spike patterns classifi-
cation. Although we would not characterize this method as bio-
mimetic, it is related to a common LIF neuron model. The results,
that can be considered as optimal synaptic weights, provide new
insight on what should be the outcome of biological synaptic
plasticity processes for robust spike patterns classification. In the
present paper, we refer to this method using the acronym SVM-
PSP for Support Vector Machine using Post-Synaptic Potential
kernels.

We consider two classes of spike patterns P+ = {p+} (target
patterns) and P− = {p−} (background patterns) that have to be
separated from each other. Each spike pattern is composed of
incoming spikes from N neurons. We define tij as the time of
the jth spike of the ith neuron. Let k(t) be a fixed kernel. For
each time t we consider the vector f (t) = (f1(t), f2(t), . . . , fN (t))
where fi(t) = ∑

j k(t − tij). Evaluating this function at discrete

points in time tl = � l, a pattern p is transformed into a set of
points fp = {f (t1)} residing in an N-dimensional feature space
S = R

N . Let us denote F+ = {f +} (resp. F− = {f −}) the set of
points associated to all p+ (resp. p−) patterns (see Figures 1A–D
for illustration).

The aim of our classification is to find a hyperplane H(W, b)
given by the equation W1 f1 + W2 f2 + . . . + WN fN − b = 0 in S
that separates at least one point f +(tl) of each f + from all the
points f (tl) of all f − as described by the following equations

∀p ∈ P+, ∃tl :
∑

i

Wi

∑
i

k(tl − tij) − b ≥ 0 (1)

∀p ∈ P−,∀tl :
∑

i

Wi

∑
j

k(tl − tij) − b < 0 (2)

If we consider that only one pattern has to be detected, the clas-
sification task is to find at least one point f (tl) of f + that can be
linearly separated from all the points f −(tl) in F−.

Linear SVM (Vapnik, 1995) can be used to find a hyperplane
that optimally separates two classes of points. We used the solver
L2-regularized L1-loss support vector classification (dual) with
a cost parameter of 10, epsilon of 10−2 and an enabled bias,
provided by the open-source liblinear python/C++ library (Fan
et al., 2008).

A B

C D

FIGURE 1 | Illustrations of the SVM-PSP method. One target and one
background spike pattern, superimposed with their noisy version
(standard deviation of the Gaussian noise = 1 ms) as generated for
section 2.2 (A). Convolution of the spike patterns with a double
exponential kernel with τr = 1 ms and τd = 1.5 ms. Note that the maximal
PSP amplitude has been fixed to 0.9 for illustration purposes (B).

Convolution of spike patterns with two input neurons (C) and
representation of their trajectories f (t) in the 2-dimensional feature space
S superimposed with the computed separating hyperplane (D). Note that
orthogonal projection DS(tmax), representing the maximal D+

S distance
onto the hyperplane, does not appear orthogonal due to different
horizontal and vertical axis scalings.
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Before computing the separating hyperplane, all the points are
re-scaled such that the minimal value on each dimension is 0 and
the maximal value is 1. To get the separation hyperplane, when
only 1 p+ has to be separated, all the f −(tl), p ∈ P− are consid-
ered as points that should remain below a hyperplane, and all the
points f +(tl) are tried successively as point that should remain
above this hyperplane.

Thus, a new separation hyperplane Hl is computed by the SVM
for each tested f +(tl) and the aim is to find Hl that can separate
one f +(tl) from all the f +(tl) points with the largest margin. To
find this separation hyperplane, let us first consider the signed
orthogonal distance between a point f (tl) and a hyperplane H
given by

DS(H, f (tl)) = 〈W, f (tl)〉 − b

‖W‖ (3)

For each tested f +(tl) point, we compute D+
S = DS(Hl, f +(tl)),

its distance from the corresponding hyperplane Hl. The minimal
distance between all the f −(tl) points and the hyperplane is also
computed and is given by

D−
S = − max(DS(Hl, f −(tl))) (4)

The ability of the hyperplane Hl to separate the f +(tl) point from
all the f −(tl) is given by

DS(Hl, f +(tl), P−) = min(D+
S , D−

S ) (5)

DS(Hl, f +(tl), P−) is successively computed for all f +(tl) ∈ p+.
The hyperplane Hl leading to the maximal margin DS(p+, P−) is
considered as the result of our method.

DS(p+, P−) = max(DS(Hl, f +(tl), P−)) (6)

To compute a normalized separability measure that is indepen-
dent of the number of dimensions of the space S (the number of
input neurons), we compute DN(p+, P−) = 2 DS(p+, P−)/

√
N

where
√

N/2 is the maximal separation margin between two
points in normalized feature space [0, 1]N .

Although this learning rule is not bio-mimetic and takes place
in a high-dimensional feature space, its result is directly related to
LIF neuron parameters. Hyperplane coefficients W can be trans-
formed into synaptic weights w by multiplying them by θ/b where
θ is the LIF spike threshold potential. After the best separation
hyperplane has been found, the dot product between the vector
θ/b W and the vector f (tl) is equivalent to the LIF membrane
voltage at time tl. The result of this method keeps all the points
f −(tl) of all background patterns below the hyperplane and at
least one point f +(tl) of the target pattern above this hyper-
plane. Therefore, it is equivalent to fixing synaptic weights that
constraint the LIF membrane voltage below the threshold poten-
tial for background patterns, ensuring that membrane voltage
exceeds the threshold at least once for the target pattern. Thus,
the neuron fires only when the learned target pattern is received.
However, using SVM to maximize DS not only fixes a separa-
tion hyperplane, but it also improves the classification reliability

against noisy spike patterns. This property is shown in the next
section.

2.2. USING SVM IMPROVES GENERALIZATION PERFORMANCE
To quantify the robustness of our method (see section 2.1)
against noisy spike patterns, we compared its generalization
performance against the original Tempotron algorithm (Gütig
and Sompolinsky, 2006 see section 3.2), and a slightly mod-
ified Tempotron learning rule that we call the voltage-margin
Tempotron (explained in section 3.3).

We used the double exponential k(t) = e−t/1.5 − e−t as ker-
nel function. Five negative patterns and one positive pattern
were generated (see section 3.1). Time between 0 and 40 ms was
discretized with a period of 0.1 ms. For each noise level, the simu-
lation was repeated over 100 trials. In each trial, 100 noisy patterns
were created from each learned pattern (i.e., 100 noisy target
patterns, 500 noisy background patterns) and used for testing.
The three hyperplanes (HSVM, HTemp, and HTempM , respectively)
found by applying the SVM-PSP, the Tempotron and the voltage-
margin Tempotron algorithms were tested on a generalization
task on same noisy spike patterns (see section 3.1).

Figures 2A,B show that the original Tempotron learning rule
leads to a false negative (FN) error rate of about 30% larger than
the voltage-margin Tempotron and the SVM-PSP, while it has
a low false positive (FP) error rate. As explained in section 3.2,
the original Tempotron learning rule stops when a separation has
been found without trying to optimize it. This causes generaliza-
tion performance limitations, especially with regard to FN error
when the synaptic weights are initialized to 0, leading to mini-
mal synaptic weights. This explains why, even for small noise, FN
error is large and why FP error is small.

Voltage-margin Tempotron and SVM-PSP learning rules have
a similar FN error-rate. The SVM-PSP algorithm provides better
FP error rate than the other two algorithms, except for the case
of strong noise, where the original tempotron and the SVM-PSP
perform similarly. The voltage-margin Tempotron overcomes the
synaptic weights initialization problem by increasing the voltage
margin between points relatively to the voltage threshold, but
results are still lower than SVM-PSP. This shows that maximiz-
ing DS is better than DV (see sections 2.1 and 3.3) in improving
generalization results.

However, while the Tempotron learning rule does not require
many changes when the task is to separate several p+ pat-
terns instead of one, this is more problematic for the SVM-
PSP method. Separating n p+ patterns with this method would
require testing all possible n-tuples [f +

1 (tl1), . . . , f +
n (tln)]. Due to

combinatorial explosion, it is practically impossible to compute
all hyperplanes to find the one leading to the highest separa-
tion. Genetic algorithms offer a good solution to this problem
when dealing with optimization of non-linear functions in which
parameters are subject to combinatorial explosion.

Generalization performance was compared for the separation
hyperplanes found with a genetic algorithm combined with the
SVM-PSP method (see section 3.4), an original Tempotron (see
section 3.2) and a voltage-margin Tempotron (see section 3.3).
This was performed for a task consisting in separating 2 p+
from 4 p− patterns. To prevent promoting one algorithm against
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A B

C D

FIGURE 2 | Generalization performance measured as the number of

misclassified noisy patterns over the total number of tested noisy

patterns. Comparison between the original Tempotron, a voltage-margin
Tempotron, and SVM-PSP algorithm with 10 presynaptic neurons. Mean
value and standard deviation of false negative (FN) error (A) and false positive
(FP) error (B). The learning task is to separate one target pattern from 5
background patterns. Hundred jittered variants were generated from each

learned pattern and used for testing the generalization abilities of our
method. For each noise level, 100 trials were then performed. Mean value
and standard deviation of false negative (FN) error (C) and false positive (FP)
error (D). The learning task is to separate 2 target patterns from 4 background
patterns. Blue (resp. green) dots denote a significant difference of the
generalization results (paired t-test, p < 0.05) between our method and the
original Tempotron (resp. voltage-margin Tempotron).

another in terms of learning cycles, we took the number of hyper-
planes calculated by the voltage-margin Tempotron learning rule
as the maximum number of genotypes tested by the genetic
algorithm.

Figures 2C,D show the FN and FP error rates. Generalization
performance is lower both for the original Tempotron and the
voltage-margin Tempotron learning rule as compared to the
SVM-PSP method associated with a genetic algorithm. This is
especially relevant for FP errors. The original Tempotron has a
more symmetric error profile compared to Figure 2A. Adding
a second target pattern eliminates the influence of null synap-
tic weights initialization (see section 3.2). The error profile
of the SVM-tempotron method is also more symmetric, but
FN error rate remains larger than FP error rate. Since, com-
pared to p− patterns, the separation hyperplane is built on few
p+ points that are most probably situated on an extremity of
trajectories, they could be more subjected to variation when
jitter is added to the spike pattern. The small error rate for
the SVM-PSP method shows that maximizing the separation

margin in the feature space provides good generalization per-
formance although not all possible hyperplanes have been
tested.

We compared the generalization performance between our
new method and the others, based on spike patterns with variable
ISIs. With this new pattern generation procedure, each neuron
fires once at a time that is uniformly distributed in the interval
[10 ms, 20 ms]. The same analysis as above was performed and
results are shown in Figure 3. Whereas the SVM-PSP method
has higher FN error rate than the voltage-margin Tempotron for
strong noise, our method presents the best global generalization
performance (FN + FP) both in separating 1 p+ from 5 p−, and
2 p+ from 4 p− patterns.

Employing additional simulations, we checked the benefit of
using a genetic algorithm compared to a pure stochastic search
where both reproduction and mutation are disabled. In this
stochastic search, each new generation is composed of random
specimen. We measured the best fitness obtained after each gen-
eration for both methods, using a task consisting in separating
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A B

C D

FIGURE 3 | Generalization performance measured as the number of

misclassified noisy patterns over the total number of tested noisy

patterns. In learned patterns, each neuron fires once at a time that is
uniformly distributed in the interval [10 ms, 20 ms]. Comparison between the
original Tempotron, a voltage-margin Tempotron, and SVM-PSP algorithm
with 10 presynaptic neurons. Mean value and standard deviation of false
negative (FN) error (A) and false positive (FP) error (B). The learning task is to
separate one target pattern from 5 background patterns. Hundred jittered

variants were generated from each learned pattern and used for testing the
generalization abilities of our method. For each noise level, 100 trials were
then performed. Mean value and standard deviation of false negative (FN)
error (C) and false positive (FP) error (D). The learning task is to separate 2
target patterns from 4 background patterns. Blue (resp. green) dots denote a
significant difference of the generalization results (paired t-test, p < 0.05)
between our method and the original Tempotron (resp. voltage-margin
Tempotron).

2 p+ patterns from 5 p− patterns, and for another task con-
sisting in separating 3 p+ patterns from 6 p− patterns. The
simulation was repeated for 1000 trials. Mean and standard devi-
ation of the best fitness are shown in Figure 4. Statistical testing
was done using a paired t-test for each generation. Compared
to a pure stochastic search, the use of a genetic algorithm
guarantees a significant improvement which increases with task
difficulty.

These results show that using SVM to find a separation
hyperplane provides better generalization results than using the
Tempotron learning rule, while keeping the same bio-inspired
model (i.e., synaptic weights for a simple integrate-and-fire spik-
ing neuron model). Although the use of SVM ensures an opti-
mized linear separation in the feature space S, the shape of
the kernel, in particular its time constant, is important in the
pre-mapping of spike patterns in the feature space. The next
section study this relation.

2.3. SPIKE PATTERN SEPARABILITY DEPENDS ON SHAPE OF
POSTSYNAPTIC POTENTIALS

To know how dynamics of the kernel affect the performance of
the method, we tested spike pattern separability (see section 2.1)
with different kernel functions and various time constants.

Three kernel functions were compared: a single exponential of
equation e−t/τ , an α-function t/τ e−t/τ and a double exponential
kernel e−t/τ − e−t/τr fitted from Povysheva et al. (2006) where the
rising time constant τr is set to 0.09 τ (see Figure 5).

Spike patterns were generated by the procedure explained in
section 3.1. The time constant τ was varied between 0.25 and
64 ms. Time between 0 ms and τ + 10 ms was discretely sam-
pled with resolution of 0.1 ms. The best hyperplane was chosen
according to the method described in section 2.1. We used the
normalized distance DN (see section 2.1) to obtain a measure for
patterns separability. We write ν = τ/T for the time constant nor-
malized for pattern duration, T being the period of learned spike
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FIGURE 4 | Fitness performances obtained with a genetic algorithm

and with a pure stochastic search in tasks consisting in separating

2 p+ patterns from 4 p− patterns and separating 3 p+ from

6 p− patterns.

FIGURE 5 | Fit of a typical cortical EPSP with a double exponential

bio-mimetic kernel (τ = τd = 23 ms, τr = 0.09τ).

patterns. Maximal distance in the feature space between the tra-
jectory and the synchrony vector fs = (1, 1, . . . , 1) was quantified
by the measure Ls (see Appendix A.1).

Figures 6A–C show the separability for the three kernels,
each with spike patterns coming from either 32 or 512 affer-
ent neurons. The task was to separate 1 p+ pattern from 1 p−
pattern.

For the three tested kernels, separability is low for small ν.
Due to the small time constant τ compared to the mean ISI of
the spike pattern defined by T/N, all trajectories f (t) fluctuate in
the regime of asynchronous inputs, spanned by asynchrony base
BA = [(0, 0, . . . , 0), (1, 0, . . . , 0), . . . , (0, 0, . . . , 1)]. Therefore,
f + and f − trajectories remain close to each other, leading to a low
separability. Increasing the number of presynaptic neurons from
32 to 512 improves the spike pattern separability, since the mean

ISI decreases with the number of afferent neurons. As a result,
for a given PSP time constant, the neuron model is better at sep-
arating long lasting spike patterns when the number of afferent
neurons is large.

Separability for both the α and the double exponential kernels
decreases after a peak for intermediate ν values. For large ν values,
all f (t) trajectories converge toward the synchrony vector fs, due
to the slow kernel dynamics compared to the ISI of the pattern.
At this range of ν values, increasing the number of presynap-
tic neurons does not affect separability. As a consequence, for all
ν values, separability between two spike patterns is better with a
large number of afferent neurons.

However, separability with the single exponential kernel
increases monotonically with ν. The single-exponential kernel has
a discontinuity bringing it instantly from 0 to its maximal value
when a spike is received. For large time constants, this kernel
becomes similar to a step function. For this reason, the trajectory
does not lie on the synchrony vector, but goes from one corner of
feature space to another. It reaches the synchrony point fs when
all spikes have been received.

For a simple task such as separating two patterns from each
other, separability is closely related to the distance Ls between
trajectories and the synchrony vector, especially for large num-
ber of presynaptic neurons and large time constants. However, as
shown in Figure 6D, increasing the number of background pat-
terns to 20 decreases separability, especially when the number of
presynaptic neurons is small. For large enough number of affer-
ent neuron compared to the number of background patterns, the
volume of the feature space [0, 1]N is wide enough to provide sep-
arability close to Ls. When the number of background patterns
increases, the space becomes more “populated” and separability
decreases.

Whatever the number of afferent neurons and the number of
spike patterns are, the value of ν leading to the separability peak
remains the same and can directly be fixed by searching for kernel
dynamics that maximize Ls. Therefore, using the measure Ls can
give a fast and simple method to properly fix a kernel shape that
maximizes spike patterns separability.

Note in Figure 6C that a bio-mimetic kernel has its separability
peak value for νmax = 1.3. Therefore, maximal pattern separabil-
ity with a time constant of τ = 23 ms (see Figure 5) occurs with a
spiking period of T = τνmax = 17.7 ms, that corresponds to the
low range (≈0.50 Hz) of the so-called (low) γ frequency band
(Fries, 2009).

The choice of the PSP kernel function is a key step in design-
ing the algorithm for spike pattern classification. Both too narrow
and too wide kernels lead to sub-optimal separability. For one and
the same kernel, a neuron receiving input from a larger number of
presynaptic neurons is better in separating long-lasting spike pat-
terns. The relation between kernel dynamics and pattern duration
for spike pattern classification has already been emphasized using
different methods in Rubin et al. (2010).

2.4. PSP KERNELS FOR FAST COMPUTATION WITH THE SVM-PSP
METHOD

Convolving incoming spikes with an α-function or a double expo-
nential kernel, such those as presented in sections 2.2 and 2.3,
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A B

C D

FIGURE 6 | Separability measure DN (tmax) and maximal standard

deviation Ls as function of the relative time constant of the kernel

ν = τ/T . Results were obtained for a task consisting in separating
1 target pattern from 1 background pattern except in (D) where the task

was to separate 1 target pattern from 20 background patterns.
Simulations were performed using 32 and 512 input neurons, with a
single exponential kernel (A), with a α kernel (B), and with a bio-mimetic
kernel (C) and (D).

leads to curved trajectories in the feature space S. Thus, with our
method, every point in the trajectory makes a relevant contribu-
tion to find the best separation hyperplane, so a fine temporal
discretization of the trajectories f (t) is helpful. However, some
PSP kernels have an acceleration vector A(t) = f̈ (t) equal to zero
or collinear with the speed vector V(t) = ḟ (t) except at some
particular times where the derivative of the kernel is not contin-
uous. Those kernels produce piecewise linear trajectories in the
space S with kinks corresponding to discontinuities of the deriva-
tive. In such trajectories, only the points of discontinuity need
to be considered as relevant points when computing the separa-
tion hyperplane. Compared to the case of L equidistant samples
as used in sections 2.2 and 2.3 for which a parameter � requires
to be fixed, this method provides a more simple and more effec-
tive set of points. Four such kernels already considered in Rotter
and Diesmann (1999) are shown in Figures 7A–D.

We compared the generalization performance between the
double exponential kernel used in section 2.3, a single exponen-
tial kernel considered in section 2.3, and a “RC kernel” with a time
evolution described by the following equations.

kRC(t) =
{

(1 − e−t/τ), 0 ≤ t ≤ Tpulse

(1 − e−Tpulse/τ) e−(t−Tpulse)/τ, t ≥ Tpulse

Tpulse denotes the time where the double exponential function
reaches its maximal value (i.e., Tpulse = ττr log(τ/τr)/(τ − τr)).
For the three kernels, the time constant was set to τ = 13 ms =
1.3 T where T = 10 ms is duration of spike patterns. The task was
to separate 1 p+ pattern from 5 p− patterns. The number N of
presynaptic neurons was equal to 10.

Figures 8A,B show that the single exponential kernel has lower
performance, both with regards to FN and FP errors, than the
bio-mimetic and the RC kernel, which have similar generaliza-
tion error rate. Triangular, square, and single exponential kernels
imply linear trajectories but are highly discontinuous, jumping
instantaneously from 0 to 1 when a spike occurs. This causes
severe problems in generalization task. The RC kernel, in con-
trast, has some advantages: each spike creates two kinks in the
trajectory, the number of points to consider {f (tij, f (tij + Tpulse))}
is thus Nk = 2 Ns where Ns is the number of presynaptic spikes,
it provides “smoother” trajectories and, therefore, better general-
ization performance compared to the three other kernels and it
corresponds to a simple and well-known RC circuit that received
at time t a current pulse of duration Tpulse.

While providing similar generalization results as a curved dou-
ble exponential kernel, using the RC kernel with the SVM-PSP
method allows much faster computation especially for sparse
spike patterns.

Frontiers in Computational Neuroscience www.frontiersin.org November 2012 | Volume 6 | Article 78 | 7

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Ambard and Rotter SVM classification with LIF neurons

A B

C D

FIGURE 7 | Examples of kernels leading to piecewise linear trajectories in feature space. Shown are a triangular kernel (A), a square kernel (B), a single
exponential kernel (C), and a RC-kernel (D).

A B

FIGURE 8 | Generalization performance measured as the number of

misclassified noisy patterns over the total number of tested noisy

patterns. Comparison between a single exponential kernel, a RC kernel and a
bio-mimetic kernel. The task is to separate one target pattern from 5 background

patterns. Mean value and standard deviation of false negative (FN) error
(A) and false positive (FP) error (B). Blue (resp. green) dots denote a significant
difference of the generalization results (paired t-test, p < 0.05) obtained with
the RC kernel and the single exponential kernel (resp. biomimetic kernel).

3. MATERIALS AND METHODS
3.1. SPIKE PATTERN GENERATION AND GENERALIZATION ERROR

MEASURE
To generate spike patterns used in learning tasks, the time, ti,
of the spike of neuron i ∈ {1, . . . , N} in a pattern p, is given by

ti = Tmin + (u(p, i) − 1)(Tmax − Tmin)/(N − 1), where, for each
p, {u(p, 1), u(p, 2), . . . , u(p, N)} is an independently chosen, ran-
dom permutation of {1, 2, . . . , N}, which indicates the order in
which the neurons fire. Tmin and Tmax are the minimum and
the maximum time of spike reception. We used Tmin = 10 ms
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and Tmax = 20 ms. T = Tmax − Tmin denotes the spike pattern
period. This is true only if no jitter is present. In the case of jit-
ter, some spikes may come to lie outside of [Tmin, Tmax]. With this
procedure, each spike pattern consist in N neuron firing one spike
between Tmin and Tmax in a random order with a constant ISI.

To test generalization performance in sections 2.2, and 2.4,
random jitter is introduced in each spike i of each learned spike
pattern j. A new spike time t∗ij is generated by adding a Gaussian

noise Noise(0, σ) to each spikes time tij. If t∗ij ≤ 0 ms or t∗ij >

30 ms, a new noise value is pulled again.
Noisy p+∗ and p−∗ patterns created from each learned p+ and

p− pattern are tested for classification. The simulation is repeated
with a noise parameter σ that is varied between 0 and 2 ms.

FN error rate is the number of noisy p+∗ patterns that have not
been detected divided by the total number of noisy p+∗ patterns.
FP error rate is the number of noisy p−∗ patterns that have been
detected divided by the total number of noisy p−∗ patterns.

In section 2.2, the statistical significance of the generalization
ability of our method against the Tempotron and the voltage-
margin Tempotron were tested with a paired t-test. In section 2.4,
the same procedure was applied to test the generalization abil-
ity of a RC kernel against a bio-mimetic kernel, and a single-
exponential kernel.

3.2. ORIGINAL DISCRETE TEMPOTRON
The Tempotron algorithm is based on the integrate-and-fire neu-
ron model. The time evolution of the membrane potential V is
described by the following equation

V(t) = Vrest +
∑

i

wi

∑
j

k(t − tij) (7)

in which t is the time, V(t) is the membrane potential, wi is a
set of synaptic weights, tij is the time of the jth spike time of the
ith presynaptic neuron, k(t) is a postsynaptic kernel function and
Vrest is the resting potential. N is the number of input neurons.
The Tempotron is said to detect a spike pattern when its mem-
brane potential exceeds a threshold value θ. For simplicity, we use
Vrest = 0 and θ = 1 in simulations.

The aim of the original Tempotron learning rule is to find
an appropriate set of synaptic weights leading the membrane
potential V(t) above the threshold potential θ for spike patterns
that should be detected (p+), and to keep the membrane voltage
below the threshold for background spike patterns that should
not be detected (p−). Again, using discrete time tl = � l, a pat-
tern p is transformed into a set of voltage values Vp = {V(tl)}. The
stop condition of this learning rule is described by the following
equations

∀p ∈ P+, ∃tl : V(tl) ≥ θ (8)

∀p ∈ P−,∀tl : V(tl) < θ (9)

For illustration, let us consider a task where two spike pat-
terns, p+ and p−, have to be separated. A dot product
between the two spike trains convolved with the kernel and
those synaptic weights leads to two voltage traces V+(t) and

V−(t) as described in Equation 7. If the maximum value
of V−(t) occurs at tl = t−max and V−(t−max) = w1V1(t−max) +
w2V2(t−max) + · · · + wN VN(t−max) > θ, there is a misclassification.
In this case, the Tempotron learning rule consists in the mod-
ification of all synaptic weights wi by subtracting an amount
of �wi = λ

∑
j k(tmax − tij), λ being a learning coefficient. The

same procedure is applied when V+(t+max) < θ, except that �wi is
added to the synaptic weights. In this paper, synaptic weights are
initialized to 0 and the λ parameter is equal to 0.1.

From a geometrical point of view as explained in section 2.1,
fixing synaptic weights is equivalent to selecting a separa-
tion hyperplane according to equation w1V1 + w2V2 + · · · +
wN VN − θ = 0, where θ is the bias of the hyperplane. Checking
if there is a tl for which V−(tl) ≥ θ is equivalent to check-
ing if a point f −(tl) of F−

p is above the current hyperplane,
and modifying all synaptic weights wi by an amount of �wi is
equivalent to subtracting the vector λf (t−max) from the vector
w = (w1, w2, . . . , wN ). Thus, the Tempotron and the SVM-PSP
method share the same framework. The difference lies in the
process of setting the hyperplane coefficients.

3.3. VOLTAGE-MARGIN TEMPOTRON
To maximize the voltage separation between p+ and p− patterns,
the stop condition of the Tempotron algorithm can be modified
by adding a voltage margin MV as described in the following
equations

∀p ∈ P+, ∃tl : V(tl) ≥ θ + MV (10)

∀p ∈ P−,∀tl : V(tl) < θ − MV (11)

The algorithm starts with a margin MV = 0. When a separative
set of synaptic weights has been found, the margin is increased
by an amount of �MV that is fixed (we use �MV = 0.01). The
Tempotron learning rule is successively applied with an increas-
ing margin. This process is repeated until a larger margin cannot
be reached anymore. It is hard to decide whether a broader mar-
gin cannot be reached any more or if the algorithm requires
more time to find it (except when the margin is equal to θ

which is the highest margin that can be reached, the origin
point O = (0, 0, . . . , 0) being in each p− pattern). For this rea-
son, the algorithm stops when the learning rule has been applied
100 times successively without finding a separation for a given
margin.

Maximizing the measure DV = w1V1 + w2V2 + · · · +
wN VN − θ is equivalent to maximizing ‖w‖DS (see Equation 3).
Let ρ = θ/‖w‖ denotes the length of the orthogonal projection
of the origin point O onto the separation hyperplane in the
feature space S. From a geometric point of view, maximizing
DV amounts to finding a separation hyperplane that maximizes
the separation of the point with the supplementary constraint
of minimizing the distance ρ between the plane and the origin
point.

3.4. GENETIC ALGORITHM
As explained in section 2.1, the classification task consists in find-
ing at least one point f +(tl) from each p+ pattern that can be
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linearly separated from all the points f −(tl) of the p− patterns.
A genetic algorithm was used to test different combinations
of f +(tl) when several p+ patterns have to be separated from
background ones (p−).

For this genetic algorithm, a genotype g is a tuple of cardinal-
ity |G| = |P+| in which each element (each gene) is one f +(tl)

belonging to each different p+ pattern. A population is composed
of M genotypes (we use M = 8). For each genotype g of the
population, a separation hyperplane is calculated to try to sep-
arate all the points f −(tl), p ∈ P− from the points f +(tl) ∈ g. The
associated fitness function is

Fit(G) = min(max(DN(f +(tl))),− max(DN(f −(tl))))

with f +(tl) ∈ g and f −(tl) ∈ P−

Genotypes of the first generation are uniform random samples.
After all genotypes of a population have been evaluated with the
fitness function, the worse-performing half of the genotypes is
discarded and replaced by randomly chosen new ones. The next
quarter is used for reproduction, i.e., each pair of solutions is
mixed by randomly interchanging one part of their genotypes to
create two new solutions. Genotypes of the best quarter are used
for mutation, i.e., randomly modifying the tl of one gene (f (tl))
by a uniform pull in the discrete range [tl − 5�, tl + 5�]. In
section 2.2, to avoid a bias of any one algorithm in terms of learn-
ing cycles, we took the number of hyperplanes calculated by the
voltage-margin Tempotron learning rule as the maximum num-
ber of genotypes tested by the genetic algorithm. A description of
the algorithm is given here in list form:

1. Initialize the first generation by a random uniform sample
2. Evaluate the fitness function for all genotypes of this genera-

tion
3. Classify genotypes according to their fitness
4. Apply mutation and reproduction to the best 50% of all

genotypes
5. Replace the worse-performing 50% of the genotypes by ran-

domly chosen new ones
6. If the maximal number of genotypes to test is not reached, go

to step 2.

4. DISCUSSION
In this paper, we have described a new bio-inspired method to
classify spike patterns that provides better generalization results
than the original Tempotron. Classification results of our method
are both robust and easy to interpret in terms of neural networks.
This can be interesting in electrophysiological data analysis where
reliable spike burst classification is required. Moreover, because
the algorithm is based on causal kernels, it can be adapted to
online spike pattern classification.

Based on a geometric representation, we have obtained an
analysis of the problem that reveals an intricate relation between
PSP dynamics and classification capabilities of a Tempotron-like
neuron. This new insights allow us to come up with a simple
method to characterize computational tasks that different neu-
ron types can solve. It might be interesting to further explore

the relation between the statistics of input spike patterns (e.g.,
number of afferent neurons, oscillation frequencies in the affer-
ent network) and the parameters of PSPs dynamics in the output
neuron.

We introduced PSP kernel functions to support fast compu-
tations with the SVM-PSP method. In particular, the RC kernel
provides good generalization performance. It might be used in
electronic devices such as VLSI boards where the pulse-coded
input is first transformed by a simple RC low-pass filter, while
the output is compared to hyperplane equations at the start and
at the end of each logical squared pulse (Mitra et al., 2009).

4.1. POSSIBLE IMPROVEMENTS OF THE SVM-PSP METHOD
In this paper, simulations have been performed with only one
spike per neuron per pattern. However, the SVM-PSP method
is not theoretically limited to such patterns. Receiving several
spikes per neuron modifies the maximal values reached in each
dimension of the feature space. The re-scaling for SVM computa-
tion and the distance DN(tmax) have to be changed accordingly.
In section 2.2 we have shown that optimizing the DN mea-
sure is better than MV for generalization purposes. Alternative
notions of distance could lead to even better generalization
results. These two aspects need some additional study in the
future.

Furthermore, we have shown that using a genetic algorithm
leads to better generalization results than the learning rule origi-
nally described along with the Tempotron, and enhanced with an
increased voltage margin. However, the comparison has here been
done on an easy task (i.e., separate 2 p+ pattern from 4 p− pattern
with one spike from 10 neurons). It is not clear though whether
the genetic algorithm can find a good separation in more difficult
tasks where more patterns have to be separated.

Tempotron-like algorithms have the advantage of using a gra-
dient descent of a cost function whereas a genetic algorithm
performs a stochastic search. A hybrid solution to solve the opti-
mization problem would consist in running a Tempotron-like
learning rule to find a separation hyperplane according to the
equation w1 V1 + w2 V2 + · · · + wN VN − θ = 0. The times t+max
of maximum voltages corresponding to all p+ patterns are kept
and used as seed points for the SVM-PSP method to obtain better
separation coefficients (synaptic weights) for generalization.

The chosen hyper-parameters of the SVM (solver type, cost,
and epsilon) provide satisfactory generalization results compared
to the Tempotron and the voltage-margin Tempotron as shown
in Figure 2. Fine-tuning them with a grid-based search would
only improve the generalization results in our case. This kind of
tuning is very-likely needed for more difficult classification tasks.
We checked if those parameters modify the shape of curves of
Figure 4. We used a grid-search with a cost parameter value from
10, 10000, 10000000 and an epsilon value from 0.01, 0.00001,
0.00000001 but we did not find any noticeable change in the shape
(data not shown).

4.2. POSSIBLE IMPROVEMENTS OF THE TEMPOTRON METHOD
As previously mentioned, the training procedure of the origi-
nal Tempotron algorithm stops without optimizing the separa-
tion hyperplane for generalization. To overcome this limitation,
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a standard procedure would consist in generating a number of
jittered training samples to learn the optimal weights. But this
method entails some drawbacks. First, it is difficult to find the
optimal amplitude of the noise injected to generate the training
sample: using a too low noise level would not lead to a better
separation hyperplane. Using a too high noise level could render
the problem not linearly separable, which leads to bad classifi-
cation results. Secondly, the multiplication of training patterns
leads to an increased computational load. The SVM-PSP method
avoids these problems by directly optimizing the margin between
the points and the separation hyperplane. Using jittered train-
ing samples, the difference in the performance of the standard
Tempotron and the voltage-margin Tempotron would become
negligible only when the maximum voltage-margin is very small,
close to compromising linear separability. In this case, the SVM-
PSP method would theoretically also lead to the same separation
hyperplane.

Changing the kernel from the curved double exponential ker-
nel to a kernel that generates linear piece-wise trajectories in the
phase space (such as the RC kernel) does not affect the general
scheme of the discretized Tempotron learning rule. By using the
RC kernel, the time discretization is simplified. Times that need
to be computed are Vp = {V(tij), V(tij + Tpulse)}. This can lead
to a drastic reduction of computation time, especially in the case
of sparse activity. The non-discretized version of the Tempotron
also suggests a good method to decrease the number of relevant
points by analytically resolving the times of maximum voltage
between successive incoming spikes. It can be applied to double-
exponential kernels, which are more similar to PSP in real nerve
cells than “linear” kernels, such as the RC kernel. However, at

each synaptic weight modification, and for each spike of each
pattern, the non-dicretized version of the Tempotron requires
the estimation of four parameters: the voltage, the synaptic cur-
rent, the time of maximum voltage between two consecutive
spikes, and the maximum voltage at this time. With the RC
kernel for which kink times are fixed, at each synaptic weight
modification, and for each spike of each pattern, only two num-
bers need to be determined: the voltage value at the two kink
times.

One important question is whether the simple Tempotron-
like neuron model is complex enough to also reflect the behavior
of biological neurons. One of the most problematic differences
is that biological synapses can not change their nature from
excitatory to inhibitory, and vice versa. Another characteristic dif-
ference is that inhibitory synapses might have different kinetics
than excitatory synapses (Karnup and Stelzer, 1999). Whereas
with the SVM-PSP method it seems impossible to deal with
these issues, one can partly resolve them by slightly modifying
the Tempotron learning rules. Synaptic weights have to be ini-
tialized with the right sign, and the learning rule is modified
preventing a synaptic weight to change its sign. Thus, it is pos-
sible to fix different PSP kernels for excitatory and inhibitory
synapses.
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APPENDIX
A.1. NORMALIZED ORTHOGONAL DISTANCE BETWEEN A POINT AND

THE SYNCHRONY VECTOR IN THE FEATURE SPACE
Let us consider the point f (t) = (f1(t), . . . , fN(t)) in the feature
space S. fs = (1, . . . , 1) denotes the synchrony vector, f ′(t) is the
orthogonal projection of the point f (t) onto the vector fs, and ls(t)
is the length of the vector f (t) − f ′(t) normalized by ‖fs‖ = √

N.
Ls is the maximum of ls(t) computed at all incoming spike times
of one particular pattern. We found

f ′(t) = 〈f (t), fs〉/‖fs‖2 fs

= (f̄i(t), . . . , f̄i(t))

ls(t) = ‖f (t) − f ′(t)‖/‖fs‖

=
√

1

N

∑
i

(fi(t) − f̄i(t))2

= std({fi(t)})
Ls = max(std({fi(t)}))
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