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In this note, we assess the predictive validity of stochastic dynamic causal modeling
(sDCM) of functional magnetic resonance imaging (fMRI) data, in terms of its
ability to explain changes in the frequency spectrum of concurrently acquired
electroencephalography (EEG) signal. We first revisit the heuristic model proposed in
Kilner et al. (2005), which suggests that fMRI activation is associated with a frequency
modulation of the EEG signal (rather than an amplitude modulation within frequency
bands). We propose a quantitative derivation of the underlying idea, based upon a neural
field formulation of cortical activity. In brief, dense lateral connections induce a separation
of time scales, whereby fast (and high spatial frequency) modes are enslaved by slow
(low spatial frequency) modes. This slaving effect is such that the frequency spectrum of
fast modes (which dominate EEG signals) is controlled by the amplitude of slow modes
(which dominate fMRI signals). We then use conjoint empirical EEG-fMRI data—acquired
in epilepsy patients—to demonstrate the electrophysiological underpinning of neural
fluctuations inferred from sDCM for fMRI.
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INTRODUCTION
In addition to localizing brain regions that encode specific sen-
sory, motor, or cognitive processes, contemporary neuroimaging
research tries to understand how information is transmitted
within brain networks (Sporns, 2010). Ultimately, the ambition
is to understand the nature of the information that neuronal
populations pass on to each other. This speaks to the notion of
functional integration, which views cognitive function as result-
ing from information exchange within brain networks (Tononi
et al., 1994). This means one has to understand the directed influ-
ence or effective connectivity that brain systems (e.g., cortical areas,
neuronal populations, or single neurons) exert on each other.
Analyzing effective connectivity rest on models that formalize
assumptions about how neuronal systems are wired and how they
respond to different stimuli. These models are then used to inter-
pret brain responses measured using, e.g., functional magnetic
resonance imaging (fMRI) or magneto-/electroencephalography
(M/EEG). We refer to Valdes-Sosa et al. (2011) for a compre-
hensive review on effective connectivity, and its relationship with
influence and causality.

In the context of M/EEG, detailed biophysical knowledge
about the activity of neural ensembles has led the community to
develop and validate dynamical models that can describe macro-
scale dynamics in great detail (cf. Deco et al., 2008; Coombes,
2010; Bressloff, 2012). Most of these models are inspired by

approaches in statistical physics based on the notion of a mean
field, i.e., the idea that interactions among ensembles of neu-
rons can be captured by summary statistics (i.e., moments of
the relevant distribution). Dynamic causal modeling [DCM, see
Daunizeau et al. (2011) for a recent review] for M/EEG embeds
these models into a formal (Bayesian) statistical framework that
allows for parameter estimation and model comparison when
analyzing evoked or induced responses. In this context, the
approach has proven successful in exploiting the realism of these
biophysical models to capture experimental effects of cognitive
manipulations in terms of network plasticity (e.g., Garrido et al.,
2007 or Moran et al., 2011).

Even more established is the use of DCM for fMRI data, for
which the approach was originally proposed by Friston et al.
(2003), building on previous advances in the biophysics of hemo-
dynamic processes (Buxton et al., 1998). Interestingly, fMRI
paradigms elicit neural responses that unfold on a much slower
time scale (seconds) than that typical of electrophysiological mea-
surements (milliseconds). In contrast to hemodynamic processes,
relatively little is known about the biophysical underpinning of
these neuronal responses, which has precluded the use of detailed
(realistic) models of neural dynamics in DCM for fMRI. Instead,
the slow (and widespread) dynamics of interacting brain regions
are captured by phenomenological models that are much simpler
than those employed for M/EEG data. Even though these models
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serve as a reference when evaluating fMRI effective connectivity
methods (Smith et al., 2011), their simplicity may impose lim-
itations on the ensuing inferences (but see, for example, David
et al., 2008 or Brodersen et al., 2011). This is why we have
previously proposed variational Bayesian approaches that can
deal with some of the (unavoidably simplifying) model assump-
tions by introducing random fluctuations of physiological states
(Friston et al., 2008, 2010; Daunizeau et al., 2009b). Initial appli-
cations of this “stochastic” version of DCM [stochastic dynamic
causal modeling (sDCM)] have established some face validity in
the context of fMRI data analysis. For example, Friston et al.
(2011) showed how sDCM can be used in combination with
post-hoc model comparison (Friston and Penny, 2011) to explore
large model spaces, and Li et al. (2011) examined the smooth-
ness of the underlying neural fluctuations. In Daunizeau et al.
(2012), we provide a comprehensive comparison of determinis-
tic and stochastic DCM, in terms of parameter estimation and
model comparison. In particular, we showed how accounting for
random effects on the system’s dynamics can improve network
identification by exploiting the decorrelation of neural time series
induced by neural noise.

However, sDCM for fMRI has its own methodological chal-
lenges and still lacks solid experimental validation. On the one
hand, the ability of sDCM for fMRI to discriminate between
the respective contributions of neuronal noise and measurement
noise in the observed fMRI signal depends on modeling assump-
tions (Roebroeck et al., 2011; Daunizeau et al., 2012). On the
other hand, it is yet unclear how to formally relate the neu-
ral states of DCM for fMRI to electrophysiological measures of
activity. In this note, we use EEG data to provide empirical evi-
dence for the predictive validity of sDCM for fMRI data. We
therefore place this work in the context of the ongoing debate
regarding the hemodynamic correlate of the EEG [see Rosa et al.
(2010a) for a recent critical review of this literature]. Here, we
appeal to neural field theory (Wilson and Cowan, 1972, 1973;
Lopes da Silva et al., 1973; Nunez, 1974; Amari, 1975, 1977;
Freeman, 1975; Jirsa and Haken, 1996) to revisit the heuristic
hemodynamic correlate of EEG signals originally proposed in
Kilner et al. (2005). In essence, this hypothesis suggests that the
fMRI signal is correlated with the frequency modulation of the
EEG (where larger fMRI signals reflect a shift of the EEG spec-
trum toward higher frequencies). This is based on the idea that
slow dynamics underpinning fMRI responses reflect the instan-
taneous frequency of oscillating modes of activity (Cabral et al.,
2011; Friston et al., 2011). Here, we show how slow macroscopic
modes of activity that emerge from intrinsic (within region) con-
nections may modulate the frequency spectrum of fast dynam-
ical modes that contribute to the EEG signal. Guided by this
notion, we obtain estimates of neural dynamics from fMRI data
using sDCM and ask whether these estimates predict the spec-
tral behavior of concurrent EEG data—in terms of the temporal
changes in its center frequency (above and beyond physiological
confounds). This enables us to establish the predictive valid-
ity of sDCM for fMRI data, in relation to electrophysiological
responses.

This paper comprises three sections. In the first, we present
the neural field model that motivates a separation of time scales

and the ensuing heuristic hemodynamic correlate of the EEG.
The second section is an empirical demonstration that serves
to evaluate the predictive validity of stochastic DCM for fMRI
for the ensuing electrophysiological correlates. We close with
a discussion of the implications of our findings in the final
section.

MODEL: REVISITING THE HEURISTIC HEMODYNAMIC
CORRELATE OF EEG
In this section, we first introduce a neural field model of a cor-
tical region, and show how its spatiotemporal pattern of activity
can be decomposed into canonical dynamic modes that have dis-
tinct time scales. In brief, slow macroscopic neural states control
the rate of change of fast components. This motivates both the
separation of time scales that underlies the generative model of
sDCM for fMRI (Friston et al., 2011) and the heuristic hemody-
namic correlate of EEG (Kilner et al., 2005). In brief, this section
serves as a partial theoretical derivation of sDCM for fMRI, from
the perspective of biologically-informed (neural field) models of
macroscopic electrophysiological activity.

NEURAL FIELDS AND SEPARATION OF TIME SCALES
We start with a description of the dynamics of single neurons
within an ensemble, which we describe in terms of the proba-
bility density function p(ς) of neuronal post-synaptic membrane
potentials (PSP) ς. We assume that neurons fire an action poten-
tial if their PSP surpasses a depolarization threshold χ. This
means that 〈H(ς − χ)〉 represents the average (mean field) firing
rate over the ensemble, where H is the Heaviside step function
and 〈 〉 is the expectation under the ensemble density. Using the
central limit theorem, one can show that the average firing rate
over the ensemble is determined mainly by the first two moments
of the PSP ensemble density p(ς) (Liley et al., 2002; Marreiros
et al., 2008):

〈H(ς − χ)〉 =
∫ ∞

χ

p(ς)dς ≈ S(η) = 1

1 + exp(−ρ(η − χ))

η = 〈ς〉

ρ−2 = 3

π2
〈(ς − η)2〉

(1)

where S is a sigmoid function and ρ is proportional to the
inverse of the standard deviation (dispersion) of depolarization
within the ensemble. This is a statistical (mesoscopic) summary
of neuronal ensemble activity, corresponding roughly to a corti-
cal macrocolumn (about 100,000 neurons and 1 mm2 of cortex).
For our modeling purposes, this summary statistics is now taken
to the macroscale, where each ensemble or column has a posi-
tion r on the 2D-cortical manifold. At this macroscopic scale,
states like depolarization can be regarded as a continuum or field
(Jirsa and Haken, 1996; Liley et al., 2002; Coombes et al., 2007;
Daunizeau et al., 2009a; Pinotsis et al., 2012), which is a function
of space and time: η(t) → η(r, t). This means we can describe
the local average input and output activity of neurons using
the depolarization field η(r, t) and the sigmoid function. The
spatiotemporal dynamics of the neural field essentially depends

Frontiers in Computational Neuroscience www.frontiersin.org January 2013 | Volume 6 | Article 103 | 2

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Daunizeau et al. Predictive validity of sDCM

on how local ensembles influence each other—as described
below.

We now consider a region of the cortical manifold that is
defined by its continuous domain D, over which the neural field
η(r, t) is defined. The field is considered to result from the
temporal convolution of pre-synaptic input μ(r, t) as follows:

η(r, t) =
∫ ∞

−∞
J(t − t′)μ(r, t)dt′

= J ⊗ μ(r, t)

J(t) =
{
γ t

τ
exp

(− t
τ

)
t ≥ 0

0 t < 0
,

(2)

where J is the synaptic impulse response function, τ is a time-
constant, and γ controls the maximum PSP following an action
potential. The maximum PSP and time-constant summarize the
microscopic properties of the ensemble (Jansen and Rit, 1995).
Because action potentials propagate with a finite conduction
velocity, the mean rate of arrival of pre-synaptic impulses can
be expressed as a time-delayed integral (spatiotemporal convo-
lution) of local firing rates:

μ(r, t) =
∫ ∞

−∞

∫
D

G(|r − r′|, t − t′)S(η(r′, t′))dr′dt′

= G ⊗ S ◦ η(r, t),

(3)

where D is the domain, over which the neural field is defined, and
G is a homogeneous Green function that acts as a spatiotemporal
convolution operator. Let r = |r − r′| be the distance between two
points with positions r and r′. Below, we follow Bojak and Liley

(2010) and parameterize the Green function as follows:

G(r, t) = G0

4π

1

σ2
t−1 exp

(
− r2 + ν̄2t2

2σν̄t

)
H(t), (4)

where the Heaviside step function endows Equation (3) with
temporal causality and G0 is the total number of synaptic con-
nections. This dispersive propagator assumes a Gaussian falloff in
the density of synaptic connections and accounts for a certain
variability in velocities (ν̄ is the mode of the velocity distribution
at “large distance,” i.e., when r/σ → ∞). The spatial scale of lat-
eral connectivity is controlled by the spatial dispersion σ. Figure 1
depicts the dependence of the dispersive propagator with respect
to space and time (see also Liley et al., 2012—Figure 3).

In addition to its plausible form, this homogeneous Green
function has proven very useful, in that it has an analytical Fourier
transform. Applying the Fourier transform back and forth to
Equations (2) and (3) yields the following partial differential
equation (see Bojak and Liley, 2010):

(
ν̄

2σ
+ ∂

∂t
− ν̄σ

2
∇2

)
μ(r, t) = G0ν̄

2σ
S(η(r, t))

(
τ2 ∂2

∂t2
+ 2τ

∂

∂t
+ 1

)
η(r, t) = τγμ(r, t).

(5)

The first partial differential equation describes the diffusion of
action potentials of spikes (through the Laplacian operator) and
derives from the lateral connectivity kernel in the Green function.
The second ordinary differential equation derives from Equation
(2) and describes synaptic transmission; i.e., how propagated pre-
synaptic firing is accumulated locally to produce depolarization.
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FIGURE 1 | Neural field model: the dispersive propagator. This figure
depicts the dispersive propagator of Equation (4) as a function of both time
(x-axis) and distance (y-axis), in terms of the density 2πrG(r, t) of synaptic
connections that are reached by an action potential emitted at r = t = 0
(on a logarithmic scale). Note that the 2πr scaling arises because of radial

symmetry in 2D (Bojak and Liley, 2010). The white line shows the average
distance, at which activity is propagated as a function of time. The black
lines are contour lines of the connection density. These can be used to
eyeball how fast the density attenuates (e.g., along the average distance
path).

Frontiers in Computational Neuroscience www.frontiersin.org January 2013 | Volume 6 | Article 103 | 3

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Daunizeau et al. Predictive validity of sDCM

The solution to Equation (5) can be decomposed into canon-
ical dynamical modes, by projecting the neural field on the set
of eigenvectors w(k)(r) of the Laplacian operator defined over the
domain D (see Daunizeau et al., 2009a). These spatial modes solve
the Laplacian eigenvalue problem, i.e.,: ∇2w(k)(r) = λkw(k)(r),
where the distribution of eigenvalues λ is such that: λk < λ0 = 0.
They form a complete and orthonormal basis function set for the
neural field, allowing for an eigen-decomposition of the field, as
follows:

η(r, t) =
∑

k

z(k)
1 (t)w(k)(r)

μ(r, t) =
∑

k

z(k)
2 (t)w(k)(r),

(6)

here, the dynamics of the spatial modes are defined as:

z(k)
1 (t) =

∫
D

w(k)(r)η(r, t)dr

z(k)
2 (t) =

∫
D

w(k)(r)μ(r, t)dr.

(7)

Furthermore, it can be shown that the dynamics of the spatial
modes (Equation 5) can be approximated as third-order ordinary
differential equations that are coupled through the fundamental
mode k = 0 (see Appendix 1):

ż(k) =
⎡
⎢⎣ ż(k)

1

ż(k)
2

ż(k)
3

⎤
⎥⎦

=
⎡
⎢⎣

0 0 1

c
(

z(0)
1

)
ν̄

2σ

(
σ2λk − 1

)
0

− 1
τ2

γ
τ

− 2
τ

⎤
⎥⎦ z(k) + O

(
z2)

c
(

z(0)
1

)
≡ ρG0ν̄

2σ
S
(

z(0)
1

) (
1 − S

(
z(0)

1

))

(8)

here, z3 ≡ ż1, and c
(

z(0)
1

)
is a non-linear function of the fun-

damental mode z(0)
1 that mediates the coupling between modes

describing firing rate and depolarization. Roughly speaking, each
mode decays at a rate that is proportional to σν̄λk. As a con-
sequence, high propagation velocities in large cortical regions
dissipate the spatial modes quickly, with the exception of the fun-
damental mode, which has a zero eigenvalue. More generally,
smooth eigenmodes (low spatial scales) will be associated with
slow dynamics (see, e.g., Schultze-Kraft et al., 2011). Note that
the natural time scale of the fundamental mode can be very slow,
if the conduction velocity ν̄ becomes small compared to the dis-
persion of lateral connections σ (i.e., if ν̄/σ → 0). In this case,
the fundamental mode z(0) will decay so slowly that it will pre-
dominate over other stable (higher spatial frequency) modes z(k),
which disappear as soon as they are created. This means that
Equation (8) effectively instantiates a separation of time scales,
where the slowest mode “enslaves” the fast modes (Haken, 1983)

through the coupling function c
(

z(0)
1

)
. This slaving effect is such

that the frequency profile of fast modes (k > 0) is controlled by
the amplitude of slow modes (k = 0).

MODELING LOCAL ACTIVATION IN TERMS OF EEG FREQUENCY
MODULATION
Equation (8) expresses the Jacobian of eigenmode dynamics as a

function of the fundamental mode of activity z(0)
1 within a given

brain region, over which the neural field is defined. This means

that slow fluctuations in the fundamental mode z(0)
1 should be

associated with changes in the EEG frequency spectrum P(ω),
which derives from the Laplace transform of Equation (8) (see
Appendix 2):

P(ω) ∝

∣∣∣∣∣∣∣∣∣∣∣∣
∑

k ≤ kc

(
iω + ν̄

2σ

(
1 − σ2λk

))
(
iω + 2

τ
+ 1

)+ γ
τ(

iω + ν̄
2σ

(
1 − σ2λk

))
(

iω
(
iω + 2

τ

) + 1
τ2

)
− γ

τ
c
(

z(0)
1

)

∣∣∣∣∣∣∣∣∣∣∣∣

2

(9)

where kc is the cut-off order induced by the skull’s low electrical
conductivity. Here, the summation is over the fast modes (up to
kc = 16), and we have assumed that EEG responses reflect post-

synaptic potentials, i.e., z(k)
1 . Similarly to Kilner et al. (2005), let

us now define the EEG center frequency ω̄ as the first moment of
the (normalized) frequency power spectrum P̄(ω):

P̄(ω) = P(ω)∫ ∞

ω0

P(ω)dω

ω̄ ≡
∫ ∞

ω0

ωP̄(ω)dω

(10)

By construction, normalized frequency power P̄(ω) is the
proportion of total power attributed to any given frequency of
interest. Thus, one can think of it in terms of a probability den-
sity function over frequencies, whose first-order moment would
be the center frequency. Intuitively, an increase in the center
frequency ω̄ signals a shift of frequency power toward higher fre-
quencies. Note that the center frequency is not the main peak in
the frequency spectrum. Instead, variations of ω̄ over time quan-
tify frequency modulations of the EEG signal. The key idea here
is that the EEG center frequency ω̄ is a function of the slow eigen-

mode dynamics z(0)
1 , and its modulation over time thus follows

the slow eigenmode dynamics z(0)
1 , i.e., ω̄ = ω̄

(
z(0)

1

)
.

Figure 2 depicts the frequency modulation of the EEG signal

induced by changes in the slow eigenmode z(0)
1 . The frequency

power spectrum P(ω) given in Equation (9) was evaluated using
the parameter values given in Table 1 below. One can see that
when the slow eigenmode tends toward the action-potential firing

threshold (z(0)
1 → χ), there is both a power increase in the low

frequencies and a decrease in the high frequencies (cf. increase
in the delta/theta/alpha band, and decrease in the beta/gamma
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FIGURE 2 | Neural field model: EEG frequency modulation. This
figure shows the effect of changes in the mean membrane
depolarization fundamental eigenmode z(0)

1 on the frequency content of
the EEG signal. Upper-left: EEG frequency spectrum P(ω) (z-axis) as a
function of frequency ω (x-axis) and eigenmode amplitude z(0)

1 (y-axis).
Upper-right: Normalized frequency spectrum P̄(ω) (cf. Equation 10,

same format). Lower-left: Magnitude of standard EEG frequency bands
(y-axis; blue: delta, green: theta, red: alpha, magenta: beta, violet:
gamma) as a function of the eigenmode amplitude z(0)

1 (x-axis).
Lower-right: Centre frequency ω̄ (y-axis) as a function of the
eigenmode amplitude z(0)

1 (x-axis). Note that here, the action potential
firing threshold χ is 30 mV.

band). This shift toward lower frequencies can be seen most
clearly on the normalized frequency power P̄(ω). As a conse-
quence, the center frequency ω̄ increases as the slow eigenmode
gets further away from the action potential firing threshold. In
our example, this induces a change of about 10 Hz in the EEG
center frequency. Note that the precise numerical value of the
center frequency ω̄ (as well as its susceptibility to the eigenmode

z(0)
1 ) depends upon the neural field’s parameters (cf. Table 1).

In fact, using more realistic neural fields models (accounting
for, e.g., excitatory and inhibitory interneurons, see Pinotsis
et al., 2012) would profoundly change the shape of the fre-
quency power spectrum. However, the qualitative effect of neural

activation upon the center frequency is qualitatively invariant
to such changes. We will comment on this in the “Discussion”
section.

THE LINK BETWEEN EEG TIME-FREQUENCY RESPONSE AND fMRI
TEMPORAL RESPONSE
In this paper, we assume that the slow macroscopic dynamics x(n)

underlying fMRI data in a given region of interest follow the fun-

damental eigenmode z(0)
1 of its membrane depolarization cortical

field. The motivations for this assumption include the following:

• Its relative simplicity.

Frontiers in Computational Neuroscience www.frontiersin.org January 2013 | Volume 6 | Article 103 | 5

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Daunizeau et al. Predictive validity of sDCM

Table 1 | Neural field parameters.

Constant Physical meaning Value

γ Maximum post-synaptic impulse response 8 mV

τ Post-synaptic impulse response decay rate 4 ms

G0 Total number of synaptic connections 2000

σ Spatial decay rate of synaptic connections 3 mm

ρ Inverse of the within-ensemble PSP
standard deviation

0.54 mV−1

χ Action potential firing threshold (w.r.t. PSP
steady-state)

30 mV

ν̄ Average conduction velocity 3 m/s

These parameter values were taken from Pinotsis et al. (2012).

• Sensitivity to input versus output spiking activity: there is
a consensus now on the fact that mean membrane depolar-
ization (as opposed to e.g., firing rate) drives hemodynamic
changes [see Logothetis and Wandell (2004) for a review on
the relationship between local field potentials and the BOLD
signal).

• Energy budget: both the slow time scale and the low spatial
frequency of the fundamental eigenmode make it likely to be
the main driver of induced BOLD changes, when compared
with faster (and higher spatial frequency) eigenmodes. This is
because blood flow increases in local vascular trees are induced
by coherent spatio-temporal summation of neural activity (see
e.g., Daunizeau et al., 2010; Rosa et al., 2010a,b; Schmuel,
2010).

• It relates to theoretical accounts on critical slowing of high-
dimensional dynamical systems, which has recently been used
to motivate the rate of change of neural states in stochastic
DCM for fMRI (Friston et al., 2010).

We will further comment on this point in the “Discussion”
section.

In the previous section, we have described how a separation
of time scales could arise from local interactions at the level of
a cortical region. It turns out that this result can be generalized
to a set of coupled local neural fields, in that the fundamen-
tal mode mediates the extrinsic (between-region) coupling. In
other words, the influence different neural fields exert on each
other expresses itself through the coupling of their respective
fundamental modes, which locally drive higher order modes (as
in Equation 8). Deriving the precise dynamical properties of
coupled neural fields is beyond the scope of the present study.
However, one can invoke the slaving effect when considering cou-
pled (distal) brain regions, the network properties of which shape

the temporal dynamics of local fundamental eigenmodes z(0)
1 .

This means that long-range connections control the frequency
profile of brain regions responses (see e.g., Bojak et al., 2011),
through their effect on their respective fundamental eigenmodes

z(0)
1 . Since we did not consider coupled neural fields in the above

treatment, we replace their (unknown) evolution function with
a first-order Taylor expansion on slow neural states, yielding the

following Langevin equation for stochastic DCM (see Daunizeau
et al., 2012):

ẋ(n) ≈ Ax(n) + v (11)

where θ(n) = {Aij} are neuronal parameters that measure extrinsic
coupling strengths. Here, we have neglected non-linear interac-
tion terms that act as gating factors on the network connections
x(n) (cf. Stephan et al., 2008). The influence of the fast modes
on the motion of slow modes x(n) is expressed via fluctuations v,
which are comparatively much faster. This allows us, in the con-
text of sDCM for fMRI, to treat v as stochastic (neural) noise and
place priors p(v|m) on its generalized motion (see below).

In contradistinction, typical evoked EEG responses are driven
by a mixture of slow and fast modes. Note that the relative con-
tribution of the slow and fast modes is imbalanced (toward fast
modes), simply because the summation span all eigenmodes up to
cut-off order kc. In fact, typical evoked EEG responses disappear
within a second or so of peristimulus time; i.e., their limit fre-
quency has an order of magnitude similar to the fMRI sampling
rate (about 1 Hz).

Taken together, we expect to see concurrent changes in the slow
neural states x(n) that drive BOLD and in the EEG power spec-
trum P(ω). However, from the above section, we know that the
underlying relationship is non-linear and depends upon intrin-
sic properties of local neural fields, such as the size of active
brain regions and the spatial decay rate of synaptic connections
(cf. Equation 9). In addition, the respective contribution of each
region to the scalp EEG power spectrum is virtually unknown,
as this would require solving the so-called EEG inverse prob-
lem (see Rosa et al., 2010a,b). These issues conspire with the
unavoidable simplifications of our model to make the predic-
tion of the full EEG frequency spectrum practically irrelevant.
In the following, we will thus focus on the EEG center fre-
quency ω̄, which captures global changes in the frequency spec-
trum. For the sake of simplicity, in the remainder of this work,
we will invoke a first-order Taylor expansion of the following
form:

ω̄
(

x(n)
)

= ω̄(0) + ∂ω̄

∂x(n)

∣∣∣∣
0

x(n) + O
(
x2) (12)

where the gradient ∂ω̄/∂x(n)
∣∣
0 measures the susceptibility of the

center frequency to the slow neural states. This quantity will be
directly estimated from experimental data (along with the inter-
cept ω̄(0), which acts as a confound). Testing for Equation (12)
effectively bypasses the dependency of the EEG power spectrum
to the respective contribution each local neural field included
in the network, as well as their biophysical properties, and only
retains the qualitative prediction of the model.

Summary
In this section, we have used the neural field formulation of local
neural activity to demonstrate an emergent separation of tempo-
ral scales, in which the slow fluctuations of modes or patterns of
depolarization enslave faster modes. Crucially, the amplitude of
slow modes (which we associate with fMRI signals) and modulate
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the frequencies of fast modes (which we associate with EEG sig-
nals). This dynamical behavior is based upon a plausible mean
field approximation to macroscopic neuronal activity on the
cortical surface and, within the setting, provides a formal ver-
ification of the heuristic in Kilner et al. (2005), linking fMRI
signals to changes in the center frequency of electrophysiologi-
cal signals. In the next section, we will use stochastic DCM to
obtain estimates of macroscopic (slow) neural fluctuations from
fMRI data. We then test whether these estimates can predict fluc-
tuations in concurrently measured EEG data—in terms of its
center frequency, as suggested by the neural field treatment above
(Equations 9–12).

EMPIRICAL DATA: RESTING STATE AND GENERALIZED
SPIKE AND WAVE (GSW) ACTIVITY
In this section, we conduct an sDCM analysis of data from
patients with epilepsy who exhibited generalized spike and wave
(GSW) activity, while undergoing concurrent EEG/fMRI mea-
surements in the scanner. We first describe the EEG/fMRI acqui-
sition and conventional activation analysis. We then describe the
sDCM analysis of fMRI data and ensuing validation using EEG
data.

EEG/fMRI ACQUISITION AND ACTIVATION ANALYSIS
These data were part of a previous neuroimaging study of idio-
pathic generalized epilepsy (Hamandi et al., 2006; Vaudano et al.,
2009), whose acquisition protocol and data pre-processing are
briefly summarized here.

Ten-channel EEG (10–20 system) was recorded using MR-
compatible equipment, along with bipolar electrocardiogram.
After filtering and artifact correction (Krakow et al., 2000),
the onsets and offsets of GSW activity were identified by two
experts (see Vaudano et al., 2009 for details). Seven hun-
dred T2∗-weighted single-shot gradient echo echo-planar images
(TE = 40 ms, TR = 3 s, 21 interleaved axial slices of 5 mm
thickness, FOV = 24 × 24 cm2, 64 × 64 matrix) were acquired
over a 35 min session with a 1.5 Tesla MRI scanner (Horizon
EchoSpeed, General Electric). Patients were asked to rest with
their eyes closed and to keep still. FMRI data were pre-processed
using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/). EPI time series
were realigned and spatially smoothed with an 8 mm FWHM
isotropic Gaussian kernel and spatially normalized to the stan-
dard anatomical space. For each patient, a general linear model
(GLM) was constructed to test for the presence of regional GSW-
related BOLD changes. Periods of GSW activity were modeled
as blocks, beginning at GSW onset and terminating at their off-
set. The GSW regressors were then convolved with the canonical
hemodynamic response function (plus temporal and dispersion
derivatives) before inclusion in the GLM. In addition, we included
slow drifts (Fourier basis function set), as well as motion-related
effects (head and eye movements), cardiac-related effects (see
Liston et al., 2006) and scan-nulling regressors (modeling inter-
scan motion events larger than 0.2 mm, cf. Lemieux et al., 2007)
as confounding factors.

On average, the GLM design matrices contained about 100
confounds regressors. Significant positive and negative GSW-
related BOLD responses were identified by means of an F-contrast

on the GSW regressors for the nine patients included in this
study. SPMs were thresholded at p < 0.05 (FWE whole-brain cor-
rected) to define three regions of interest (ROIs), which were
implicated in the initiation and termination of GSW discharges
in all patients: thalamus, prefrontal cortex (PFC), and precuneus.
A summary time series was derived for each ROI by computing
the first eigenvariate of all suprathreshold voxel time series within
a 10 mm of the ROI centers. The time series were adjusted for all
confounding effects included in the GLM analysis.

VALIDATING THE sDCM MACROSCOPIC NEURAL STATES ESTIMATES
WITH EEG: METHODS
In addition to the neural evolution function given in Equation
(11), DCM for fMRI requires the specification of an additional set
of hemodynamic states that couple neural dynamics to observed
BOLD signal changes:

ẋ(h) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(n) − κsx
(h)
1 − κf

(
ex(h)

2 − 1
)

x(h)
1 e−x(h)

2

1
τ0

(
ex(h)

2 − ex(h)
3 /α

)
e−x(h)

3

1
τ0

⎛
⎜⎜⎝

ex
(h)
2 −x

(h)
4

(
1−(1−E0)

e
−x

(h)
2

)
E0

− e(1−α)x(h)
3 /α

⎞
⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

here, x(n) represents regional neural activity, whose dynamics
is given in Equation (11). Equation (13) expresses changes in
hemodynamic states x(h), as a response to a neural perturba-
tion x(n) and as a function of hemodynamic parameters θ(h) ={
κs, κf , α, τ0, E0, ε0

}
(for details, see the appendix in Stephan

et al., 2008). Finally, one has to specify the observation mapping
from hemodynamic states x(h) to observed local BOLD changes y
(Stephan et al., 2007):

y = V0

(
4.3 ν0 E0 TE

(
1 − ex(h)

4

)
+ ε0 r0 E0 TE

(
1 − ex(h)

4 −x(h)
3

)
+ (1 − ε0)

(
1 − ex(h)

3

))
+ ε, (14)

where ε is an additive measurement noise, and the parameters are
defined in Table 2 below.

In brief, the predicted data y depend non-linearly on the
unknown model variables � = {x, θ}, through Equations (11),
(13), and (14). This model (as well as statistical assumptions
about measurement noise ε) is encoded in the likelihood func-
tion p

(
y |�, m

)
. Priors p (� |m ) specify our assumptions about

the magnitude of state noise, evolution parameters and obser-
vation parameters—where the prior means of the hemodynamic
parameters of Equations (13) and (14) are given in Table 2:

Inverting the generative model m means (1) approximat-
ing the conditional density p

(
�
∣∣y, m

)
of unknown variables �

given the set of sampled measurements y and (2) quantifying
the model evidence p

(
y |m )

. Non-linearities in the generative
model eschew exact analytical solutions to this problem, which
is finessed using variational approaches that rest on optimizing a
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Table 2 | Prior means of hemodynamic parameters and

acquisition-related constants for fMRI at 1.5 T.

Constant Physical meaning Value

κs Vasodilatory signal decay rate 0.65 Hz

κf Vasodilatory signal feedback rate 0.41 Hz

τ0 Mean transit time 2 s

α Vessel stiffness 0.32

E0 Oxygen extraction fraction at rest 0.34

V0 Venous volume fraction at rest 4

ν0 Frequency offset 40.3 Hz

TE EPI echo time 0.04 s

r0 Intravascular relaxation rate 25 Hz

ε0 Ratio of intra- and extra-vascular signals 1

Note that θ (h) = {
κs , κf , α, τ0, E0, ε0

}
are estimated from the data (i.e., have

a positive prior variance), whereas the remaining parameters are treated as

constants.

free-energy lower bound F(q) to the model evidence, with respect
to an approximate conditional density q(�):

F(q) = 〈
ln p (� |m ) + ln p

(
y |�, m

)− ln q (�)
〉
q

= ln p
(

y |m) − DKL
(
q(�); p(�

∣∣y, m )
)
,

(15)

where DKL is the Kullback-Leibler divergence and the expecta-
tion 〈 〉q is taken under q. From Equation (15), maximizing the
functional F(q) with respect to q minimizes the Kullback-Leibler
divergence between q(�) and the exact posterior p(�

∣∣y, m ).
This decomposition is complete in the sense that if q(�) =
p(�

∣∣y, m ), then F(q) = ln p(y |m ). Typically, the iterative max-
imization of free energy proceeds under the Laplace approxi-
mation, where the approximate posterior q(�) ≈ p(�

∣∣y, m ) is
assumed to have a Gaussian form (see Friston et al., 2007). We
refer to Daunizeau et al. (2009b) for details about the application
of the variational Bayesian approach to stochastic DCM.

Following model inversion as described above, inference on
hidden states is based on the conditional density q(x) and thus
depends upon the generative model m. Usually, in DCM, infer-
ence on states or parameters is preceded by model selection.
However, our focus was on the validity of sDCM for fMRI
with regard to predicting the spectral behavior of concurrently
acquired EEG data—based on the idea that slow macroscopic
neural states x(n) control the EEG frequency modulation. We
therefore endowed the network with full reciprocal connectivity
(no zero entry in matrix A of Equation 11) and simply applied the
above variational Bayesian approach to derive the first moment
x̂ = 〈

x(n)
〉
q of the conditional density q(x). In the following, x̂ thus

refers to the sDCM estimate of the slow neural states, given fMRI
time series y (and under model m).

To assess the relationship between EEG frequency modulation
and neural states as estimated by sDCM, we constructed a GLM
H1, whose dependent variable was the trajectory ω̄ of the EEG
center frequency sampled at each fMRI time sample and whose
independent variables were the neural states estimated by sDCM

plus confounds (cf. Equation 12):

H1 : ω̄ = [
x̂ X0

] [ β

β0

]
+ e (16)

where x̂ are the sDCM conditional estimates, X0 contains the con-
founds (see below), β and β0are unknown regression coefficients,
and e are i.i.d. residuals (with zero mean and unknown variance).
Parameters β effectively capture the susceptibility of the EEG cen-
ter frequency with respect to the slow neural states (cf. gradient
∂ω̄/∂x(n)

∣∣
0 in Equation 12). They lump together the contribu-

tions of the multiple regions that constitute the network as well
as biophysical properties of the local neural fields. Parameters β0
weight the contribution of the confounding factors to changes
in the EEG center frequency. We then tested whether the sDCM
neural states predicted EEG frequency modulation above and
beyond what could be explained using the confounds. To this
end, we used Bayesian model comparison at the group level
(Stephan et al., 2009) to quantify the evidence in favor of the full
model H1, relative to a reduced model H0 that only included the
confounds:

H0 : ω̄ = X0β0 + e (17)

The assessment of sDCM predictive validity thus depends on
the definition of the confounds, i.e., uncontrolled sources of vari-
ations in the EEG center frequency. In order to investigate the
robustness of the statistical relationship between the slow eigen-
mode dynamics x̂ and the EEG center frequency trajectory ω̄, we
have defined two different sets of confounds:

• Slow drifts: this assumes that the EEG center frequency under-
goes slow and unspecific variations due to e.g., skin conduc-
tance changes, residual eye blinks artifacts, etc. . . . . Under
this assumption, we set up X0 similarly to the minimal con-
founds of a typical fMRI activation analysis, i.e., a Fourier basis
function set (16 first harmonics; see Figure 6).

• Full confounds: this generalizes the intuition that confounds
on the EEG center frequency are similar to those included in
the fMRI activation analysis. For example, cardiac and respi-
ratory effects, as well as body movements, could be modeled
directly, as potential sources of (nuisance) variations. Under
this assumption, we set up X0 identically to the full con-
founding matrix used for each subject fMRI activation analysis
(cf. section “EEG/fMRI Acquisition and Activation Analysis”
above).

In brief, testing for the contribution of sDCM neural estimates
x̂ on variations of the center frequency ω̄, above and beyond the
full confounds is the most conservative of the two alternatives.
However, it will be the least sensitive of both models as well; recall
that β has only nROI entries, where nROI = 3 is the number of
ROIs included in the sDCM analysis (to be compared with the
dimension of β0). In other words, these two sets of confounds
can be motivated on principled grounds. We will thus perform a
statistical comparison between H0 and H1 that marginalizes over
the two sets of confounds.
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VALIDATING NEURAL STATES ESTIMATE OBTAINED BY sDCM
AGAINST EEG
Figure 3 shows the SPM of significant GSW-related BOLD
changes (above and beyond physiological confounds), for the first
patient of the study (F-test, p < 0.05, whole-brain corrected).
This was used to define the three ROIs included in the sDCM
analysis (Figure 4).

One can see that most of the variance of the BOLD response is
explained by the stochastic DCM. Focusing on peri-GSW periods,
one can see that the conditional density q(x) shows high tempo-
ral variability, with increased uncertainty during head motion.
This is expected, as scan-nulling confound regressors effectively
prevent sDCM from deriving any information from fMRI data
about hidden states during these periods. It is interesting to note
that the network connectivity coefficients (elements of the A
matrix in Equation 11) are small (about 0.02 Hz). This means
that the average coupling of these regions (over the entire record-
ing) is rather weak. Importantly, with the (partial) exception
of the inhibitory intrinsic self-connections, the posterior cor-
relation matrix (Figure 4) shows that most system parameters
are identifiable and not confounded by hemodynamic parame-
ter estimation. Generally, Figure 4 summarizes the motivation for
this work—is the temporal variability of sDCM estimates of neu-
ronal activity an artifact of measurement noise, or does it have an
electrophysiological underpinning?

The cross-validation of neural state estimates by sDCM
from fMRI data against EEG data requires the extraction of
the time-dependent center frequency ω̄ for each channel of
each subject, according to Equation (10). This is depicted in

0
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precuneus 

thalamus 
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FIGURE 3 | Absence seizure analysis: regions of interest. This figure
summarizes the standard SPM activation results of a single epileptic
patient with (petit mal) absence seizure (the same subject as in Figure 1).
Significant (whole brain FWE-corrected, p < 0.05) positive and negative
GSW-related BOLD responses were identified by means of an F -contrast
on the GSW regressors. The color bar indicates the range of displayed
F values.

Figure 5, for the EEG channel C4 of the same patient in
Figures 3, 4.

Recall that comparisons between the experimental and theo-
retical profiles of the frequency spectrum show differences that
prevent meaningful quantitative fitting of Equation (9). For
example, the model cannot account for peaks in the alpha band
that appear in occipital channels (at least for the neural field
parameter values of Table 1; results not shown). However, it is
reassuring to see that the variations of the EEG frequency pro-
file over time appear as small perturbations around a largely
invariant average power spectrum. More precisely, the appear-
ance of GSW activity does not dramatically distort its shape,
but rather induces frequency modulations of small amplitude.
This is important, since this affords face validity to the quali-
tative prediction of our neural field model. Interestingly, there
is a clear change in the normalized frequency power begin-
ning at the onset of the second GSW crisis. This leads to a
marked decrease in the EEG center frequency (the first GSW event
seems to be associated with a similar but weaker effect). We will
briefly comment on GSW-related frequency modulations in the
discussion.

Figure 6 summarizes the relationship between slow macro-
scopic sDCM states and the EEG frequency modulation of chan-
nel C4 for the same patients as in previous figures. Even though
one can see that the center frequency ω̄ is very well fitted by
the model (upper row of Figure 6: coefficient of determination:
R2 = 0.59), one might think that most of the frequency modu-
lation could be explained by confounds. For example, eyeballing
the trajectory of the observed EEG center frequency reveals clear
low frequency tends that are likely to be captured by slow drifts
confounds. To disclose the specific contribution of neural state
estimates, we have plotted the data and model prediction after
removing the confounds (adjusted data). One can see that, when
considering slow drifts confounds, sDCM neuronal estimates
explain EEG frequency modulations of about 10 Hz. This is a
similar order of magnitude than center frequency variations cap-
tured by slow drifts (cf. parameter estimates on lower-right panel
of Figure 6). Note that the corresponding correlation coefficient
is about 0.49 (adjusted R2 = 0.24), which indicates a reasonably
good fit (above and beyond confounds).

Figure 7 summarizes the result of Bayesian model compar-
ison, in terms of the log-Bayes factor LBF = log p(ω̄ |H1 ) −
log p(ω̄ |H0 ), across all EEG channels for the same patient as
before. One can see that all EEG channels show strong evi-
dence in favor of the full model (H1), whereas there is evidence
against H1 only for EOG and ECG channels. This suggests that
the neuronal fluctuations estimated by stochastic DCM predict
the EEG frequency modulation beyond slow drifts confounds.
For completeness, we also show the results of classical inference
(F-test with significance level p = 0.05, full model H1 against
the null H0). As this test was repeated independently for each of
the 30 channels, we applied a Bonferroni correction for multi-
ple comparisons across channels. One can see that the profile of
F-statistics and log-Bayes factors (LBFs) across channels is very
similar.

Recall that the results summarized in Figures 6, 7 are only
shown to illustrate the analysis. In fact, it is important to note
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FIGURE 4 | Absence seizure analysis: sDCM analysis. This figure
summarizes the sDCM analysis of a single subject fMRI data (same
patient as in Figure 1). Upper-left: Time series of the observed and
fitted BOLD signal in prefrontal cortex (PFC) as a function of time. The
red shaded area indicates peri-GSW activity. Upper-right: Observed
(y-axis) versus fitted (x-axis) BOLD signal in PFC. Lower-left: Macroscopic
sDCM neural states in the three regions of interest (PF, prefrontal cortex;

pC, precuneus; Th, thalamus) during peri-GSW activity, as a function of
time. The red bar indicates strong head motion, which was modeled
using scan-nulling regressors (see main text). Lower-right: sDCM
conditional density on model parameters (left: first-order moment and
ensuing network connectivity, right: posterior correlation matrix).
Note: identifiability issues between pairs of parameters manifest as high
posterior correlations.

that they (1) depend upon the definition of the confounds (here
slow drifts) and (2) do not capture inter-individual variability.
The question of whether the accuracy with which the neural states
inferred by sDCM are able to predict the frequency modulations
of the EEG signal (above and beyond confounds) generalizes at
the group level is addressed below.

This Bayesian model comparison for the single patient shown
in Figure 7 was then repeated for all subjects, for both sets of con-
founds (namely: slow drifts and full confounds). First, we pooled
evidence over EEG channels for each subjects. This was simply
done by summing the log- model evidences over EEG channels
(within-subjects fixed effect. The ensuing distribution of LBFs
across subjects—shown in Table 3 below—indicates that most
subjects show very strong evidence in favor of H1, irrespective of
the particular set of confounds.

To confirm this, we ran a random-effect analysis (Stephan
et al., 2009) to assess the prevalence of H1 and H0 at the group
level. Note that the two sets of confounds (“slow drifts” and “full
confounds”) induce the four following models:

• H(drifts)
1 : H1 with slow drifts

• H(full)
1 : H1 with full confounds

• H(drifts)
0 : H0 with slow drifts

• H(full)
0 : H0 with full confounds.

The comparison of interest is in terms of whether or not adding
the sDCM slow neural states adds anything to the prediction of
the EEG center frequency, above and beyond confounds. Thus,
we applied group-level family inference (Penny et al., 2010) to
evaluate the evidence in favor or against H1, irrespective of the
definition of the confounds. We have thus partitioned the set of
four models above into two families H1 and H0 that gather both

sorts of confounds, as follows: H1 =
{

H(drifts)
1 , H(full)

1

}
and H0 ={

H(drifts)
0 , H(full)

0

}
. Deriving the relative evidence of H1 against H0

effectively marginalizes over the different confounds. First of all,
we checked that there was a random effect at all, i.e.,: a difference
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FIGURE 5 | Absence seizure analysis: derivation of the EEG frequency

modulation. This figure depicts the extraction of the EEG center frequency in
a single subject (same patient as in Figure 1). Left: The EEG set-up used during
the recording session is shown superimposed on the brain and skin surfaces

(sensor C4 is highlighted). Right: Normalized square root power of windowed
Fourier transform (z-axis) of the EEG traces of sensor C4 (x-axis: scanning
time, y-axis: instantaneous frequency). The blue line shows the center
frequency ω̄ as a function of scanning time t (cf. Equation 10 in the main text).

between the respective prevalence of all models within the pop-
ulation. We found that the posterior probability of all models
being equally frequent was p = 0.03. This Bayesian omnibus
test indicates that the distribution of Bayes factors shown in
Table 3 is unlikely to be due to chance. Figure 8 summarizes the
group-level family inference results. One can see that the esti-
mated prevalence of family H1 is about 0.82. In addition, the
exceedance probability of H1 (versus H0) was 0.991. In other
words, we can be 99% confident that sDCM estimates of neu-
ronal fluctuations predict concurrent EEG frequency modulation
above and beyond physiological confounds (in more than half the
population).

For completeness, we have also performed bayesian
group-level model comparison, conditional on the definition
of confounds. The results match those of the family-inference

analysis above. In brief, the exceedance probability of H(drifts)
1

(versus H(drifts)
0 ) was 0.997, and the exceedance probability of

H(full)
1 (versus H(full)

0 ) was 0.990. However, the bayesian omnibus
test for these analyses was not as conclusive (slow drifts: p = 0.11,
full confounds: p = 0.14). Taken together, this means that there
is statistical evidence in favor of H1 (versus H0), irrespective of
the definition of the confounds. This concludes our quantitative
assessment of the predictive validity of sDCM for fMRI with
regard to concurrently obtained EEG measures.

DISCUSSION
Introducing random neural fluctuations in DCM for fMRI was
originally motivated by the need to estimate hidden states in
the absence of experimental perturbations. In this note, we have
assessed the predictive validity of sDCM estimates of slow macro-
scopic neural states with respect to EEG frequency modulation.
We have revisited the heuristic hemodynamic correlate of the EEG
proposed in Kilner et al. (2005), using a neural field formulation
to show how slow modes of local electrophysiological activity

(which we assume drive changes in the fMRI signal) enslave
the frequency spectrum of fast modes that contribute to the
EEG signal. From this theoretical perspective, we tested whether
slow neural estimates obtained by sDCM could explain concur-
rent EEG frequency modulation above and beyond physiological
confounds.

To our knowledge, this work is the first attempt to pro-
vide empirical evidence that neural fluctuations inferred using
stochastic DCM from fMRI time series have an electrophysi-
ological underpinning. From an experimental perspective, this
endorses the use of sDCM for studying spontaneous fluctuations
that are beyond experimental control. Examples of this include—
but are not limited to—multistable perception (Hesselmann et al.,
2010) and epileptic events (e.g., absence seizures, cf. Vaudano
et al., 2009). In this context, the added-value of sDCM is that it
allows for comparing quantitative hypotheses about the propa-
gation and/or the emergence of these phenomena within brain
networks.

The acute reader might question the relevance of the modeling
part of our paper, in the sense that quantitative predictions of the
model were not used in the subsequent data analysis. However,
we believe this model may contribute to the debate regarding
the hemodynamic correlate of the EEG. First, it bears a number
of interesting differences, with respect to the heuristic model of
Kilner et al. (2005):

• Here, the main prediction, namely that fMRI activation is
associated with a frequency modulation of the EEG signal,
only relies on the assumption that BOLD changes are mostly
driven by the fundamental (slow and smooth) eigenmode of
the membrane potential field. This differential sensitivity of
EEG and fMRI with respect to higher-order canonical eigen-
modes bypasses most modeling assumptions of the heuristic
model.
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FIGURE 6 | Absence seizure analysis: EEG results (1). This figure
summarizes the results of the analysis on the EEG frequency modulation
in a single subject (same patient as in Figure 5) at channel C4. Upper-left:

Observed (blue dashed line) and predicted (black plain line) frequency
modulation (y-axis) of the best EEG channel (C4) as a function of scanning
time (x-axis). For this patient, the two GSW episodes are indicated by the
orange arrows. Upper-middle: Observed (y-axis) versus predicted (x-axis)

frequency modulation for EEG channel C4. Upper-right: Matrix of confounds
X0 included in the analysis (slow drifts). Lower-left: Observed (blue dashed
line) and predicted (black plain line) frequency modulation (y-axis) of the best
EEG channel (C4) as a function of scanning time (x-axis), after adjustment for
confounds. Lower-middle: Adjusted (y-axis) versus predicted (x-axis)
frequency modulation for EEG channel C4. Lower-right: GLM parameter
estimates, ± one standard deviation (orange: β, gray: β0).

• Here, the relationship between activation and the EEG
center frequency is not monotonic. More precisely, the
center frequency decreases as one approaches the action
potential threshold, either from hyperpolarized states
(activation) of from depolarized states (de-activation). In
brief, this form of critical slowing is qualitatively equiv-
alent to the heuristic model, above the action potential
threshold.

Second, we believe that the above qualitative theoretical predic-
tion is very robust to model assumptions. First, we checked that
the effect persisted in the context of our model, when changing
the parameters that control the biophysical properties of the neu-
ral field (results not shown). Second, the effect is a byproduct
of local propagation of activity over the field. In brief, smooth
local patterns emerge in densely connected brain regions, the—
slow—dynamics of which are shaped by effective connectivity
between remote regions. Each local eigenmode is then expected
to control the acceleration or slowing down of the response of its
respective brain region. In contradistinction to e.g., quantitative
predictions about frequency power spectra, we anticipate

this qualitative prediction to hold, irrespective of models’
specificities.

Let us now consider the (modest) theoretical contribution
of this work in relation to the separation of time scales. We
believe that—if properly extended—established biophysical mod-
els of fast electrophysiological responses may be a good starting
point for understanding slow dynamical modes at macroscopic
spatial scales that, presumably, drive fMRI responses. The neu-
ral field treatment we have developed in this note is a first
step toward a mechanistic understanding of the macroscopic
dynamics that emerge at the time scale of seconds or minutes.
However, this model is limited in many ways. First, we did not
account for extrinsic connectivity between regions (coupled neu-
ral fields). This is known to strongly impact on the stability of
spatiotemporal brain dynamics (Knock et al., 2009), and will
thus be critical for predicting the dynamical repertoire of slow
macroscopic modes of activity (cf. point above). For example,
Bojak et al. (2011) show that increasing the long-range cou-
pling between remote regions strongly modulates the frequency
response of the target region, in terms of the relative power in
low- and high- frequency bands. Second, we did not separate the
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FIGURE 7 | Absence seizure analysis: EEG results (2). This figure
summarizes the results of the analysis on the EEG frequency modulation
in a single subject (same patient as in Figures 5, 6) across channels.
Upper panel: Value of the F -statistic (y-axis) when testing for the
significance of the contribution of the sDCM neural states dynamics in
the EEG frequency modulation, as a function of EEG channels (x-axis).
Red stars indicate channels that pass the 5% false positive rate

threshold (with Bonferroni correction of the multiple comparisons across
channels). Upper-right inset: Associated p-value across EEG channels
(the red line indicates the corrected 5% threshold). Lower panel: Log
Bayes factor log p(H1 |y ) − log p(H0 |y ) showing evidence in favor of H1

versus H0 across EEG channels (see main text). Red lines indicate
posterior probabilities of model H1 of 95% (upper line) and 5% (lower
line), respectively.

Table 3 | Log-Bayes factors (LBF) of H1 versus H0, for all subjects, and

both sets of confounds.

Subject LBF (H1 against LBF (H1 against

slow drifts) full confounds)

1 670.9 198.6

2 204.3 103.9

3 51.4 −4.8

4 92.9 23.3

5 17.9 185.4

6 4.4 35.3

7 −1.8 65.0

8 1.2 28.6

9 101.4 37.2

A positive LBF indicates evidence in favor of H1 (|LBF|> 3: significant effect

at the subject-level, Kass and Raftery, 1995). Highlighted cells depict the two

subjects that show relative evidence in favor of H0.

respective contributions of excitatory and inhibitory subpopu-
lations (Pinotsis et al., 2012). Of particular importance here is
the fact that inhibito-excitatory networks can possess stable limit
cycles (Seung et al., 1995). This means that local neural fields
can behave as oscillators or resonators. This relates to the work
of Cabral et al. (2011) who examined the role of local network
oscillations in the emergence of slow temporal synchrony between
remote brain areas. The critical thing here is that the time it takes
for one resonator to influence another resonator can be much
slower than the local resonance frequencies. In addition, owing to
the autonomous nature of local dynamics, the effect of between-
regions coupling might be better understood in terms of changes
in the resonance frequency of the target region. Taken together,
these considerations suggest that challenging theoretical work still
needs to be undertaken to establish the dynamical repertoire of
coupled slow macroscopic modes of brain activity.

We take the fact that the sDCM neural states contribution
was significant for all EEG channels (above and beyond slow
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FIGURE 8 | Absence seizure analysis: EEG results (3). This figure
summarizes the results of the analysis on the EEG frequency modulation at
the group level (across subjects). Left: Posterior estimates of the expected
frequency of families H0 and within the population (± one posterior standard

deviation). Right: Posterior density (y-axis) over the expected frequency
(x-axis) of family H1 within the population. The red shaded area indicates the
mass of probability that is beyond 50% prevalence, yielding an exceedance
probability of about 99%.

drifts) as a compelling validation of the conditional estimates
of neuronal activity from sDCM. Importantly, this also provides
some empirical evidence in favor of the fMRI to EEG mapping
itself. This supports the results of Rosa et al. (2010b), which is,
to our knowledge, the only experimental study that tested pre-
dictions of the heuristic model of Kilner et al. (2005). In this
study, the authors experimentally controlled the frequency con-
tent of the EEG signal, and showed that the BOLD response in
a group subjects was better explained by frequency modulation
than by amplitude modulation of the EEG. More specifically, Rosa
et al. (2010b) showed that to correctly model BOLD variations
it was important to use a normalized frequency spectrum, as in
Equation (10). Here, we approach this issue from the other side
and use fMRI to predict the EEG frequency spectrum. Note that
this is only an indirect validation of the neurovascular coupling
model, as we did not compare it with other quantitative scenar-
ios. Among these is the idea that BOLD changes correlate with
amplitude modulations within frequency bands of interest in the
EEG spectrum. Typically, the BOLD signal is considered a fil-
tered version of the EEG alpha power (see e.g., De Munck et al.,
2008). More generally, this idea has been applied to each and every
EEG frequency band with relative success [see Laufs et al. (2008)
and references therein]. As an illustration, Lachaux et al. (2007)
have found that EEG gamma band modulations co-localize with
BOLD variations. However, although power fluctuations of dif-
ferent EEG frequency bands are known to be mutually highly
correlated, multi frequency models are usually not used in such
studies (De Munck et al., 2009). In addition to compromising the
specificity of the results, this prevents a direct comparison with
our and related work (cf. Rosa et al., 2010b).

Another limitation of our data analysis is that we neglected
the unavoidable non-linearity implicit in the relationship ω̄ =
ω̄
(

z(0)
1

)
(cf. Equations 9–12 and Figure 2) when testing for the

contribution of slow neural states to modulations of the EEG cen-
ter frequency. This means we may have not taken full advantage of
our neural field formulation. However, this does not detract from

our quantitative assessment of the predictive validity of sDCM for
fMRI data.

When examining the GSW-related EEG frequency modula-
tions, we noted that the frequency spectrum did not change
markedly during GSW activity. This might seem surprising, if one
thinks of GSW as sudden bursts of activity within the network,
associated with clearly recognizable 3 Hz transient waves of EEG
activity (Destexhe and Sejnowski, 2001). Closer inspection of the
EEG frequency profile confirmed the appearance of a peak at 3 Hz
during GSW-activity (not shown). However, many other (faster)
processes actually contribute to the overall frequency spectrum,
which typically drags the center frequency toward 20 Hz. This is
the main reason why we had to include as many confounding fac-
tors as possible, when assessing the specific contribution of the
sDCM predictors. Importantly, physiological confounds (cardiac
activity, head movements, etc.) span most of the slow frequencies
in the EEG signal, which potentially masks interesting slow neu-
ral processes. This means that slow frequency EEG signals with
a neural origin are confounded with physiological noise. Note
that there are notorious exceptions to this detectability issue, for
example readiness potentials (Jahanshahi and Hallett, 2003) that
are thought to reflect the preparation of motor activity and have a
typical time scale of a few seconds. Nevertheless, our results indi-
cate that it may be possible to detect the contribution of slow
neural processes to the scalp EEG signal, through their indirect
effect on the frequency modulation of fast modes.

In conclusion, we have provided empirical evidence support-
ing the predictive validity of sDCM for fMRI data. In future work,
we will examine the empirical and theoretical relationships that
exist between slow and fast dynamical consequences of effective
connectivity as can be accessed via fMRI and EEG, respectively.
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APPENDIX 1: APPROXIMATING THE LOCAL NEURAL FIELDS WITH A SPATIAL EIGENMODES EXPANSION
Let ∇2 = ∂2/∂x2 + ∂2/∂y2 be the 2D-Laplacian operator defined on a bounded (square) 2D domain of size ‖D‖, where {x, y} = r
are the two cartesian coordinates on the domain. Recall that eigenvectors w(k, l)(r) of ∇2 are such that:

w(k, l)(r) = ei π
‖D‖ (kx + ly)

= w(k)(x)w(l)(y)

=
[

w(1)(x)
]k [

w(1)(y)
]l

(A1)

where we have used index pairs (k, l) for spatial frequencies along the x- and y-axis, respectively. The associated eigenvalues are given
by: λk, l = − (

k2 + l2
)
π2/‖D‖2. By convention, w(k) refer to the eigenfunctions of the 1D-Laplacian, and its complex conjugate will

be denoted as w(−k). Now, projecting Equation (5) onto the (complex conjugate) spatial eigenmodes yields the eigendynamics of the
neural field (Daunizeau et al., 2009a):

τ2z̈(k, l)
1 (t) = −2τż(k, l)

1 (t) − z(k, l)
1 (t) + τγz(k, l)

2 (t)

ż(k, l)
2 (t) = ν̄

2σ

⎛
⎜⎜⎜⎝(σ2λkl − 1

)
z(k, l)

2 (t) + G0
∫

D
w(−k, −l)(r)S (η(r, t)) dr︸ ︷︷ ︸

ςk, l(t)

⎞
⎟⎟⎟⎠

. (A2)

where the projections ςk, l(t) of the firing rate form a complete basis function set.
Together with a truncated eigenmode expansion, Equation (A2) can be used to approximate the solution to Equation (5) of the

main text. Such a truncation basically acts as a low-pass filter, neglecting the transient effects of higher spatial frequency modes. This
can be motivated by noting that (1) the eigenmodes w(k, l)(r) of the Laplacian operator are of increasing spatial frequency as the order
(k, l) increases and (2) the associated eigenvalues λkl are negative (except for λ00 = 0) with increasing magnitude. This implies that
the dynamics of high-order spatial modes will be strongly damped and thus quickly disappear in the absence of external forcing.

We now focus on deriving an approximation to the projections ςk, l(t) of the firing rate.
First, let us Taylor-expand the sigmoidal mapping of PSP activity around zero:

S(η(r, t)) =
∞∑

m = 0

1

m!S[m]
0 ηm(r, t), (A3)

where S[m]
0 = ∂mS

∂xm

∣∣∣
0

is the mth derivative of the sigmoidal mapping evaluated at η = 0 and ηm(r, t) is the mth power of mean

PSP η(r, t). Assuming that Equation (A1) holds for the eigenvectors of the Laplacian operator defined onto the cortical domain D,
Equation (6) becomes:

η(r, t) =
∑

k

∑
l

z(k, l)
1 (t)w(k, 1)(r)

=
∑

k

z̃(k)
1 (t, y)

[
w(1)(x)

]k

z̃(k)
1 (t, y) ≡

∑
l

z(k, l)
1 (t)

[
w(1)(y)

]l

(A4)

where z̃(k)
1 (t, y) is a dummy eigenmode dynamics, that is still a function of space (more precisely, of the second coordinate y). Inserting

Equation (A4) into (A3) yields the following power series of power series in w(1):

S(η(r, t)) =
∞∑

m = 0

1

m!S[m]
0

(∑
k

z̃k
1(t, y)

[
w(1)(x)

]k
)m

=
∞∑

m = 0

1

m!S[m]
0

∑
k

Ak(t, y, m)w(k)(x)

(A5)
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where the coefficients Ak(t, y, m) obey the following recursive equation (Von Holdt, 1965):

⎧⎨
⎩

Ak(t, y, m) = 1

kz̃(0)
1 (t)

∑k
i = 1((m + 1)i − k)z̃(i)

1 (t)Ak − i(t, y, m)

A0(t, y, m) =
[

z̃(0)
1 (t)

]m (A6)

The contribution ϒk(t, y) of the kth spatial mode to the expansion in Equation (A5) is given by:

S(η(r, t)) =
∑

k

ϒk(t, y)w(k)(x)

ϒk(t, y) =
∞∑

m = 0

1

m!S0
[m]Ak(t, y, m)

(A7)

These can be analytically derived from the recursive relationship given in Equation (A6). They are given in Table A1 bellow, up to
order k = 3.

It can be seen form Table A1 that, except for the fundamental mode, the spatial mode contribution ϒk is of the form:

ϒk ∝
k∑

j = 1

O
(

[z̃1]j
)

S[j] (z̃(0)
1

)

=
k∑

j = 1

O
(

[z̃1]j
)

ρ jS
(

z̃(0)
1

) j∏
m = 1

(
1 − mS

(
z̃(0)

1

))

≈
k∑

j = 1

O
(

[z̃1]2j + 1
)

, (A8)

where O
(
xj
)

is a polynomial of order j in x and ρ is the sigmoidal slope. The second line in Equation (A8) follows from the fol-

lowing property of the sigmoid function: S[j](x) = ρjS(x)
∏j

m = 1(1 − mS(x)) and the last line would follow from a first-order Taylor
expansion of the sigmoidal mapping. This means that the lower order term in each spatial mode contribution ϒk(t, y) is already a

polynomial of order three in the dummy eigenmodes dynamics z̃(k)
1 (t, y). We will therefore truncate the contribution to its first term,

i.e.,: ϒ0(t, y) = S
(

z̃(0)
1 (t, y)

)
for k = 0, and ϒk(t, y) ≈ z̃(k)

1 (t, y)S′
(

z̃(0)
1 (t, y)

)
for k > 0. This yields the following approximation to

the firing rate field:

S(η(r, t)) ≈ S
(

z̃(0)
1 (t, y)

)
w(0)(x) +

∑
k ≥ 0

ρS′ (z̃(0)
1 (t, y)

)
z̃(k)

1 (t, y)w(k)(x) (A9)

Table A1 | This table gives both the coefficients Ak (t, y, m) (left) and the contribution of the kth spatial mode to the expansion in Equation

(A4), as given by ϒk (t, y) (right) up to k = 3.

Ak (t, y, m) ϒk (t, y )

k = 0
[
z̃(0)

1

]m
S
(
z̃(0)

1

)
k = 1 1

1! mz̃(1)
1

[
z̃(0)

1

]m − 1 1
1! z̃

(1)
1 S′

(
z̃(0)

1

)
k = 2 mz̃(2)

1

[
z̃(0)

1

]m − 1 + m!
2!(m − 2)!

[
z̃(1)

1

]2 [
z̃(0)

1

]m − 2
z̃(2)

1 S′
(
z̃(0)

1

)
+ 1

2!
[
z̃(1)

1

]2
S′′

(
z̃(0)

1

)
k = 3 mz̃(3)

1

[
z̃(0)

1

]m − 1 + m!
(m − 2)! z̃

(1)
1 z̃(2)

1

[
z̃(0)

1

]m − 2 + m!
3!(m − 3)!

[
z̃(1)

1

]3 [
z̃(0)

1

]m − 3
z̃(3)

1 S′
(
z̃(0)

1

)
+ z̃(1)

1 z̃(2)
1 S′′

(
z̃(0)

1

)
+ 1

3!
[
z̃(1)

1

]3
S[3]

(
z̃(0)

1

)
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Equation (A9) can now be used to approximate the integral with respect to x in Equation (A2):

ςk, l(t) =
∫

w(−l)(y)

[∫
w(−k)(x)S(η(r, t))dx

]
dy

≈ δk

∫
w(−l)(y)S

(
z̃(0)

1 (t, y)
)

dy + (1 − δk)ρ

∫
w(−l)(y)S′(z̃(0)

1 (t, y))z̃(k)
1 (t, y)dy

= δk

∫
w(−l)(y)S

(
z̃(0)

1 (t, y)
)

dy + (1 − δk)ρ
∑

l′
zk, l

1 (t)

∫
w(l′ − l)(y)S′ (z̃(0)

1 (t, y)
)

dy

(A10)

where δk is a Dirac delta, which is zero except when k = 0.
Similarly, the sigmoidal terms in the integrands of Equation (A10) can be approximated using power series of power series, as

follows:

S
(

z̃(0)
1 (t, y)

)
≈ S

(
z(0, 0)

1 (t)
)

w(0)(y) +
∑
l ≥ 0

ρS′ (z(0, 0)
1 (t)

)
z(0, l)

1 (t)w(l)(y)

S′ (z̃(0)
1 (t, y)

)
≈ S′ (z(0, 0)

1 (t)
)

w(0)(y) +
∑
l ≥ 0

ρS′′ (z(0, 0)
1 (t)

)
z(0, l)

1 (t)w(l)(y)
(A11)

Again, inserting Equation (A11) into (A10), and ignoring high-order terms1 yields:

ςk, l(t) = δkδlS
(

z(0, 0)
1 (t)

)
+ (1 − δkδl) ρS′ (z(0, 0)

1 (t)
)

z(k, l)
1 (t) (A12)

Inserting Equation (A12) in (A2) yields:

ż(k,l)
2 (t) =

⎧⎨
⎩

ν̄
2σ

(
G0S

(
z(0, 0)

1 (t)
)

− z(0, 0)
2 (t)

)
if k = l = 0

ν̄
2σ

((
σ2λkl − 1

)
z(k, l)

2 (t) + ρG0S′
(

z(0, 0)
1 (t)

)
z(k, l)

1 (t)
)

otherwise
(A13)

The second line of Equation (A13) is Equation (8) of the main text, having re-ordered the eigenmodes index pairs (k, l) → k, for the
sake of notational simplicity.

The critical properties of this derivation can be summarized as follows:
First, the fundamental eigenmode response will be slower than higher-order eigenmodes (because of smaller dampening terms).

Second, the response of fast eigenmodes is enslaved by the slow eigenmode. Third, the fast eigenmodes do not feedback onto the slow
eigenmodes. Taken together, we can think of the neural field as a feedforward system: inputs to the field activate the slow eigenmode

z(0, 0)
1 (t), which controls the fast modes z(k, l)

1 (t). This is further discussed in the main text of this document.

APPENDIX 2: DERIVING THE FREQUENCY SPECTRUM OF EIGENMODES
Recall that the eigenmode dynamics obey the following ODE (cf. Equation 8 in the main text):

ż(k) = Az(k) + ν

A =
⎡
⎢⎣

0 0 1

c
(

z(0)
1

)
− ν̄

2σ

(
1 − σ2λk

)
0

− 1
τ2

γ
τ

− 2
τ

⎤
⎥⎦ (A14)

where ν = O(z2) are high-order error terms that act as a perturbation to the deterministic evolution of eigenmodes. As a simplifying
assumption, we consider that ν behaves as i.i.d. white noise, the Fourier transform F

[
z(k)

]
of Equation (A8) writes:

F
[

z(k)
]

= (2iπωI3 − A)−1 F[ν]
∝ (2iπωI3 − A)−1 13

(A15)

where 13 is a 3 × 1 vector of ones, and I3 is the 3 × 3 identity matrix.

1These are O
(
z2
)

terms that derive from the second term in the right-hand side of the second line of Equation (A11).
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Note that the inverse translated Jacobian writes:

(2iπωI3 − A)−1 = 1

|2iπωI3 − A|

⎡
⎢⎢⎣

ξk(ω)
(
iω + 2

τ

) γ
τ

ξk(ω)

c
(

z(0)
1

) (
iω + 2

τ

)
iω

(
iω + 2

τ

)+ 1
τ2 c

(
z(0)

1

)
γ
τ

c
(

z(0)
1

)
− ξk(ω) 1

τ2 iωγ
τ

iωξk(ω)

⎤
⎥⎥⎦

ξk(ω) = iω + ν̄

2σ

(
1 − σ2λk

)
(A16)

where ξk(ω) is the only term that depends upon the mode order k, and the determinant of the translated Jacobian is given by:

|2iπωI3 − A| = iωξk(ω)

(
iω + 2

τ

)
− γ

τ
c
(

z(0)
1

)
+ ξk(ω)

1

τ2

= ξk(ω)

(
iω

(
iω + 2

τ

)
+ 1

τ2

)
− γ

τ
c
(

z(0)
1

) (A17)

where ξk(ω) is given in Equation (A12) (with appropriate eigenmodes index reordering (k, l) → k). The explicit Fourier transform of
eigenmode dynamics now derives from inserting Equation (A16) into (A15):

F
[

z(k)
]

∝ 1

|2iπωI3 − A|

⎡
⎢⎢⎣

ξk(ω)
(
iω + 2

τ
+ 1

) + γ
τ(

iω + 2
τ

) (
c
(

z(0)
1

)
+ iω

)
+ 1

τ2 + c
(

z(0)
1

)
ξk(ω)

(
iω − 1

τ2

)
+ γ

τ

(
iω + c

(
z(0)

1

))
⎤
⎥⎥⎦ (A18)

Now, we are interested in the total frequency power of EEG signal sampled at some position r′ on the scalp that is induced by mean
membrane depolarization:

P(ω, r′) ≡
∣∣∣∣
∫

D
L(r, r′)F[η(r, t)]dr

∣∣∣∣2

=
∣∣∣∣∣∑

k

α(k)(r′)F
[

z(k)
1

]∣∣∣∣∣
2

α(k)(r′) =
∫

D
L(r, r′)w(k)(r)dr

(A19)

where the second line derives from the eigendecomposition of the neural field (cf. Equation 6), L
(

r, r′) is a spatial convolution operator

that describes the quasi-static volume propagation of electromagnetic fields through head tissues, and α(k)(r′) captures the contribu-
tion of the kth eigenmode at position r′ on the scalp. It is known that the geometrical properties of electrical conductivity within head
tissues eventually shape the EEG susceptibility to different cortical spatial scales. For the sake of simplicity, we will assume the skull
acts as a perfect low-pass filter (see e.g., Srinivasan et al., 1998), which induces a cut-off order kc, i.e.,:

α(k)(r′) =
{
α(0)(r′) if k ≤ kc

0 if k > kc
(A20)

Equation (A20) basically neglects the continuous loss of sensitivity as one increases the spatial frequency of (cortical) membrane
depolarization fields. Inserting Equation (A20) into (A19) yields Equation (9) of the main text, i.e.,:

P
(
ω, r′) = α(0)(r′)2

∣∣∣∣∣∣
∑

k ≤ kc

F
[

z(k)
1

]∣∣∣∣∣∣
2

= α(0)(r′)2

∣∣∣∣∣∣
∑

k ≤ kc

ξk(ω)
(
iω + 2

τ
+ 1

) + γ
τ

ξk(ω)
(

iω
(
iω + 2

τ

) + 1
τ

2
)

− γ
τ

c
(

z(0)
1

)
∣∣∣∣∣∣
2

(A21)

where α(0)(r′) is a scaling factor that will be different for different EEG sensors.
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Equation (A21) is a valid approximation of the EEG power spectrum at position r′ on the scalp generated by one local brain region.
The generalization to a network of remote brain regions requires the specification of the relative contribution of each region, which
depends on their relative distance with EEG scalp sensors. In principle, this can be derived from knowledge of the forward operator
L
(

r, r′) (see e.g., De Munck, 1988). This is beyond the scope of the present study.
Lastly, note that the numerical values of the Laplacian’s eigenvalues are approximated from the 2D-Euclidean case, as follows:

λk, l = − (
k2 + l2

)
π2/‖D‖2. The effective frequency cut-off kc is such that k2 + l2 ≤ k2

c . In practice, we use k2
c = 16 and ‖D‖ = 1 cm.
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