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We present a biophysical approach for the coupling of neural network activity as resulting
from proper dipole currents of cortical pyramidal neurons to the electric field in extracellular
fluid. Starting from a reduced three-compartment model of a single pyramidal neuron, we
derive an observation model for dendritic dipole currents in extracellular space and thereby
for the dendritic field potential (DFP) that contributes to the local field potential (LFP) of a
neural population. This work aligns and satisfies the widespread dipole assumption that is
motivated by the “open-field” configuration of the DFP around cortical pyramidal cells. Our
reduced three-compartment scheme allows to derive networks of leaky integrate-and-fire
(LIF) models, which facilitates comparison with existing neural network and observation
models. In particular, by means of numerical simulations we compare our approach with
an ad hoc model by Mazzoni et al. (2008), and conclude that our biophysically motivated
approach yields substantial improvement.
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1. INTRODUCTION
Since Hans Berger’s 1924 discovery of the human electroen-
cephalogram (EEG) (Berger, 1929), neuroscientists achieved
much progress in clarifying its neural generators (Creutzfeldt
et al., 1966a,b; Nunez and Srinivasan, 2006; Schomer and
Lopes da Silva, 2011). These are the cortical pyramidal neurons, as
sketched in Figure 1, that possess a long dendritic trunk separat-
ing mainly excitatory synapses at the apical dendritic tree from
mainly inhibitory synapses at the soma and at the perisomatic
basal dendritic tree (Creutzfeldt et al., 1966a; Spruston, 2008).
In addition, they exhibit an axial symmetry and are aligned in
parallel to each other, perpendicular to the cortex’ surface, thus
forming a palisade of cell bodies and dendritic trunks. When both
kinds of synapses are simultaneously active, inhibitory synapses
generate current sources and excitatory synapses current sinks in
extracellular space, hence causing the pyramidal cell to behave
as a microscopic dipole surrounded by its characteristic electri-
cal field, the dendritic field potential (DFP). The densely packed
pyramidal cells form then a dipole layer whose superimposed cur-
rents give rise to the local field potential (LFP) of neural masses
and eventually to the EEG (Nunez and Srinivasan, 2006; Lindén
et al., 2010; Lindén et al., 2011; Schomer and Lopes da Silva,
2011).

Despite of the progress from experimental neuroscience, the-
oretically understanding the coupling of complex neural network
dynamics to the electromagnetic field in the extracellular space
poses challenging problems; some of them have been addressed to
some extent by Bédard et al. (2004); Bédard and Destexhe (2009),
and Bédard and Destexhe (2012).

In computer simulation studies, neural mass potentials, such
as LFP and EEG are most realistically simulated by means of
multicompartmental models (Protopapas et al., 1998; Sargsyan
et al., 2001; Lindén et al., 2010; Lindén et al., 2011). Lindén et al.
(2010) calculated the current dipole momentum of the DFP for
single pyramidal and stellate cells, based on several hundreds
compartments of the dendritic trees. Their results were in compli-
ance with the standard dipole approximation of the electrostatic
multipole expansion in the far-field (more than 1 mm remote
from the dendritic trunk), but they found rather poor agree-
ment with that approximation in the vicinity of the cell body.
For comparison they also computed a “two-monopole” model
of one synaptic current and its counterpart, the somatic return
current, estimated from the current dipole momentum of the
whole dendritic tree. This “two-monopole” model, which corre-
sponds to an electrically equivalent single dipole model, obtained
from the decomposition of the dendrite into two compartments,
better approximates the true current dipole momentum in the
vicinity of the pyramidal neuron. By superimposing the DFPs of
pyramidal cells to the ensemble LFP, Lindén et al. (2011) found
that LFP properties cannot be attributed to the far-field dipole
approximation.

However, realistic multicompartmental models are compu-
tationally too expensive for large-scale neural network sim-
ulations. Therefore, various techniques have been proposed
and employed to overcome computational complexity. These
include networks of point models (i.e., devoid from any spa-
tial representation), based on conductance models (Hodgkin and
Huxley, 1952; Mazzoni et al., 2008), population density models
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beim Graben and Rodrigues Observation models for field potentials

FIGURE 1 | Sketch of a cortical pyramidal neuron with extracellular current dipole between spatially separated excitatory (open bullet) and inhibitory

synapses (filled bullet). Neural in- and outputs are indicated by the jagged arrows. Dendritic current ID causes dendritic field potential (DFP).

(Omurtag et al., 2000), or firing rate models (Wilson and Cowan,
1972), which can be seen as a sub class of population den-
sity models, with uniform density distribution (Chizhov et al.,
2007). In these kinds of models, mass potentials such as LFP or
EEG are conventionally described as averaged membrane poten-
tial. A different class of models are neural mass models (Jansen
and Rit, 1995; Wendling et al., 2000; David and Friston, 2003;
Rodrigues et al., 2010), where mass potentials are estimated either
through sums (or actually differences) of excitatory postsynap-
tic potentials (EPSP) (David and Friston, 2003) or of excitatory
postsynaptic currents (EPSC) (Mazzoni et al., 2008).

In particular, the model of Mazzoni et al. (2008) which is
based on Brunel and Wang (2003), recently led to a series of
follow-up studies (Mazzoni et al., 2010, 2011) addressing the
correlations between numerically simulated and experimentally
measured LFP/EEG with spike rates by means of statistical model-
ing and information theoretic measures. In all of the above point
models and their extension to population models, it is assumed
that the extracellular space is iso-potential and the majority of
studies thereby neglect the effect of extracellular resistance. That
is, the extracellular space constitutes a different and isolated
domain with no effect on neuronal dynamics.

In this article we extend the ad hoc model of Mazzoni
et al. (2008) toward a biophysically better justified approach,
taking the dipole character of extracellular currents and fields
into account. Basically, our model corresponds to the “two-
monopole,” or, equivalent dipole model of Lindén et al. (2010)
which gave a good fit of the DFP close to the cell body of a
cortical pyramidal neuron. However, we aim to keep the sim-
plicity of the Mazzoni et al. (2008) model in terms of com-
putational complexity, by endowing the extracellular space with
resistance and by keeping point-like neuronal circuits. That is,

in our case we do not quite consider point neurons, nor spa-
tially extended models with detailed compartmental morphol-
ogy, yet an intermediate level of description is achieved. To
this end we propose a reduced three-compartmental model of
a single pyramidal neuron (Destexhe, 2001; Wang et al., 2004;
beim Graben, 2008), and derive an observation model for the
dendritic dipole currents in the extracellular space and thereby
for the DFP that contributes to the LFP of a neural popu-
lation. Interestingly, our reduced three-compartmental model
enables us to derive a leaky integrate-and-fire (LIF) mecha-
nism [as for a point model (Mazzoni et al., 2008)], with addi-
tional observation equations for the DFP, which all together
allows to study the relationship between spike rates and LFP.
Our derivations also nicely map realistic electrotonic parame-
ters to phenomenological parameters considered in Mazzoni et al.
(2008).

2. MATERIALS AND METHODS
Mazzoni et al. (2008) consider three populations of neu-
rons, namely excitatory cortical pyramidal cells (population 1),
inhibitory cortical interneurons (population 2), and excitatory
thalamic relay neurons (population 3), passing sensory input to
the cortex that is simulated by a random (Erdős–Rényi) graph of
K = 4000 pyramidal and L = 1000 interneurons with connection
probability P = 0.2.

2.1. THEORY
We describe the ith cortical pyramidal neuron (Figure 1) from
population 1 via the electronic equivalent (reduced) three-
compartment model (Figure 2) (Destexhe, 2001; Wang et al.,
2004; beim Graben, 2008), which is parsimonious to derive our
observation model: one compartment for the apical dendritic
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FIGURE 2 | Proposed electronic equivalent circuit for a pyramidal

neuron (reduced three-compartmental model). Note that the apical
and basal dendrites are not true compartments since capacitors are not

explicitly represented, rather, these are implicitly taken into account via
EPSP and IPSP static functions, thus keeping computational complexity
low.

tree, another one for soma and perisomatic basal dendritic tree
(Lindén et al., 2010), and the third—actually a LIF unit—for the
axon hillock where membrane potential is converted into spike
trains by means of an integrate-and-fire mechanism.

Excitatory synapses are represented by the left-most branch,
where EPSP at a synapse between a neuron j from population 1 or
3 and neuron i act as electromotoric forces EE

ij . These potentials

drive EPSC IE
ij , essentially consisting of sodium ions, through the

cell plasma with resistance RE
ij from the synapse toward the axon

hillock.
The middle branch describes the inhibitory synapses between

a neuron k from population 2 and neuron i. Here, inhibitory
postsynaptic potentials (IPSP) EI

ik provide a shortcut between the
excitatory branch and the trigger zone, where inhibitory postsy-
naptic currents (IPSC) II

ik (essentially chloride ions) close the loop
between the apical and perisomatic dendritic trees. The resistivity
of the current paths along the cell plasma is given by RI

ik.
The cell membrane at the axon hillock itself is represented by

the branch at the right hand side. Here, a capacitor Ci reflects the
temporary storage capacity of the membrane. The serial circuit
consisting of a battery EM and a resistor RM denotes the Nernst
resting potential and the leakage conductance of the membrane,
respectively (Johnston and Wu, 1997). Finally, a spike generator
(Hodgkin and Huxley, 1952; Mazzoni et al., 2008) (indicated by a
“black box”) is regarded of having infinite input impedance. Both,
EPSP and IPSP result from the interaction of postsynaptic recep-
tor kinetics with dendritic low-pass filtering in compartments one
and two, respectively (Destexhe et al., 1998; Lindén et al., 2010).
Hence the required capacitances, omitted in Figure 2, are already
taken into account by EE

ij , EI
ik. Therefore, we refer to our model as

to a “reduced compartment model” here.

The three compartments are coupled through longitudinal
resistors, RA

i , RB
i , RC

i , and RD
i where RA

i , RB
i denote the resistivity

of the cell plasma and RC
i , RD

i that of extracellular space (Holt and
Koch, 1999).

Finally, the membrane voltage at the axon hillock Ui (the
dynamical state variable) and the DFP Vi, which measures the
drop in electrical potential along the extracellular resistor RD

i
are indicated. For the aim of calculation, the mesh currents
ID
i (the dendritic current), IB

i (the basal current), and IIF
i (the

integrate-and-fire current) are indicated.
The circuit in Figure 2 obeys the following equations:

ID
i =

p∑
j= 1

IE
ij (1)

IB
i =

q∑
k= 1

II
ik (2)

IIF
i = ID

i − IB
i (3)

IIF
i = Ci

dUi

dt
+ Ui − EM

RM
(4)

EE
ij = RE

ijI
E
ij +

(
RA

i + RD
i

)
ID
i +

(
RB

i + RC
i

)
IIF
i

+Ui, 1 ≤ j ≤ p (5)

EI
ik = RI

ikII
ik +

(
RB

i + RC
i

)
IIF
i + Ui, 1 ≤ k ≤ q (6)

Vi = RD
i ID

i . (7)

Here, p is the number of excitatory and q is the number of
inhibitory synapses connected to neuron i.
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The circuit described by Equations (1–7) shows that the neu-
ron i is likely to fire when the excitatory synapses are activated.
Then, the integrate-and-fire current IIF

i equals the dendritic cur-
rent ID

i . If, by contrast, also the inhibitory synapses are active, the
dendritic current ID

i is shunted between the apical and periso-
matic basal dendritic trees and only a portion could evoke spikes
at the trigger zone (Equation 4). On the other hand, the large
dendritic current ID

i flowing through the extracellular space of
resistance RD

i , gives rise to a large DFP Vi.
In order to simplify the following derivations, we gauge the

resting potential (Equation 4) to EM = 0, yielding

IIF
i = Ci

dUi

dt
+ Ui

RM
. (8)

From Equation (5) we obtain the individual EPSC’s as

IE
ij =

1

RE
ij

[
EE

ij −
(
RA

i + RD
i

)
ID
i −

(
RB

i + RC
i

)
IIF
i − Ui

]
. (9)

And accordingly, the individual IPSC’s from Equation (6)

II
ik =

1

RI
ik

[
EI

ik −
(
RB

i + RC
i

)
IIF
i − Ui

]
. (10)

Inserting Equation (9) into Equation (1) yields the excitatory
dendritic current

ID
i =

p∑
j= 1

1

RE
ij

EE
ij − gE

i

[(
RA

i + RD
i

)
ID
i +

(
RB

i + RC
i

)
IIF
i + Ui

]
,

(11)

where we have introduced the excitatory dendritic conductivity

gE
i =

p∑
j= 1

1

RE
ij

. (12)

Likewise we obtain the inhibitory dendritic currents from
Equations (2) and (10) as

IB
i =

q∑
k= 1

1

RI
ik

EI
ik − gI

i

[(
RB

i + RC
i

)
IIF
i + Ui

]
, (13)

with the inhibitory dendritic conductivity

gI
i =

q∑
k= 1

1

RI
ik

. (14)

With these results, we obtain an interface equation for an
observation model as follows. Rearranging Equation (11) yields

ID
i

[
1+ gE

i

(
RA

i + RD
i

)] = p∑
j= 1

1

RE
ij

EE
ij − gE

i

[(
RB

i + RC
i

)
IIF
i + Ui

]
(15)

Next, we eliminate IIF
i through Equation (8):

ID
i

[
1+ gE

i

(
RA

i + RD
i

)] = p∑
j= 1

1

RE
ij

EE
ij − gE

i

×
[

Ci
(
RB

i + RC
i

) dUi

dt
+ Ui

(
1+ RB

i + RC
i

RM

)]
.

Division by 1+ gE
i

(
RA

i + RD
i

)
gives the desired expression for

the extracellular dendritic dipole current:

ID
i =

p∑
j= 1

αijE
E
ij − βi

dUi

dt
− γiUi, (16)

with the following electrotonic parameters

αij = 1

RE
ij

[
1+ gE

i

(
RA

i + RD
i

)] (17)

βi = Cig
E
i

(
RB

i + RC
i

)
1+ gE

i

(
RA

i + RD
i

) (18)

γi = gE
i

(
RM + RB

i + RC
i

)
RM

[
1+ gE

i

(
RA

i + RD
i

)] . (19)

In order to derive the evolution equation we consider the
integrate-and-fire current IIF

i that is given through Equation (3).
The individual EPSCs and IPSCs have already been obtained in
Equations (9) and (10), respectively. Inserting Equation (13) into
Equation (3) yields

IIF
i

[
1− gI

i

(
RB

i + RC
i

)]− gI
i Ui = ID

i −
q∑

k= 1

1

RI
ik

EI
ik.

Next we insert our interface equation Equation (16) and also
Equation (8):[

Ci
dUi

dt
+ Ui

RM

] [
1− gI

i

(
RB

i + RC
i

)]− gI
i Ui

=
p∑

j= 1

αijE
E
ij − βi

dUi

dt
− γiUi −

q∑
k= 1

1

RI
ik

EI
ik

and obtain after some rearrangements

{Ci
[
1− gI

i

(
RB

i +RC
i

)]+ βi}dUi

dt

+ 1− gI
i

(
RB

i +RC
i +RM

)+ RMγi

RM
Ui =

p∑
j= 1

αijE
E
ij −

q∑
k= 1

1

RI
ik

EI
ik

and after multiplication with

ri = RM

1− gI
i

(
RB

i + RC
i + RM

)+ RMγi
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the dynamical law for the membrane potential at axon hillock:

τi
dUi

dt
+ Ui =

p∑
j= 1

wE
ij EE

ij −
q∑

k= 1

wI
ik EI

ik, (20)

where we have introduced the following parameters:

• time constants

τi = ri
{

Ci
[
1− gI

i

(
RB

i + RC
i

)]+ βi
}

(21)

• excitatory synaptic weights

wE
ij = riαij (22)

• inhibitory synaptic weights

wI
ik =

ri

RI
ik

. (23)

Using the result Equation (20), we can also eliminate the tem-
poral derivative in the interface equation Equation (16) through

dUi

dt
= 1

τi

⎡
⎣ p∑

j= 1

wE
ij EE

ij −
q∑

k= 1

wI
ik EI

ik − Ui

⎤
⎦ (24)

which yields

ID
i =

p∑
j= 1

(
αij − βi

τi
wE

ij

)
EE

ij +
q∑

k= 1

βi

τi
wI

ik EI
ik +

(
βi

τi
− γi

)
Ui.

And eventually, by virtue of Equation (7) after multiplication with
RD

i the DFP

Vi =
p∑

j= 1

w̃E
ij EE

ij +
q∑

k= 1

w̃I
ik EI

ik + ξiUi, (25)

with parameters

w̃E
ij = RD

i wE
ij

(
1

ri
− βi

τi

)
(26)

w̃I
ik = RD

i wI
ik

βi

τi
(27)

ξi = RD
i

(
βi

τi
− γi

)
. (28)

The change in sign of the inhibitory contribution from
Equation (20) to Equation (25) has an obvious physical interpre-
tation: In Equation (20), the change of membrane potential Ui

and therefore the spike rate is enhanced by EPSPs but diminished
by IPSPs. On the other hand, the dendritic shunting current ID

i in
Equation (25) is large for both, large EPSPs and large IPSPs.

From Equation (20) we eventually obtain the neural network’s
dynamics by taking into account that postsynaptic potentials

are obtained from presynaptic spike trains through temporal
convolution with postsynaptic impulse response functions, i.e.,

EE|I
ij (t) =

∫ t

−∞
sE|I
i (t − t′)Rj(t′) dt′ (29)

where sE|I
i (t) are excitatory and inhibitory synaptic impulse

response functions, respectively, and Rj is the spike train

Rj(t) =
∑

tν

δ (t − tν − τL) (30)

coming from presynaptic neuron j, when spikes were emitted at
times tν. The additional time constant τL is attributed to synap-
tic transmission delay (Mazzoni et al., 2008). These events are
obtained by integrating Equation (20) with initial condition

Ui (tν) = E. (31)

where E is some steady-state potential (Mazzoni et al., 2008). If at
time t = tν the membrane reaches a threshold

Ui(t) ≥ θi(t) (32)

[with possibly a time-dependent activation threshold θi(t)] from

below dUi(t)
dt > 0 then an output spike δ(t − tν) is generated,

which is then followed by a potential resetting as follows

Ui(tν+1)← E. (33)

Additionally, the integration of the dynamical law is restarted at
time t = tν+1 + τrp after interrupting the dynamics for a refrac-
tory period τrp.

Inserting Equation (29) into Equation (20) entails the evolu-
tion equation of the neural network

τi
dUi

dt
+ Ui =

p∑
j= 1

wE
ij sE

i (t) ∗ Rj(t)+
q∑

k= 1

wI
ik sI

i(t) ∗ Rk(t), (34)

where the signs had been absorbed by the synaptic weights, such
that wE

ij > 0 for excitatory synapses and wI
ik < 0 for inhibitory

synapses, respectively.
Following Mazzoni et al. (2008) an individual postsynaptic

current IE|I
ij at a synapse between neurons i and j obeys

τ
E|I
d

dIE|I
ij

dt
+ IE|I

ij = xE|I
ij (35)

τE|I
r

dxE|I
ij

dt
+ xE|I

ij = FE|I
ij , (36)

where τ
E|I
d are decay time constants and τ

E|I
r are rise time constants

of EPSC and IPSC, respectively. Auxiliary variables are denoted by
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xE|I
ij , while FE|I

ij prescribes presynaptic forcing

FE|I
ij = τiJijRj(t) (37)

with spike train Equation (30). Here, Jij = vwE|I
ij denotes synaptic

gain with v = 1 mV as voltage unit.
Note that Equation (37) is essentially a weighted sum of delta

functions, such that a single spike can be assumed as particular
forcing

F = F0δ(t), (38)

with some constant F0.
Derivating Equation (35) and eliminating xE|I

ij transforms
Equations (35, 36) into a linear second-order differential equation
with constant coefficients

τ
E|I
d τE|I

r

d2IE|I
ij

dt2
+
(
τ

E|I
d + τE|I

r

) dIE|I
ij

dt
+ IE|I

ij = FE|I
ij . (39)

Equation (39) with the particular forcing Equation (38) is

solved by a Green’s function sE|I
i (t) such that the general solution

of Equation (39) is obtained as the temporal convolution

IE|I
ij (t) =

∫ t

−∞
sE|I
i (t − t′)FE|I

ij (t) dt′. (40)

For t �= 0, Equation (39) assumes its homogeneous form
and is easily solved by means of the associated characteristic
polynomial

τ
E|I
d τE|I

r λ2 +
(
τ

E|I
d + τE|I

r

)
λ+ 1 = 0 (41)

with roots λ1 = −1/τ
E|I
d and λ2 = −1/τ

E|I
r , entailing the Green’s

functions

sE|I
i (t) =

(
AE|Iet/τE|I

r − BE|Iet/τE|I
d

)
�(t) (42)

with the Heaviside step function �(t).
The constants AE|I, BE|I > 0 are obtained from the ini-

tial conditions sE|I
i (t) = 0, reflecting causality, and a suitable

normalization ∫ ∞
0

sE|I
i (t)dt = 1.

The initial condition yields AE|I = BE|I ≡ SE|I, while the
remaining constant

SE|I = 1

τ
E|I
d − τ

E|I
r

,

due to normalization. Therefore, the normalized Green’s func-
tions are those of Brunel and Wang (2003)

sE|I
i (t) = v

τi

τ
E|I
d − τ

E|I
r

(
et/τE|I

r − et/τE|I
d

)
�(t). (43)

Now, we are able to compare our DFP Vi (Equation 25) with
the estimate of Mazzoni et al. (2008) which is given (in our nota-
tion) as the sums of the moduli of excitatory and inhibitory
synaptic currents, i.e.,

VMPLB
i =

∑
j

|IE
ij | +

∑
k

|II
ik| (44)

where “MPLB” refers to the authors Mazzoni et al. (2008).
From Equations (25) and (44), respectively, we compute two

models of the LFP. First, by summing DFP across all pyramidal
neurons (beim Graben and Kurths, 2008; Mazzoni et al., 2008),
and, second by taking the DFP average (Nunez and Srinivasan,
2006), which yields

L1 =
∑

i

VMPLB
i (45)

L2 = 1

K

∑
i

VMPLB
i (46)

L3 =
∑

i

Vi (47)

L4 = 1

K

∑
i

Vi, (48)

where K is number of pyramidal neurons.

2.2. PARAMETER ESTIMATION
Next, we relate the electrotonic parameters of our model to the
phenomenological parameters of Mazzoni et al. (2008). To this
end, we first report their synaptic efficacies in Table 1.

From these, we compute the synaptic weights through

wE
ij = JE

ij /v =
{

0.42 if j “cortical”
0.55 if j “thalamic”

(49)

and

wI
ik = JI

ik/v = 1.7

Next, we determine the factors ri by virtue of Equation (23)
through

ri = wI
ik

ḡGABA
= 1.7

1 nS
= 1.7 G�

using the inhibitory synaptic conductivity ḡGABA = 1 nS, corre-
spondingly, Equation (22) allows us to express αij in terms of the

Table 1 | Parameters laid as in Mazzoni et al. (2008).

Synaptic efficacies/mV On interneurons On pyramidal neurons

GABA 2.7 1.7

Recurrent cortical AMPA 0.7 0.42

External thalamic AMPA 0.95 0.55
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excitatory synaptic weights through

αij =
wE

ij

ri
=
{

0.25 nS if j “cortical”
0.32 nS if j “thalamic”

From αij we can determine the total excitatory synaptic con-
ductivities gE

i according to Equation (17) through

αij = 1

RE
ij

[
1+ gE

i

(
RA

i + RD
i

)]

gE
i

⎡
⎣1− (RA

i + RD
i

) p∑
j=1

αij

⎤
⎦ = p∑

j=1

αij

gE
i =

∑p
j=1 αij

1− (RA
i + RD

i

)∑p
j=1 αij

(50)

and hence

RE
ij =

1

αij
[
1+ gE

i

(
RA

i + RD
i

)] (51)

Inserting next Equation (18) into Equation (21) yields

τi= riCi
1+ gE

i

(
RA

i +RD
i

)+ (RB
i +RC

i

) {
gE

i − gI
i

[
1+ gE

i

(
RA

i +RD
i

)]}
1+ gE

i

(
RA

i +RD
i

) .

(52)

Equation (52) could constraint the choice of the membrane
capacitance Ci by choosing τi = 20 ms (Mazzoni et al., 2008).

In order to also determine the DFP parameters Equations
(26–28), we finally compute the ratios

βi

τi
= gE

i

(
RB

i +RC
i

)
ri
{

1+ gE
i

(
RA

i +RD
i

)+ (RB
i +RC

i

) {
gE

i −gI
i

[
1+ gE

i

(
RA

i +RD
i

)]}} .

The remaining electrotonic parameters RM
i , RA

i , RB
i , RC

i , and
RD

i are estimated from cell geometries as follows. The resistance
R of a volume conductor is proportional to its length � and
reciprocally proportional to its cross-section A, i.e.,

R = ρ
�

A
(53)

where ρ is the (specific) resistivity of the medium. Table 2 shows
the resistivities of the three kinds of interest which then allows to
evaluate the various volume conductor resistances according to
Equation (53).

We consider a total dendritic length of 2� = 20 μm and a
dendritic radius of a = 7 μm, that are generally subjected to vari-
ation. Equally, parameters that were allowed to vary are the length
and radius of the axon hillock, yet herein we consider a length
of 2� = 20 μm and radius of a = 0.5 μm (Mainen et al., 1995;
Destexhe, 2001; Kole and Stuart, 2012). To evaluate the intracel-
lular (RA, RB) and extracellular (RD, RC) resistances, respectively,
according to Equation (53), we consider a simple implementation

Table 2 | Resistivities of cell membrane, cell plasma and extracellular

space.

Medium ρ/�cm

Cell membrane (at axon hillock) 5× 107

Cell plasma (cytoplasm) 200

Extracellular space 333

Parameters from Rall (1977); Mainen et al. (1995); Kole and Stuart (2012), and

Gold et al. (2007). Note that the resistivity of the cell membrane has to be related

to the constant membrane thickness (≈10 nm).

where the length � is half of the dendritic length (i.e., basal and
apical length are symmetrical, but this can be broken). However,
the cross sectional area for the cytoplasm is simply A = πa2.
Finally, the area of the axon hillock is simply the surface area of a
cylinder.

In order to also determine the cross-section of extracel-
lular space between dendritic trunks we make the following
approximations. We assume that dendritic trunks are parallel
aligned cylinders of radius a and length � that are hexago-
nally dense packed. Then the centers of three adjacent trunks
form an equilateral triangle with side length 2a and hence
area 2

√
3a2. The enclosed space is then given by the difference

of the triangle area and the area of three sixth circle sectors,
therefore

Aspace = 2
√

3a2 − 3

6
πa2 =

(
2
√

3− 1

2
π

)
a2.

Hence, the cross-section of extracellular space surrounding
one trunk is

A = 6Aspace =
(

12
√

3− 3π
)

a2. (54)

2.3. SIMULATIONS
Subsequently, we implement an identical network to the one
considered by Mazzoni et al. (2008) with Brian Simulator, that
is a Python-based environment (Goodman and Brette, 2009).
However, the derivations from the previous section enables the
possibility of setting a dipole observable that measures the local
DFP on each pyramidal neurons, given by Equation (25). This
allows then to define a mesoscopic LFP observable, which can be
equated either as averaged DFP or simply given as the sum of DFP,
given by Equations (45–48). Primarily, we compare our LFP mea-
sure L4, proposed as the average of DFP, with the Mazzoni et al.
LFP L1 which is defined as the sum of absolute values of GABA
and AMPA currents (Equation 44). Additionally, we also com-
pare all possible measures, namely, mean membrane potential
1
K

∑
i Ui, Mazzoni et al. LFP L1, average of Mazzoni et al. DFP L2,

sum of DFP L3, and the average of DFP L4.
For completeness, we briefly summarize the description of the

network [we refer the reader to Mazzoni et al. (2008) for details].
The network models a cortical tissue with LIF neurons, composed
of 1000 inhibitory interneurons and 4000 pyramidal neurons,
which are described by the evolution Equation (34). The thresh-
old crossings given by Equation (32) is considered static with
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θi = 18 mV and the reset potential E = 11 mV. The refractory
period for excitatory neurons is τrp = 2 ms while for inhibitory
neurons it is τrp = 1 ms. The network connectivity is random and
sparse with a 0.2 probability of directed connection between any
pair of neurons. The evolution of synaptic currents, fast GABA
(inhibitory) and AMPA (excitatory) are described via the second
order evolution Equations (35, 36), which are activated by incom-
ing presynaptic spikes represented by Equation (30). The latency
of the postsynaptic currents is set to τL = 1 ms and the rise and
decay times are given by Table 3.

Moreover, synaptic efficacies, JE|I
ij , for simulation were

presented in Table 1. Note that Relation (49) then allows to deter-
mine the synaptic weights. Additionally, all neurons receive exter-
nal thalamic excitatory inputs, that is, via AMPA-type synapses,
which are activated by random Poisson spike trains, with a time
varying rate that is identical for all neurons. Specifically, the thala-
mic inputs are the only source of noise, which attempts to account
for both cortical heterogeneity and spontaneous activity. This is
achieved by modeling a two level noise, where the first level is an
Ornstein–Uhlenbeck process superimposed with a constant sig-
nal and the second level is a time varying inhomogeneous Poisson
process. Thus, we have the following time varying rate, λ(t), that
feeds into inhomogeneous Poisson process:

τn
dn(t)

dt
= −n(t)+ σn

√
2

τn
η(t) (55)

λ(t) = [c0 + n(t)]+ (56)

where η(t) represents Gaussian white noise, c0 represents a con-
stant signal (but equally could be periodic or other), and the
operation [·] is the threshold-linear function, [x]+ = x if x > 0,
[x]+ = 0 otherwise, which circumvents negative rates. The con-
stant signal c0 can range between 1.2 and 2.6 spikes/ms. The
parameters of the Ornstein–Uhlenbeck process are τn = 16 ms
and the standard deviation σn = 0.4 spikes/ms.

For complete exposition, we note that from an
implementation viewpoint (within the Brian simulator), a copy
of the postsynaptic impulse response function (Equation 29)
has to be evaluated to calculate the DFP (Equation 25) with

weights w̃E|I
ij . This implies evaluating the second order pro-

cess (Equations 35, 36) with a different forcing term. Specifically,

starting from IE|I
ij (t) ≡ wE|I

ij EE|I
ij (t) = sE|I

i (t) ∗ FE|I
ij and pre-

multiplying both sides with w̃E|I
ij and subsequently re-arranging

we obtain the desired forcing term F̃E|I
ij = w̃E|I

ij FE|I
ij /wE|I

ij . Note

Table 3 | Synaptic rise (τr) and decay times (τd).

Synaptic times τr/ms τd/ms

GABA 0.25 5

AMPA on interneurons 0.2 1

AMPA on pyramidal neurons 0.4 2

Parameters laid as in Mazzoni et al. (2008).

further that by expanding the term FE|I
ij with Equation (37) and

using Relation (49) we finally obtain F̃E|I
ij = w̃E|I

ij τivRj(t).

3. RESULTS
Following Mazzoni et al. (2008), the network simulations are
run for 2 s with three different noise levels, specifically, receiv-
ing a constant signal with three different rates 1.2, 1.6, and 2.4
spikes/ms as depicted in Figure 3. Note that these input rates
do not mean that a single neuron fires at these high rates.
Rather, it can be obtained from multiple neurons that jointly
fire with slower, yet desynchronized, rates converging at the same
postsynaptic cell. The Poisson process ensures that this is well
represented.

The focus is to compare our proposed measure L4, defined
as mean of the DFP (Equation 48), with the Mazzoni et al. LFP
L1 from Equation (45). In Figure 3 one sees two main strik-
ing differences between the two measures, namely in frequency
and in amplitude. Specifically, L1 responds instantaneously to the
spiking network activity by means of high frequency oscillations.
Moreover, L1 also exhibits a large amplitude. In contrast, our
mean DFP L4 measures comparably to experimental LFP, that is,
in the order of millivolts, and although it responds to population
activity, it has a relatively smoother response. Actually one can
realize that our LFP estimate represents low-pass filtered thalamic
input.

The physiological relevance of this is not yet clear in our work.
However, recent work (Poulet et al., 2012) shows that desyn-
chronized cortical state during active behavior is driven by a
centrally generated increase in thalamic action potential firing
(i.e., thalamic firing controls cortical states). Thus, it seems that
cortical synchronous activity is suppressed when thalamic input
increases, thereby suggesting that cortical desynchronized states
to be related to sensory processing. This work further quantifies
these observations by applying Fast Fourier Transform (FFT) to
cortical EEG and subsequently comparing with thalamic firing
rate by means of Pearson correlation coefficient. Unfortunately
they do not quantify the amount of thalamic oscillations con-
tained within the cortical EEG.

Yet, to keep a comparable comparison between measures,
we also compute the average of the Mazzoni et al. DFP L2

(Equation 48) and additionally the mean membrane potential
(the standard considered in the neuroscientific literature). These
are shown in Figure 4.

Clearly, in terms of time profile, the summed and averaged
observables are similar within the same class of LFP measures.
However, in all cases the Mazzoni et al. LFP L1 exhibits a sig-
nificantly larger order of magnitude, which diverges substantially
from experimental LFP amplitudes, typically varying between 0.5
and 2 mV (Lakatos et al., 2005; Niedermeyer, 2005). In contrast,
although the mean DFP is not contained within the interval from
0.5 to 2 mV it arguably performs better. However, we do concede
further work is required. Some gains in improving the differ-
ent LFP measures can be achieved by applying for example a
weighted average, which would mimic the distance of an electrode
to a particular neuron by means of a lead field kernel (Nunez
and Srinivasan, 2006). For example, a convolution of either L1
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G H I

FIGURE 3 | Dynamics of the network and LFP comparisons: the three

columns represent different runs of the network for three different rates,

1.2, 1.6, and 2.4 spikes/ms. In each column, all panels show the same
250 ms (extracted from 2 s simulations). The first panels (A–C) represent
thalamic inputs with the different rates. The second panels (D–F)

corresponds to a raster plot of the activity of 200 pyramidal neurons. The

third panels (G–I) depict average instantaneous firing rate (computed on a
1 ms bin) of interneurons (blue) and fourth panels (J–L) correspond to
average instantaneous firing rate of pyramidal neurons. The fifth panels
(M–O) show the Mazzoni et al. LFP L1 from Equation (45). Finally, the last
panels (P–R) depict our proposed LFP measure L4, which is the average of
dendritic field potential (DFP) (Equation 48).
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D E F

J K L

M N O
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FIGURE 4 | Comparison of different LFP measures when the

network receives constant signal with three different rates (1.2,

1.6, and 2.4 spikes/ms). Again, only 250 ms is represented (extracted
from 2 s simulation). The first panels (A–C) corresponding to the
different rates shows the most widespread LFP measure used in the
literature, namely average membrane potential 1

K
∑

i Ui . The second

panels (D–F) shows the Mazzoni et al. LFP L1 from Equation (45).
The third panels (G–I) displays the average of the Mazzoni et al.
DFP L2 (Equation 46). Similarly, the fourth panels (J–L) shows the
total, L3, (Equation 47) and the last panels (M–O) depicts the
averaged, L4, (Equation 48) LFP measure. Note the different
amplitude scales between measures.
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FIGURE 5 | Comparison of power spectra of the various LFP measures

when the network receives constant signal with three different rates

(1.2, 1.6, and 2.4 spikes/ms). The first panels (A–C) corresponding to the
different rates shows the power spectrum of the average membrane
potential 1

K
∑

i Ui . The second panels (D–F) and third panels (G–I) show

power spectra of the total and average of L1 and L2 corresponding to
Mazzoni et al. (2008), respectively. The fourth panels (J–L) and the last
panels (M–O) display power spectra of the L3 and L4 measures from our
model, respectively. Note we show the full spectrum up to 5 kHz only for
convenience due to the fine sample rate.
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or L2 with a Gaussian kernel (representing the distance to a neu-
ron), would yield a measure that captures better the LFP or better
the DFP of the nearest neurons. However, further work will be
required to properly quantify the gain when space is taken into
account.

In Figure 5 we finally contrast the power spectra of the differ-
ent LFP measures.

One interesting feature is that the power spectrum of the
Mazzoni et al. LFP measures decays much more slowly that the
average membrane potential for higher frequencies. This observa-
tion is true for both, L1 and L2. In contrast, our LFP measures L3

and L4 fare better, and in particular, L4 decays at an approximately
similar rate as the average membrane potential.

4. DISCUSSION
In this article we derived a model for cortical dipole fields, such
as DFP/LFP from biophysical principles. To that aim we decom-
posed a cortical pyramidal cell, the putative generator of those
potentials, into three compartments: the apical dendritic tree as
the place of mainly excitatory (AMPA) synapses, the soma and
the perisomatic dendritic tree as the place of mainly inhibitory
(GABA) synapses, and the axon hillock as the place of wave-to-
spike conversion by means of an integrate-and-fire mechanism.
From Kirchhoff ’s laws governing an electronic equivalent circuit
of our model, we were then able to derive the evolution equa-
tion for neural network activity (Equation 34) and, in addition,
an observation equation (25) for the dendritic dipole potential
contributing to the LFP of a cortical population.

In order to compare our approach with another model dis-
cussed in the recent literature (Mazzoni et al., 2008, 2010, 2011)
we aligned the parameters of our model with the model of
Mazzoni et al. (2008) who approximated DFP as the sum of mod-
uli of excitatory and inhibitory synaptic currents (Equation 44).
From both approaches, we computed four different LFP esti-
mates: L1, the sum of Mazzoni et al. DFP, L2, the popu-
lation average of Mazzoni et al. DFP, L3 the sum of our
dipole DFP, and L4 the population average of our dipole DFP
(Equations 45–48).

Our results indicate two main effects between our dipole LFP
measures and those of Mazzoni et al. Firstly, the measures based
on Mazzoni et al. (2008) systematically overestimate LFP ampli-
tude by almost one order of magnitude. One reason for that could
be attributed to the direct conversion of synaptic current into
voltage without taking extracellular conductivity into account,
as properly done in our approach. Yet, another, even more cru-
cial reason is disclosed by our equivalent circuit (Figure 2). In
our approach there is just one extracellular current ID flowing
from the perisomatic to the apical dendritic tree. In the model
of Mazzoni et al. (2008), however, two synaptic currents that
might be of the same order of magnitude are superimposed to the
DFP. Secondly, the measures based on Mazzoni et al. (2008) also
systematically overestimate LFP frequencies. This could probably
be attributed partly to spurious higher harmonics introduced by
computing absolute values. Moreover, taking the power spectrum
shows that the Mazzoni et al. (2008) measure decays much more
slowly than the average membrane potential, which is at variance
with experimental data.

However, at the current stage, both models, that of Mazzoni
et al. (2008) and our own, agree with respect to the polarity of
DFP and LFP. The measures based on Mazzoni et al. (2008) have
positive polarity simply due to the moduli. On the other hand,
also the direction of current dipoles in our model is constrained
by the construction of the equivalent circuit (Figure 2) where
current sources are situated at the perisomatic and current sinks
are situated at apical dendritic tree. Taking this polarity as posi-
tive also entails positive DFP and LFP that could only change in
strength. However, it is well known from brain anatomy that pyra-
midal cells appear in at least two layers, III and VI, of neocortex.
This is reflected in experiments when an electrode traverses dif-
ferent layers by LFP polarity reversals, and, of course, by the fact
that LFP and EEG oscillate between positive and negative polarity.
Adapting our model to this situation could be straightforwardly
accomplished in the framework of neural field theory by fully rep-
resenting space and simulating layered neural fields (Amari, 1977;
Jirsa and Haken, 1996; beim Graben, 2008). By contrast such a
generalization is impossible at all with the model of Mazzoni et al.
(2008) due to the presence of absolute values.

On theses grounds we have good indication that our mea-
sure is an improvement to the Mazzoni et al. LFP measures,
and, quite importantly, it is biophysically better motivated than
the ad hoc model of Mazzoni et al. (2008). However, much
considerable effort is still required to underpin all the relevant
LFP mechanisms and to better represent experimental LFP/EEG
dynamics.

Finally, our work provides a new framework where DFPs
and the relationship between firing rates and local fields can be
explored without the extreme demand on computational com-
plexity involved in multicompartmental modeling (Protopapas
et al., 1998; Sargsyan et al., 2001; Lindén et al., 2010; Lindén
et al., 2011) by adopting reduced compartment circuits. For
example, we envisage to extend our recent work which maps
firing rate model (derived from LIF models) to population den-
sity models (Chizhov et al., 2007), but now incorporating our
observational DFP model. In addition, our framework is ana-
lytically amenable and thus can be applied to any linear differ-
ential equation, for instance, GIF (Gif-sur-Yvette Integrate Fire)
models, which are improvements to the LIF models and com-
pute more accurately spike activations (Rudolph-Lilith et al.,
2012). Also resonant membranes (mediated by Ca2+ and a
Ca2+-activated K+ ionic currents) that describe sub-threshold
oscillations and which can be easily expressed by linear equa-
tions (Mauro et al., 1970) can be incorporated in our derivations.
We note, however, that our framework can be applied to non-
linear equations, with Hodgkin and Huxley (1952) type activa-
tion, but it will fall short from explicit and analytical observation
equations.
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