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INTRODUCTION

The theta-gamma cross-frequency coupling (CFC) in hippocampus was reported to reflect
memory process. In this study, we measured the CFC of hippocampal local field potentials
(LFPs) in a two-vessel occlusion (2VO) rat model, combined with both amplitude and
phase properties and associated with short and long-term plasticity indicating the memory
function. Male Wistar rats were used and a 2VO model was established. STP and LTP were
recorded in hippocampal CA3-CA1 pathway after LFPs were collected in both CA3 and
CA1. Based on the data of relative power spectra and phase synchronization, it suggested
that both the amplitude and phase coupling of either theta or gamma rhythm were involved
in modulating the neural network in 2VO rats. In order to determine whether the CFC
was also implicated in neural impairment in 2VO rats, the coupling of CA3 theta—CA1
gamma was measured by both phase-phase coupling (n:m phase synchronization) and
phase-amplitude coupling. The attenuated CFC strength in 2VO rats implied the impaired
neural communication in the coordination of theta-gamma entraining process. Moreover,
compared with modulation index (MI) a novel algorithm named cross frequency conditional
mutual information (CFCMI), was developed to focus on the coupling between theta
phase and the phase of gamma amplitude. The results suggest that the reduced CFC
strength probably attributed to the disruption of the phase of CAT gamma envelop. In
conclusion, it implied that the phase coupling and CFC of hippocampal theta and gamma
played an important role in supporting functions of neural network. Furthermore, synaptic
plasticity on CA3-CA1 pathway was reduced in line with the decreased CFC strength
from CA3 to CA1. It partly supported our hypothesis that directional CFC indicator might
probably be used as a measure of synaptic plasticity.

Keywords: two-vessel occlusion, cross frequency conditional mutual information (CF-CMI), synaptic plasticity,
hippocampus, neural information flow (NIF)

Synchronized neural oscillations were supposed to facilitate

Hippocampus is known to be one of the most important brain
regions closely related to the learning and memory processes
with synaptic plasticity as the accepted cellular basis (Howland
and Wang, 2008; Shang et al., 2010; Sydow et al., 2011; Foster,
2012). One of the functional indices of synaptic plasticity is long
term potentiation (LTP) (Quan et al., 2010), which is a long last-
ing enhancement of synaptic strength induced by high-frequency
stimulating presynaptic neurons (Bliss and Lomo, 1973). In addi-
tion, the early transient potentiation phase of LTP lasting 10 min
or less is termed short-term potentiation (STP) and is considered
to be one candidate mechanism for short term memory (STM)
(Erickson et al., 2010).

Abbreviations: CFC, cross frequency coupling; CF-CMI, cross frequency condi-
tional mutual information; fEPSP, field excitatory postsynaptic potential; CMI,
conditional mutual information; LEP, local field potential; LTP, long term potenti-
ation; MWM, Morris water maze; MI, modulation index; NIF, neural information
flow; PAC, phase-amplitude coupling; PLV, phase locking value; STM, short term
memory; STP, short term potentiation; 2VO, two vessel occlusion.

simultaneous firing of neural population and may be related
to cognitive processes (Basar et al., 2001; Ward, 2003; Zhang,
2011). Conventionally, neural oscillation is classified into five fre-
quency bands e.g., delta 1-4Hz, theta 4-8 Hz, alpha 8-13 Hz,
beta 13-30 Hz, and gamma 30-150 Hz (Buzsaki and Draguhn,
2004), which are possibly associated with different brain status.
Among these rhythms, both theta and gamma rhythms in hip-
pocampus, modulated during perception and memory tasks, are
supposed to be most relevant to cognition (Kahana et al., 2001;
Behrendt, 2010). We previously utilized an approach of general
partial directed coherence (gPDC), which was one of directional
algorithms, to determine the directionality of neural informa-
tion flow (NIF) between CA3 and CA1 (Xu et al., 2012). It was
found that coupling directional index was significantly reduced
at either theta or gamma frequency bands between hippocam-
pal CA3 and CA1 regions in brain ischemic rats, which might be
associated with the alteration of LTP (Xu et al., 2012). In addi-
tion, a previous study showed that the coupling direction indices
from thalamus to medial prefrontal cortex were considerably
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decreased at the theta rhythm in the rat model of depression, and
increased after memantine treatment, which might be also asso-
ciated with the LTP alterations and cognitive impairment (Zhang
et al., 2011). However, so far the above NIF measurements of
directional index have only been performed in a same frequency
band rather than cross frequency bands. Accordingly, a question
has been raised as to whether there is a causality relationship
between rhythms, such as theta and gamma rhythms, between
two brain regions.

Recently, several studies reported that there were two forms
of cross frequency coupling (CFC) between theta and gamma
rhythms, namely n:m phase-phase coupling (Belluscio et al,
2012) and phase-amplitude coupling(Canolty et al., 2006). It
suggested that the alterations of CFC were possibly involved in
the changes of cognitive function (Chrobak et al., 2000; Lisman,
2005; Sauseng et al., 2009). Modulation index approach (Canolty
et al., 2006) can be employed to measure phase-amplitude cou-
pling (PAC) between hippocampal CA3 and CAIl. However,
the measurement of modulation index is affected by both the
amplitude and phase signals. Therefore, a novel measurement
is needed, which focuses on the coupling between theta phase
and the phase of gamma amplitude. In the present study, a novel
approach, named cross frequency mutual information (CF-CMI),
was developed based on conditional mutual information (Palus
et al., 2001; Palus and Stefanovska, 2003). In contrast to an
approach of MI, which transiently combines the amplitude enve-
lope of high-frequency with the phase of low frequency rhythm
into analytic signals, the approach of CF-CMI focuses on the
phase—phase coupling between two different rhythms. This novel
coupling measurement may provide an underlying indication of
the coupling strength possibly corresponding to the information
coding in hippocampus.

In this study, Male Wistar rats were used and the two ves-
sel occlusion (2VO) (Xu et al., 2012) model was successfully
established. Local field potentials were collected before STP and
LTP performed on hippocampal CA3 and CAl pathway. The
phase locking value (PLV) measurement was used to measure
the phase synchronization between CA3 and CAI regions over
a particular rhythm, such as theta or gamma rhythm. In order
to determine whether the CFC was also implicated in neural
impairment in 2VO rats, we examined the theta-gamma cou-
pling between CA3 and CAl in hippocampus, which were done
by both phase-phase coupling (n:m phase synchronization) and
PAC. Furthermore, the CF-CMI was used to measure the coupling
strength between theta phase and the phase of gamma amplitude.
An issue was addressed as to whether such a directional index of
NIF between cross-frequency bands is able to reveal the variations
of hippocampal synaptic plasticity in brain ischemia, combin-
ing with the alterations of STP and LTP on CA3-to-CAl neural
pathway.

MATERIALS AND METHODS

EXPERIMENTAL ANIMALS

Experiments were performed on male Wistar rats (280-300g,
around 8-week old), which were provided from the Laboratory
Animal Center; Academy of Military Medical Science of People’s
Liberation Army, and reared in the animal house of Medical

School, Nankai University. Animals were housed in a 12h
light/dark cycle with freely feed and water and randomly divided
into two groups (n = 12), namely Con group (n = 6) and 2VO
group (n = 6). A rat model of 2VO was established, which was as
same that in our previous reports (Li et al., 2011; Xu et al., 2012).
Rats were reared for 3 weeks since operation. All procedures were
carried out in accordance with the Ethical Commission at Nankai
University, China.

ELECTROPHYSIOLOGICAL EXPERIMENT

Rats was placed in a stereotaxic frame (Narishige, Japan) under
30% urethane anesthesia (4 ml/kg, i.p., Sigma-Aldrich, St. Louis,
MO, USA). The skull was opened and a small hole (2 mm in diam-
eter) in its left side was drilled. Two Stainless steel electrodes were
slowly implanted into CA3 and CA1 sites (CA3: 4.2 mm posterior
to the bregma, 3.5 mm lateral to midline, 2.5 mm ventral below
the dura; CAl: 3.5 mm posterior to the bregma, 2.5 mm lateral
to midline, 2.0 mm ventral below the dura), respectively. Ground
and reference electrodes were placed symmetrically over the two
hemispheres of the cerebellum. The signals of local field potential
were collected concurrently from the regions of CA3 and CA1 at
a sampling rate of 1000 Hz.

After LFPs were collected, STP and LTP recordings were per-
formed in the same brain regions. First, low-frequency stimula-
tions (0.05Hz) for 20 min were delivered to Schaffer collateral
evoking a response of 50% of its maximum. And then tetanic
stimulation (10 pulses at 100 Hz for 2 s repeated 10 times) was
delivered and field excitatory postsynaptic potentials (fEPSPs)
were recorded at 20 kHz sampling rate every 20 s for 60 min. fEP-
SPs slope was used to measure synaptic efficacy (Li et al., 2011).
As the average responses, STP and LTP were measured at the first
10 min and between 50 min and 60 min after induction, respec-
tively. The initial data was analyzed by Clampfit 9.0 (Molecular
Devices, Sunnyvale, CA, USA).

PHASE LOCKING VALUE (PLV)

PLV is a widely used method to measure the strength of phase syn-
chronization within rhythms between brain regions (Rosenblum
et al., 1996). ¢, and ¢} signed the phase of the two signals and
PLV is defined as

PLV = li (i[ba(jAL) — dp(jAL)])
=N exp(i[da(j Oy

j=1

N stands for the length of the signal and ﬁ is the sampling fre-
quency. The value of PLV is within [0, 1] with 1 indicates fully
synch and 0 no syncing at all.

n:m PHASE SYNCHRONIZATION
Cross frequency phase-phase coupling between theta and gamma
rhythms was determined by m:m phase synchronization, where
the ration of n:m stood for stable n cycles of the gamma oscillator
for every m theta oscillator.

The radial distance (r) values, determined as: 71, =

Iy, ellmxbeta® = nxdgmma O] | \yere used to determine the

strength of cross frequency phase-phase coupling.
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The distribution of r,,, for different rations, e.g.,
1:1,1:2,...,1:10, etc. was calculated. A Larger value of r
indicated a more unimodal distribution of A, (t) = m x
Otheta(t) — 11 X dgamma(1), i.e., stronger phase coupling (Rayleigh
test for uniformity) (Tass et al., 1998; Belluscio et al., 2012).

PHASE AMPLITUDE COUPLING (PAC)

Modulation index (MI) was used to evaluate the cross frequency
PAC between CA3 and CAl regions. The main idea of MI mea-
sure was to create a composite signal with amplitude envelope of
the high frequency (Afamp(t)) as its amplitude and instantaneous
phase of the low frequency (¢gn (¢)) as its phase.

prh, famp(t) = Afamp(t) X exp(i X ¢fph(t))

This composite signal created a joint probability density function
on the complex plane. The initial value of MI is calculated as the
absolute value of the average of the composite signal:

My = abs (mean(zfph,fam(t)))

For further processing, surrogate data need to be generated by
bringing a random time lag t between ¢gn () and Agmp (1) :
Zsurr (2, T) = Afamp(t + 1) x exp(i X ¢fph(t))-

Finally, MI is defined as MI = (Ml aw — |)/0, where p is the
mean of the surrogate lengths and o is a standard deviation.

In this case, Morlet wavelets of the depth 7 were applied
to generate analytic representations with a frequency range of
1-20Hz in CA3 and 30-80 Hz in CAl. And then Hilbert trans-
form was used to obtain CA3 ¢gn(¢) and CA1 Agamp(t), respec-
tively. Finally, a window length of 40 s with 50% overlap and 100
trials of surrogate data were employed in the study.

PHASE-AMPLITUDE COUPLING BASED ON CONDITIONAL MUTUAL
INFORMATION

In order to measure the strength of directional CFC between
CA3 and CA1 regions, an improved algorithm named cross fre-
quency conditional mutual information (CF-CMI) was made.
Specifically, we firstly extracted the phase of broadband-filtered
theta rhythm (from 4Hz to 8 Hz) in CA3 region ({pheta) and
the amplitude of the narrowband-filtered gamma rhythm (from
30Hz to 80Hz, step = 1Hz) in CAl region (ampg,nmy,) by
Hilbert transformation. Since ampg,,,, did not vary very fast,
we band-filtered it from 1Hz to 10Hz. And then the phase
of ampg,n,, Was extracted by a second Hilbert transforma-
tion signed as ¢ampy. Finally, CMI (Palus et al., 2001; Palus
and Stefanovska, 2003) was applied to measure the directional
coupling between ¢pery and d)ampy.

Briefly, supposing two processes {Xca3} and {Xca;} (from the
amplitude envelope of signals in CA1), their instantaneous phases
{Ptheta} and {¢amp,} can be estimated by application of the dis-
crete Hilbert transform. Accordingly, the “net” information about
the Tt — future of the process {¢amp,} contained in process {Ptheta}
using C = I({heta; A'r(l)ampy |¢ampy)-

To establish possible causality relations, we consider phase
increments,

Ard)ampy = |¢ampy (t+v) — ¢ampy (t)

Then the conditional mutual information is defined as,
I(d)theta; Arq)ampy |¢ampy) = H(¢theta|¢ampy) + H(Ar¢ampy|
¢ampy) - H(q)thetaa Ard)ampy |¢amPy)'

DATA AND STATISTICAL ANALYSIS

All data were presented as mean + SEM. Of the STP and LTP
test, field excitatory postsynaptic potentials (fEPSPs) slopes were
expressed as the percentage change of the baseline. Statistical
comparisons were made using the Wilcoxon rank sum test. The
analyses were performed using SPSS 17.0 software with the sig-
nificant level setting at P < 0.05.

RESULTS

Traces show representative sections of original neurograms
obtained from recordings of LFPs made one normal Wistar rat at
hippocampal CA1 region (black line in upper panel of Figure 1A)
and CA3 area (black line in upper panel of Figure 1C) as well
as a 2VO rat at CAl (gray line in upper panel of Figure 1A)
and CA3 (gray line in upper panel of Figure 1C). The signals
were obtained at 1000 Hz sampling frequency and a 5 s sampling
period.

POWER SPECTRUM OF LFP

Digitized LFPs signals were subjected off-line to a fast Fourier
transformation to produce a power spectrum. Based on Wilcoxon
rank sum test, it shows that there is no significant differ-
ence of total power between Con group and 2VO group in
either theta frequency band (4-8Hz) or slow gamma fre-
quency band (30-50 Hz) in CA1 region (Figure1B). In addi-
tion, there are significant decreases of total power in both
theta and slow gamma frequency bands in 2VO group com-
pared to that in Con group in hippocampal CA3 region
(theta, F = —2.882, p = 0.004; gamma, F = —2.882, p = 0.004,
Figure 1D).

PHASE SYNCHRONIZATION

Figure 2A showed the phase synchronization analysis at theta and
slow gamma frequency bands for control and 2VO groups. The
original signals were filtered into 1-50 Hz range (bandwidth =
1 Hz, step = 1 Hz). Based on the Hilbert transform, the phases of
the filtered signals were generated and then used to compute the
PLV. It was found that PLVs at both theta and gamma frequency
bands were much lower in 2VO group compared to that in Con
group (theta: F = —2.882, p = 0.004; gamma: F = —2.562, p =
0.010, Figure 2A).

CROSS FREQUENCY PHASE-PHASE COUPLING

With the purpose of investigating the cross frequency theta-
gamma phase coupling quantitatively, the radial distance values
(r) of the circular distribution from the phase differences between
m x theta (CA3) and n x low gamma (CA1l) phases for 15
ratios were calculated (Figure 2B). Rayleigh test showed that
there were a distinct peak at n:m = 1:8 ratio (p < 0.05) in Con
group and another peak at n:m = 1.7 (p < 0.05) in 2VO group.
Furthermore, Wilcoxon rank sum test showed that there was a
significant difference of 1:8 phase synchronization values between
these two groups (F = —2.882, p = 0.004). It implied that cross
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frequency phase—phase coupling might be weakened in brain
ischemia rats.

CROSS FREQUENCY PHASE-AMPLITUDE COUPLING

Figure 3 showed the mean modulation indices in both Con and
2VO groups, which reflected cross frequency PAC between CA3
phase sequences (1-20Hz, step = 1Hz) and CAl amplitude
sequences (30-80 Hz, step = 1 Hz). Larger values of MI indicate
stronger cross frequency coupling. In normal animals, the maxi-
mal coupling was found at both 40 Hz of CA1 amplitude and 6 Hz
of CA3 phase (Figure 3A), while the strong PAC between CA3
and CA1 existed at slow gamma band (30-50Hz). However, this
cross frequency PAC was almost disappeared in brain ischemic
rats (Figure 3B).

REDUCED PHASE-AMPLITUDE DIRECTIONAL COUPLING ASSOCIATED
WITH IMPAIRED STP AND LTP
Stimulating Schaffer collateral evokes basal field excitatory post-
synaptic potentials (fEPSPs) in the hippocampal CAl region.
Figure 4A shows the time courses of fEPSPs slopes normalized to
the 20 min baseline period. It can be seen that the fEPSPs slopes
are increased immediately after the high-frequency stimulation
and then stabilized to a level above the baseline period. The mean
fEPSP slopes of the first 10 min after HFS were examined as STP
results. Based on Wilcoxon rank sum test, it was found that the
mean fEPSPs slope was lower in 2VO group than that in control
group (113 £ 3.42% vs. 126 £ 1.51%, p < 0.001, Figure 4B-left).
Furthermore, TP was measured as the mean fEPSP slopes in
45-60 min after HFS. It could be seen that the mean fEPSPs
slope was much lower in 2VO group than that in control group
(103 £ 2.65% vs. 118 & 0.50%, p < 0.001, Figure 4B-right).
Figures 4C-E shows the data of statistical CFC analysis. It
was found that the value of MI was enormously lower in 2VO

group compared to that in control one (F = —2.882, p = 0.004,
Figure 4C). In order to measure the directional cross-frequency
coupling (CFC) between theta rhythm in CA3 and gamma
rhythm in CA1, LFP signals were filtered over 1-50 Hz with 1 Hz
bandwidth, using FIR band filter with hamming window (filter
order = 512). Two types of phase sequence were extracted by
means of Hilbert transform, one from original LFP signals within
theta frequency band and another from the amplitude of LFP
signals within gamma frequency band. And the novel algorithm
of CF-CMI was applied to determine the directionality of NIL
between these two areas. It can be seen that the value of CF-CMI
measurement is much lower in 2VO rats compared to that in con-
trol animals (F = —2.882, p = 0.004, Figure 4D). There was no
statistical difference of gamma power spectra in one theta circle
between these two groups (Figure 4D).

DISCUSSION

In this study, a 2VO rat model was employed with impairments
cognition functions (Li et al., 2011). In addition, a novel algo-
rithm was developed to measure the CFC directionality between
CA3 and CA1 regions in hippocampus. It was found that the CFC
directional index from CA3 theta rhythm to CA1 gamma rhythm
was significantly reduced, which was interestingly in line with the
alteration of STP and LTP in CA3-CA1 pathway in brain ischemic
state. The above result shows great promise for our hypothesis
that the CFC directionality could be an indicator of the synaptic
plasticity in hippocampal CA3-CA1 pathway.

Phase synchronization within both theta and gamma rhythms
was believed to be crucial to the cognitive behaviors (Basar-
Eroglu et al., 1992; Gallinat et al., 2006), while cognitive impair-
ment usually accompanied with reduced phase synchronization
(Yener et al., 2007; Ford et al., 2008). In the present study, it
was found that both theta and gamma synchronizations were

A 8o

H o =2 ~
o o o o

frequency of CA1 amplitude(Hz)

w
o

4 8 12 16 20
frequency of CA3 phase(Hz)

FIGURE 3 | The modulation index as a function of analytic amplitude
(30-80Hz) in CA1 and analytic phase (1-20Hz) in CA3. Larger Ml value
indicates stronger cross frequency coupling. Strong phase-amplitude

4 8 12 16 20
frequency of CA3 phase(Hz)

coupling between CA3 and CA1 existed at CA1 slow gamma band
(30-50 Hz) in normal rats (panel A), however, almost disappeared in brain
ischemia rats (panel B).
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FIGURE 4 | The impaired synaptic plasticity in CA3-CA1 pathway measured by MI method between CA3 theta and CAT gamma rhythms in the
paralleling with the decreased directional CFC index between CA3 theta two groups. Considerably decreased Ml values could be seen in 2VO group.
rhythm and CA1 gamma rhythm in 2VO group. (A) STP and LTP were (D) Statistical results of CA3 gamma power spectra in one CA1 theta cycle
elicited by the tetanic stimulation indicated by the arrow. The fEPSPs slope between the two groups. A difference that was no statistically significant
was normalized to baseline. (B) Magnitudes of STP and LTR, determined as could be seen. (E) Directional CFC index from CA3 theta rhythm to CA1
responses between 0 and 10 min and between 50 and 60 min after tetanic gamma rhythm measured by CF-CMI was significantly reduced in 2VO rats.
stimulation, were significantly smaller in 2VO rats. (C) CFC analysis **p < 0.01 and **p < 0.001 comparison between Con and 2VO groups.

considerably decreased in 2VO group compared to that in Con
group (Figure2A), implying that there was a disturbance of
neural synchronized coordination in brain ischemic state. The
fact that the reduction of phase synchronization was associ-
ated with cognitive deficits was in line with the findings in
Schizophrenia and Alzheimer subjects (Yener et al., 2007; Ford
et al., 2008). Moreover, the analysis of cross frequency phase
coupling (Belluscio et al., 2012) showed that the n:m (1:8) theta-
gamma rhythm coding in Con group was changed to the n:m
(1:7) in 2VO group (Figure 2B). Previous studies indicated that
in computational models, identical gamma cycles with an equal
number of spikes in each cycle were distributed across the entire
theta cycle to support a multi-item working memory buffer
(Lisman and Idiart, 1995; Jensen and Lisman, 1996). Each gamma
cycle contains a discrete item (or position in space), and approx-
imately seven gamma cycles could store 7 & 2 sequential items.
Thus, the reduction of the ratio might imply the impairment of
memory capacity. However, the underlying physiological mech-
anism is still under further investigation. Our result of reduced
ratios between theta and gamma rhythms (from 8:1 to 7:1,

Figure 2B) in 2VO rats might indicate the impaired memory
capacity (Sauseng et al., 2009) induced by 2VO operation.
Another form of CFC is the amplitude of gamma rhythm
nesting in theta cycles, measured by modulation index (Bragin
et al., 1995; Lakatos et al., 2005; Mormann et al., 2005; Canolty
et al., 2006). One speculation of this coupling was that because
of relative long conduction delays, theta rhythm was well suited
to synchronize the networks over long distances while gamma
rhythm nested in the theta cycle to coordinate cell assemblies
involved in information dissemination process (von Stein and
Sarnthein, 2000). In this study, it was found that CAl low
gamma rhythm, however not the high gamma rhythm, signif-
icantly nested in CA3 theta rhythm in Con rats (Figure 3A).
Theta-gamma coupling was supposed to be relevant to cogni-
tive function (Palva et al., 2005, 2010; Sauseng et al., 2008).
In addition, it was reported that the low gamma rhythm was
coherent between CA3 and CAl in hippocampus, entrained
by theta phase (Colgin et al., 2009). Therefore, we focused on
the alteration of theta-gamma coupling in CA3-CAl pathway
associated with the cognitive disorder by 2VO. interestingly,
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such coupling phenomenon disappeared in brain ischemic state
(Figure 3B), suggesting that the impaired cognitive function in
2VO rats was relevant to decreased theta-gamma coupling in
CA3-CAl pathway. Meanwhile, we did not pay attention to
other neural pathways, such as cortico-hippocampal interactions
and/or hippocampal DG-CA3 interactions, at the present study.

It is well known that there is a directional alteration of
neural information flow, so as to measure directional CFC is
more important to explore the relationship between the patterns
of neural oscillation and cognitive functions. In our previous
study, the algorithm of general partial directed coherence was
utilized to determine the directionality of NIF between hip-
pocampal CA3 and CA1 over either theta or gamma frequency
band (Xu et al., 2012). We found that the coupling directional
index was considerably decreased in the above two frequency
bands in brain ischemic state, respectively. It was indicating
that the strength of CA3 driving CA1 was significantly reduced.
Subsequently, a hypothesis was raised that there was causal-
ity relationship in cross-frequency between hippocampal CA3
and CAl. MI algorithm has been used to measure CFC. From
its formula, it can be seen that there are two factors affect-
ing MI measurement. One is the cross phase coupling between
these two frequency bands, and another is the amplitude of
the high frequency band. Obviously, it will be better if we can
distinguish between these two factors during the measurement
of CFC.

In the present study, a novel algorithm CF-CMI is focused
on measuring the coupling between theta phase and phase of
gamma amplitude. Given that conditional mutual information
is a directional algorithm over an identical frequency band, the
developed CF-CMI should be a unidirectional coupling measure-
ment across different frequency bands between two brain regions.
Our data showed that there were no significant differences of
the gamma power spectra in one theta circle between the two

groups (Figure 4E). However, CF-CMI measurement presented
that the value of directional CFC was much lower in 2VO group
than that in Con group (Figure 4D), indicating that it was the
phase information of signals rather than the amplitude of signal,
which played an essential role in changing STP and LTP on CA3-
CA1 pathway in brain ischemic rats (Figure 4B). The data further
implied that the decreased information transmission along the
CA3-CAl pathway in cross-frequency of theta and slow gamma
rhythms might be related to the impairment of STP and LTP in
2VO rats.

Taken together, our findings suggest that cognitive deficits
caused by brain ischemia, such as learning and memory dys-
function, are implicated in the alteration of phase-phase cou-
pling strength in theta and gamma oscillations. Moreover, the
CA3-CAl synaptic plasticity is impaired, which is in line with
the decreased directional CFC from CA3 theta rhythm to CAl
gamma rhythm. It suggests that the modifications of diverse brain
rhythms and their interaction, such as theta and gamma, are
involved in regulating the behavioral functions. In addition, com-
bining the impaired synaptic plasticity and reduced values of
directional CFC, we would be able to understand that the direc-
tional CFC is likely to be another indicator of synaptic plasticity
compared to that of NIF directionality obtained from same oscil-
latory rhythm. However, studying the relationship between the
directional CFC and synaptic plasticity is still at an early stage of
development. It remains open issues as to if there are other brain
rhythms involved, which may indicate an alteration of cognitive
functions.
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