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Often we need to perform tasks in an environment that changes stochastically. In these
situations it is important to learn the statistics of sequences of events in order to
predict the future and the outcome of our actions. The statistical description of many
of these sequences can be reduced to the set of probabilities that a particular event
follows another event (temporal contiguity). Under these conditions, it is important to
encode and store in our memory these transition probabilities. Here we show that
for a large class of synaptic plasticity models, the distribution of synaptic strengths
encodes transitions probabilities. Specifically, when the synaptic dynamics depend on
pairs of contiguous events and the synapses can remember multiple instances of the
transitions, then the average synaptic weights are a monotonic function of the transition
probabilities. The synaptic weights converge to the distribution encoding the probabilities
also when the correlations between consecutive synaptic modifications are considered.
We studied how this distribution depends on the number of synaptic states for a specific
model of a multi-state synapse with hard bounds. In the case of bistable synapses,
the average synaptic weights are a smooth function of the transition probabilities and
the accuracy of the encoding depends on the learning rate. As the number of synaptic
states increases, the average synaptic weights become a step function of the transition
probabilities. We finally show that the information stored in the synaptic weights can
be read out by a simple rate-based neural network. Our study shows that synapses
encode transition probabilities under general assumptions and this indicates that temporal
contiguity is likely to be encoded and harnessed in almost every neural circuit in
the brain.
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1. INTRODUCTION
When we see clouds in the morning, we carry an umbrella with us.
The life of any animal depends on its faculty to predict the future
based on the current situation and previous experiences. The pre-
diction of the future is often based on our memory of how often
a particular event follows a sequence of other events (Bar, 2011).
In many situations we can predict the immediate future by using
associations between events that have been repeatedly temporally
contiguous or separated by short time intervals, as for the condi-
tioned and the unconditioned stimulus in classical conditioning
protocols.

Temporal contiguity plays an important role in various learn-
ing paradigms and for this reason, it has been widely studied.
Studies on classical conditioning investigated the formation of
behavioral associations between sensory stimuli and their depen-
dence on temporal contingencies (Rescorla, 1988). Studies on
human (Kahana, 1996) and primate (Miyashita, 1988; Sakai and
Miyashita, 1991; Yakovlev et al., 1998) memory revealed that
subjects naturally remember the temporal order of events, even
when this information is behaviorally irrelevant (Cleeremans and
McClelland, 1991). Studies on visual processing suggest that view-
invariant representations of objects are achieved by merging the
neural representations of different views, which are temporally

contiguous when we manipulate the objects (Wallis et al., 1993;
Li and DiCarlo, 2008, 2010).

The mechanisms proposed for reproducing the rich phe-
nomenology of the experiments or for modeling the cognitive
functions based on temporal contiguity range from abstract algo-
rithms, designed to explain the observed behavior, to detailed
models of biological neural networks. For example, experiments
on classical conditioning are usually modeled in the theoretical
framework of the Rescorla–Wagner theory (Rescorla and Wagner,
1972). The generation of short (as in pair associates tasks) and
long deterministic temporal sequences is often achieved by asym-
metric synaptic couplings, which express the covariance of pat-
terns of activity that are temporally contiguous in the sequence
(Sompolinsky and Kanter, 1986). These models essentially work
as hetero-associative memories as each recognized pattern of
activity representing an item in a sequence leads to the retrieval
of the pattern of activity that represents the next item. This idea
has been implemented in several models that focused on the
role of hippocampus in the consolidation of sequence memory
(Minai and Levy, 1993; Jensen and Lisman, 1996; Levy, 1996;
Wallenstein and Hasselmo, 1997; Wallenstein et al, 1998) and on a
few variations of serial list learning (Lewandowsky and Murdock,
1989). The same idea has been used in attractor neural networks
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models that can represent associations between temporally con-
tiguous sensory stimuli in the spatial distributions of the patterns
of neural activity that are elicited by individual stimuli (Griniasty
et al., 1993; Amit et al., 1994; Brunel, 1994, 1996; Mongillo et al.,
2003). These attractor models have been tested against experi-
ments (Yakovlev et al., 1998) and have been recently extended to
the formation of a hierarchy of temporal context representations
(Rigotti et al., 2010). The process of formation of view invari-
ant representations has been modeled as a process of extraction
of slowly co-occurring visual features (Wiskott and Sejnowski,
2002).

In this theoretical study, we propose that a common, unifying
mechanism could underlie the encoding of temporal contigu-
ity in a variety of learning paradigms. We represent the learning
paradigms implicating temporal contiguity as special cases of a
general conceptual framework in which events occur in proba-
bilistic sequences (Figure 1B). For example, classical conditioning
corresponds to the situation where the order of the occurrence of
events is highly asymmetric (Figure 1A top). In contrast, learning
invariant representations of three-dimensional objects involves
events which are organized in clusters that represent different
objects (Figure 1A bottom).

We examine the dynamics of model synapses connecting
neural populations that encode distinct events. We show that
these synapses naturally encode the temporal statistics of events
provided that the synaptic modifications depend on sequences
of consecutive events. These findings extend previous studies
on synaptic encoding of the probability of individual events
(Rosenthal et al., 2001; Soltani and Wang, 2006; Fusi et al., 2007)
to the more general case of arbitrarily long sequences of events
that occur stochastically.

2. METHODS
2.1. EXTERNAL EVENTS AND NEURAL ENCODING
We consider an environment in which events occur stochasti-
cally. We assume that there is a finite set of events {Ei}i = 1,...,n.
As we are interested only in the temporal order of events and
not in their actual timing, we assume that time is discrete and
in every time step one event occurs. The transition probabili-
ties PEj → Ei determine the probability of observing event Ei at
time step t + 1 if event Ej was observed at time t. We assume
that the event sequence is Markovian, so that the matrix of
transition probabilities Tij = PEj → Ei fully specifies the statistics
of the sequences. The frequencies at which individual events
occur are given by the eigenvector of T associated with a unit
eigenvalue.

The sequence of external events drives the dynamics of a neu-
ral network. In the network, every event is encoded by a distinct
population of neurons: when event Ei occurs, the corresponding
neural population i is activated. We assume that different neu-
ral populations do not overlap, so that every neuron is activated
by only one external event. In general, cortical recordings show
the neurons are selective to more than one event (Yamane et al.,
2006). Although we will consider only the case in which the neu-
ral representations of different events do not overlap, our analysis
can easily be extended to the random sparse representations, (i.e.,
when overlap between neural populations is small), and, more in

general, to the synapses connecting the non-overlapping parts of
distributed dense representations.

We also assume that during learning the neural activity is
imposed by a sufficiently strong external input, and it does not
depend on the state of the plastic synaptic connections that we
are studying.

The Markov transition matrices used in the simulations were
generated randomly using the following procedure:

1. The number of external events was selected (n = 12 in the
displayed results).

2. For each event, the number of events that could follow
with non-zero transition probabilities was chosen randomly
between 2 and 4 (the number of events that could follow
was limited in order to avoid having only small transition
probabilities).

3. These events were chosen randomly among the set of all
n events, and transition probabilities were chosen randomly
between 0 and 1 with a uniform distribution and then they
were normalized.

Other ensembles of transition matrices have also been explored,
the reported results are independent of the precise ensemble.

2.2. SYNAPTIC PLASTICITY RULES
We assume that the synapses possess a finite number m of states
that are stably preserved on long timescales. These states are num-
bered, so that each state corresponds to an integer k, with 1 ≤ k ≤
m. With the exception of Figure 6, we focus on bistable synapses
(m = 2), which have only a depressed (k = 1) and a potentiated
(k = 2) state.

The occurrence of an event induces transitions between dif-
ferent synaptic states that are governed by the plasticity rules. At
time t, potentiation of synapses occurs if one of the two following
conditions are satisfied: (1) the pre- and post-synaptic neurons
are both activated at the same time t and (2) the pre-synaptic
neuron is activated at time t − 1 and the post-synaptic neuron is
activated at time t. The first type of potentiation affects only the
synapses connecting neurons belonging to the same population.
In this study, we assume that the individual events are familiar
to the network, so that the synapses connecting neurons belong-
ing to the same population have reached equilibrium and their
strength is constant. We therefore study only the dynamics of
synapses connecting distinct neural populations, for which only
the second type of potentiation plays a role. When the condition
for potentiation is fulfilled, if the synapse is not in the maximally
potentiated state (k < m), the synaptic state is increased by a unit
with probability q+.

For depression we considered three different possibilities:

• PRE-activated depression: the synapse is depressed when the
pre-synaptic population is activated at time t but the post-
synaptic population is not active at that same time step.

• POST-activated depression: the synapse is depressed when the
post-synaptic population is activated at time t but the pre-
synaptic population is not active at that same time step.
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• Unspecific depression: the synapse is depressed at every time
step, independently of the event that occurs.

In each case, when the conditions for depression occur, if the
synapse is not in the maximally depressed state (k > 1), the
synaptic state is depressed by a unit with probability q−.

The synaptic strength J of a population of equivalent synapses
is defined as

J = 1

m − 1

m∑
k = 1

(k − 1)ρk, (1)

where ρk is the fraction of synapses in the kth state. For bistable
synapses, J is simply the fraction of synapses in the potentiated
state.

Our mathematical analysis, developed in full detail in the sec-
tion Appendix A, is valid for a much wider class of plasticity
rules than described here. The results are derived for bistable
synapses, in the framework of a mean-field theory. The dynam-
ics are first analyzed for arbitrary potentiation and depression
probabilities q+ and q−. In a second step, we analyze the limit of
slow learning in which the probabilities q+ and q− are small, so
that a relatively large number of events are needed to potentiate
or depress an individual synapse. In this limit, the mean synap-
tic strength and the transient timescale afford simple expressions
that are easy to interpret and moreover turn out to be identical
to the results obtained by neglecting correlations in the synaptic
dynamics.

The results obtained in the slow learning limit appear to
be quantitatively accurate also in the case of relatively large
potentiation and depression probabilities (i.e., q+ and q− larger
than 0.1).

2.3. THE DYNAMICS OF POPULATIONS OF BISTABLE SYNAPSES
As each neural population consists of a large number of neurons,
two populations are connected by a large number of statistically
equivalent synapses. We describe the dynamics of the bistable
synapses projecting from neural population j to neural popula-
tion i by tracking the fraction Jj → i of potentiated synapses. If the
number of bistable synapses connecting the neural populations is
large, the dynamics of the fraction Jj → i are given by

Jj → i(t + 1) = Jj → i(t) + q+(1 − Jj → i(t))ξ+
j → i(t, t − 1)

− q−Jj → i(t)ξ−
j → i(t) (2)

where ξ+
j → i(t, t − 1) is a function which is one if the external

events at time t − 1 and t are such that potentiation occurs, and
zero otherwise. For example, for the potentiation rule described
above, ξ+

j → i(t, t − 1) = 1 if Ej occurred at time t − 1 and Ei

occurred at time t. Similarly ξ−
j → i(t) = 1 if the event at time t

is such that depression occurs, and zero otherwise.
In the simulations of synaptic dynamics, we directly use

Equation (2), i.e., we assume that the synaptic populations con-
sist of large numbers of synapses. Equivalently this can be seen as
tracking the average state of a single bistable synapse over many

instantiations of the synaptic transition probabilities, for a fixed
sequence of external events. This second interpretation is used for
the mathematical analysis presented below.

2.4. AVERAGED DYNAMICS OF BISTABLE SYNAPSES
In previous studies, which focused on uncorrelated sequences
of external events, the outcome of synaptic dynamics was stud-
ied by averaging Equation (2) over sequences of external events
(Brunel et al., 1998; Soltani and Wang, 2006; Fusi et al.,
2007). This approach, however, cannot be directly extended to
our situation for two reasons: (1) the sequences of external
events are correlated in time and (2) the synaptic potentia-
tion at time step t depends on the sequence of events that
occurred at two previous consecutive time steps. More precisely,
averaging Equation (2) over all possible sequences of events
(we denote this average by angle brackets) involves computing
〈Jj → i(t)ξ+(t, t − 1)〉 and 〈Jj → i(t)ξ−(t)〉. As the value Jj → i(t)
depends on the external event that occurred at time step t − 1,
and both ξ+(t, t − 1) and ξ−(t) are correlated with that event,
the averages 〈Jj→i(t)ξ+(t, t − 1)〉 and 〈Jj → i(t)ξ−(t)〉 cannot be
factorized in contrast to the previously studied case where succes-
sive events were uncorrelated, and potentiation depended only on
the current time step.

Our detailed mathematical analysis (see Appendix) neverthe-
less shows that, when the learning rates q+ and q− are small, the
correlations between Jj → i(t) and ξ+(t, t − 1) as well as ξ−(t) can
be neglected, so that the synaptic dynamics averaged over external
sequences are well approximated by

〈δJj → i〉(t) = q+
(
1 − 〈Jj → i〉(t)

)
f +
j → i − q−〈Jj → i〉(t)f −

j → i (3)

where δJj → i(t) = Jj → i(t + 1) − Jj → i(t) is the synaptic incre-
ment, and f +

j → i = 〈ξ+
j → i〉 and f −

j → i = 〈ξ−
j → i〉 are the frequencies

of occurrence of potentiating and depressing events (or sequences
of events).

The steady state synaptic strength J̄j → i can be obtained from
Equation (3) by setting the synaptic increment 〈δJj → i〉 to zero,
which directly leads to Equation (15). The transient timescale
τj → i given in Equation (17) corresponds to the inverse of the
factor multiplying 〈Jj→i〉 in Equation (3).

The fact that the correlations can be neglected in the slow
learning limit is proved rigorously, but it is possible also to pro-
vide an intuitive argument. When the learning rates are small,
the chances that a synapse is updated in two consecutive time
steps are small. As a consequence, even if the two potential
synaptic modifications are highly correlated, the synapses will
not be affected by these correlations, as they will rarely be mod-
ified in two consecutive trials. Most of the time they will not
be modified at all, and only with small probability they will be
modified once. More in general, if the largest learning rate is qL,
whenever 1/qL, the average time between two synaptic modifica-
tions, is substantially larger than the autocorrelation time of the
Markov process, the correlations can be neglected. Notice that
the transition probabilities between two consecutive events can
still be encoded even when the correlations are neglected. Indeed,
they are encoded in individual synaptic modifications (which
depend on two consecutive events), and they are not affected by
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any mechanism that makes negligible the correlations between
two consecutive synaptic modifications (which would depend on
three events).

2.5. EQUILIBRIUM STATE FOR SYNAPSES WITH m > 2 STATES
For synapses with an arbitrary number m of states the equilib-
rium synaptic strength is given by

J̄j → i = F(f +
j → i/f −

j → i) (4)

where f +
j → i and f −

j → i are the frequencies of occurrence of poten-
tiating and depressing events (or sequences of events) and the
transfer function F is given by

F(x) = 1

m − 1

⎛
⎜⎝

q+
q− x

1 − q+
q− x

+
m

(
q+
q− x

)m

(
q+
q− x

)m − 1

⎞
⎟⎠ . (5)

For synapses with a large number of states m, the transfer function
F becomes a sigmoid centered at q−/q+. The derivation of this
transfer function is given in Appendix B.

2.6. EFFECTIVE MODEL OF FLUCTUATIONS IN THE SYNAPTIC
DYNAMICS

Using the mathematical expression for the transient timescale
given in Equation (17), we constructed an effective model of
synaptic dynamics in which an effective synaptic weight at time t
was computed directly from the sequence of events that occurred
until time t. More precisely, the effective synaptic weight at
time t is given by F(N+

ij /N−
ij ) where N+

ij and N−
ij are the num-

bers of potentiating and depressing events that occurred between
times t − τj → i and t, and F is the transfer function between
probabilities and synaptic weights given in Equation (14).

The standard deviation of the synaptic weights around the
steady-state value can be easily computed for the effective model
and reads

�J2
j → i =

(
F′(PEj → Ei)

)2 PEj → Ei(1 − PEj → Ei)

2fjτj → i
. (6)

2.7. NEURAL DYNAMICS
Our study of synaptic dynamics in response to sequences of
external events makes no assumptions on the details of neural
dynamics. However, to illustrate how synaptic plasticity impacts
the neural dynamics, we adopted a particular model of neural
dynamics.

For the sake of simplicity, we model the dynamics of the net-
work on a population level, using a firing-rate model which is
essentially a simplified version of a biologically realistic network
of spiking neurons (Brunel and Wang, 2001; Wang, 2002; Wong
and Wang, 2006). This firing-rate model exhibits a phenomenol-
ogy similar to the biologically realistic network while allowing for
a more direct analysis.

The network consists of n populations of excitatory neurons
and a single population of inhibitory neurons, n being the num-
ber of distinct external events that can occur. The activity of the

ith excitatory population is described by the dynamics of its firing
rate ri, given by

τm
d

dt
ri = −ri + �(I(i)

syn) + σηi(t). (7)

Here τm is the time constant of firing rate dynamics (τm = 10 ms

in the simulations), I(i)
syn is the total synaptic input to population i,

described below, ηi is a white noise process uncorrelated between
neural populations, σ is the noise amplitude (σ = 0 unless oth-
erwise specified) and � is a threshold-linear transfer function
defined by

�(x) =
{

gx if x > 0
0 if x < 0

where g is the gain of the population (g = 450 in the simulations).
The dynamics of the inhibitory population are assumed to be

instantaneous and directly proportional to the excitatory activity
in the network (Brunel and Wang, 2001; Wong and Wang, 2006).
The firing rate rI is therefore given by

rI = gI(I)
syn (8)

where I(I)
syn is the total synaptic input to the inhibitory population,

specified below.
In the biologically realistic network (Brunel and Wang, 2001;

Wang, 2002; Wong and Wang, 2006), it has been shown that
NMDA-based synapses play a central role, while AMPA-based
synapses are not crucial. We therefore include only NMDA
synapses in our network. The dynamics of the average gating
variable Sj of synapses projecting from the population j to other
neural populations are given by

τs
d

dt
Sj = −Sj + gsrj (9)

where τs is the time constant of NMDA synapses, and gs is a
scaling constant.

The total input current I(i)
syn received by the excitatory popula-

tion i is given by

I(i)
syn =

∑
j

Jj → iSj − JIrI + hi(t) (10)

where Jj → i is the strength of synapses projecting from neural
population j to neural population i, hi(t) is an external input acti-
vated when event Ei takes place, and JI represents the strength
of the inhibitory synapses. For i �= j, the synaptic strength Jj → i

was determined during learning, i.e., Jj→i = F(PEj → Ei), where F
is the synaptic transfer function defined in Equation (14). We also
include non-vanishing recurrent synaptic strengths Ji → i which is
identical for all populations.

The total input current I(I)
syn to the inhibitory population is

given by

I(I)
syn =

∑
j

JE → I Sj (11)
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where JE → I is the strength of the synapses that excitatory neurons
make on inhibitory neurons.

As the transfer function of the inhibitory population is linear
(Equation 8), replacing Equation (11) the input current to excita-
tory neurons becomes

I(i)
syn =

∑
j

(Jj → i − gI)Sj + hi(t) (12)

where gI = gJIJE → I is the overall strength of the inhibition,
which determines the effective interactions between the excita-
tory neurons. The inhibition strength was systematically varied in
simulations.

For Figure 7, the transition probabilities between external
events are PA → B = 0.65, PA → C = 0.35, PB → D = 0.9, PB→E =
0.1, PC → D = 0.55, and PC → E = 0.55. The ratio between poten-
tiation and depression is q+/q− = 1. The neural time constant is
τm = 10 ms, and the NMDA time constant is τs = 100 ms. The
external input is constant pulse of amplitude h = 0.05 and dura-
tion 100 ms. The recurrent synaptic strength is Ji→i = 0.02 for all
i. In the three panels, the inhibition strengths gI are (1) gI = 0.5,
(2) gI = 0.4, and (3) gI = 0.3. The value of the gain is g = 450.
Note that for simplicity the values of all inputs was normalized to
vary between 0 and 1, and the scales are set by the gain constants
g = 450 and gs = 0.02.

3. RESULTS
Our aim is to study how the temporal statistics of external events
are encoded in the distribution of synaptic efficacies. We con-
sider a situation in which the temporal sequences of events are
generated by a Markov process (i.e., each event occurs stochasti-
cally with a probability that depends only on the previous event).
The events occur stochastically at a fixed temporal interval, the
length of which could range from tens of milliseconds to seconds.
The transition probability from one event to another expresses
quantitatively how often the two events are temporally contigu-
ous. The set of the transition probabilities between all possible
pairs of events (transition matrix) fully characterizes the statistics
of the temporal sequences. Such a theoretical framework encom-
passes a number of experimental paradigms in which temporal
contiguity has been studied (see Figure 1A for examples).

The occurrence of each external event induces the activation
of a specific pattern of neural activity (Figure 1B). For simplic-
ity we assume that every neuron responds to one event only,
so that every event activates a distinct population of neurons.
Moreover, we assume that during learning the neuronal dynam-
ics are dominated by the inputs representing the external event, so
that the interactions within the network are negligible. The tem-
poral sequence of neuronal activations induced by the sequence
of events causes long term synaptic modifications and determines
the distribution of synaptic weights. We will show that, when the
synaptic dynamics relaxes to equilibrium, the distribution of the
synaptic weights connecting neurons that respond to two differ-
ent events encodes the temporal contiguity between these two
events.

The synaptic distribution will in general depend on the
synaptic dynamics and in particular on how the long term

modifications are induced by the sequence of pre and post-
synaptic neural activity. To analyze this dependence, we consid-
ered synapses that have only a finite number of stable states that
can be preserved on long time scales. This allows us to greatly sim-
plify the description of the synaptic dynamics because a wide class
of detailed synaptic models can be reduced to the set of transition
probabilities between stable states following the occurrence of a
relevant event that is encoded by the activity of the pre and post-
synaptic neurons. All short term processes that do not lead to a
consolidated (long term) synaptic modification (i.e., a transition
to a different state) can be ignored without any loss of generality,
as long as they do not affect the next long term synaptic modifi-
cation. For examples of how detailed biophysical models can be
reduced to this description see Mongillo et al. (2003) and Drew
and Abbott (2006).

In most of this study we focus on synapses with two states
(depressed and potentiated), but we also examine the impact of
the number of states on our results. Bistable synapses always relax
to an equilibrium distribution in a stationary environment and
they are compatible with recent experimental results (Petersen
et al., 1998; O’Connor et al., 2005), although other experiments
show that there could be more than two stable states (Enoki et al,
2009). Moreover, bistability is also compatible with detailed and
more abstract biophysical models of synaptic dynamics (Crick,
1984; Zhabotinsky, 2000; Graupner and Brunel, 2007). Finally,
bistable synapses seem to be representative of a wide class of
realistic synaptic models when the memory performance is con-
sidered (Fusi and Abbott, 2007).

As in previous studies (Amit and Fusi, 1994; Brunel et al.,
1998; Fusi, 2002), we assume that every event potentiates the
synapses connecting simultaneously activated neurons. Moreover
every event can depress the synapses, and in particular we
consider three different forms of depression: (1) PRE-activated
depression: the synapses connecting a pre-synaptic active to a
post-synaptic inactive neuron are depressed; (2) POST-activated
depression: the synapses connecting a pre-synaptic inactive to
a post-synaptic active neuron are depressed; and (3) Unspecific
depression: all synapses are depressed every time an event occurs
(see Figure 2).

Potentiation due to simultaneous activation occurs only
between neurons belonging to the same population, and its effects
have been studied previously (Amit and Fusi, 1994; Brunel et al.,
1998; Fusi, 2002; Fusi and Abbott, 2007). To take into account
the temporal aspect of neural dynamics, in our model we include
additional plastic modifications induced by sequentially activated
neural populations (Sompolinsky and Kanter, 1986; Griniasty
et al., 1993). More precisely, we assume that synapses connecting
sequentially activated neurons are potentiated: if event A occurs
at the current time step, activating neural population A, and if
the event B occurs at the next time step, activating population
B, the synapses projecting from A to B are potentiated. In this
study, we assume that the individual events are familiar to the
network, so that the synapses connecting neurons belonging to
the same population have reached their equilibrium value and
remain fixed (Amit and Fusi, 1994; Brunel et al., 1998; Fusi, 2002;
Fusi and Abbott, 2007). The pattern of temporal contiguities is,
however, novel to the network. We therefore describe only the
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A

B

C

FIGURE 1 | Description of the model. (A) Two examples of learning
paradigms. Top: A probabilistic trace-conditioning task similar to the one
studied in Paton et al. (2006) (FP, fixation point; CS1, CS2, conditioned
stimuli; US1, US2, unconditioned stimuli). Bottom: Schematic illustration
of natural viewing of three-dimensional objects leading to invariance
learning (Wallis et al., 1993; Li and DiCarlo, 2008, 2010). In both
examples, the temporal statistics of events are represented in the
diagram on the left, where the widths of the arrows represent the
transition probabilities between the different events. At each time-step an
event is generated stochastically according to these transition
probabilities, giving rise to a temporal sequence (right). (B) General
theoretical framework. Events occur sequentially in a probabilistic order.
The order of the events is specified by the matrix of transition

probabilities, indicated schematically by the widths of the connections in
the leftmost diagram. Each event activates a population of neurons, and
the sequence of events leads to plastic modifications of the synapses
between the populations. (C) Illustration of synaptic dynamics for
synapses between two neural populations encoding events A and B. The
synaptic dynamics are determined by the sequence of external events:
potentiation occurs when the post-synaptic event B takes place after the
pre-synaptic event A; depression occurs when the pre-synaptic event
takes place and the post-synaptic population is inactive (PRE-activated
depression rule, see text and Figure 2 for other depression rules). Each
potentiating (resp. depressing) event modifies a fraction q+ (resp. q−) of
bistable synapses projecting from population A to population B (in the
illustration, q+ = 0.3 and q− = 0.2).
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D

FIGURE 2 | Synaptic strengths in the steady state encode temporal

contiguity. (A–C) Illustration of the different depression rules, examples of
synaptic dynamics, and relationship between steady-state synaptic strengths
and temporal statistics of external events, for the three depression rules

introduced in the text. (A) PRE-Activated depression: the synapses from
population A to population B are depressed each time the pre-synaptic
population A is activated. The mean synaptic strength in the steady-state

(Continued)

Frontiers in Computational Neuroscience www.frontiersin.org April 2013 | Volume 7 | Article 32 | 7

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Ostojic and Fusi Synaptic encoding of temporal contiguity

FIGURE 2 | Continued

encodes the transition probability PA→B from event A to event B.
(B) POST-Activated depression: the synapses from population A to
population B are depressed each time the post-synaptic population B is
activated. The steady-state synaptic strength encodes the conditional
probability that event A happened at t − 1 given that event B happened
at t. (C) Unspecific depression: all the synapses are depressed at every
time step. The steady-state synaptic strength encodes the frequency at
which the events A and B occur at two consecutive time-steps. In

(A–C), the plasticity parameters are q+ = 0.06 and q− = 0.03, and the
external events occur at intervals of 600 ms. In the Synaptic Dynamics
pannel, the black and the gray traces illustrate the dynamics of two
synapses corresponding to two pairs of events that occur with different
statistics. The red and orange line indicate the corresponding
steady-state values and their and their relationship with event statistics.
(D) Transfer function F that maps from probabilities to average synaptic
strength, displayed for of the ratio q+/q− between potentiation and
depression.

dynamics of synapses that connect different neural populations.
These synapses are potentiated only by the sequential compo-
nent of synaptic dynamics, that contributes to linking consecutive
events.

The rules for modifying the synapses between two different
populations are summarized in Figure 1C for the case of PRE-
activated depression. The direction of the synaptic modifications
are determined by the pre- and post-synaptic activity. We assume
that the actual transition to a different synaptic state occurs with
a certain probability, which determines the learning rate (large
probabilities correspond to fast synapses). Potentiation occurs
with probability q+ and depression with probability q−. The
synaptic modifications depend only on the temporal order of
events and not on their timing.

Figure 2 displays examples of synaptic dynamics for a fixed
set of transition probabilities for external events, and a given
sequence of events. We assume that any two arbitrary neu-
ral populations are inter-connected by large number of bistable
synapses, and therefore track only the time course of the fraction
of potentiated synapses, which determines the overall synap-
tic strength. Initially, the temporal statistics of the events are
unknown, and, we arbitrarily choose all the synapses to be in
the depressed state. As the dynamics proceed, the fractions of
potentiated synapses between different neural populations sta-
bilize after an initial transient, and then fluctuate around steady
state values. How are these steady state values determined by the
temporal statistics of events? What is the dynamics of relaxation
to this value and what is the source of fluctuations? We ana-
lyze these two aspects of the synaptic dynamics in the next two
sections.

3.1. STEADY STATE: HOW SYNAPTIC DISTRIBUTIONS ENCODE
TEMPORAL CONTIGUITY

To elucidate the relationship between temporal contiguity and
average synaptic strengths at equilibrium, we focus on the dynam-
ics of the population of bistable synapses that project from the
neural population encoding event A (denoted as population A)
to the neural population encoding a distinct event B (denoted as
population B), A and B being two arbitrary events.

At equilibrium, the fraction of potentiated synapses JA → B

fluctuates around a mean value J̄A → B which gives an accurate
estimate of the instantaneous synaptic strength if the fluctuations
are weak. As the pre- and post-synaptic activity is determined
solely by the occurrence of events A and B, the steady state synap-
tic strength J̄A → B depends only on the frequencies of occurrence
of A and B, denoted by fA and fB, respectively, and on the transi-
tion probabilities between A and B denoted by PA → B and PB → A.

We derived explicit relations between J̄A → B and these temporal
statistics of events A and B.

The derivation, described in full mathematical detail in
Appendix B, relies on averaging the synaptic dynamics over all
possible sequences of events. A crucial aspect of the synap-
tic dynamics is that potentiation at timestep t depends on the
sequence of events that occurred at timesteps t and t − 1 (see
Figure 1C). Such sequence-dependent potentiation renders the
dynamics sensitive to correlations between consecutive events,
which is obviously a desirable property when one needs to
encode temporal contiguity. However, at the same time sequence-
dependent potentiation introduces correlations in the synaptic
dynamics: indeed the probabilities of potentiating the synapses at
two consecutive timesteps t and t + 1 are correlated as they both
depend on the event that occurred at timestep t.

Although the presence of temporal correlations is a consid-
erable source of complications, we were able to perform a full
mathematical analysis of the synaptic dynamics, exposed in detail
in Appendix B. In what follows we will analyze the case of slow
learning (small potentiation and depression rates q+ and q−), but
it is important to notice that our approach can deal with the tem-
poral correlations also in the case of fast learning. In the case of
slow learning, the steady-state synaptic strength J̄A → B is given by:

J̄A → B = F(f +
A → B/f −

A → B) (13)

where F is the synaptic transfer function defined by

F(x) =
q+
q− x

1 + q+
q− x

, (14)

while f +
A → B and f −

A → B are the frequencies of occurrence of poten-
tiating and depressing events (or sequences of events). Notice that
an identical result would be obtained if the temporal correlations
in the synaptic dynamics are neglected. Although it is not surpris-
ing that in the limit of slow learning the correlations may have
a small effect on the steady-state distribution of the synapses, it
was not clear to what extent the assumption of neglecting the
correlations would provide a good approximation. Our mathe-
matical analysis shows in a rigorous way that the correlations can
indeed be neglected in the slow learning limit (see Methods and
Appendix B).

The steady-state synaptic strengths are nevertheless exquisitely
sensitive to the temporal correlations between external events
as we now show. In our model, synapses between distinct
neural populations are potentiated only due to the sequential
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activation of the two populations, therefore f +
A → B = fAB, where

fAB = PA → BfA is the frequency at which the events A and B
occur at two consecutive timesteps. The relation between the fre-
quency of depressing events f −

A → B and the statistic of external
events depends on the plasticity rule used for depression (see
Figures 2, 3).

For PRE-activated depression, the synapses are depressed
whenever the pre-synaptic event A takes place, so that f −

A → B = fA,
and from Equation (13)

J̄A → B = F(PA → B). (15)

The steady state fraction of potentiated synapses J̄A → B is thus
a monotonic function of the transition probability PA → B, and
hence it directly encodes the temporal contiguity of events A and
B (see Figures 2A, 3A ).

For POST-activated depression, the synapses are depressed
whenever the post-synaptic event B takes place, so that f −

A → B =
fB, and from Equation (13)

J̄A → B = F(fAB/fB). (16)

The quantity fAB/fB is the conditional probability of event A
having happened at time t − 1 given that event B happened at
time t, so that for POST-activated depression, the steady state
value J̄A → B of the synaptic weights encodes another aspect of the
temporal statistics of events (see Figures 2B, 3B).

Finally for unspecific depression f −
A → B = 1 as depression

occurs at every time step, so that J̄A → B = F(fAB) simply repre-
sents the frequency at which the events A and B occur at two
consecutive timesteps (see Figures 2C, 3C).

The non-linear transfer function that maps probabilities to
synaptic strengths is displayed in Figure 2D. This transfer func-
tion depends only on the relative balance between depression and
potentiation, i.e., the ratio q+/q− where q+ and q− are, respec-
tively the strengths of potentiation and depression. Importantly,
for any value of q+/q−, the transfer function is monotonic, so
that the mapping from transfer probabilities to synaptic weights
is one-to-one, implying that synaptic weights encode probabil-
ities. When potentiation is much stronger than the depression
(q+/q− > 10), the transfer function saturates, so that the encod-
ing of large transition probabilities is less efficient. However, for
q+/q− varying over a wide range the transfer function is close to
linear, and the resolution of the encoding is high.

In summary, the synaptic strengths in the steady state rep-
resents different aspects of the temporal contiguity of external
events depending on the specific form of synaptic long term
depression. Importantly, we showed that the synaptic strengths
are monotonic functions of the transition probabilities between
events, independently of the details of the plasticity rule.

3.2. SYNAPTIC FLUCTUATIONS REPRESENT A RUNNING ESTIMATE OF
TEMPORAL CONTIGUITY

We examine in detail the dynamics of the bistable synapses intro-
duced in the previous section. We focus on two intimately related
features, the transients leading to the equilibrium and the fluctua-
tions around the average value in the steady state. We discuss here
only the case of PRE-activated plasticity, but our analysis is also
valid for other depression rules.

If the statistics of external events change suddenly, the new
temporal pattern of events modifies the synaptic dynamics and
drives them to a new equilibrium state. The transient of the

A B C

FIGURE 3 | Systematic comparison between the results of the

mathematical analysis and the simulations in the steady state. In the
simulations, the number of external events was fixed to n = 12 and 50
Markov transition matrices were generated randomly following the
procedure outlined in the Methods. For each transition matrix, the synaptic
dynamics were simulated using the three different rules for depression
(see Figure 2). For every pair of connected neural populations, the steady
state synaptic strength was obtained by averaging over 4000 trials. The
three different colors denote the outcomes of the three depression rules.
(A) Steady state synaptic weights J̄j → i represented as a function of the

transition probabilities PEj → Ei . As predicted by the analysis (solid line), for

PRE-activated depression the synaptic weights J̄j → i are a function of
transition probabilities PEj → Ei , while this is not the case for other
depression rules. (B) Same data represented as a function of the
conditional probability fEj Ei /fEi that event Ej happened at t − 1 given that

event Ei happened at t. For POST-activated depression J̄j → i is a function
of fEj Ei /fEi as predicted by the analysis (solid line). (C) Same data
represented as a function of the frequency fEj Ei at which the events Ej

and Ei occur at two consecutive timesteps. For unspecific depression J̄j → i

is a function of fEj Ei as predicted by the analysis (solid line).
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relaxation dynamics is approximately dominated by a single
exponential (Figures 4Ai, 5A), the timescale of which can be
computed in terms of transition probabilities and plasticity
parameters. If the synaptic dynamics is slow (i.e., if the synap-
tic transition probabilities q+ and q− are small), this timescale
affords a particularly simple mathematical expression. For a pop-
ulation of synapses projecting from neural population A to neural
population B, the timescale of the transient can be directly deter-
mined from the averaged synaptic dynamics (see Methods and
Appendix B) and reads

τA → B = J̄A → B

q+fAB
(17)

where J̄A → B is the average synaptic strength at the new equi-
librium, q+ is the rate of potentiation and fAB = fAPA → B is the
frequency of occurrence of the sequence AB in the new statistics
of external events. This expression is independent of the plastic-
ity rule used for depression, but the value of τA → B depends on
the depression rule and depression strength q− implicitly through
J̄A → B (Figure 4Aii). For events occurring at a rate of one per sec-
ond and potentiation/depression probabilities q = 0.02 per event,
the transient is of the orders of tens of minutes.

The transient timescale τA → B reflects the time required to col-
lect information about the new statistics of external events. The
equilibrium strength of the synapses from A to B will depend
on the transition probability from A to B, which is estimated
by accumulating evidence from the observed sequence of events.
The mathematical expression for the timescale of the transient
is consistent with this interpretation: τA → B is inversely propor-
tional to the learning rate q+, that corresponds to the amount
by which the total synaptic strength changes each time the sub-
sequence AB is observed. Moreover, τA → B is inversely propor-
tional to the frequency of the sub-sequence AB, simply because
the synapses are potentiated only when AB occurs. If the rele-
vant sub-sequence is less frequent, it takes longer to accumulate
relevant evidence. The fact that τA → B is proportional to the
asymptotic value J̄A → B of the synaptic strength (which itself is
an increasing function of the transition probability from A to
B) is less expected, and indicates that the synaptic dynamics do
not act as a simple leaky-integrator with a fixed time-constant,
but that instead the time constant adapts to the quantity being
integrated.

We have interpreted the timescale of the transient as the
timescale over which the synapses integrate information from
the ongoing dynamics of external events. If this interpretation
is correct, it should hold not only during the transient, but also
in the steady state, so that the fluctuations of synaptic strengths
in the steady state should correspond to the fluctuation of evi-
dence about the transition probability from A to B in a sliding
window of extent given by τA → B. To test this conjecture, we con-
structed an effective model of synaptic dynamics (Figure 4B), in
which the transition probability from event A to event B is esti-
mated in a sliding window of extent τA → B, simply by computing
the ratio between the number of occurrences of the sequence AB
divided by the number of occurrences of event A. That estimate
of the transition probability is then transformed into a synaptic

weight by applying the transfer function described in the previous
section (see Figure 2D). The comparison between the synaptic
dynamics in the full model and the effective model is displayed
in Figure 4C. The correlation coefficients between the two time
series range between 0.7 and 0.9 depending on the details of the
parameters (see Figure 5C). The transient timescale τA → B repre-
sents the longest timescale in the dynamics; our effective model
mainly reproduces the fluctuations at long timescales, but misses
fluctuations at shorter timescales.

The effective model clearly shows that the synaptic dynam-
ics compute the transition probability between events in an
ongoing fashion. This model also allows us to compute in a sim-
ple manner the magnitude of fluctuations in the steady state
as a function of the statistics of external events and synaptic
parameters. The corresponding formula is given in Methods,
Equation (6), and the result matches very well numerical sim-
ulations (see Figure 5B). The standard deviation �JA → B of the
synaptic strength is inversely proportional to the square root
of the integration time scale, as could be expected, but it also
depends explicitly on the transition probability, and the ratio
between potentiation and depression (Figure 4Cii).

In summary, we have shown the transients and the fluctuations
in the synaptic dynamics are closely related due to the fact that
synaptic dynamics perform an ongoing computation of temporal
contiguity, by accumulating evidence in a sliding window of finite
extent. This observation reveals a fundamental speed-accuracy
trade-off in the synaptic encoding of temporal contiguity: when
the dynamics of external events change, it is important to com-
pute as fast as possible the new transition probabilities, so that the
transients remain short. Hence, it seems desirable to have large
learning rates (i.e., large probabilities for synaptic potentiation
and depression), as the transient timescale is inversely propor-
tional to them (Figure 4). Short transients, however, imply strong
fluctuations in the steady state, and thus unreliable estimates, as
the synaptic strengths become more sensitive to the fluctuations
in the statistics of external events.

3.3. MULTI-STATE SYNAPSES WITH HARD AND SOFT SYNAPTIC
BOUNDS

In the previous sections we analyzed how bistable synapses can
encode temporal contiguity. In this section we extend that analy-
sis to specific models of multi-state synapses. We first consider a
synapse that has to traverse m states before reaching its bounds
[as in Fusi and Abbott (2007), see also Methods]. The transi-
tion probabilities between synaptic states are independent from
the distance to the bounds (hard bounds—see below for the
soft bound case). As the number of synaptic states m increases,
we observe three effects: (1) the synaptic weights become sig-
moidal functions of the transition probabilities and these sig-
moids become progressively steeper, making it possible to store
only a rough estimate of the probabilities (basically only the
information about whether the probability is above or below a
threshold); (2) the time it takes to reach equilibrium and generate
an estimate of the probabilities increases linearly with the distance
between the boundaries; and (3) the estimate of the probabilities
becomes progressively more “reliable” in the sense that the fluctu-
ations around the estimated value become smaller, as in the case
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FIGURE 4 | Synaptic fluctuations represent a running estimate of

temporal contiguity. (Ai) Comparison between numerical simulations
(fluctuating lines) and the single timescale approximation (smooth lines),
for two synapses corresponding to different transition probabilities. (Aii)

Transient timescale τA → B for the dynamics of synapses projecting from
neural population A to neural population B, as function of the transition
probability PA → B from event A to event B. The three values of the
potentiation-depression ratio q+/q− are obtained by varying q+
(q+ = 0.002, 0.02 and 0.2) while q− = 0.02 is held fixed. (B) Illustration
of the effective model for the synaptic dynamics. (Ci) Comparison
between numerical simulations (gray scale) and the predictions of the
effective model (colored lines) of synaptic dynamics. The Pearson’s

correlation coefficient between simulations and predictions is denoted by
ρ. In (Ai, Ci), the plasticity parameters are q+ = 0.06 and q− = 0.03, and
the external events occur at intervals of 600 ms. (Cii) Standard deviation
of the synaptic dynamics in the steady state, as function of the
transition probability. The three values of the potentiation-depression ratio
q+/q− are obtained by varying q− (q− = 0.5, 0.05 and 0.05) while
q− = 0.05 is held fixed. (D) Illustration of the speed-accuracy trade-off:
the transient timescale τA → B is inversely proportional to the potentiation
probability q+, while the amplitude of fluctuations increases as

√
q+. This

figure was obtained for PA → B = 0.5. Note that for fixed PA→ B = 0.5 and
q+ the fluctuation amplitude is not a monotonic function of q+/q− (see
panel Cii).
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A B C

FIGURE 5 | Systematic comparison between the simulations results and

the predictions of the effective model. (A) Comparison between predicted
transient time scales (Equation 5) and time scales obtained from
single-exponential fits to transients in numerical simulations. (B) Comparison
between the standard deviation of synaptic dynamics in the steady-state
predicted from the effective model (Equation 11) and the measurements in
numerical simulations. (C) Distribution of correlation coefficients between
synaptic timecourses obtained from simulations and timecourses obtained

from the effective model. In the simulations, the number of external events
was fixed to n = 12 and 10 Markov transition matrices were generated
randomly following the procedure outlined in the Methods. For each
transition matrix, the synaptic dynamics were simulated using the
PRE-activated rule for synaptic depression. In (A,B), each point corresponds
to a synaptic population connecting a pair of neural populations. The three
different colors denote three different sets of potentiation and depression
rates q+ and q−.

of bistable synapses with smaller learning rates analyzed in the
previous section.

Figure 6 illustrates the dependence of the synaptic dynamics
on the number of synaptic states m, in the case of PRE-activated
depression. For a small number of synaptic states (Figure 6A,
m = 4), the synaptic dynamics are almost identical to the ones of
the bistable case: an equilibrium state is reached quickly, and the
average synaptic strengths are approximately a linear function of
the transition probabilities (Figure 6A left). As m grows, the time
needed to reach equilibrium increases, and the synaptic strengths
become an increasingly steep sigmoidal function of the transi-
tion probabilities (see Figures 6B,C). For synapses with m = 50
states (Figure 6C), the synaptic dynamics take a long time to reach
equilibrium, and the synaptic strengths eventually encode only
whether the transition probability is larger or smaller than the
ratio q+/q− between potentiation and depression rates. However,
the black traces in (Figure 6) show that the fluctuations of the
estimate of the probability decrease progressively as the number
of states increases. This is due to the fact that the effective learning
rate decreases as the number of states increases and then the prob-
abilities are estimated on a longer time window (see the previous
section for a more quantitative analysis of the effects of the learn-
ing rate on the accuracy of the estimate). Depending on the task
to be performed and on the statistics of the environment, there is
an optimal number of synaptic states.

The case of soft boundaries, in which the transition probabil-
ities decrease progressively to zero as the synapse approaches the
boundaries [see Fusi and Abbott (2007) for more details], is qual-
itatively similar to the case of bistable synapses. The relationship
between the synaptic weights in the steady state and the transition
probabilities is the same as in the case of a population of bistable
synapses. Indeed the dynamic equations for the expected fraction

of potentiated synapses are the same as the dynamic equations
for the soft boundary synapses. The time needed to reach equi-
librium, however, increases linearly with the number of synaptic
state, and the fluctuations decrease, in the same manner as in the
case of hard boundaries.

3.4. IMPLICATIONS FOR NEURAL DYNAMICS
So far the only assumption about the structure of the network
was that it consisted of a number of distinct populations of excita-
tory neurons, each selective to an external event. We now consider
this network after learning has taken place, so that the synaptic
weights between the different neural populations are obtained
by applying the synaptic transfer function (in Figure 2D) to
the transition probabilities between the corresponding external
events. We will show that temporal contiguity encoded in the
distribution of the synaptic weights, can easily be read out and
exploited by a neural circuit. In particular we will show that
synaptic encoding of temporal contiguity allows a simple, bio-
logically plausible neural network to perform prospective coding
in the sense that when the network is stimulated by the occur-
rence of an event, it responds by activating the population of
neurons that correspond to the event which most often follow A.
This basic phenomenology is similar to neural activity observed
in the infero-temporal and prefrontal cortex of primates perform-
ing a pair-associate task (Sakai and Miyashita, 1991; Rainer et al.,
1999) and in the amygdala and orbito-frontal cortex of primates
performing a trace-conditioning task (Paton et al., 2006). Notice
that this is only one example of possible neural readout of the
information stored in the synapses. Other neural circuits may
readout the transition probabilities in different ways and they
may be able to represent also the information about the less likely
transitions.
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FIGURE 6 | Multi-state synapses with hard bounds encoding temporal

contiguity. (A–C) Examples of synaptic dynamics (left), and relationship
between between steady-state synaptic strengths and transition
probabilities (right) for synapses with an increasing number of states:
(A) 4 states; (B) 10 states; (C) 50 states. As the number of synaptic states
increases, the effective learning rate decreases, the fluctuations around the
estimates decrease estimates decrease (see the black traces) and the
transfer function [given in Methods, Equation (5)] that relates synaptic
weights to transition probabilities becomes an increasingly steep sigmoid
centered at q−/q+ (q+ and q− being the potentiation and depression

rates). In the limit of a large number of synaptic states, the steady state
synaptic weights are therefore essentially bistable and encode only
whether the transition probabilities are smaller or larger than q+/q− . In the
Synaptic Dynamics panel, the black and the gray traces illustrate the
dynamics of two synapses corresponding to two probabilities. The red and
orange line indicate the corresponding steady-state values and their
relationship with event statistics. Results are shown for the PRE-activated
depression rule, the plasticity parameters are q+ = 0.06 and q− = 0.03, and
the external events occur at intervals of 600 ms. Note that for soft-bounds
the results would be similar to the bistable case (see the text).

The model we consider is a firing rate model which is
essentially a simplified version of a biologically realistic net-
work of spiking neurons (Brunel and Wang, 2001; Wang, 2002;
Wong and Wang, 2006). The scheme of the network is illus-
trated in Figure 7A: each excitatory population is activated
by only one event, all excitatory populations are connected
among themselves with bistable synapses and to a popula-
tion of inhibitory neurons, which in turn projects to all the
excitatory populations. The inhibitory population responds lin-
early to the total excitatory input and it is not selective to

external events, but balances excitatory activity and stabilizes the
network.

The dynamical behavior greatly depends on the strength
gI of inhibitory synapses. When an excitatory population A is
activated, the post-synaptic populations are excited by direct
synapses and simultaneously inhibited by feed-forward inhibi-
tion. The net effect on the post-synaptic population B will be
either excitatory or inhibitory depending on whether the synaptic
weight JA → B is greater or weaker than the strength of the inhi-
bition gI . The strength of inhibition therefore determines
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FIGURE 7 | Network dynamics after learning, for a sequential scheme

of external events. (A) Scheme of external events (top), and the neural
network after learning (bottom). The width of the connections represents
the magnitude of transition probabilities and corresponding excitatory
weights. The inhibitory populations receives uniform synaptic inputs from
all excitatory populations, and inhibits all of them equally. (B) Dynamics
of the network for three different values of the inhibitory strength gI ,
decreasing from (Bi) to (Biii). The effective network (left) represents the
excitatory connections that are stronger than the inhibition. The
trajectories on the right represent the network dynamics in response to
a sequence of external events. (C) Noise in the activity leads to

probabilistic predictions. (Ci) Effective connectivity of a sub-network in
which population C excites both populations D and E, with
JC → D > JC → E , both connections being stronger than the inhibition. (Cii,

Ciii) Examples of winner take all dynamics after the occurrence of event
C. (Cii) In absence of noise, the population D receiving the strongest
synaptic input always wins and inhibits population E. (Ciii) In presence of
noise either D or E can win, so that the network predicts probabilistically
that either event D or E can follow event C. (Civ) Probability that
population D wins as function of the difference between input synaptic
weights, for three different levels of noise. The dots represent numerical
simulations, and the continuous lines are sigmoidal fits to the data.

an effective connectivity matrix between the excitatory
populations.

Figure 7 illustrates the network dynamics corresponding to an
asymmetric scheme of external events similar to the probabilistic
trace-conditioning task described in Figure 1A. The dynamics are
described for three different strengths of inhibitory synapses. The
synaptic matrix determined by the temporal contiguity is highly
asymmetric and essentially feed-forward (Figure 7A). If inhibi-
tion is strong (Figure 7Bi), all the excitatory synaptic connections

are weaker than inhibition, which basically prevents effective
excitatory interactions: when an external event occurs, only the
corresponding population is activated, as was the case prior to
learning.

For weaker inhibition (Figure 7Bii) some of the excitatory
synapses are stronger than the inhibition and the different pop-
ulations start to interact. The strongest synapses are those that
correspond to the largest transition probabilities between events:
in the illustration of Figure 7, event A is very often followed by
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event C, so that the synaptic weight JA → C is larger than the
inhibitory strength gI . When event A occurs after learning, the
corresponding population A is transiently activated, which in
turn induces a transient in population C: after observing the event
A, the network predicts that event C is likely to occur next. The
amplitude of the transient activation is moreover proportional to
JA→C − gI and therefore increases with the probability that C will
occur after A.

Even weaker inhibition leads to a greater number of excita-
tory connections stronger than inhibition (Figure 7Biii) and new
phenomena emerge in the dynamics of the network. The first is
the appearance of sequences of transient activations. If event C is
often followed by event E, then when event A occurs, the pop-
ulations C and E will be sequentially activated, predicting the
most likely sequence of events. Each transient is a low-pass ver-
sion of the previous one, therefore the successive activations in
the sequence will be attenuated and elongated in duration, which
limits the length of the predictable sequence.

A second possible phenomenon is the appearance of a popu-
lation that excites more than one post-synaptic population, such
as population C in Figure 7Biii. When the event C takes place,
because of the presence of the global inhibition, the two post-
synaptic populations enter in competition with each other via
a winner-take-all mechanism. Eventually one of the two popu-
lations takes over and is fully activated. Which population wins
depends on the amplitude of the noise in the firing rate dynam-
ics (see Figure 7C). If the noise is weak, the population which
receives the strongest excitation always wins, so that the net-
work always predicts the event that is the most likely to follow.
If the amplitude of the noise is strong, the post-synaptic popula-
tion that is activated is chosen stochastically with a probability
proportional to the difference between the synaptic weights.
Reproducing in the neural dynamics the precise transition prob-
abilities of the corresponding external events would, however,
require a tuning of the noise amplitude, or an additional mecha-
nism not included in this simplified framework.

In summary, as a consequence of the synaptic encoding of
temporal contiguity, the neural network dynamics provide a pre-
dictive model of the external environment, in the case where
the scheme of events is sequential. The strength of inhibition in
the network determines the timescale over which the predictions
are made: the weaker the inhibition, the longer the predicted
sequence of following events. The maximal length of sequences
that can be predicted is, however, limited by the requirement that
inhibition is strong enough to stabilize the excitatory activity in
the network. This requirement effectively limits the network to
learning the most likely transitions between events rather than
the full statistics.

For a scheme of events similar to natural viewing of three-
dimensional objects (Figure 1A), the transition probabilities
between two events are essentially symmetric, and the synap-
tic matrix is therefore also symmetric rather than feed-forward.
The neural network then consists of modules of populations
within which the excitatory interactions are strong, while the
interactions between the modules are weak. Networks with sim-
ilar connectivity have been extensively studied in previous works
(Brunel and Wang, 2001), and it has been shown that under

suitable conditions the modules become attractors: when an
event occurs, the whole corresponding module is activated, pos-
sibly in a persistent manner. This mechanism could naturally
lead to invariant visual representations: if prior to learning,
different neural populations encode the retinal image of an
object seen from different angles, due to temporal contiguity
in natural vision, these different neural representations merge
in a single population selective to all angular projections of the
object.

4. DISCUSSION
We showed that different statistical aspects of temporal contiguity,
and in particular transition probabilities, can easily be encoded in
the distribution of the synaptic weights. The ability of synapses to
encode temporal contiguity is not an obvious consequence of the
dependence of long term synaptic modifications on sequences of
pairs of consecutive events. In order to estimate a transition prob-
ability, it is necessary to remember multiple instances of pairs of
consecutive events. This information must be stored and retained
by any neural or synaptic mechanism that is in charge of esti-
mating a probability. Even when this is possible, there is a further
complication due to the correlations between successive long term
synaptic modifications that are often present in long sequences
of events generated by Markov processes. These correlations have
never been considered in previous works, as the investigators have
focused on individual pairs of consecutive stimuli that were not
embedded in longer sequences (see e.g., Soltani and Wang, 2010).

Here we showed that despite these complications, it is possible
to encode transition probabilities in the distribution of synap-
tic weights. We learned that two ingredients are important for
synaptic encoding of temporal contiguity: (1) not surprisingly,
the long term modifications cannot depend only on individual
events, but they must depend at least on pairs of consecutive
events and (2) the synaptic weights must be bounded and the
synaptic dynamics must be sensitive to these bounds in order to
be able to encode the transition probabilities. We now discuss sep-
arately the two ingredients. We then comment on some of the
simplifying assumptions, present experimental predictions and
we finally discuss the general importance of synaptic encoding of
transition probabilities.

4.1. SEQUENCE-DEPENDENT SYNAPTIC PLASTICITY
The first necessary ingredient concerns the events triggering long
term synaptic changes: not surprisingly, in order to encode the
temporal statistics of external events, synaptic modifications must
depend on the temporal order of at least two consecutive events.
Specifically, in order to encode the transition probability from
A to B, it is sufficient to assume that the synapses are modified
in one direction (e.g., they are potentiated) when the transi-
tion occurs and in the opposite direction (depressed), when it
does not occur. This implies that the synapse should be able
to detect the temporal sequence A–B, or in terms of pre and
post-synaptic activity, the sequential activation of pre-synaptic
neurons encoding A and post-synaptic neurons encoding B. One
may be tempted to relate the learning rules that we discussed
to the observed long term synaptic changes that depend on the
temporal order of pre- and post-synaptic stimulations (Levy and
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Steward, 1983), or on the relative timing of individual pre- and
post-synaptic spikes, a property known as spike-time-dependent
plasticity (STDP) (Markram et al., 1997; Bi and Poo, 1998;
Sjöström et al., 2001). However, in these electro-physiological
experiments the typical intervals separating consecutive stimu-
lations are of the order of tens of milliseconds. In contrast, in
many behavioral experiments, the events that are temporally con-
tiguous can be separated by seconds or even longer intervals, so
STDP cannot explain the learning rule that we propose. However,
synaptic mechanisms like STDP can be used to encode some
form of temporal contiguity between events that are separated in
time. One possible mechanism has been proposed in Drew and
Abbott (2006), in which the authors realized that the signal about
temporal contiguity can be generated by STDP as long as the
relative timing of the pre and post-synaptic spikes is preserved
over the time interval separating the relevant events. This is the
case when the stimuli elicit sustained activity and this activity is
modulated in time, e.g., by adaptation. The mechanism proposed
in Drew and Abbott (2006) would be compatible with our rule
for potentiating the synapses, but not with the rules for depress-
ing the synapses, which would require some other mechanism.
Sustained activity observed in delays between sensory stimuli has
been observed in many experiments in vivo and is assumed to
play an important role in bridging the gap between events that
are separated by seconds (Yakovlev et al., 1998). Other possibili-
ties include relying on synaptic mechanisms like synaptic tagging
(Clopath et al., 2008), or context-sensitive cells that have been
found in the CA3 region of the hippocampus (Wallenstein et al,
1998).

In this study, we have used a macroscopic plasticity rule that
does not assume a specific mechanism implementing sequence-
dependent synaptic plasticity. How our plasticity rule can be
derived from a microscopic plasticity rule (Clopath et al., 2010;
Graupner and Brunel, 2012) and what kind of mechanism is
needed to bridge time-scales remains to be studied.

4.2. SYNAPTIC BOUNDARIES AND THE IMPORTANCE OF
FORGETFULNESS

The second important ingredient is the existence of an equilib-
rium distribution for the synaptic weights: the synaptic dynamics
should guarantee that the distribution of the synaptic weights
converges to a steady-state when the statistics of external events
do not change in time. In the case of synapses that are restricted
to vary in a limited range (bounded synapses), there is a unique
equilibrium distribution for a given statistics of long term mod-
ifications, which in turn reflects the statistics of the events to be
encoded (Fusi, 2002). In the case considered here, the temporal
statistics of the events are encoded in the mean of the equilib-
rium distribution, but they could alternatively be encoded in the
variance or other properties of the distribution.

The importance of the equilibrium distribution is related to
the fact that it makes the synapses forgetful, as they always
converge to the same distribution, independently from the ini-
tial conditions. Basically, forgetful synapses estimate probabil-
ities/transition probabilities by counting events/sequences of
events in a sliding temporal window. Events which fall outside of
this window are forgotten. Non-forgetful synapses would count

all events from their birth. This is the case of synapses which
are unbounded and that sum linearly all the induced modifi-
cations [similarly to the Hopfield model (Hopfield, 1982)]. In
this situation, the synaptic dynamics perform a (biased) random
walk, so that the mean and standard deviation of synaptic weights
increase over time, and hence there is no equilibrium distribution.
These models not only are unrealistic because physical synapses
are always bounded, but they are also inefficient at encoding
the statistics of the events, because the distribution of synaptic
weights keeps changing even when the statistics of the events are
stationary.

Interestingly, the boundedness and the consequent existence
of an equilibrium distribution is usually highly disruptive for
memory performance (see e.g., Fusi, 2002). In contrast, for the
encoding of temporal contiguity between events, forgetfulness is
a key property. The main difference between the two problems is
that in many standard memory benchmarks memories are stored
in one shot and then overwritten by other uncorrelated memo-
ries. In the case of transition probability estimation, “memories”
are repeatedly rewritten, as they are represented by the statistics of
the environment, which is continuously sampled by “observing”
the occurrence of the events, for as long as the environment does
not change.

4.3. SPEED-ACCURACY TRADE-OFF
As the temporal statistics of the events are estimated by count-
ing events in a sliding temporal window, it is not surprising that
our analysis revealed a speed-accuracy trade-off in the encod-
ing of transition probabilities. Indeed, the longer the window
(i.e., the smaller the learning rates), the more accurate the esti-
mate. However, for longer temporal windows the convergence to
the estimate becomes also slower and this is a limitation when
the statistics of events changes. The speed-accuracy trade-off
can probably be relaxed in more complex synapses which oper-
ate on multiple timescales. Indeed, the fast components of the
synaptic dynamics could be utilized to rapidly estimate probabil-
ities/transition probabilities, and the slow components would be
devoted to increasing the accuracy of the estimate as the statistics
accumulates. Ultimately, the optimal value of temporal window
is determined by the rate at which temporal statistics themselves
change and a model with multiple timescales might be able to
function at this optimal timescale.

In the future, we plan to study synaptic models that oper-
ate on multiple timescales, and we believe that models similar
to the cascade model (Fusi et al., 2005) can greatly improve
the performance. Indeed, the cascade of biochemical process
that underlie memory consolidation at the synaptic level could
provide us with a wide spectrum of mechanisms operating on
different timescales. Notice that our analysis already applies to
heterogeneous populations of bistable synapses characterized by
different timescales. These heterogeneous populations of simple
synapses would already provide the neural circuit with a com-
promise between fast and slow estimates, although they cannot
be as efficient as more complex cascade synapses. The introduc-
tion of independent neural systems that can detect changes in
the statistics of the events (Yu and Dayan, 2005), could prob-
ably further improve the performance and relax even more the
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constraints about speed and accuracy. This system would proba-
bly affect the statistics of the synapses by changing their plasticity
through neuromodulation.

4.4. NEURAL REPRESENTATIONS OF THE EVENTS
In our model, we assumed that the neural network consisted
of distinct neuronal populations selective to different external
events. Neurons selective to complex stimuli have been commonly
found in the ventral and frontal parts of the cortex. In general, a
given neuron is selective to more than one stimulus, implying that
the different neural populations display some overlap (Yamane
et al., 2006). How large these overlaps are is matter of ongoing
studies, and probably depends on the nature of the stimuli and the
task being performed. In this study, we have analyzed the case in
which the neural populations representing different events do not
overlap. Our analysis is still a good approximation in the limit of
random sparse representations, i.e., when overlap between neu-
ral populations is small. For more distributed representations, we
expect that overlaps will act as a source of additional noise in the
synaptic encoding of temporal contiguity. Our results neverthe-
less still hold for all the synapses connecting the non-overlapping
parts of the neural populations.

4.5. EXPERIMENTAL PREDICTIONS
The work by Levy and Steward (1983) indicates that long term
modifications depend on the temporal order of pre and post-
synaptic stimulation. According to our theory and under the
numerous simplifying assumptions on the synaptic dynamics,
this should be sufficient to encode the temporal statistics of events
represented by the activation of the pre and post-synaptic neu-
rons. Our prediction is that the average synaptic weight of a
population of synapses should be a monotonic function of one
or more aspects of the temporal statistics of the events. This pre-
diction can be tested by (1) generating a sequence of events with
a Markov process, (2) computing the corresponding temporal
sequence of activation of a representative pair of neurons (e.g.,
neurons connecting two events that are temporally contiguous
in a sufficient number of cases), and (3) stimulating repeat-
edly the pre and post-synaptic neuron to induce a series of long
term synaptic modifications, as in the experiments described in
O’Connor et al. (2005), in which the authors used only deter-
ministic sequences. If the procedure is repeated for a sufficient
number of synapses, then it is possible to estimate the average
value of a population of synaptic weights that is exposed to the
same statistics of events. According to our theory, it should be
possible to manipulate the mean synaptic weight by changing the
temporal statistics of events. This type of experiments not only
can confirm our prediction, but they can also give important indi-
cations on the way synapses are modified every time the pre- and
post-synaptic neurons are activated, and on the most efficient
experimental protocols to encode different aspects of the statistics
of temporal contiguity.

4.6. THE IMPORTANCE OF SYNAPTIC ENCODING OF TRANSITION
PROBABILITIES

Uncertainty is an important component of life, and we have to
deal with it in many situations. In some of them, uncertainty

derives from the fact that our environment is only partially
observable and we need to combine multiple pieces of evidence
and our prior knowledge to reach a conclusion about the identity
of sensory stimulus. In some other, the environment is inher-
ently stochastic or it is difficult to predict with certainty (e.g., the
weather). In all these situations it is useful to represent in the brain
the distribution of probabilities of different outcomes, and, in the
case of sensory stimuli that vary in time, to estimate the param-
eters that characterize the temporal statistics of the stimuli and
of the effects of our actions on the environment. A number of
recent studies have investigated how the brain performs proba-
bilistic inference to perform optimally in uncertain environments
(Körding and Wolpert, 2004; Ma et al., 2006; Berkes et al, 2011).
In all these cases it is necessary to estimate and encode the prior
probability that a particular sensory stimulus is observed. In some
of these studies, the authors showed that it is possible to perform
Bayesian statistical inference by combining the information about
the probability distribution of the relevant variables. If these dis-
tributions are encoded in the variability across neurons, then it is
possible to implement in a simple neuronal circuit a process that
leads to optimal decision making (Ma et al., 2006). In Ma et al.
(2006), the authors assumed that the distributions are already
encoded in the pattern of neuronal activities but they did not
describe the process of probability encoding. In Soltani and Wang
(2010) the authors show a simple case in which the posterior
probability that a choice alternative is correct given a particular
sensory cue is encoded in the average synaptic strength. Although
the analyzed case is very simple, their work is interesting because
it shows that it is possible to encode probabilities in a realistic
neural circuit (and specifically in the synapses) and then perform
optimal decision making.

In our work we showed that these type of posterior probabili-
ties are naturally encoded by synapses also when the correlations
between long sequences of consecutive events are taken into con-
sideration [in Soltani and Wang (2010) the authors considered
only the transition probability from the presentation of a cue to
the choice of a rewarded action and they did not consider the
correlation between two successive synaptic modifications as the
trials in the task they analyzed are uncorrelated]. We believe that
this an important step toward the understanding of the biolog-
ical substrate of the successor representation in reinforcement
learning (Dayan, 1993; Gershman et al, 2012), and more gener-
ally for Markov Decision Processes (Bellman, 1957), which play
an important role for decision making in complex tasks that are
based on multiple choices (Sutton and Barto, 1998). In these
processes, the optimal strategy can be found by trial and error
by combining the information about the transition probability
between two states of the environment induced by the execution
of a particular action, and the immediate reward delivered to the
agent. We believe it is possible to encode these conditional tran-
sition probabilities by using conjunctive representations of the
type described in Rigotti et al. (2010), in which neurons would
naturally respond to a particular state only if a certain action is
executed. These neurons can be easily obtained with random con-
nectivity. Showing that it is possible to construct a realistic neural
circuit that encodes the relevant quantities for learning Markov
Decision Processes will be the next important step.
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In our analysis we studied how temporal contiguity is encoded
in populations of synaptic weights. In real world problems, in
many situations one may need to consider higher order temporal
correlations, or in other words, the problem of encoding non-
Markov processes where the probability of an event depends on
a certain number of previous events. These problems are known
to be difficult and there are only a few models of neural circuit
that address these issues (see e.g., Jensen and Lisman, 1996).
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APPENDIX
A. MATHEMATICAL ANALYSIS—BISTABLE SYNAPSES
Here we present the full mathematical analysis of dynamics of
bistable synapses. The method we used is essentially a general-
ization of the approach introduced in Brunel et al. (1998), where
synaptic dynamics were studied in the context of the learning of
events occurring in uncorrelated sequences. In contrast, here we
focus on learning the temporal correlations between events. We
first study the dynamics in the case of arbitrary potentiation and
depression probabilities q+ and q−. In a second step, we examine
the slow learning limit of small q+ and q−.

We consider a population of bistable synapses connecting the
pre-synaptic neural population j (selective to the event Ej) to a
post-synaptic neural population i (selective to the event Ei), with
i �= j. The analysis is valid for any arbitrary i and j, we therefore
drop these indices and simply refer to neural populations (resp.
events) i and j as the post-synaptic and the pre-synaptic neural
population (resp. external event). From the point of view of the
population of synapses, only three different external events can
occur: (1) the pre-synaptic event; (2) the post-synaptic event; and
(3) an event that is neither the pre-synaptic nor the post-synaptic
event (all such events are equivalent for the considered synapses).
In the following we therefore work with a reduced set of events in
which all the events other than the pre and post-synaptic one are
identified.

To track which event took place at time t, we introduce a
variable ht which takes on values ht = 1, 2, 3, respectively for the
three types of events out of the reduced set. The statistics of the
sequence ht are fully determined by the transition probabilities
between the full set of events. While the original stochastic
process on the full set of events had the Markov property, this
is not necessarily the case for the stochastic process h(t) on the
reduced set of events. We nevertheless use a mean-field approach
and approximate h(t) by a Markov process on the reduced set.
The reduced transition matrix �, where �lm is the probability
that ht = l given that ht − 1 = m can be expressed in terms
of transition probabilities between events in the full set and
reads:

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

PEj→Ej PEi→Ej

∑
k�=i,j fEk PEk→Ej/∑

k�=i,j fEk

PEj→Ei PEi→Ei

∑
k�=i,j fEk PEk→Ei/∑

k�=i,j fEk

1 − PEj→Ei− 1 − PEi→Ei−
∑

k,l �=i,j fEk PEk→El/

PEj→Ej PEi→Ej

∑
k�=i,j fEk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A1)

The steady-state distribution π(0) of the above Markov matrix
is simply given by the steady state frequencies of events Ej

and Ei in the full stochastic process: π(0) = (fEj , fEi , 1 − fEj −
fEi). Similarly, the second-order statistics for the pre-synaptic
and post-synaptic event are preserved in the reduced descrip-
tion. This is, however, not necessarily the case for higher order
statistics.

The individual synapses are bistable, i.e., they possess two
discrete levels indexed by k = 1, 2, the level k = 1 being the
depressed level, and k = 2 being the potentiated level. In
response to external events, the synapses hop stochastically
between the potentiated and the depressed level. To describe
these stochastic dynamics, we focus on the probability of the
occupation of different levels, i.e., the vector ρ in which the kth
component ρk represents the probability that a synapse is found
in the kth potentiation level. The dynamics of the distribution
ρ is driven by the plasticity occurring due to external events,
and can be formulated as an inhomogeneous Markov process
(Fusi, 2002):

ρ(t + 1) = M(t)ρ(t). (A2)

Here M(t) is a Markov transition matrix that specifies the plastic-
ity at time t. By hypothesis the plasticity at time t depends only
on the events that occurred at times t and t − 1, so that M(t) is a
function of ht and ht − 1.

The plasticity rules are fully specified by ascribing a poten-
tiation and a depression probability to each combination
of ht and ht − 1, which amounts to specifying two matrices
Q+ and Q− of dimensions three-by-three. The entry Q+

lm
(resp. Q−

lm) represents the potentiation (resp. depression) prob-
ability following the combination of events h(t) = l and
ht − 1 = m with 1 ≤ l ≤ 3 and 1 ≤ m ≤ 3. Once the matri-
ces Q+ and Q− are given, the plasticity matrix M can be
expressed as

M(ht, ht − 1) = �+ Q+
ht ,ht − 1

P̂ + Q−
ht ,ht − 1

D̂ (A3)

where � is the unit 2 × 2 matrix, and P̂ and D̂ are the potentiation
and depression matrices defined by

P̂ =
(−1 0

1 0

)
D̂ =

(
0 1
0 −1

)
(A4)

Iterating Equation (A2), the distribution ρ(t) following a
sequence of t events h1 . . . ht − 1ht is given by

ρ(t + 1) = M(ht, ht − 1)M(ht − 1, ht − 2) . . . M(h2, h1)ρ1. (A5)

Our aim is to compute the mean synaptic distribution 〈ρ(t)〉
obtained by averaging over all possible sequences of events
h1 . . . ht − 1ht . The probability of a given sequence of events
h1 . . . ht − 1ht is given by

Prob(htht − 1 . . . h1) = �ht ,ht − 1�ht − 1,ht − 2 . . . �h2,h1 Prob(h1)

(A6)

where the transition matrix � is defined in Equation (A1),
and Prob(h1) is an initial distribution of events, which, for
simplicity, we take to be the stationary distribution π(0), i.e., the
right eigenvector with unit eigenvalue of the transition matrix
�. Multiplying Equation (A5) by (A6), and summing over all
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possible sequences, we get

〈ρ(t + 1)〉 =
∑

ht ,ht − 1,...h1

[
M(ht, ht − 1)M(ht − 1, ht − 2) . . .

M(h2, h1)ρ1�ht ,ht − 1�ht − 1,ht − 2 . . . �h2,h1π
(0)

]
(A7)

where 1 ≤ hs ≤ 3 for s = 1 . . . t. Note that for fixed hs and hs − 1,
M(hs, hs − 1) is a matrix while �hs,hs − 1 is a scalar, so that 〈ρ(t)〉
can be written as

〈ρ(t + 1)〉 = S(t)ρ1, (A8)

with S(t) a two-by-two matrix dependent on time.
We will show that S(t) can be written as

S(t) = �+ B(t)P̂ + C(t)D̂, (A9)

where B(t) and C(t) are scalar coefficients that we will compute.
For t large, S(t) becomes time independent, i.e., B(t) → B∞ and
C(t) → C∞ with B∞ + C∞ = 1, so that ρ(t) → (1 − B∞, B∞).

We now proceed to demonstrate Equation (A9) and compute
B(t). In contrast to uncorrelated sequences of external events
studied in Brunel et al. (1998), Equation (A7) cannot be fac-
torized as each factor M(hs, hs − 1) or �hs,hs − 1 depends on the
external events on two consecutive time steps. Instead we itera-
tively sum over hs for s = 1 . . . t and proceed by induction. To
this end we introduce

R(hs, s) =
∑

hs − 1,...h1

[M(hs, hs − 1)M(hs − 1, hs − 2) . . . M(h2, h1)

�hs,hs − 1�hs − 1,hs − 2 . . . �h2,h1π
(0)

]
(A10)

where R(h, s) is a two-by-two matrix that depends on the event
h (with 1 ≤ h ≤ 3) that occurs at the timestep s. The matrix S at
time t is directly related to the matrix R by

S(t) =
3∑

h = 1

R(h, t). (A11)

From Equation (A7), the evolution of the matrix R is given by

R(h, s + 1) =
3∑

l = 1

M(h, l)�hlR(l, s). (A12)

We next show by induction that for any event h (with 1 ≤ h ≤
3) and any timestep s (with 1 ≤ s ≤ t) the matrix R(h, s) can be
written as

R(h, s) = α(h, s)�+ β(h, s)P̂ + γ(h, s)D̂ (A13)

where � is the unit 2 × 2 matrix, P̂ and D̂ are the potentiation and
depression matrices defined in Equation (A4), and α(h, s), β(h, s),
and γ(h, s) are scalar coefficients that depend on the event h and
the timestep s.

For s = 1, R(h, s) = π
(0)
h �, so that Equation (A13) is clearly

valid with α(h, 1) = π
(0)
h (where π(0) is the steady state of the

transition matrix �), β(h, s) = γ(h, s) = 0.
Assuming that Equation (A13) is valid at the timestep s, using

the evolution equation Equation (A12), and the expression given
in Equation (A3) for the plasticity matrix M(k, l), we find that
S(k, s + 1) is of the form postulated in Equation (A13), the
coefficients at the two consecutive time steps being related by:

α(h, s + 1) =
3∑

l = 1

�hlα(l, s) (A14)

β(h, s + 1) =
3∑

l = 1

[
�hlβ(l, s) + Q+

hl�hlα(l, s)

− (Q+
hl + Q−

hl)�hlβ(l, s)
]

(A15)

γ(h, s + 1) =
3∑

l = 1

[
�hlγ(l, s) + Q−

hl�hlα(l, s)

− (Q+
hl + Q−

hl)�hlγ(l, s)
]
. (A16)

The Equations (A14–A16) can be easily solved: as α(l, 1) =
π

(0)
l , we have α(l, t) = π

(0)
l for all t. Using vector notation β =

(β1, β2, β3) and β = (γ1, γ2, γ3), the dynamics of β(t) and γ(t)
are given by

β(t + 1) = Aβ(t) + Q+π(0) (A17)

γ(t + 1) = Aγ(t) + Q−π(0) (A18)

where A is a time-independent three-by-three matrix defined by

A = � − (Q+ + Q−) ∗ � (A19)

and ∗ denotes the element-by-element product of matrices.
The steady state β∞ is simply given by

β∞ = (�− A)−1 .Q+.π(0). (A20)

The dynamics of β(t) are determined by the time-independent
matrix A, which has a zero eigenvalue corresponding to the steady
state, and two eigenvalues of norm less than one. The relaxation
to the steady state of β(t) can therefore be expressed as a sum of
two decaying exponentials.

Once the evolution of β(t) is known, the dynamics of the
synaptic occupation probabilities ρ(t) are recovered via Equations
(A11) and (A8). The synaptic dynamics are then fully specified in
terms of the plasticity matrices Q+ and Q−, and the matrix �

that depends on the statistics of external events.
While the calculation presented above yields a full description

of synaptic dynamics, it does not provide a simple and trans-
parent relation between the synaptic dynamics and the statistics
of external events. Here we use perturbation theory to uncover
such a relationship in the case of slow plasticity. In that limit, we
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show that the expressions for mean synaptic strengths and tran-
sient timescales are identical to those derived above by neglecting
correlations in the synaptic dynamics.

We assume that the synaptic transition probabilities specified
by the matrices Q+ and Q− are small, so that we write

Q+ = εQ̂
+
, Q− = εQ̂

−
. (A21)

We next introduce a 9-dimensional vector X(t) defined by

X(t)= (α1(t),α2(t),α3(t),β1(t), β2(t),β3(t),γ1(t),γ2(t),γ3(t))
(A22)

or in block notation

X(t) = (α(t), β(t),γ(t)). (A23)

The evolution of the vector X(t) is given by Equations (A14–A16),
which can be rewritten as a single matrix equation:

X(t + 1) = (�̂ + εO).X(t) (A24)

with �̂ and O two nine-by-nine matrices defined in block form
by

�̂ =
⎛
⎝� 0 0

0 � 0
0 0 �

⎞
⎠

O =
⎛
⎜⎝

0 0 0

Q̂
+ ∗ � −(Q̂

+ + Q̂
−
) ∗ � 0

Q̂
− ∗ � 0 −(Q̂

+ + Q̂
−
) ∗ �

⎞
⎟⎠.

where ∗ denotes the element-by-element product of matrices.
To determine the steady state and dominant timescale in the

dynamics of X(t), we treat εO as a weak perturbation to the
matrix �̂, and use perturbation theory.

In absence of perturbation, for ε = 0, the dynamics of X(t)
are determined by the eigenvalues and eigenvectors of the matrix
�̂, which can be easily determined. The transition matrix � pos-
sesses three eigenvalues (1,λ1,λ2). These eigenvalues are also
eigenvalues of �̂, but with multiplicity three. The left and right
eigenvectors of � associated with the unit eigenvalue are, respec-
tively the unit vector (1, 1, 1) and the steady-state π(0). Three
right eigenvectors of �̂ that span the subspace associated with
unit eigenvalue are therefore

r1 = (π(0), π(0),π(0)), r2 = (π(0),π(0), 0), r3 = (π(0), 0, 0).

(A25)
The associated left eigenvectors are

l1 = (0, 0, 1), l2 = (0, 1,−1), l3 = (1,−1, 0). (A26)

When the perturbation is turned on, for ε small, the three-
dimensional subspace corresponding spanned by r1, r2, and r3

splits into three distinct eigenspaces. To compute the correspond-
ing eigenvalues and eigenvectors, we restrict the matrix O to the
subspace spanned by r1, r2, and r3, and compute the eigenval-
ues (μ1,μ2,μ3) and eigenvectors of the corresponding matrix Ō
defined by

Ōij = lt
iOrj. (A27)

If the three-dimensional vector (u(k)
1 , u(k)

2 , u(k)
3 ) is a right eigen-

vector of Ō with eigenvalue μ(k), the nine-dimensional vec-

tor u(k)
1 r1 + u(k)

2 r2 + u(k)
3 r3 is a right eigenvector of the matrix

�̂ + εO associated with the eigenvalue 1 + μ(k).
We find that the dominant eigenvalue of the matrix Ō is zero

with multiplicity one. The corresponding eigenvector is (1,−1 +∑3
k, l = 1(Q+

kl )�klπ
(0)
l /

∑3
k, l = 1(Q−

kl )�klπ
(0)
l , 1), which gives the

mean steady state potentiation of the synapse:

J̄ =
∑3

k, l = 1 Q+
kl�klπ

(0)
l∑3

k, l = 1 Q−
kl�klπ

(0)
l + ∑3

k, l = 1 Q+
kl �klπ

(0)
l

. (A28)

The next eigenvalue of Ō is μ2 = −∑3
k, l = 1(Q+

kl + Q−
kl )�klπ

(0)
l ,

so that the dominant timescale in the dynamics is given by

τ = − 1

μ2
(A29)

= J̄∑3
k, l = 1 Q+

kl �klπ
(0)
l

(A30)

The outcome of the perturbation calculation summarized in
Equations (A28) and (A30) simplifies when particular learning
rules are taken into account. Here we summarize the results for
the three learning rules described in the main text. These three
learning rules differ by the plasticity rule for depression, but the
rule for potentiation is identical in the three and given by

Q+ =
⎛
⎝ 0 0 0

q+ 0 0
0 0 0

⎞
⎠ .

Independently of the details of the depression rule, the dominant
timescale of the dynamics is given by

τj → i = J̄

q+fEj PEj → Ei

. (A31)

The mean synaptic strength J̄, however, depends on the depres-
sion rule.

PRE-Activated depression The plasticity rule for depression is
given by

Q− =
⎛
⎝ q− q− q−

0 0 0
0 0 0

⎞
⎠ .
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which yields

J̄j → i =
q+
q− PEj → Ei

1 + q+
q− PEj → Ei

(A32)

POST-Activated depression The plasticity rule for depression is
given by:

Q− =
⎛
⎝ 0 0 0

q− q− q−
0 0 0

⎞
⎠ .

which yields

J̄j → i =
q+
q− PEj → Ei fEj/fEi

1 + q+
q− PEj → Ei fEj/fEi

(A33)

Unspecific depression The plasticity rule for depression is given by:

Q− =
⎛
⎝ q− q− q−

q− q− q−
q− q− q−

⎞
⎠ .

which yields

J̄j → i =
q+
q− fEj PEj → Ei

1 + q+
q− fEj PEj → Ei

(A34)

In summary, for the three plasticity rules described in the main
text, the result of the full mathematical analysis in the limit of slow
learning is identical to the result obtained by ignoring correlations
between J(t) and ξ+(t, t − 1) as well as ξ−(t), or equivalently
between M(t) and ρ(t) in Equation (A2).

B. MATHEMATICAL ANALYSIS—SYNAPSES WITH AN ARBITRARY
NUMBER OF STATES m

The mathematical analysis performed for bistable synapses can
be extended to the case where synapses possess m > 2 states. The
full analysis is too cumbersome to be presented here, but the final
result is identical to the bistable case: the correlations between J(t)
and ξ+(t, t − 1) as well as ξ−(t) are negligible in the limit of slow
learning (small q+ and q−). Here we adopt this result and proceed
to compute the transfer function between transition probabili-
ties and average synaptic weights in the steady state, in the case
of PRE-activated depression. This computation is based on the
derivation performed in Fusi and Abbott (2007).

For synapses with m states, the dynamics are still described
by Equations (A2), (A3), but the Markov transition matrix that
specifies the dynamics is now m × m. The potentiation and
depression matrices P̂ and D̂ are also m × m and read

P̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 . . . . . . 0

1 −1
. . .

...

0 1
. . .

. . .
...

...
. . .

. . .
. . . 0

0 . . . 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

D̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 . . . 0

0 −1 1
. . .

...

...
. . .

. . .
. . . 0

...
. . .

. . . 1
0 . . . . . . 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
(B1)

Ignoring correlations between M(t) and ρ(t) in Equation (A2)
and averaging over external events yields the averaged synaptic
dynamics

ρ(t + 1) = M̄ρ(t). (B2)

with
M̄ = �+ q+f+P̂ + q−f−D̂ (B3)

where f+ and f− are the frequencies of potentiating and depressing
events.

The steady state synaptic weights are determined by the eigen-
vector of M̄ associated with the unit eigenvalue. The matrix M̄ is a
tridiagonal Toeplitz matrix with perturbed corners, and its eigen-
vectors can be computed by using the ansatz ρk = ξrk where ξ

and r are real numbers to be determined. The result is that the
components of the eigenvector associated with unit eigenvalue
read

ρk = ξ

(
q+f+
q−f−

)k

(B4)

and ξ is a normalization constant determined by the requirement
that

∑m
k=1 ρk = 1.

The average synaptic weight is then given by

J = 1

m − 1

m∑
k = 1

(k − 1)ρk (B5)

= F

(
f+
f−

)
(B6)

where the synaptic transfer function F reads

F(x) = 1

m − 1

⎛
⎜⎝

q+
q− x

1 − q+
q− x

+
m

(
q+
q− x

)m

(
q+
q− x

)m − 1

⎞
⎟⎠ . (B7)
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