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Gamma (30–80 Hz) rhythms in hippocampus and neocortex resulting from the interaction
of excitatory and inhibitory cells (E- and I-cells), called Pyramidal-Interneuronal Network
Gamma (PING), require that the I-cells respond to the E-cells, but don’t fire on their own. In
idealized models, there is a sharp boundary between a parameter regime where the I-cells
have weak-enough drive for PING, and one where they have so much drive that they fire
without being prompted by the E-cells. In the latter regime, they often de-synchronize and
suppress the E-cells; the boundary was therefore called the “suppression boundary” by
Börgers and Kopell (2005). The model I-cells used in the earlier work by Börgers and Kopell
have a “type 1” phase response, i.e., excitatory input always advances them. However,
fast-spiking inhibitory basket cells often have a “type 2” phase response: Excitatory input
arriving soon after they fire delays them. We study the effect of the phase response
type on the suppression transition, under the additional assumption that the I-cells are
kept synchronous by gap junctions. When many E-cells participate on a given cycle, the
resulting excitation advances the I-cells on the next cycle if their phase response is of
type 1, and this can result in suppression of more E-cells on the next cycle. Therefore,
strong E-cell spike volleys tend to be followed by weaker ones, and vice versa. This often
results in erratic fluctuations in the strengths of the E-cell spike volleys. When the phase
response of the I-cells is of type 2, the opposite happens: strong E-cell spike volleys delay
the inhibition on the next cycle, therefore tend to be followed by yet stronger ones. The
strengths of the E-cell spike volleys don’t oscillate, and there is a nearly abrupt transition
from PING to ING (a rhythm involving I-cells only).
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1. INTRODUCTION
Gamma-frequency (30–80 Hz) oscillations in hippocampus and
neocortex are known to result, in many instances, from the
interaction of excitatory pyramidal cells (E-cells) and fast-
spiking inhibitory interneurons (I-cells) (Whittington et al.,
2000; Börgers and Kopell, 2003; Bartos et al., 2007; Traub and
Whittington, 2010). Rhythms arising in this way are called
Pyramidal-Interneuronal Network Gamma (PING) rhythms. The
PING mechanism requires that the I-cells respond to the E-cells,
but do not fire on their own; thus the drive to the I-cells must
be sufficiently weak, in comparison with the drive to the E-cells.
In idealized model networks, there can be a sharp boundary in
parameter space between a regime in which the I-cells have weak-
enough drive for PING, and a regime in which they have so much
drive that they fire without being prompted by the E-cells. In the
latter regime, they often de-synchronize, and suppress the E-cells
altogether; the boundary in parameter space was therefore called
the “suppression boundary” in Börgers and Kopell (2005). [The
loss of synchrony among the I-cells is the result of heterogeneity in
drives (White et al., 1998), and would not be expected in a homo-
geneous network (Achuthan and Canavier, 2009)]. However, the
transition from PING to suppression is truly discontinuous only
under very idealized circumstances. We therefore replace the term

“suppression boundary” by “suppression transition” in this paper.
Even in networks with heterogeneous neuronal properties, this
transition can be narrow (Börgers et al., 2008). Thus, a small
amount of modulation of the excitability of the neurons can result
in crossing from the PING regime to the suppression regime or
vice versa, and therefore cause a dramatic change in network
dynamics. In Börgers et al. (2005), it was explained how this
mechanism could be exploited in attentional processing, turning
on or off the processing of certain stimuli.

There was no gap-junctional coupling among I-cells in Börgers
and Kopell (2005) and Börgers et al. (2005), even though such
coupling is known to be present among fast-spiking interneurons
in neocortex (Galarreta and Hestrin, 2002) and hippocampus
(Fukuda and Kosaka, 2000). Furthermore, the model I-cells used
in Börgers and Kopell (2005) and Börgers et al. (2005) have
a type 1 phase response, i.e., excitatory input always advances
them. However, fast-spiking inhibitory basket cells often have a
type 2 phase response: they are delayed by excitatory input arriv-
ing soon after they fire (Tateno and Robinson, 2007, Figure 5).
We study the effect on the suppression transition of introducing
I-cells with type 2 phase response, and coupling them with gap
junctions strong enough to keep them synchronous (Kopell and
Ermentrout, 2004; Ostojic et al., 2009).
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The type of the phase response is not the only notion of neu-
ronal type in mathematical neuroscience. The bifurcation from
rest to spiking is said to be of type 1 if it is a saddle-node bifurca-
tion on an invariant circle, and of type 2 if it is a Hopf bifurcation
(Rinzel and Ermentrout, 1998). The frequency-current (f -I) rela-
tion is said to be of type 1 if it has no discontinuity, i.e., if
arbitrarily slow spiking is possible for drives sufficiently close to
(but above) threshold, and of type 2 if it has a discontinuity at
spike onset. [This last notion of neuronal type was described by
Hodgkin (1948)]. The three kinds of neuronal type often coin-
cide. For instance, the classical Hodgkin–Huxley model is of type
2 according to all three definitions, and for each of the three
model neurons used in this paper, the three notions of type coin-
cide. However, there is reason to be cautious about identifying
the types of bifurcations, phase response curves, and f -I relations:
Ermentrout et al. (2012) recently gave an example showing that a
type 1 bifurcation can be associated with a type 2 phase response.
What matters to us in this paper is the type of the phase response.
When we call a model neuron “of type 1,” we mean that weak exci-
tatory inputs always accelerate it. When we call it “of type 2,” we
mean that weak excitatory inputs arriving early in the cycle hold
it back.

If type 2 I-cells are introduced in the models of Börgers
and Kopell (2005) and Börgers et al. (2005), but without gap-
junctional coupling, or if the type 1 I-cells are kept, but coupled
by synchronizing gap junctions, we find that the suppression
transition becomes considerably less tight. However, a sharp
suppression transition is restored when I-cells of type 2 and syn-
chronizing gap-junctional coupling among them are introduced
at the same time; crossing it causes a nearly abrupt transition from
PING to ING (Whittington et al., 2000), i.e., to a gamma rhythm
involving the rhythmic firing of I-cells only, with the E-cells sup-
pressed. We give an analysis explaining why in the presence of
synchronizing gap junctions among the I-cells, the suppression
transition is much tighter with I-cells of type 2 than with I-cells
of type 1.

In summary, the idea that the suppression transition may play
a central role in attentional processing remains intact when the
I-cells are of type 2, connected by gap junctions.

2. MODELS
2.1. A VARIATION OF THE ERISIR INTERNEURON MODEL
Erisir et al. (1999) proposed a model of inhibitory interneurons
in mouse somatosensory cortex. We use it here because it is the
simplest Hodgkin–Huxley-like interneuron model of type 2 that
we know of. Because several variants of the Erisir model have
appeared in the literature, and because we use a variant slightly
different from any of those in the literature, we will state our
equations here. The form of the differential equations is

C
dv

dt
=gNam∞(v)3h(vNa−v) + gK n2(vK −v) + gL(vL−v)+I, (1)

dx

dt
= x∞(v) − x

τx(v)
, x = h, n. (2)

Deviating from Erisir et al. (1999), we take the activation variable
m of the sodium current to be a direct function of v. Following

Erisir et al. (1999), the second power of n appears in the delayed
rectifier potassium current, even though in the original Hodgkin–
Huxley model (Hodgkin and Huxley, 1952) and almost all similar
models, the fourth power appears there. The original model of
Erisir et al. (1999) also included a weak, slow, depolarization-
induced potassium current, which plays no role in our discussion,
and will be omitted here.

The letters C, v, t, g, and I in Equations (1) and (2) denote
capacitance density, voltage (membrane potential), time, con-
ductance density, and current density, respectively, measured in
μF/cm2, mV, ms, mS/cm2, and μA/cm2; we will usually omit
units from here on. The reversal potentials are, following (Erisir
et al., 1999), vNa = 60, vK = −90, vL = −70. Erisir et al. spec-
ified conductances and currents; to translate to conductance
and current densities, we assume, following Erisir et al., that
the neuron is a sphere of radius 8 μm. The parameter choices
of (Erisir et al., 1999) then become, using the units specified
above and rounding to three significant digits, C = 1, gNa = 112,
gK = 224, and gL = 1.24. Gouwens et al. (2010) reduced the
leak conductance, using a value which translates into a con-
ductance density of approximately 0.5 mS/cm2; this is the value
that we use here. The lowest possible firing frequency of the
Erisir neuron with gL = 1.24 is quite high, about 65 Hz; with
gL = 0.5, it is significantly lower, approximately 37 Hz. The gat-
ing variables m, h, and n are non-dimensional quantities varying
between 0 and 1. The equations for x∞ (x = m, h, n) and τx

(x = h, n) are

x∞ = αx

αx + βx
, x = m, h, n,

τx = 1

αx + βx
, x = h, n,

αm(v) = 40(75.5 − v)/(exp((75.5 − v)/13.5) − 1),

βm(v) = 1.2262/ exp(v/42.248),

αh(v) = 0.0035/ exp(v/24.186)),

βh(v) = −0.017(v + 51.25)/(exp(−(v + 51.25)/5.2 − 1),

αn(v) = (95 − v)/(exp((95 − v)/11.8) − 1),

βn(v) = 0.025/ exp(v/22.222).

We have corrected a typographical error in the formula for
αm in Erisir et al. (1999) [pointed out by (Gouwens et al.,
2010)], and made a slight correction in the formula for βh: Erisir
et al. wrote 0.8712 + 0.017v instead of 0.017(v + 51.25). Up to
rounding, these two expressions are equal, but if one writes
0.8712 + 0.017v, then βh has a singularity, since the denomina-
tor vanishes at v = −51.25, whereas the numerator vanishes at
v = −0.8712/0.017 ≈ 51.247; we have found that this can in fact
have adverse effects during simulations.

We define the “firing times” of the neurons as times at which
v = −20 and dv/dt < 0. If the firing period is T > 0, the fre-
quency is f = 1000/T. The factor of 1000 arises because we
measure time in ms, but frequencies not in reciprocal ms, but in
reciprocal s, namely, in Hz.
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We compute the frequency-current (f -I) relation of the Erisir
model neuron as follows. We begin with a simulation for I =
6, starting at (v, h, n) = (−20, 1, 0). The computed trajectory
converges to a fixed point which appears to be globally attract-
ing. We then raise I, in steps of 0.05, from 6.0 to 7.5, starting each
new simulation at the point in phase space at which the previous
simulation ended. As soon as I rises above 7.0 (approximately),
periodic spiking begins, at an onset frequency of approximately
60 Hz. The dots in Figure 1A indicate the spiking frequency f as a
function of I. We then lower I, in steps of 0.05, from 7.5 to 6, again
starting each new simulation at the point in phase space at which
the previous simulation ended. Periodic spiking continues as I
falls below 7, and ceases only when I falls below 6.5. The circles in
Figure 1A indicate f as a function of I, as I is gradually lowered.
For I approximately between 6.5 and 7, there is bi-stability: both
rest and periodic spiking are possible and stable in this range.

The f -I-relation shown in Figure 1A is typical of a subcritical
Hopf bifurcation (Strogatz, 1994). Specifically, the figure sug-
gests that the resting state loses its stability in a subcritical Hopf
bifurcation as I rises above approximately 7, and the stable limit
cycle corresponding to periodic spiking is annihilated, likely in a
saddle-node bifurcation of cycles (Strogatz, 1994), as I falls below
approximately 6.5.

We also compute a phase response curve for the Erisir
interneuron, defined as follows. Assume that I is large enough
to allow periodic firing (above 6.5, approximately). Denote the
firing period by T. Suppose that (v, h, n) = (−20, h0, n0) is the
uniquely determined point on the limit cycle with v = −20 and
dv/dt < 0. At time t = 0, we start a simulation at this point. At
time ϕT, with 0 < ϕ < 1, we abruptly increase v by 1mV; this cor-
responds to an instantaneous charge injection at time ϕT. Denote
by T̃ the next time when v = −20, dv/dt < 0. The phase advance
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FIGURE 1 | (A) f -I relation for the Erisir interneuron. Dots show f as a
function of I as I is slowly increased. Open circles show f as a function of I
as I is slowly decreased. (B) Phase response of the Erisir interneuron
(I = 7.2) to an instantaneous increase in the membrane potential by 1 mV.
(C) Phase response of the Erisir interneuron (I = 7.2) with an inhibitory
autapse (modeled as described in Section 2.4, with maximal conductance
equal to 0.2) to an instantaneous increase in the membrane potential
by 1 mV.

produced by the input is

g(ϕ) = T − T̃

T
.

Figure 1B shows the phase response curve, that is, the graph
of the function g, for I = 7.2. It is of type 2: Excitatory input
received early in the cycle delays the next spike instead of advanc-
ing it. Since in our network simulations, the I-cells inhibit each
other, we also compute the phase response curve for the Erisir
interneuron with an inhibitory autapse, modeled as described in
Section 2.4, with maximal conductance equal to 0.2. The self-
inhibition makes the type 2 character of the phase response more
pronounced; see Figure 1C.

Figure 2 presents a closer look at the transition from rest to
firing in the Erisir interneuron, and in particular provides strong
evidence for a subcritical Hopf bifurcation. The figure shows the
range 6.2 ≤ I ≤ 7.4. For I = 6.2, there is a single stable fixed
point. Figure 2A tracks this fixed point as I rises.1 Figure 2A shows
the membrane potential at the fixed point, as a function of I,
with blue indicating stability, and red instability. At a value of I
near 6.5, a stable limit cycle arises; Figure 2A indicates the max-
imum and minimum membrane potentials along the limit cycle
in black. The fixed point becomes unstable at a value of I very
slightly above 7.

To confirm that the fixed point loses its stability in a Hopf
bifurcation, we plot, in Figure 2B, the non-real eigenvalues of
the Jacobi matrix at the fixed point, for the range of drives I in
Figure 2A. There is indeed a complex-conjugate pair of eigenval-
ues that crosses the imaginary axis. The parameter value at which
the crossing occurs is ≈7.03.

2.2. THE WANG–BUZSÁKI (WB) INTERNEURON MODEL
We compare networks in which the I-cells are the Erisir neurons
presented in the previous section with networks in which they are

1Two additional unstable fixed points come into existence as I rises above a
critical value very close to 6.3, but that bifurcation is not our interest here,
and is not shown in Figure 2.

A B

FIGURE 2 | (A) Membrane potential v of fixed point of Erisir interneuron, as
a function of I (blue and red indicate stability and instability, respectively),
and maximum and minimum membrane potentials along the stable limit
cycle (black). (B) Non-real eigenvalues of Jacobian at fixed point, for values
of I as in panel (A). The crossing of the imaginary axis from the left half
plane to the right occurs for the critical value of I at which the fixed point in
A loses its stability.
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Wang–Buzsáki (WB) neurons (Wang and Buzsáki, 1996), mod-
eling fast-firing interneurons in rat hippocampus. We use
the equations without any change from Wang and Buzsáki
(1996). Figure 3 shows the f -I relation and the phase response
curve, without self-inhibition (panel B) and with self-inhibition
(panel C). The f -I relation now indicates no region of bi-stability,
and is of type 1, with a square-root-like appearance. The phase
response is of type 1 as well, positive throughout.

2.3. REDUCED TRAUB-MILES (RTM) MODEL OF PYRAMIDAL NEURONS
The pyramidal cell model used in this article is that of Kopell et al.
(2010). We refer to Kopell et al. (2010, Appendix 1) for the details.
The model is a slight variation of that of Olufsen et al. (2003),
which in turn is a slight variation of that of Ermentrout and
Kopell (1998), a one-compartment reduction of a model of a rat
hippocampal pyramidal neuron due to Traub and Miles (1991).
Figure 4 shows the f -I relation and the phase response curve. The
f -I relation and the phase response curve are of type 1.

2.4. NETWORKS
We use the network model described in Kopell et al. (2010,
Appendix 1). For clarity and completeness, we briefly recapitu-
late this model here, and we state the specific parameters used in
our simulations.

We denote by NE the number of E-cells, and by NI the num-
ber of I-cells. For our larger networks (Figures 5, 6, and 9),
NE = 160 and NI = 40. We also report on numerical exper-
iments with networks of one E- and one I-cell (Figure 7).
The drive to each cell of the network is constant in time. We
denote the drive to the i-th E-cell by IE,i, and the drive to the
j-the I-cell by II,j. The values of these drives will be varied;
see Results.
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FIGURE 3 | (A) f -I relation for the Wang–Buzsáki (WB) interneuron. Dots
show f as a function of I as I is slowly increased. Open circles show f as a
function of I as I is slowly decreased. The dots and the circles coincide for
this model. (B) Phase response of the WB interneuron (I = 1.0) to an
instantaneous increase in the membrane potential by 1 mV. (C) Phase
response of the self-inhibiting WB interneuron (I = 1.0, maximal inhibitory
conductance = 0.2) to an instantaneous increase in the membrane
potential by 1 mV.

Each synapse is characterized by a synaptic gating variable s
associated with the presynaptic neuron, 0 ≤ s ≤ 1, with

ds

dt
= ρ(v)

1 − s

τR
− s

τD
,

where ρ denotes a smoothed Heaviside function,
ρ(v) = (1 + tanh(v/4))/2, v denotes the presynaptic mem-
brane potential, and τR and τD are the rise and decay time
constants, respectively. To model the synaptic input from
neuron i to neuron j, we add to the right-hand side of the
equation governing the membrane potential vj of neuron j a
term of the form gijsi(t)(vrev − vj) where gij denotes the maximal
conductance associated with the synapse, si denotes the gating
variable associated with neuron i, and vrev denotes the synaptic
reversal potential. For excitatory, AMPA-receptor-mediated
synapses, we use τR = 0.1, τD = 3, and vrev = 0; for inhibitory,
GABAA-receptor-mediated synapses, τR = 0.3, τD = 9,
and vrev = −80.

In comparison with many of the values reported in the litera-
ture, our choice of vrev is low. Hyperpolarizing reversal potentials
of GABAA-receptor-mediated inhibition have been reported, for
instance, in Wang and Buzsáki (1996), Connors et al. (1988,
Table 1), Sanchez-Vives and McCormick (1997), and Traub et al.
(1996). Higher (sometimes much higher) reversal potentials have
been reported by others; see for instance McCormick (1989);
Vida et al. (2006); Bartos et al. (2007); Gouwens et al. (2010),
but also Bregestovski and Bernard (2012). We have not system-
atically investigated the effect of a higher reversal potential on
our conclusions. Powerful inhibition often seems to be needed
for an abrupt suppression transition. However, inhibition can be
sufficiently powerful for several reasons: low reversal potential,
strong inhibitory conductance, or relatively low excitability of the
post-synaptic cells.
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FIGURE 4 | (A) f -I relation for the reduced Traub-Miles (RTM) rneuron. Dots
show f as a function of I as I is slowly increased. Open circles show f as a
function of I as I is slowly decreased. The dots and the circles coincide for
this model. (B) Phase response of the RTM neuron (I = 1.0) to an
instantaneous increase in the membrane potential by 1 mV.
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Connectivity is all-to-all in our networks. (Sparse, random
connectivity would not yield substantially different results. The
randomness would add heterogeneity, with effects similar to those
of heterogeneity in external drives.) The value of gij depends only
on the types (E or I) of neurons i and j. For instance, we denote by
gEI the value of gij when the i-th neuron is an E-cell, and the j-th
neuron is an I-cell. Parameters gIE, gII , and gEE are defined simi-
larly. We scale these parameters with network size: gEI = ĝEI/NE,
gIE = ĝIE/NI , gII = ĝII/NI , gEE = ĝEE/NE . We choose parameters
similar to those in Börgers and Kopell (2005): ĝEI is so strong
that a population spike volley of the E-cells promptly triggers
one of the I-cells (but not much stronger), and ĝIE is significantly
stronger: ĝEI = 0.2, ĝIE = 0.8, ĝII = 0.2, ĝEE = 0. The value of ĝIE

is varied in Figure 8.
In some of our networks, the I-cells are also gap-junctionally

coupled. The i-th and j-th I-cells are gap-junctionally connected
with probability 1/5. If vi and vj are the membrane potentials of
the two cells, we add to the right-hand side of the equation for vi

the term ggap(vj − vi), and to the right-hand side of the equation
for vj the term ggap(vi − vj), with ggap = 0.8; this ensures that the
I-cells remain synchronous when there are gap junctions.

Each figure in this paper was generated by a stand-alone
Matlab code, available from the first author upon request.

3. RESULTS
3.1. SIMULATION RESULTS FOR LARGE NETWORKS
Figure 5 shows spike rastergrams resulting from simulations in
which the mean drive to the I-cells, II , increases linearly with time.

The drive to the I-cells is heterogeneous, here and in all of our
large network simulations; actual drive to the j-th I-cell is

II,j =
(

0.85 + j − 1/2

40
× 0.30

)
II , 1 ≤ j ≤ 40.

The simulations are 1000 ms long, and II varies from 0 to 2 for
WB neurons, and from 6 to 8 for Erisir neurons. The horizontal
axis shows II . Panel (A) of the figure illustrates the “suppres-
sion boundary” as described in Börgers and Kopell (2005). The
I-cells are WB neurons here [in Börgers and Kopell (2005), they
were theta neurons, which are also of type 1], and there is [as in
Börgers and Kopell (2005)] no gap-junctional coupling among
them. The abrupt cessation of gamma oscillations and suppres-
sion of the E-cells when the mean drive to the I-cells exceeds
(approximately) 0.9 indicates the crossing of the suppression
boundary.

Panels (B) through (D) of Figure 5 illustrate what happens
when the WB interneurons are replaced by Erisir interneurons,
or gap-junctional coupling among I-cells is introduced, or both.
When only one of those two changes is made, the suppression
transition broadens considerably, with a fairly large intermedi-
ate regime of cycle-skipping emerging (panels B and C). When
both changes are made at the same time, however, one returns
to an abrupt suppression transition (panel D). In the presence
of gap junctions (panels C and D of Figure 5), the I-cells do not
de-synchronize after they suppress the E-cells. The gap junctions
together with the I→I-synapses synchronize the I-cells in spite

A

B

C

D

FIGURE 5 | Illustration of the suppression transition. Red dots indicate
spikes of E-cells, and blue dots indicate spikes of I-cells. The mean drive,
II , to the I-cells rises linearly, from 0 to 2 in panels (A) and (C), and from 6
to 8 in panels (B) and (D). The horizontal axis indicates II (or, equivalently,

time in units of 500 ms). (A) I-cells are WB neurons, and there are no gap
junctions. (B) I-cells are Erisir neurons, and there are no gap junctions. (C)

I-cells are WB neurons, with gap junctions. (D) I-cells are Erisir neurons,
with gap junctions.
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of the fact that the external drive to the I-cells is heterogeneous
(Kopell and Ermentrout, 2004).

In Figure 5, all E-cells receive the same constant drive, IE = 2.
This, of course, is not realistic. When the network is less perfect,
for instance when different E-cells receive different amounts of
drive, the suppression transition becomes broader. This is illus-
trated by Figure 6, which is analogous to 5, but with drive to the
E-cells uniformly distributed between 1.85 and 2.15: The i-the
E-cell receives drive

IE,i = 1.85 + i − 1/2

160
× 0.30, 1 ≤ i ≤ 160.

Panels (A) through (C) of Figure 6 show a transition regime in
which stronger and weaker E-cell population spike volleys alter-
nate somewhat erratically. Panel (D) of Figure 6 shows results of
a simulation in which the I-cells were gap-junctionally coupled
Erisir neurons. In this case, the transition regime is much nar-
rower. It is also more orderly: the number of suppressed E-cells
increases monotonically with II . We discuss these two points in
greater detail in sections 3.2 and 3.3.

3.2. WITH GAP-JUNCTIONS, I-CELLS OF TYPE 2 PRODUCE A TIGHTER
SUPPRESSION TRANSITION THAN I-CELLS OF TYPE 1

Our main goal in this section is to explain why the suppression
transition is gradual in Figure 5C, but sudden in Figure 5D. In
these simulations, the E-cell population is tightly synchronous
because there is no heterogeneity in drive to the E-cells, and
the I-cell population is tightly synchronous because of gap-
junctional coupling. Much about these simulations can therefore

be understood by thinking about networks consisting of just one
E-cell and one I-cell.

If one couples an RTM neuron with a WB neuron, there is
typically a fairly broad range of drives, II , to the I-cell for which
the E-cells skip every second cycle; see Figure 7A for an exam-
ple. Figure 7B shows the inter-spike intervals of the I-cell in this
example: they alternate between longer and shorter intervals. On
one cycle of the I-cell, the E-cell fires immediately prior to the
I-cell. Because the excitatory synaptic currents have a positive
decay time constant, the excitation resulting from the E-cell spike
lingers slightly beyond the I-cell spike and into the next I-cell
cycle. Recall that the WB neuron has a type 1 phase response
curve; see Figure 3. The next I-cell spike is thereby advanced, and
this can result in suppression of the E-cell on the next cycle.

Figures 7C,D show a similar experiment for a two-cell net-
work consisting of an RTM neuron and an Erisir neuron. For
the value of II = 7.27 shown in the figure, there is no cycle-
skipping, and the network settles into an oscillation with a period
of approximately 26 ms. If II is raised from 7.27 to 7.28 (not
shown in the figure), the E-cell is suppressed altogether, and the
period of the I-cell falls to approximately 23 ms. Because the I-cell
is of type 2, the input from the E-cell, by lasting for a few mil-
liseconds beyond the spike of the I-cell, does not advance the next
I-cell spike; it delays it. Thus if the I-cell is unable to suppress the
E-cell on a given cycle, it will be delayed on the next cycle, and is
therefore even less able to suppress the E-cell on the next cycle. As
a result, the E-cell is either suppressed on all cycles, or on none.

In Figure 8, we show further results of simulations for two-
cell networks, illustrating the transition from gamma frequency
firing to suppression of the E-cell, and in particular the effect of

A

B

C

D

FIGURE 6 | As Figure 5, but with heterogeneous drive to the E-cells, rising with neuronal index from 1.85 to 2.15.
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FIGURE 7 | (A) Spikes of an RTM neuron (red) and a WB neuron (blue), with
IE = 2 and II = 1. (B) Inter-spike intervals of the I-cell in panel (A), alternating
between short ones (following a spike of the E-cell) and long ones (following

suppression of the E-cell). (C) Spikes of an RTM neuron (red) and an Erisir
neuron (blue), with IE = 2 and II = 7.27. The E-cell would be entirely
suppressed if II were 7.28. (D) Inter-spike intervals of the I-cell in panel (C).

varying the strength of inhibition. Here we plot the number, fE,
of E-cell spikes in 1000 ms (that is, the E-cell frequency in Hz) as
a function of II , with gIE = 0.5 (blue), 0.8 (black), and 1.1 (red).
The figure confirms that there is an abrupt suppression transition
when the I-cell is an Erisir neuron (panel B), but not when it is a
WB neuron (panel A).

In Figure 8, note that an increase in II typically causes either an
abrupt drop in fE, or a slight increase. The reason for the increase
in fE with increasing II is that the enhanced drive to the I-cells
makes them fire earlier on each cycle, thereby allowing the E-cell
to fire earlier on the next cycle, unless there is a change in entrain-
ment pattern, and the E-cell is suppressed on more cycles than
before. When there is a change in entrainment pattern as a result
of an increase in II , the frequency fE drops abruptly.

3.3. WITH GAP-JUNCTIONALLY COUPLED I-CELLS OF TYPE 2, THE
DYNAMICS IN THE TRANSITION REGIME ARE MORE REGULAR
THAN WITH I-CELLS OF TYPE 1

There are seemingly irregular sequences of strong and weak E-cell
spike volleys in Figure 6C, while much more regular behavior is
seen in Figure 6D. We now discuss this difference. The behavior
in Figure 6C becomes clearer when one fixes the mean drive, II ,
to the I-cells in the transition regime. For illustration, Figure 9
shows a simulation similar to that of panel (C) of Figure 6—WB
interneurons, gap junctions, heterogeneous drive to the E-cells—
but with a fixed drive of 0.9 to the I-cells. We see a rather

irregular sequence of stronger and weaker E-cell population spike
volleys.

To understand this irregularity, we reduce the network dynam-
ics to a one-dimensional map, examining how the strength of a
given E-cell spike volley depends on the strength of the previ-
ous volley. We denote by sk the number of E-cells that fire on the
k-th gamma cycle in Figure 9. In Figure 10A, we have plotted the
pairs (sk, sk+1) for the simulation of Figure 9, run over 10,000 ms.
If sk < 160, then sk+1 can be deduced from sk, approximately at
least:

sk + 1 = g(sk),

and the figure suggests that g has exactly one fixed point s∗, which
is unstable: g ′(x∗) < −1. If sk = 160, then sk+1 is not determined
by sk. Instead, sk+1 then depends on the precise placement of the
inhibitory spike volley in the k-th cycle, relatively to the exci-
tatory one. If the inhibitory spike volley comes early, then the
following I-cell spike volley comes so early that it largely or com-
pletely suppresses the E-cell spike volley; see Figure 10B. If the
inhibitory spike volley comes late, then the following I-cell spike
volley comes so late that it is ineffective at suppressing the E-cell
spike volley on the next cycle; see Figure 10C.

To construct a figure analogous to Figure 10A for Erisir
interneurons is more difficult. There is no transition regime in
which the behavior is irregular, and therefore simply running a
long simulation does not produce many pairs (sk, sk+1). However,
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we describe now a method for constructing an idealized version
of Figure 10A, and this method generalizes to the case of Erisir
interneurons, leading to a better understanding of the difference
between Figures 6C and 6D.

We start the simulation of the network, at time t = 0, in a
point, X0, in phase space chosen so that a full population spike
volley of the E-cells is imminent within a few milliseconds. Exactly
how X0 is defined is largely irrelevant. We obtain it from the simu-
lation of Figure 9 by recording all dependent variables 4 ms prior
to the 5th population spike volley of the E-cells. (All E-cells hap-
pen to participate in that volley.) Within a few milliseconds, at
time t = t0 > 0, we re-set the phase space variables associated
with the I-cell population to a point Y0 to force an immediate
population spike volley of the I-cells. Again, it is largely irrelevant
exactly how Y0 is defined. We obtain it from the simulation of
Figure 9 by recording all dependent variables associated with the
I-cells at the onset of the 4th population spike volley of the I-cells.

Depending on the choice of t0, the first E-cell spike volley may
be suppressed partially or completely. The number, s1, of E-cells
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FIGURE 8 | Frequency of E-cell in a two-cell network as a function of

drive to the I-cell, for gIE = 0.5 (blue), 0.8 (black), and 1.1 (red). The
I-cell is either a WB neuron (panel A), or an Erisir neuron (panel B). The
transition from firing to suppression of the E-cell is much cleaner and more
abrupt with the Erisir neuron.
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t

FIGURE 9 | Simulation with II = 0.9 fixed, all else as in panel (C) of

Figure 6: I-cells were WB-neurons, coupled with gap junctions. Drive to
the E-cells was heterogeneous, increasing from 1.85 to 2.15 with increasing
neuronal index.

firing soon after time t = 0, 0 ≤ s1 ≤ 160, is a function of t0 ≥ 0;
see Figure 11A. We then record the number, s2, of E-cells firing
in the second E-cell spike volley, and plot it as a function of t0

(Figure 11B), and also s2 as a function of s1 (Figure 11C). Note
that Figure 11C is strikingly similar to Figure 10A.

The procedure used to generate Figures 11A–C can be applied
to generate analogous figures for a network in which the I-cells are
Erisir interneurons; see Figures 11D–F. The mean external drive
to the I-cells in Figures 11D–F is II = 7 (this is near the lower
end of the transition regime, see Figure 6D). Since the simula-
tion with II = 7 does not produce any full E-cell population spike
volleys, it cannot be used to initialize the network so that a full E-
cell population spike volley is imminent; we therefore obtain the
points X0 and Y0 just as described earlier, but based on a prelim-
inary calculation with the reduced value II = 6.5, for which the
E-cells do fire full spike volleys.

Comparing Figures 11C,F, we see that s2 is a decreasing func-
tion of s1 when the I-cells are WB neurons, but an increasing
function of s1 when the I-cells are Erisir neurons. The difference
in monotonicity is the crucial point here. It is a reflection of the
difference in the types of the phase response curves: for type 1
interneurons, the firing of a greater number of E-cells accelerates
the inhibitory response, reducing the number of E-cells firing on
the next cycle; for type 2 interneurons, the opposite is true.

An iteration of the form sk+1 = g(sk), where g = g(s) is a
smooth function defined for 0 ≤ s ≤ 160 with 0 ≤ g(s) ≤ 160,
may not have a stable fixed point when g is decreasing, but it
does have at least one stable fixed point when g is increasing. So
the mapping from s1 to s2 has an attracting fixed point when the
interneurons are of type 2, but not necessarily, and in particular
not in the example shown in Figure 11C, when they are of type 1.
This is why type 2 interneurons yield periodic behavior (E-cell
spike volleys of a steady size) after a transient, whereas type 1
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FIGURE 10 | (A) The strength, sk+1, of the (k + 1)-st spike volley as a
function of the strength, sk , of the k-th, for the simulation of Figure 9, run
over 10,000 ms. (B and C): Closeups of Figure 9: What happens after a full
E-cell spike volley depends sensitively on when, relative to the E-cell spike
volley, the I-cell spike volley occurs.
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FIGURE 11 | (A–C) Results from simulations of a PING network
consisting of 160 RTM cells (E-cells) and 40 WB cells (I-cells). At the
start of the simulation, at time 0, the E- and I-cells are close to firing
spike volleys. At time t0 > 0, a spike volley of the I-cells is forced.

(A) Strength of the first E-cell spike volley, s1, as a function of t0.
(B) Strength of the second E-cell spike volley, s2, as a function of t0.
(C) s2 as a function of s1. (D–F) Similar results for a network in which
the I-cells are Erisir neurons.

interneurons may produce more complicated, possibly chaotic
dynamics in the transition regime.

3.4. NETWORKS WITHOUT GAP-JUNCTIONAL COUPLING AMONG
THE I-CELLS

Simulations similar to that of Figure 5A were studied, for net-
works of theta neurons, in Börgers and Kopell (2005). Recall that
the drive to the I-cells is heterogeneous; II denotes the mean
drive to the I-cells. With increasing II , increasingly many I-cells
have enough drive to fire without being prompted by the E-cells.
Once enough I-cells are in this group, the E-cells are suppressed
altogether. In a network of cells coupled by inhibitory chemical
synapses, but not by gap junctions, heterogeneity of drives typi-
cally prevents synchronization (White et al., 1998); this is why the
I-cells in Figure 5A become asynchronous as soon as they begin
firing without being prompted by E-cell spike volleys.

This discussion suggests that even in Figure 5A, considering
that different I-cells receive different drives, the transition from
PING to suppression of the E-cells should not be abrupt. Rather,
one would expect that in an intermediate regime, some I-cells
(the more strongly driven ones) are asynchronously active with-
out being prompted by the E-cells, while others (the less strongly
driven ones) only fire in synchronous volleys immediately fol-
lowing E-cell spike volleys. This is in fact so, but not visible in
Figure 5A because the intermediate regime is quite narrow, and
the rising II passes through it rapidly.

Figure 5B is in some regards similar to Figure 5A. The transi-
tion regime in which some I-cells fire without being prompted
by the E-cells, but the E-cells still fire population spike volleys
occasionally, is now much broader, and clearly visible. The most
striking difference between Figures 5A,B is that in Figure 5B,

some I-cells are completely suppressed even when the mean
drive to the I-cells gets strong, whereas the same is not true in
Figure 5A. We have not attempted a theoretical explanation of
this difference; it seems natural to hypothesize that it is due to
the difference in the types of the f -I relations of WB and Erisir
neurons.

Figures 6A,B are similar. The suppression transitions are soft-
ened considerably because of heterogeneity in drive to the E-cells.
With Erisir interneurons, one sees a broader suppression tran-
sition than with WB interneurons. This is opposite to what is
seen in the presence of gap junctions. We have no explanation
of this effect. In particular, our arguments based on the phase
response of the I-cells do not apply when the I-cells are not kept
synchronous by gap junctions: once the I-cells de-synchronize,
they receive excitatory input from the E-cells at all phases, not
just at the early phases at which type 2 I-cells are delayed by such
inputs.

4. DISCUSSION
The fast-spiking inhibitory basket cells believed to be central in
the formation of gamma rhythms are in fact gap-junctionally
connected (Beierlein et al., 2000). There is direct experimental
evidence that they have type 2 phase response curves (Tateno and
Robinson, 2007, Figure 5). In addition, there are reports that they
also have type 2 frequency-current relations, i.e., that their fir-
ing starts at a non-zero frequency (Beierlein et al., 2003; Tateno
et al., 2004; Tateno and Robinson, 2006, 2009). Further, there are
several papers documenting resonance properties of fast-spiking
interneurons; e.g., (Pike et al., 2000). These are properties usually
associated with a Hopf bifurcation, and a type 2 phase response
curve. It therefore appears that the biologically most relevant case
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is that of gap-junctionally connected I-cells with a type 2 phase
response curve—precisely the case that yields the narrowest and
most orderly suppression transition.

In this paper, we have discussed the loss of gamma rhythms
due to too much excitation of the I-cells. By contrast, a recent
paper of Börgers et al. (2012) investigated the loss of gamma
rhythms due to too little excitation of the I-cells. Moca et al.
(2012) discussed a different way in which the type of the interneu-
rons may be important in gamma oscillations: they found that
resonance properties of the interneurons, associated with bifur-
cation type 2, may contribute to stabilizing the gamma frequency.

All numerical experiments in this paper have been for “strong
PING,” that is, for PING oscillations in which participating E-cells
fire at or near gamma frequency. By contrast, “weak PING” oscil-
lations are noise-driven, and individual participating E-cells fire
on a small, randomly selected fraction of cycles only. In Börgers
et al. (2005), it was suggested that weak PING might be associated
with general alertness or vigilance, while strong PING might be a
model of a cell assembly in a state of actively processing a specific
item. We would expect our main conclusion, that I-cells with type
2 phase response curves result in a tighter suppression transition,
to hold for weak PING as well. The reason is simply that for type
2 I-cells, the spiking of a few E-cells promotes the spiking of other
E-cells on the next cycle, whereas for type 1 I-cells, it may make it
harder for other E-cells to fire on the next cycle.

Our discussion suggests that the competition among E-cells
associated with PING oscillations [see for instance (Olufsen et al.,

2003; Börgers et al., 2008)] is less fierce when the I-cells have a
type 2 phase response. We think that this is true only in a narrow
time window: an E-cell that lags behind others by just a mil-
lisecond or two can fire more easily when the I-cells are type 2
than when they are type 1, since the firing of the E-cells that are
ahead delays the firing of the I-cells on the next gamma cycle.
In other words, I-cells of type 2 may allow for less tightly syn-
chronous PING assemblies. However, even with I-cells of type 2,
a cell assembly can suppress a less strongly driven competitor if
the difference in drive is just slightly greater.

In summary, we have found that in the presence of gap junc-
tions, when the I-cells are of type 2, the suppression transition
tends to be both narrower and more orderly than when the I-
cells are of type 1. It is tempting to speculate that fast-spiking
inhibitory basket cells might have evolved to have type 2 phase
response curves precisely because that leads to clean suppression
transitions, reducing the amount of modulation of local recurrent
inhibition needed to turn gamma frequency cell assemblies off or
on, an operation that seems likely to be crucial in brain function.
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