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The observation that the activity of multiple muscles can be well approximated by a few
linear synergies is viewed by some as a sign that such low-dimensional modules constitute
a key component of the neural control system. Here, we argue that the usefulness of
muscle synergies as a control principle should be evaluated in terms of errors produced
not only in muscle space, but also in task space. We used data from a force-aiming
task in two dimensions at the wrist, using an electromyograms (EMG)-driven virtual
biomechanics technique that overcomes typical errors in predicting force from recorded
EMG, to illustrate through simulation how synergy decomposition inevitably introduces
substantial task space errors. Then, we computed the optimal pattern of muscle activation
that minimizes summed-squared muscle activities, and demonstrated that synergy
decomposition produced similar results on real and simulated data. We further assessed
the influence of synergy decomposition on aiming errors (AEs) in a more redundant
system, using the optimal muscle pattern computed for the elbow-joint complex (i.e.,
13 muscles acting in two dimensions). Because EMG records are typically not available
from all contributing muscles, we also explored reconstructions from incomplete sets of
muscles. The redundancy of a given set of muscles had opposite effects on the goodness
of muscle reconstruction and on task achievement; higher redundancy is associated with
better EMG approximation (lower residuals), but with higher AEs. Finally, we showed
that the number of synergies required to approximate the optimal muscle pattern for an
arbitrary biomechanical system increases with task-space dimensionality, which indicates
that the capacity of synergy decomposition to explain behavior depends critically on the
scope of the original database. These results have implications regarding the viability of
muscle synergy as a putative neural control mechanism, and also as a control algorithm to
restore movements.
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INTRODUCTION
There is now considerable evidence from a broad range of tasks
and contexts that the activity of multiple muscles can appear to be
well-approximated by only a few muscle synergies, each defined as
a set of fixed relative levels of muscle activation (d’Avella et al.,
2003, 2006; Torres-Oviedo et al., 2006; Tresch and Jarc, 2009;
Dominici et al., 2011; Roh et al., 2012). Although many view this
as a sign that muscle synergy is an important principle used by the
nervous system to control movement, we believe that the viability
of synergies as control elements needs to be evaluated in relation
to task achievement rather than only to accuracy in accounting for
observed muscle activity. All synergy decomposition procedures
(including, for example, those based on convenient optimization
algorithms such as the non-negative matrix factorization; Lee and
Seung, 2001), care only about explaining as much variance of
muscle activity as possible. These procedures are therefore com-
pletely blind to any consideration of task achievement, ignoring
the functional significance of the (typically modest) muscle-
space errors that are inevitably introduced when approximating
an original muscle pattern using fewer synergies than muscles.
However, because the musculoskeletal system has complex and

highly non-linear properties, statistical methods that minimize
errors in the input signal (muscle activity) may result in unac-
ceptably large errors in the output (limb kinematics). A careful
assessment of behavioral errors introduced by synergy decom-
position therefore appears necessary to evaluate the viability of
synergy as a potential biological control principle. Such errors
would also affect the utility of synergy decomposition as a poten-
tial control strategy to restore movement artificially such as with
functional electrical stimulation (FES) or myoelectric controls
(Davoodi et al., 2003; Parker et al., 2006; Hargrove et al., 2009).

Neptune and colleagues evaluated whether muscle syner-
gies extracted during human walking would actually produce
well coordinated locomotion (Neptune et al., 2009; Allen and
Neptune, 2012). They found that the activations of muscle syner-
gies required substantial fine-tuning based on their consequences
in task-space (i.e., minimizing difference between actual and
simulated walking kinematics and ground reaction forces) to
achieve satisfactory motor behavior. This suggests that relatively
small errors produced by muscle synergies in reproducing mus-
cle activation patterns can lead to important functional deficits.
Other studies demonstrated the capacity to generate functional
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movements with a limited number of muscle synergies (McKay
and Ting, 2008, 2012; Berniker et al., 2009; Kargo et al., 2010).
These also required fine-tuning of synergy activation to produce
reasonable behavior, a requirement that might result from dis-
crepancies between the real and modeled biomechanics. None
evaluated the functional consequence of synergy decomposition
by comparing the movements predicted by the extracted synergies
with those actually occurring when the basis-set of electromyo-
grams (EMG) signals was recorded.

A likely reason for the lack of attention that has been devoted
to the functional consequences of synergy approximation is the
complexity of the mapping between muscle activities and their
resulting effects on the limb. In addition to an accurate biome-
chanical model, effective forward simulation of limb kinematics
from EMG requires an accurate measurement of the activa-
tion of each muscle. However, EMG are subject to crosstalk
(i.e., contamination by nearby muscles) and representativeness
issues (e.g., regional segregation of early recruited, slow-twitch
motor units vs. late-recruited, fast-twitch units; Chanaud et al.,
1991b), and are therefore imperfect measures of muscle activation
(Staudenmann et al., 2010; Hug, 2011). To accommodate for this,
we designed a practical forward simulation approach whereby
a virtual representation of muscle biomechanics is defined that
best reconstructs force when driven by EMG recordings (de Rugy
et al., 2012c). This “virtual biomechanics” technique offers a
unique opportunity to map the functional consequences of syn-
ergy approximation: Because the mapping between muscle and
force is explicitly defined and used to control the task, the map-
ping between muscle synergies and force is also explicit and
enables unambiguous assessment of the functional consequences
of using extracted synergies compared to the original EMG sig-
nals in order to account for the motor behavior actually measured
during those EMG recordings.

Another advantage of the explicit representation of muscle
biomechanics defined with this technique is that it provides an
experimental basis from which we can compute muscle activity
according to the principles of optimal control theory; to achieve
the task while minimizing a cost such as effort or variability of
movement. Optimal control theory has been shown to reproduce
patterns of muscle recruitment that are consistent with the exis-
tence of motor synergies (Todorov, 2004; Chhabra and Jacobs,
2006; Diedrichsen et al., 2010), and muscle synergies have been
used to simplify the computational cost of optimization in sev-
eral optimal control schemes (Todorov et al., 2005; Lockhart and
Ting, 2007; Berniker et al., 2009). Here, we compared directly syn-
ergy decomposition and the resulting task performance between
real data and simulated optimal muscle patterns for the same
task. This comparison should indicate whether synergies simi-
lar to those extracted from real data can result from an optimal
control scheme, and whether we can use simulated optimal mus-
cle patterns in place of unavailable EMG to explore functional
consequences of synergy decomposition in arbitrary biomechan-
ical systems. First, we evaluated the functional consequences of
synergy decomposition using previous data obtained when sub-
jects performed force-aiming in two dimensions at the wrist,
with force reconstructed online from EMG recordings (de Rugy
et al., 2012c). Then, we computed the optimal muscle pattern

that minimized the summed squared muscle activities (Fagg
et al., 2002; Diedrichsen et al., 2010) for the virtual biomechanics
extracted for each subject, and compared synergy decomposition
on this simulated pattern with that obtained on real data. We also
assessed synergy decomposition on the optimal muscle pattern
for the higher dimensional elbow-joint complex (13 muscles),
and explored reconstruction from an incomplete set of muscles
as this represents the vast majority of cases for which recordings
are available from only a subset of contributing muscles. The idea
that sampling of muscle degrades the estimate of muscle syner-
gies has been addressed in the literature (Clark et al., 2010; Ting
and Chvatal, 2010; Allen and Neptune, 2012), but here we addi-
tionally determined the influence of the redundancy of the muscle
selection on both synergy approximation and task performance.
Finally, we explored the implications of increasing the dimension-
ality of the task (i.e., from 2-d to 3-d) for synergy decomposition
of the optimal muscle pattern for an arbitrary biomechanical sys-
tem. The scope of the original database is known to influence
the results of synergy decomposition (Macpherson, 1991; Ting
and Chvatal, 2010; Burkholder and van Antwerp, 2012), and we
wanted to evaluate the influence of task dimension on synergy
decomposition of optimal muscle patterns.

MATERIALS AND METHODS
WRIST EXPERIMENT
We re-analyzed data from Experiment 1 in de Rugy et al. (2012c),
applying synergy decomposition methods and measures, and
additionally assessed their consequences in task space.

Participants
Six healthy, right-handed subjects (all men, aged 23–38) volun-
teered for this study. All had normal or corrected to normal vision
and gave informed consent prior to the experiment, which was
approved by the local ethics committee and conformed to the
Declaration of Helsinki.

General procedure
Subjects sat 80 cm from a computer display positioned at eye level.
The right hand was maintained in a custom-made manipulan-
dum with the forearm in a neutral position (midway between
pronation and supination, as displayed Figure 1). The elbow was
kept at 110◦ with the forearm parallel to the table and supported
by a custom-built device. The wrist was fixed by an array of
adjustable supports, contoured to fit the hand at the metacarpal-
phalangeal joints (12 contacts) and the wrist just proximal to
the radial head (10 contacts). This allowed wrist forces to be
applied without the need for a gripping force. Wrist forces were
recorded using a 6-df force/torque transducer (JR3 45E15A-I63-A
400N60S, Woodland, CA) coupled with the wrist manipulandum.

Real-time visual feedback of either the real wrist forces or the
reconstructed wrist forces was presented on the visual display.
Targets were presented at 16 radial positions around the center
of the display (i.e., 22.5◦ apart). Flexion/extension corresponded
to the horizontal axis (flexion left) and radial/ulnar deviation
corresponded to the vertical axis (radial deviation up).

A block of 32 maximal voluntary contraction (MVC) trials was
first conducted for each subject. This block was used to normalize
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FIGURE 1 | Virtual biomechanics. (A) Subjects produced force at the wrist
to 16 targets. (B) Example of muscle tuning curves obtained by averaging
EMGs from five trials per target in the initial force-driven task. (C) Virtual

muscle pulling vector optimized to produce the best aiming performance
when combined with muscle activity. (D) Aiming force reconstructed by
combining (B) and (C).

the activity of each muscle during the aiming task to the maxi-
mal EMG obtained in that muscle during MVC toward any target
direction. Each of the 16 target directions was presented twice in
a randomized order. For each direction, subjects were asked to
raise their force rapidly to the maximal extent while maintain-
ing the force direction within a delineated range of ±8◦ of target
direction. Maximal forces were held for approximately 2 s. Fifteen
seconds were allowed for rest before the next target appeared in
another direction.

The experiment contained a “force-driven” block in which
the visual cursor used to reach targets represented the real force,
followed by an “EMG-driven” block in which the cursor repre-
sented the reconstructed force. The force-driven block consisted
of 96 trials (six trials for each of the 16 target directions) in which
a low level of force (i.e., 22.5 N, which represents approximately
20% MVC for the subjects tested) was required to reach targets.
This level of force was identical across all subjects, and chosen
to reduce the possibility of fatigue. Each trial began only if the
cursor was maintained less than 5% of the target distance from
the origin continuously for 200 ms. The origin was calibrated to
zero force along both axes (wrist relaxed) prior to each block.
A random delay (1–2 s) elapsed before a single target appeared
coincident with a brief tone. Participants were asked to move the
cursor to the target with a movement time of between 150 and
250 ms, defined as the time between 10 and 90% of the radial dis-
tance to the target, and to hold the cursor continuously for 1 s
within the target zone (a trapezoid ±8◦ from target direction by
10% of radial distance to target). A high-pitched tone signaled
that the target had been acquired. If the target was not acquired
within 2 s of target presentation, a low-pitched tone indicated the
end of the trial. A second tone (200 ms after the first) indicated
whether the movement time was correct (high tone) or not (low
tone), and a bar graph provided visual feedback of the movement
time in relation to the prescribed time window. Both the target
and cursor disappeared at target acquisition or trial end, and at
least 1 s elapsed before the start of the next trial. For each block,
six consecutive trials were conducted for each one of 16 randomly
ordered targets. The “EMG-driven” block was identical to the
“force-driven” blocks, with the only exception that the real force
feedback was replaced by the reconstructed force.

EMG procedure
Bipolar electromyographic signals were recorded from exten-
sor carpi radialis longus (ECRl), extensor carpi radialis bre-
vis (ECRb), flexor carpi radialis (FCR), flexor carpi ulnaris
(FCU), and extensor carpi ulnaris (ECU) muscles, with self-
adhesive surface electrodes. Signals were band-pass filtered from
30 Hz–1 KHz, amplified 200–5000 times (Grass P511, Grass
Instruments, AstroMed, West Warwick, RI, USA), and sampled
at 2 KHz. Electrode locations were determined according to pro-
cedures previously reported (Selvanayagam et al., 2011).

Data reduction and analysis
Muscle tuning curves, or the time-independent muscular activity
(a) for the different target directions, were determined for each
muscle as the mean rectified EMG during the hold-phase of the
task (i.e., in a time window from 300 to 1000 ms after move-
ment onset), averaged over five trials to each target (the first of
the six consecutive trials to each target was discarded to prevent
the uncertainty about target direction from contaminating the
data).

Virtual biomechanics, the representation of muscle biome-
chanics that best reaches the target when combined with EMG
data, was extracted from muscle tuning curves obtained from the
“force-driven” block as indicated in de Rugy et al. (2012c). A coor-
dinate descent was used to determine the set of pulling vectors
P (Figure 1) that resulted in the best aiming performance, i.e.,

that minimizes endpoint errors E = ∥
∥xtarg − x

∥
∥2

between cursor
positions x (x = P a) and target positions xtarg. This coordinate
descent used the following steps: (1) Assign random values to the
initial set of pulling vectors in the physiological range of muscle
force and direction. (2) Pick a muscle at random and modify its
pulling vector by changing its endpoint by a step in four orthog-
onal directions. The target errors associated with each of the
five pulling vectors (i.e., the original and the four modified for
that muscle) was then calculated as the summed squared error
between targets and reconstructed reaches, and the pulling vec-
tor that produced the lowest cost was retained. (3) One iteration
of the model was said to be completed when each muscle had
been optimized once. (4) The whole model was iterated until the
overall cost converged to a low value.
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The resulting set of pulling vectors was then multiplied online
by the rectified filtered EMG of the five muscles to reconstruct
force used as a feedback in the “EMG-driven” condition. This vir-
tual biomechanics was also used to compute the optimal muscle
pattern, as explained below. We showed previously that mus-
cle tuning curves for this data set were not different in the
“force-driven” and in the “EMG-driven” blocks (de Rugy et al.,
2012c).

Synergy extraction was conducted using the non-negative
matrix factorization algorithm (Lee and Seung, 2001) on mus-
cle tuning curves obtained in the “EMG-driven” block, for which
we unambiguously know the mapping between muscle activ-
ity and task space. The muscle activation pattern a was first
normalized such that each muscle has unit variance, and the nor-
malized pattern a∗ was approximated with N muscle synergies
according to

a∗ ≈ â∗ = c w

where a∗ is a matrix with each component representing the nor-
malized activation of a specific muscle for a specific target direc-
tion, â∗ is the approximated muscle pattern, w is a matrix with
each component representing the activation of a specific synergy
for a specific target direction, and c is a matrix of non-negative
scaling coefficients.

The goodness of synergy approximation was calculated as a
multivariate R2 (Mardia et al., 1979; d’Avella et al., 2006):

R2 = 1 − SSE

SST
= 1 −

∥
∥a∗−â∗∥∥2

∥
∥a∗− a∗∥∥2

where SSE is the sum squared residuals and SST is the summed
squared residual from the mean normalized activation vector
(ā∗). We also computed the variance accounted for (VAF), a
related measure where SST is simply the summed squared acti-
vation, i.e., calculated on uncentered data (Cheung et al., 2005;
Roh et al., 2012):

VAF = 1 − SSE

SST
= 1 −

∥
∥a∗− â∗∥∥2

‖a∗‖2

For each synergy decomposition, an associated aiming error (AE)
was computed as the distance between targets xtarg and the
force vector produced by combining the pulling vectors with the
(un-normalized) muscle activity approximated by the synergies
(x̂ = Pâ):

AE = ∥
∥x̂− xtarg

∥
∥2

For each subject and synergy number (N = 1 − 5), the synergy
decomposition was conducted 10 times and averaged values were
obtained for each of the three measures (R2, VAF, and AE).

WRIST SIMULATIONS
We computed the optimal muscle pattern aopt for the set of
pulling vectors extracted individually for each subject using
the procedure described in Fagg et al. (2002). This procedure

minimizes the following composite cost C, which ensures task
achievement by minimizing target errors while simultaneously
minimizing the summed squared muscle activations:

C = 1

2

∥
∥xtarg − x

∥
∥

2 + λ

2

∥
∥aopt

∥
∥

2

where λ is a regularization parameter set to 0.02 to represent
allowable errors on the order of 2% of movement magnitude.
Synergy decomposition was applied on the optimal muscle pat-
tern as on experimental data, and differences between experi-
mental and simulated data were tested using a two way [data
type (experimental vs. simulated) × number of synergy (1–5)]
repeated measures ANOVAs for the three measures (R2, VAF, and
AE). Differences between AEs produced with different number
of synergies were also tested on experimental data using a paired
sample t-test. The significance level was set to α = 0.05.

ELBOW SIMULATIONS
The optimal muscle pattern was also computed on an exist-
ing biomechanical model of the arm for a similar center-out
isometric task performed at the elbow joint complex in the
flexion/extension and supination/pronation workspace (de Rugy
et al., 2009; de Rugy, 2010). The biomechanical model developed
by Davoodi and colleagues (Figure 4A; Davoodi et al., 2002a,b;
de Rugy et al., 2008; de Rugy, 2010) was used to extract the
pulling vectors of 13 arm and forearm muscles in this workspace
(Figure 4B): Supinator (SUP), the short and long heads of Biceps
Brachii (BIC ln and sh), Brachialis (BRA), Brachioradialis (BRD),
Pronator Teres (PT), Pronator Quadratus (PQ), the long, medial,
and lateral heads of Triceps (TRI ln, m, and lt), and three wrist
muscles (FCR, ECRl, and ECRb; please note that the two remain-
ing wrist muscles, FCU, and ECU, were not included because their
moments are negligible in that workspace).

Synergy decomposition was conducted on the optimal muscle
pattern according to the method described above for the wrist,
and the procedure was repeated 100 times to obtain the mean and
standard error of the three measures (R2, VAF, and AE).

To account for the vast majority of cases in which record-
ings are limited to an incomplete set of muscles, we also explored
reconstructions from a limited number of muscles. In particular,
we considered two qualitatively different selections of eight mus-
cles amongst the 13 muscles: a “redundant” selection (Figure 5A,
BIC ln and sh, BRA, BRD, TRI ln, lt, and m, PT), and a “less
redundant” one (Figure 5B, BICln, BRA, TRIln, PT, SUP, PQ,
FCR, ECRb). The idea behind this choice of qualitatively different
sets of muscles was that the level of biomechanical redundancy
might translate into relationships between activation of muscles
that would be visible through synergy decomposition. R2 and VAF
were calculated as before for these incomplete sets of muscles,
and AE was computed on the basis of the virtual biomechanics
reconstructed from these eight muscles only (i.e., based on the
set of pulling vectors that best achieve targets when combining
the activity of the eight muscles rather than on the true pulling
vectors). This was designed to assess the quality of the reconstruc-
tion in both muscle space and task space for common situations
in which recordings are only available from fewer muscles than
those contributing the task.
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SIMULATIONS WITH ARBITRARY PULLING VECTORS IN 3 AND 2
DIMENSIONS
We explored the implications of changing the dimensionality of
the task-space for synergy decomposition using the optimal mus-
cle pattern for an arbitrary biomechanical system represented by
a set of 13 pulling vectors in three and two dimensions. A set
of 13 unit vectors approximately uniformly distributed in three
dimensions was first defined using a repulsive iterative algorithm
(Figure 6A). Then the same iterative algorithm was used to gen-
erate a set of 200 targets approximately uniformly distributed on
a sphere (Figure 6B), and the optimal muscle pattern for these
pulling vectors and targets was determined that minimized the
same cost function as for the wrist and elbow (i.e., composite cost
with target errors and summed squared muscle activations). The
corresponding simulations in two dimensions were conducted
using the original set of 16 targets used for the wrist and elbow,
and the same set of 13, 3-dimensional pulling vectors by ignoring
the third dimension (Z on Figure 6B, 2-d pulling vector shown
Figure 6C). The optimal muscle pattern was computed as before
(Figure 6D). Synergy decomposition and the mean and stan-
dard error of the three main measures (R2, VAF, and AE) were
conducted and obtained as for the elbow system.

RESULTS
SYNERGY DECOMPOSITION ON REAL AND OPTIMAL DATA AT
THE WRIST
Figure 2A shows how synergy decomposition approximates the
original muscle pattern for one subject, and Figures 2B,C show
how this approximation translates into AEs for the same subject
(B) and for all six subjects (C). This figure illustrates that the
muscle pattern reconstructed with synergy only starts to resem-
ble the real pattern with three or four synergies, but also that
the remaining muscle-space differences translate into substan-
tial AE. These errors disappear only when five synergies have
been extracted, which reflects the unreduced dimensionality of
the complete musculoskeletal system.

Figure 3 shows that the goodness of the muscle reconstruction
increases as expected with the number of synergies, and that AEs
decrease accordingly. It is worth noting that a VAF of approxi-
mately 0.5 is obtained with only one synergy, where the cursor
hasn’t moved from the center of the workspace toward any target
(Figure 2C). This illustrates that 50% of the variance in mus-
cle activity is accounted for by a synergy decomposition that is
doing no better at reaching targets than simply not activating any
muscles. Figures 2B,C also illustrate that synergy decomposition
systematically results in undershoot errors. The reason for this is
obvious with one synergy, where the solution found by the non-
negative matrix factorization algorithm takes the form of muscles
that co-contract to their average activity level in the original mus-
cle pattern. For other number of synergies, the muscle pattern
approximated with fewer synergies than muscles similarly results
in wider muscle tuning curves, which produces undershoot errors
when summing muscle contributions at the joint.

Figure 3 shows that the reconstruction with four synergies
explained most of the variance of the muscle pattern (VAF = 0.95
and R2 = 0.91) while still producing considerable task errors
(averaged error of 13.5 % of target distance, visible Figure 2C),

FIGURE 2 | Synergy decomposition at the wrist. (A) Actual muscle
pattern (colored) with the muscle pattern reconstructed with 1–5 synergies
(black) for a representative subject. (B) Corresponding targets (circles) and
reconstructed aiming force (crosses) for the same subject. (C) Targets
(circles) and reconstructed aiming force (crosses) for all subjects.

that are significantly higher than errors produced by the original
muscle pattern (3.6% averaged error; t = 8.11 p < 0.0005).

Figure 3 also shows that synergy decomposition conducted
on optimal muscle patterns computed for the virtual biome-
chanics extracted from individual subjects generated similar
results to synergy decomposition of real data. There were no
differences in R2 or AE values calculated on real vs. simu-
lated data [F(1, 5) < 4.98, p > 0.08], although VAF values were
slightly higher when calculated on real data than optimal data
[F(1, 5) = 9.19, p = 0.03]. These results indicate that synergy
decomposition of optimal muscle recruitment patterns produces
results similar to those obtained from real EMG signals. This
makes it possible to explore the inherent consequences of syner-
gies interacting with realistic musculoskeletal dynamics without
the potential confounds introduced by missing, poorly sampled
or noisy EMG signals.

SYNERGY DECOMPOSITION ON OPTIMAL DATA AT THE ELBOW JOINT
COMPLEX
Figure 4 shows that synergy decomposition conducted on the
optimal muscle pattern (C) computed for the 13 muscles of
the biomechanical arm model provides results (D) closer to
those usually reported in the literature; i.e., a goodness of the
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FIGURE 3 | Goodness of muscle and aiming force reconstructions at

the wrist, evaluated through VAF, R2, and AE. Sold lines correspond to
real data and dotted lines correspond to simulated data (optimal muscle
pattern). Error bars represent standard errors.

reconstruction (both VAF and R2) that quickly rises to reach
an asymptotic level at which most muscle variance is explained
with substantially fewer synergies than muscles. For instance, the
90% variance level is reached with only four synergies (VAF =
0.94 and R2 = 0.90) and almost the entire variance is explained
with five synergies (VAF = 0.98.5 and R2 = 0.97.5). However, the
associated AEs are still substantial (14.6% and 7.5% of target dis-
tance with four and five synergies, respectively), and at least six
synergies are needed to generate AEs below 5% of target distance
(i.e., 4.1% with six synergies).

The situation changes when only an incomplete selection of
muscles is available to perform the synergy decomposition and
the force reconstruction, reflecting the common experimental sit-
uation in which recordings are not available from all contributing
muscles. Figure 5 shows that the goodness of muscle approxima-
tion is better for the selection of redundant muscles than for the
selection of less redundant muscles. For instance, at least 90% of
the variance is explained with three and four synergies with the
set of redundant muscles, but this degree of variance explained
requires an additional synergy with the set of less redundant
muscles. Inversely, the AE reconstructed by combining synergy
approximation with the virtual biomechanics extracted on the
incomplete set of available muscles is much higher for the redun-
dant muscles than for the less redundant muscles. In particular,
the reduction of error saturates above 30% from 4 to 8 synergies
for the set of redundant muscles, but monotonically decreases to
a minimum of 3.8% for the less redundant muscles.

It is worth noting that if AEs associated with synergy decom-
position are better for the set of less redundant muscles, they are
still substantially higher than with the complete set of muscles.

For instance, AEs for 5–7 synergies are 29, 17.5, and 8% for the
set of less redundant muscles, and 14.6, 7.5, and 4.1% for the
complete set of muscles. This indicates that aiming performance
suffers more from synergy approximation with an incomplete set
of muscles.

SYNERGY DECOMPOSITION ON ARBITRARY BIOMECHANICS IN 2 AND
3 DIMENSIONS
Figure 6E shows that synergy decomposition conducted on the
optimal muscle pattern computed on the 13 muscles of the arbi-
trary biomechanical model provides different results for the two-
and three-dimensional versions of the task. As for the elbow
system, the optimal muscle pattern for the 13 two-dimensional
pulling vectors (Figures 6C,D) reaches the 90% variance level
with only four synergies (VAF = 0.94, R2 = 0.90, AE = 14.6%).
In contrast, nine synergies were required to reach the same
90% variance level for the three-dimensional version of the task
(VAF = 0.94, R2 = 0.91, AE = 12%). For both cases, an addi-
tional synergy is required for the averaged AE to drop below 10%
(i.e., 8% with five synergies and 9.8% with 10 synergies for the
two- and three-dimensional cases, respectively). This indicates
that the capacity of synergy to explain optimal muscle patterns
and their functional outcome depends critically on the scope of
the original database, where higher dimensional behaviors will
require more synergies or will produce poorer fits.

DISCUSSION
The purpose of this study was to assess the functional conse-
quences of approximating an actual pattern of muscle recruit-
ment with fewer synergies. We first used previous data obtained
when people performed a force-aiming task in two dimensions
at the wrist, where force was reconstructed online from EMG
recordings (de Rugy et al., 2012c), to show that despite success-
fully explaining muscle activities, synergy-approximated EMG
data would introduce substantial errors in task space. Then,
we showed that synergy decomposition on the optimal muscle
pattern that minimizes summed-squared muscle activities for a
representation of muscle biomechanics produces similar muscle
approximations, with the same functional consequences. We also
assessed the influence of synergy decomposition on the optimal
muscle pattern computed for the more redundant elbow-joint
complex, to show that when selecting an incomplete set of mus-
cles, the redundancy of that selection has opposite effects on
the goodness of muscle approximation and on task achievement:
higher redundancy is associated with better muscle approxima-
tion, but with higher AEs. Finally, we showed that increasing the
dimensionality of the task-space from 2 to 3 dimensions also
increases the number of synergies required to approximate the
optimal muscle pattern and produce low AEs.

If synergies are used only as a tool to summarize observed
muscle activation patterns, then they are no different from regres-
sion analysis, in which the goodness of fit depends simply on
the number of free parameters and the complexity of the source
data. Instead, synergies were introduced originally by Bernstein
(1967 translation of 1934 book) and continue to be offered as
a theory for how the nervous system solves a very specific con-
trol problem known as redundancy. The musculoskeletal system
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FIGURE 4 | Synergy decomposition at the elbow joint complex.

(A) Musculoskeletal model. (B) Pulling vectors of muscles in the
two-dimensional space of flexion/extension and supination/pronation.

(C) Optimal muscle pattern for this system. (D) Goodness of
muscle and aiming force reconstructions, evaluated through VAF,
R2, and AE.

contains more degrees of mechanical freedom and more muscles
than required to perform tasks successfully. If the nervous sys-
tem must compute the pattern of muscle activations required to
perform a given task, how does it decide which of many solu-
tions to use? One solution is to add performance criteria that
can be optimized by one and only one solution (e.g., minimize
trajectory errors in the face of noise or minimize effort to con-
serve energy). Computing or discovering such optimal solutions
tends to be extremely difficult for systems with the complexity of
a typical limb (reviewed by Valero-Cuevas et al., 2009 and Loeb,
2012). An alternative solution is for there to be arbitrary restric-
tions on the available patterns of muscle recruitment, either as
a consequence of hard-wired neural circuits or learned motor
habits. The synergies extracted by decomposition of observed
EMG patterns would then be indicative of this control strategy
at work. The validity of synergies as a neural control strategy
thus depends on its necessity (what are the alternatives?) and
its utility (what are the consequences?), which are discussed
below.

MUSCLE SYNERGIES INTRODUCE AIMING ERRORS
The importance of considering error introduced in the task space
when assessing the usefulness of muscle synergies is clearly illus-
trated by the fact that in our wrist isometric task, about 50% of
muscle variance is accounted for (i.e., VAF) by only one synergy.
In this case, the solution found by the non-negative matrix fac-
torization algorithm takes the form of muscles that co-contract to
their average activity level in the original muscle pattern. When
summing muscle contributions at the joint, this resulted in zero
net force, which therefore translated in no movement whatso-
ever toward the force targets. This extreme case might indicate
that centered data should be preferred when calculating the good-
ness of muscle approximation (i.e., use R2 instead of VAF) to
avoid over-interpreting spurious results arising from the nature
of the statistical method. However, both R2 and VAF are rela-
tively insensitive to the functional consequences of the synergy
approximation of muscle activity. For instance, approximating
the activity of the five wrist muscles with four synergies explained
most of the muscle variance (R2 and VAF > 0.9), while still
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FIGURE 5 | Reconstruction from incomplete set of muscles. (A,C) Muscle pulling vectors for the redundant (A) and less redundant (D) set of muscle.
(B,D) Reconstructed aiming force. (E,F) goodness of muscle and aiming force reconstructions evaluated through VAF, R2, and AE.

missing the force targets by 13.5% of target distance. This is
important because this order of magnitude of explained muscle
variance has been considered as an accurate description in dif-
ferent contexts [e.g., R2 of 0.85 in reaching (Muceli et al., 2010)
or VAF of 0.88 for locomotion (Oliveira et al., 2012)]. It is inter-
esting to note that synergy decomposition systematically resulted
in undershoot errors (Figure 2) because it inevitably produces
inappropriate cocontraction.

The assessment of the functional consequences of muscle
approximation by synergies was possible here because for the iso-
metric task at relatively low force (approximately 20% of MVC),
the relationship between muscle activity and task space is likely
to be close to linear. Although we have not tested our virtual
biomechanics technique in contexts where this might not be the
case, this linear relationship might be required for subjects to
perform the task similarly well with either the real force or the
force reconstructed online from EMG recordings (de Rugy et al.,
2012c). Because the synergy decomposition was conducted on
data obtained when the task was performed with reconstructed
force, the mapping between EMG and task space was known, and
we applied this mapping directly to calculate errors introduced by

synergy decomposition in task space. It remains that the mapping
between muscle activity and task space is likely to be far more
complex in broader dynamic contexts that include strongly non-
linear relationships between muscle force and velocity for a given
level of activation (Brown et al., 1999), which might introduce
more errors. For example, the final positions of center-out reaches
will depend more on the relatively small EMG signals but large
forces that stop the movement on target than on the larger EMG
signals but smaller forces in the agonists that accelerate the limb
at the beginning of the task. This illustrates that an important
part of the control problem might reside in an arbitrarily small
proportion of unexplained muscle activation variance.

As mentioned in the introduction, we believe that the com-
plexity of the mapping between muscle activity and the resulting
action is the primary reason for the scant attention that has been
devoted to the functional consequences of synergy approxima-
tion. Although Neptune and colleagues found that synergies were
a useful starting point, they required substantial fine-tuning based
on their consequences in task-space to produce well coordinated
locomotion (Neptune et al., 2009; Allen and Neptune, 2012).
There is no question that the statistical methods used to extract
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FIGURE 6 | Synergy decomposition from arbitrary muscle pulling

vectors in 3-d and 2-d. (A) Unit pulling vectors representing 13
muscles approximately uniformly distributed in the three-dimensional
space. (B) Set of 200 approximately uniformly distributed targets on
the surface of a sphere. (C) Corresponding pulling vectors in the

two-dimensional space, obtained by suppressing the Z-dimension to
the original set of 13 pulling vector. (D) Optimal muscle pattern in
2-d. (E) Goodness of muscle and aiming force reconstructions
evaluated through VAF, R2, and AE, for both the 3-d and the 2-d
simulated data sets.

synergies from EMG recordings must capture substantial features
of the very behavior from which the recordings were obtained.
The question of whether these synergies reflect an organizing
principle of neural control depends on their capacity to suffi-
ciently account for behavior. This condition was not met in either
the walking studies or in the wrist task presented here.

MUSCLE SYNERGIES MIGHT ARISE FROM, OR SUBSERVE OPTIMAL
CONTROL
Despite the shortcomings mentioned above in relation to AEs
generated with the wrist system, we found that synergy decom-
position produces similar results on real and simulated (optimal)
data. This direct comparison extends previous reports that opti-
mal control schemes produce synergy-like properties (Todorov,
2004; Chhabra and Jacobs, 2006) by showing both qualitative and
quantitative matches within the same protocol. Because the dele-
terious effects of synergy decomposition in terms of AEs at the
wrist might relate to the relatively low muscle redundancy of that
system, we also explored the more redundant elbow-joint com-
plex. We show that synergy decomposition on the optimal pattern
for the 13 muscles of that system produces results that correspond
to those typically reported in muscle synergy studies (d’Avella

et al., 2006, 2008; Roh et al., 2012), with a goodness of muscle
approximation that quickly rises to reach an asymptote level at
which most muscle variance is explained with substantially less
synergies than muscles. Thus, properties that are typical of the
muscle synergy hypothesis arise from the inherent principles of
optimal control, highlighting the obvious possibility that synergy
might just be a by-product of an alternate control scheme rather
than a control principle in itself (Todorov, 2004; Chhabra and
Jacobs, 2006; Diedrichsen et al., 2010). One such control scheme
that could result in muscle activations that resemble the output of
muscle synergies involves the online computation of optimal task
solutions by feedback control laws (i.e., optimal feedback con-
trol; Todorov, 2004; Diedrichsen et al., 2010). However, muscle
synergies have also been suggested to subserve optimal feedback
control as a possible neural control element to reduce the high
computational cost associated with online optimization (Todorov
et al., 2005; Berniker et al., 2009) or to implement a simple feed-
back rule at task level (Lockhart and Ting, 2007; Ting and McKay,
2007).

Alternatively, muscle synergies might prevail over optimal
control schemes. Similarities between real and optimal muscle
patterns might reflect behaviors that have developed and evolved
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to minimize biologically relevant costs, and whose production is
mediated by muscle synergies that are relatively less flexible at
shorter time scale. In fact, we showed recently that when faced
with novel biomechanics, participants adapted by scaling their
original muscle patterns linearly rather than re-optimizing them
(de Rugy et al., 2012b), which could at first glance appear in favor
of the existence of hard wired synergies. However, we also found
that muscle patterns observed when simulating the biomechanics
of a posture different from the real posture were better described
by a linear scaling of the muscle pattern associated with the real
posture than with the simulated posture (de Rugy et al., 2012a,b).
This result is not consistent with a re-optimization of activation
signals to a set of fixed muscle synergies, as this should have
enabled reproducing the optimal muscle pattern associated with
the simulated posture. This result could potentially be explained
by posture- or feedback-specific synergies (Cheung et al., 2005;
d’Avella et al., 2008), but this would be inconsistent with the
definition of muscle synergy as a fixed, linear combination of
muscle activations, and the associated potential benefits in terms
of dimensionality reduction for higher level controllers. Indeed,
if synergies are allowed to vary depending on the task or con-
text, these variations would become additional degrees of freedom
requiring both additional circuits that can produce the additional
synergies and control circuits to select among them. Alternatively,
the observed limitation of flexibility of posture-dependent muscle
patterns could conceivably pertain to stored and recalled activa-
tion signals to synergies rather than to the synergies themselves.
However, this would be difficult to distinguish from alternative
control schemes involving stored motor programs that would
be based on an equal or higher number of control signals than
muscles. The concept of synergies might be defined broadly to
reflect any tendency to use muscles in learned patterns rather
than requiring the existence of specific circuits that generate fixed
combinations of muscle activations. But in that case, it is really a
neologism for regression analysis that has no predictive value as a
reductionist theory of motor control.

THE NUMBER OF SYNERGIES INCREASES WITH TASK DIMENSION
Our simulations show that when going from aiming in two
to three dimensions with the same (arbitrary) biomechanical
system, more synergies are required to well-approximate the
optimal muscle pattern and to generate sufficiently small errors
(Figure 6E). This illustrates that the capacity of synergy to explain
behaviors depends critically on the scope of the original database,
where more diverse behaviors will require more synergies or will
produce poorer fits. In other word, the seemingly high capac-
ity to account for most activity of numerous muscles with only
few linear synergies might hold in restricted experimental con-
texts (Loeb, 2000), but is expected to deteriorate for more diverse
natural behaviors (Macpherson, 1991).

The need to study sufficiently rich behavioral sets has been
well-recognized in EMG studies of behaving animals, in which it
is possible to surgically implant selective and precisely positioned
recording electrodes (Loeb and Gans, 1986). A monkey can learn
gradually to selectively modulate muscles that appear to be closely
synergistic on both anatomical and electrophysiological grounds
if some mechanical advantage can thereby be attained (Cheng

and Loeb, 2008). Cats walking on a treadmill exhibit stereotyp-
ical patterns of synergy in some major muscles but appear to have
learned idiosyncratic patterns of use for smaller muscles (Loeb,
1993), which patterns depend on the musculoskeletal mechan-
ics of the limb rather than genetically specified spinal pattern
generators for locomotion (Loeb, 1999). Even within anatomi-
cally singular muscles, neuromuscular compartments that have
somewhat different mechanical actions on the skeleton can be dif-
ferentially recruited for some but not all tasks (Chanaud et al.,
1991a,b; Pratt et al., 1991; Pratt and Loeb, 1991). These refine-
ments of neural control are likely to go unappreciated in the EMG
databases obtainable from surface electrodes, but they seem likely
to be present nonetheless in humans.

IMPLICATIONS FOR THE USE OF SYNERGY IN ARTIFICIAL CONTROL
FES typically requires the transformation of a motor goal into
control signals designed to stimulate muscles in order to achieve
that goal (Davoodi et al., 2003; Loeb and Davoodi, 2005). We
illustrated previously that the nervous system does not seem to re-
optimize activation signals to a set of muscle synergies (de Rugy
et al., 2012b), but this does not mean that the principle of low
dimensional control modules cannot be useful to restore move-
ments artificially with FES. For instance, optimal muscle patterns
computed for the biomechanics of a particular limb could be
decomposed into fewer synergies, that could be used to enable
online optimization onto fewer control signals (Todorov et al.,
2005), or to implement of simple feedback rules at task-level with-
out requiring to solve complex redundancy problems (Lockhart
and Ting, 2007; Ting and McKay, 2007). The value of such
schemes, however, remains contingent upon whether their ben-
efits in reducing computational cost outweigh task-space errors
introduced by the original approximation into fewer synergies.

Myoelectric control is another important area where mus-
cles are used to restore movement artificially, although in this
case muscles are used to generate control signals rather than to
receive them. In contrast to traditional myoelectric prostheses
where muscle activities are translated into velocity about a joint,
the goal of contemporary myoelectric control research is toward
the simultaneous and proportional control of multiple degrees
of freedom (Parker et al., 2006; Jiang et al., 2009). In this con-
text, a recent technique that involves transferring residual nerves
to alternative muscle sites targeted motor reinnervation (TMR)
has increased the number of muscle signals available to con-
trol a prosthetic device in amputees (Kuiken et al., 2007, 2009).
Although promising, this re-innervation technique is unlikely
to restitute the complete set of original control signals. Similar
recording limitations obtain in intact musculoskeletal systems.
This is why we explored simulations with incomplete sets of
muscles. The first consideration, before synergy decomposition,
is to reconstruct the motor output from the available muscles.
We showed previously that this could be done with our virtual
biomechanics technique, which empirically finds a representa-
tion of muscle biomechanics that best reconstructs force when
driven by EMG recordings (de Rugy et al., 2012c). Here, we addi-
tionally show that on simulated (optimal) muscle patterns, the
reconstruction is better for an incomplete set of muscles that are
less redundant than for a set of more redundant muscles. Then,
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irrespective of how good or bad this reconstruction is, synergy
decomposition would add additional errors on the top of it. From
that perspective, applying synergy decomposition onto the set of
available muscles appears of little use, and it seems rather more
appropriate to make full use of all available muscles to best recon-
struct the motor output in task space. This is essentially what is
now done with the method of principal components analysis of
TMR recordings (Jiang et al., 2009).

Nevertheless, synergy decomposition might suggest a useful,
although paradoxical way to decide which muscles to record from
in the case of myoelectric controllers in which the number of
available myoelectric channels is limited. Those muscles that are
most difficult to decompose into a small number of synergies
should be accorded the highest priority for obtaining command
signals.

A HIGH DIMENSIONAL ALTERNATIVE TO SYNERGY
Finally, we ask whether there really is a redundancy problem to
be solved at all. The notion that the nervous system might con-
trol movement through a limited number of synergies seems at
odds with the high number of neurons available to process the
transformation between sensory information and motor com-
mands, as well as with the numerous divergent pathways that
have been suggested by some as a possible basis for the imple-
mentation of muscle synergies. For instance, the processes of
sensorimotor transformation and adaptation are well described
by gain fields, or population codes formed by numerous basis
neurons each responding to a particular range or combination
of inputs (Andersen et al., 1985; Salinas and Abbott, 1995; Pouget
and Snyder, 2000; Baraduc et al., 2001). Although decoding algo-
rithms such as those developed for neural prosthetics involve
a great deal of dimensionality reduction to extract motor goals
from neuronal populations (Musallam et al., 2004; Hauschild
et al., 2012), there seems to be no compelling reason to believe
that the nervous system should operate a comparable dimension-
ality reduction into muscle synergies before increasing the dimen-
sionality again to pools of motor units that have mechanically

distinct actions. It has been suggested that the nervous system
may actually encode more muscle synergies than muscles, but that
only a subset of the entire synergy library is used in any given
task (Chiel et al., 2009). Such a scheme clearly does not alleviate
redundancy, and although it could conceivably simplify control
within the context of a given task, it would require an additional
control process to select appropriate synergies for each task. It
would also appear to be impossible to generate testable hypothe-
ses regarding the existence of an unlimited number of unrealized
synergies.

If the nervous system does not control movements through
a limited number of synergies, then how does it decide which
of many good-enough (i.e., redundant) motor programs to use?
Recent modeling work that includes the spinal cord circuitry pro-
vides interesting insight into this question. Indeed, a system with
a large number of control inputs to a realistic set of interneu-
ronal pathways was found to enable a simple learning algorithm
to rapidly converge to physiological solutions (Raphael et al.,
2010; Tsianos et al., 2011). Instead of reducing the dimension-
ality of control signals to assist computation of an unlikely global
optimum, the nervous system might take advantage of the high
probability of finding good-enough local minima within the high
dimensional space of low-level circuitry (Loeb, 2012). A system
that learned and stored such motor habits would appear to be
limited to the synergies that it happened to have learned, but not
as a result of any fundamental mechanism. Such a system might
tend to get stuck in motor habits that could become suboptimal if
the musculoskeletal system were to change its properties. This is
exactly what we found when we applied our virtual biomechanics
methodology (de Rugy et al., 2012c) to studies of wrist control in
human subjects (de Rugy et al., 2012b).
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