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The basal ganglia play a crucial role in the execution of movements, as demonstrated
by the severe motor deficits that accompany Parkinson’s disease (PD). Since motor
commands originate in the cortex, an important question is how the basal ganglia influence
cortical information flow, and how this influence becomes pathological in PD. To explore
this, we developed a composite neuronal network/neural field model. The network model
consisted of 4950 spiking neurons, divided into 15 excitatory and inhibitory cell populations
in the thalamus and cortex. The field model consisted of the cortex, thalamus, striatum,
subthalamic nucleus, and globus pallidus. Both models have been separately validated in
previous work. Three field models were used: one with basal ganglia parameters based
on data from healthy individuals, one based on data from individuals with PD, and one
purely thalamocortical model. Spikes generated by these field models were then used
to drive the network model. Compared to the network driven by the healthy model,
the PD-driven network had lower firing rates, a shift in spectral power toward lower
frequencies, and higher probability of bursting; each of these findings is consistent with
empirical data on PD. In the healthy model, we found strong Granger causality between
cortical layers in the beta and low gamma frequency bands, but this causality was largely
absent in the PD model. In particular, the reduction in Granger causality from the main
“input” layer of the cortex (layer 4) to the main “output” layer (layer 5) was pronounced.
This may account for symptoms of PD that seem to reflect deficits in information flow,
such as bradykinesia. In general, these results demonstrate that the brain’s large-scale
oscillatory environment, represented here by the field model, strongly influences
the information processing that occurs within its subnetworks. Hence, it may be preferable
to drive spiking network models with physiologically realistic inputs rather than pure
white noise.

Keywords: neural field model, spiking neural networks, Parkinsons’s disease, thalamus, cortex, basal ganglia,

Granger causality, interlaminar processing

1. INTRODUCTION
Parkinson’s disease (PD) is a multiscale phenomenon, encom-
passing pathology at the level of single neurons, local networks,
large neuronal ganglia, and the complex interactions between
these ganglia and the cortex. PD is caused by the degeneration
of dopaminergic neurons in the substantia nigra pars compacta,
with the damage later spreading to dopaminergic neurons in
the ventral tegmental area (Cools, 2006). The loss of dopamin-
ergic input alters the dynamics of the striatum, which then
affects the dynamics of large portions of the thalamus and cor-
tex, which in turn affects the spinal cord and muscles (Bolam
et al., 2002). Striatal dynamics are crucial to several large-scale
projection pathways, including the well-characterized direct and
indirect pathways. Dopaminergic input to the striatum increases

transmission in D1-expressing striatal neurons involved in the
direct pathway. These neurons inhibit the globus pallidus inter-
nal segment (GPi). Dopaminergic input also decreases input to
D2-expressing striatal neurons involved in the indirect pathway.
These neurons inhibit the globus pallidus external segment (GPe),
which in turn inhibits the GPi. Thus, alterations to the direct
and indirect pathways in PD are both thought to increase the fir-
ing rate of the GPi, which in turn inhibits the thalamus. There
is also a hyperdirect pathway from the cortex to the GPi via
the subthalamic nucleus (STN), as well as other lesser pathways
(Figure 1).

Numerous models of PD and the basal ganglia have been
proposed, using either field or network approaches. Van Albada
and Robinson (2009) developed a field-based model of the basal
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Kerr et al. Composite model of Parkinson’s disease

FIGURE 1 | Schematic of the field model, showing excitatory

populations and connections (light colors, diamond arrows) and

inhibitory ones (dark colors, round arrows). The key efferent nucleus of
the basal ganglia is the internal globus pallidus (GPi), which receives cortical
input via direct, indirect, and hyperdirect pathways. The field model drives a

spiking network model, shown here schematically (dots at left); the inputs
from the field model to the spiking model are indicated by the thin lines. The
substantia nigra pars compacta modulates parameters, but is not explicitly
modeled. Inputs to the thalamus (yellow arrow) were modeled as white
noise.

ganglia/thalamocortical system. This model was shown to repro-
duce realistic firing rates of each neuronal population in both
healthy and PD states. One early network model was that of
Terman et al. (2002), which represented a small network of
neurons in the GPe and STN. A considerably larger and more
complex (non-spiking) network model was developed by Leblois
et al. (2006). This model explored both basal ganglia and thala-
mocortical cell populations, looking at competition between the
direct and hyperdirect pathways. They suggested that PD dis-
rupted this competitive balance, resulting in loss of the network’s
ability to select motor programs. Another network model focus-
ing on motor-selection abilities was developed by Humphries
et al. (2006), who also found that decreased dopamine interfered
with the basal ganglia’s capacity for selecting actions. Network
models have also been used to analyze and predict the effects
of deep brain stimulation on basal ganglia nuclei (Hahn and
McIntyre, 2010; Guo and Rubin, 2011; Dovzhenok et al., 2013).

Previous neuronal network models of PD have either not
included a cortex at all (Terman et al., 2002; Rubchinsky et al.,
2003; Park et al., 2011), approximated it as a random Poisson pro-
cess (Humphries et al., 2006), or considered it as a single layer
with a single cell type (Leblois et al., 2006). The thalamus has also
either been omitted or treated as a single population. In this work,

we sought to fill this gap by exploring the interactions of the large-
scale dynamics of basal ganglia, represented by a field model, with
a far smaller but more spatially detailed network model of the
thalamus and six-layered cortex.

1.1. COMPOSITE MODEL
The primary aim of this paper is to determine how the large-
scale dynamics of the brain affect the information flow in small
networks of neurons. Most previous brain modeling efforts have
been directed at one of these two scales, rather than their interac-
tion. These efforts have consisted of either (1) neural field models
that describe the dynamics of the whole brain, without explicitly
modeling the activity of individual neurons (Nunez, 1974; Jirsa
and Haken, 1996; Robinson et al., 1997; Destexhe and Sejnowski,
2009), or (2) spiking neuronal network models that capture indi-
vidual neurons’ dynamics, but are many orders of magnitude
smaller than the brains of even the simplest vertebrates (Lumer
et al., 1997; Neymotin et al., 2011b). Several large network mod-
els have also been published that have roughly as many “neurons”
as the full mammalian brain (Izhikevich and Edelman, 2008;
Ananthanarayanan et al., 2009). However, these models have
not yet reproduced large-scale dynamics with the same degree
of fidelity as neural field models. For example, the model of
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Izhikevich and Edelman (2008) showed simultaneous peaks in
the delta and alpha bands, whereas experimentally these peaks
are characteristic of sleep and wakefulness, respectively, and are
hence rarely observed simultaneously (Niedermeyer and Lopes
da Silva, 1999). Such infidelity may be because the enormous
computational resources required to run these models makes it
impractical to constrain their parameters by fitting their dynamics
to experimental data.

Recently, both Deco and Jirsa (2012) and Wilson et al. (2012)
described approximations that allow small and large spatial scales
to be spanned at a mesoscopic level of description, allowing large-
scale dynamics (e.g., BOLD signals) to be related to small-scale
network properties (e.g., criticality). Robinson and Kim (2012)
took a different approach: they described the theoretical basis
of combining spiking network and neural field components into
a single model. The fundamental challenge in combining these
two modeling approaches is to create a common representation
of neuronal activity, since individual spikes are used in network
models, while field models use average firing rates. Converting
individual spikes into an average firing rate is a straightforward
reduction of dimensionality: one simply needs to average over
multiple neurons in the model. In contrast, converting an average
population firing rate into individual spikes in multiple neurons
requires an increase in dimensionality. This is a degenerate prob-
lem, so additional assumptions must be made. One approach,
described in Robinson and Kim (2012), is to treat each neuron as a
phase oscillator. The average firing rate then represents the instan-
taneous rate of phase change, with a given neuron firing whenever
its phase advances by 2π radians. However, here we used an alter-
native approach, in which the average firing rate is taken as the
instantaneous rate for an ensemble of Poisson processes. These are
then used to generate individual spike times (Dayan and Abbott,
2001; Leblois et al., 2006; Chadderdon et al., 2012). This approach
produces variability in spike timings even with a constant average
firing rate, as is seen in real neuronal populations.

2. METHODS
The model we used consisted of a network of spiking neurons
that was “embedded” in a neural field model. The embedding
consisted of having the field model generate spikes (via an ensem-
ble of Poisson processes) that were used to drive the network
model. Except where otherwise noted, all analyses were per-
formed on the network model. The complete model is publicly
available via ModelDB: https://senselab.med.yale.edu/modeldb/
ShowModel.asp?model=147366.

2.1. NEURAL FIELD MODEL
The neural field model was based on the work of Van Albada and
Robinson (2009) and Van Albada et al. (2009). The neuronal pop-
ulations and connections that constitute this model are shown in
Figures 1 and 3A respectively. The basal ganglia nuclei modeled
were the striatum, internal and external pallidal segments, and
STN. The internal pallidal population can be thought of as includ-
ing the substantia nigra pars reticulata, which has very similar
connections and properties. The substantia nigra pars compacta
was not explicitly modeled, except through its effects on the
other nuclei. The thalamus was modeled as two populations: the

inhibitory thalamic reticular nucleus (TRN) and the excitatory
thalamocortical relay nuclei (TCR). The cortex was also mod-
eled as two populations, representing inhibitory interneurons
and excitatory pyramidal neurons. Since together these neuronal
populations comprise a large portion of the brain, a network
formulation would be computationally intractable. Except for a
unitless normalization constant, all parameter values were based
on anatomical and physiological data, as listed in Table 2 of Van
Albada and Robinson (2009).

In neural field models, neuronal properties are spatially aver-
aged. The dynamics are then governed by a set of equations relat-
ing the mean firing rates of populations of neurons to changes
in mean cell-body potential, which are in turn triggered by mean
rates of incoming spikes. The neural field model used here was
based on a previously published model of the electrophysiology
of the thalamocortical system (Robinson et al., 1997, 2001, 2002,
2005; Rennie et al., 1999), which in turn was based on earlier field
models (Wilson and Cowan, 1973; Nunez, 1974; Freeman, 1975;
Steriade et al., 1990; Wright and Liley, 1996).

The first component of the model is the description of the
average response of populations of neurons to changes in mean
cell-body potential. The mean firing rate Qa of each population
a is the maximum attainable firing rate Qmax

a times the propor-
tion of neurons with a membrane potential Va above the mean
threshold potential θa. This can be approximated by the sigmoid
function

Qa(r, t) = Qmax
a

1 + e−[Va(r,t)−θa]/σ′ , (1)

where r is the spatial coordinate, t is time, and σ′ is
√

3/π times
the standard deviation of the distribution of firing thresholds
(Wright and Liley, 1995). This function increases smoothly from
0 to Qmax

a as Va changes from −∞ to ∞.
The change in the mean cell-body potential due to afferent

activity depends on the mean number of synapses Nab from neu-
rons of population b to neurons of population a (note that the
direction of projection b → a follows the conventions of control
theory and matrix multiplication). The change in potential also
depends on sab, the time-integrated change in cell-body poten-
tial per incoming spike. Defining νab = Nabsab, the change in the
mean cell-body potential in neurons of population a is (Robinson
et al., 2004).

Dαβ(t)Va(t) =
∑

b

νabφb(t − τab), (2)

Dαβ(t) = 1

αβ

d2

dt2
+

(
1

α
+ 1

β

)
d

dt
+ 1. (3)

Here, φb(t − τab) is the incoming firing rate, τab represents the
axonal time delay for signals traveling from population b to pop-
ulation a neurons, and α and β are the decay and rise rates of mean
cell-body potential. The differential operator Dαβ(t) represents
dendritic and synaptic integration of incoming signals (Robinson
et al., 1997; Rennie et al., 2000). The synapses and dendrites form
an effective low-pass filter with a cut-off frequency between 1/α

and 1/β.
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In this model, neuronal activity spreads along the cortex in
a wavelike fashion. This reflects previous models (Nunez, 1995;
Jirsa and Haken, 1996; Bressloff, 2001) as well as experimental
observations of such waves following cortical stimulation (Burns,
1951; Nunez, 1974; Rubino et al., 2006). Estimates of charac-
teristic axonal ranges and propagation speeds suggest that these
waves are significantly damped on the scale of the human cortex
(Robinson et al., 2001, 2004; Wright and Liley, 1995). Assuming
that the range distribution of corticocortical fibers decays expo-
nentially at large distances, activity propagates according to a
2D damped-wave equation of the form (Robinson et al., 1997)

Qa(r, t) =
[

1

γ2
a

∂2

∂t2
+ 2

γa

∂

∂t
+ 1 − r2

a∇2
]

φa(r, t), (4)

where γa = va/ra is the damping rate, consisting of the aver-
age axonal transmission speed va (�10 m·s−1) and the char-
acteristic axonal range ra. In practice, most types of axons
are short enough to justify setting γa = ∞, which has been
termed the local interaction approximation (Robinson et al.,
2004). We therefore take only γe, the damping rate of cortical

pyramidal neurons, to be finite. This turns all wave equa-
tions except the cortical one into delayed one-to-one map-
pings. The model was implemented on a 5 × 5 grid of nodes
with coupling to nearest-neighbor nodes via this damped-wave
equation.

2.2. SPIKING NETWORK MODEL
The spiking network was based on several previous models devel-
oped by our group (Lytton and Stewart, 2005; Lytton et al.,
2008b; Neymotin et al., 2011b; Kerr et al., 2012; Song et al.,
2013). It consisted of 4950 event-driven integrate-and-fire neu-
rons. These were divided into three types (excitatory pyramidal
cells E, fast-spiking inhibitory interneurons I, and low-threshold
spiking interneurons IL), which were in turn distributed across
the six layers of the cortex, plus two thalamic cell populations
(excitatory thalamocortical relay TCR and inhibitory thalamic
reticular TRN), for 15 distinct neuronal populations in total.
The numbers and locations of each neuronal population are
illustrated in Figure 2, and were as follows: E2 (i.e., excitatory
pyramidal neurons of layer 2/3), 1500; I2, 250; IL2, 150; E4, 300;
I4, 200; IL4, 150; E5R, 650; E5B, 150; I5, 250; IL5, 150; E6, 600; I6,
250; IL6, 150; TCR, 100; and TRN, 100. The pyramidal neurons

FIGURE 2 | Layout of the 4950 neurons in the spiking network model

(1980 cells shown). Shapes show type (triangle = excitatory pyramidal, E;
circle = fast-spiking interneuron, I; star = low-threshold spiking interneuron, IL;

square = thalamic reticular, TRN; diamond = thalamocortical relay, TCR). The 28
efferent connections from a single layer 5 pyramidal neuron are shown (black
lines). The distance from the thalamus to the cortex is not shown to scale.
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in layer 5 are divided into two populations, R (regular firing)
and B (bursting), since these have different cellular properties and
connectivity patterns.

Connectivity (shown in Figure 3B) and the relative numbers
of neurons per layer were based on published models (Traub
et al., 2005; Neymotin et al., 2011a,b) and anatomical studies
(Thomson et al., 2002; Binzegger et al., 2004; Song et al., 2005;
Lefort et al., 2009; Adesnik and Scanziani, 2010). Connectivity
was strongest between populations within a given layer, as seen
from the four clusters visible along the diagonal of Figure 3B.
Overall, excitatory neurons had more projections than inhibitory
ones, but inhibitory projections were typically stronger. This bal-
anced excitation and inhibition such that the overall gain of
the system (the number of additional output spikes for every
additional input spike) was close to unity. Such balance is nec-
essary for avoiding the stable but undesirable states of seizure

FIGURE 3 | Connectivity of the models. Color shows normalized effective
connectivity (probability × weight) from rows to columns, with red denoting
excitation and blue denoting inhibition. (A) Connections in the field model
(CE, cortical excitatory; CI, cortical inhibitory; TCR, thalamocortical relay;
TRN, thalamic reticular nucleus; SD1, striatal D1; SD2, striatal D2; GPi,
internal globus pallidus; GPe, external globus pallidus; STN, subthalamic
nucleus). (B) Connections in the network model. Approximate diagonal
symmetry shows that most connections are reciprocal; relatively strong
connections along the diagonal indicate high intralaminar connectivity.

(pathologically high firing) and quiescence (pathologically low
firing).

Individual neurons were modeled as event-driven, rule-based
units. Since computing resources are finite, a tradeoff must be
made between the complexity of neurons vs. the complexity of
the network. The neuron model used was complex enough to
replicate key features found in real neurons, including adap-
tation, bursting, depolarization blockade, and voltage-sensitive
NMDA conductance (Lytton and Stewart, 2005, 2006; Lytton and
Omurtag, 2007; Lytton et al., 2008a,b; Neymotin et al., 2011b),
yet was simple enough to connect into large (103−106 neuron)
networks.

Each neuron had a membrane voltage state variable (Vm)
with a baseline value determined by a resting membrane poten-
tial parameter (VRMP, set at −65 mV for pyramidal neurons
and low-threshold-spiking interneurons, and at −63 mV for fast-
spiking interneurons). This membrane voltage was updated by
one of three events: synaptic input, threshold spike generation,
and refractory period. These events are described briefly below;
further detail can be found in the papers and code cited above.

2.2.1. Synaptic input
The response of the membrane voltage to synaptic input was
modeled as an instantaneous rise and exponential decay: Vn(t) =
Vn(t0) + ws(1 − Vn(t0)/Ei)e

− t − t0
τi , where Vn is the membrane

voltage of neuron n; t0 is the synaptic event time (i.e., t − t0 is
the time since the event); ws is the weight of synaptic connection
s; Ei is the reversal potential of ion channel i, relative to rest-
ing membrane potential (where i = AMPA, NMDA, or GABAA;
and EAMPA = 65 mV, ENMDA = 90 mV, and EGABAA = −15 mV);
and τi is the receptor time constant for ion channel i (where
τAMPA = 20 ms; τNMDA = 30 ms; and τGABAA = 10 or 20 ms for
somatic and dendritic GABAA, respectively).

2.2.2. Action potentials
A neuron fires an action potential at time t if Vn(t) > Tn(t)
and Vn(t) < Bn, where Vn, Tn, and Bn are the membrane volt-
age, threshold voltage (−40 mV for pyramidal neurons and
fast-spiking interneurons, −47 mV for low-threshold-spiking
interneurons), and blockade voltage (−10 mV for interneurons
and −25 mV for pyramidal neurons), respectively, for neuron
n. Action potentials arrive at target neurons at time t2 = t1 +
l(n1, n2)/v + τs, where t1 is the time the first neuron fired, τs is
the delay due to synaptic conduction effects, l(n1, n2) is the axon
length between neurons n1 and n2, and v is the axonal conduction
velocity (�1 m·s−1, which is smaller than in the field model, since
long-range fibers tend to be more heavily myelinated).

2.2.3. Refractory period
After firing, a neuron cannot fire during the absolute refrac-
tory period, τA (10 ms for interneurons and 50 ms for pyra-
midal neurons). Firing is reduced during the relative refractory
period by two effects: first, an increase in threshold potential,

Tn(t) =
(

1 + Re
− t − t0

τR

)
Tn(t0), where R is the fractional increase

in threshold voltage due to the relative refractory period (0.25
for interneurons and 0.75 for pyramidal neurons) and τR is its
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time constant (1.5 ms for interneurons and 8 ms for pyramidal
neurons); and second, by hyperpolarization, Vn(t) = Vn(t0) −
He

− t − t0
τH , where H is the amount of hyperpolarization (0.5 mV

for interneurons and 1 mV for pyramidal neurons) and τH is its
time constant (50 ms for interneurons and 400 ms for pyramidal
neurons).

Local field potentials (LFPs) were computed for each corti-
cal layer as the average membrane voltage across all neurons
in that layer; after baseline removal and normalization, this
approach is roughly equivalent to summing over all synaptic cur-
rents (Mazzoni et al., 2010). While this approach does not take
into consideration synaptic and dendritic geometry, this is not
possible in the event-driven point-neuron model used here.

Simulations were run in NEURON 7.3 (Hines and Carnevale,
2001; Carnevale and Hines, 2006) on a Linux workstation with
an Intel Xeon 2.7 GHz CPU; each 20 s simulation took approxi-
mately 10 min to run on a single core. To avoid edge effects, the
first and last 2 s of simulated data were discarded. All analyses
were performed on the remaining 16 s of simulated data. Since
the model is at steady-state and does not incorporate plasticity
effects, longer runs produced similar results (data not shown).
Model parameters were tuned manually (within physiological
limits) to match experimentally observed firing rates, dynamics,
and information-theoretic properties, as described in Song et al.
(2013).

2.3. INPUT DRIVE
The composite model consisted of the spiking network model
being driven by (“embedded in”) the activity of the field model.
Since the field model represents a brain region much larger than
the network model, the field causally influences the network, but
not vice versa. The key methodological novelty of this work is that
the spiking network model is thus embedded in an environment
with physiologically realistic dynamics (as provided by the field
model), rather than the white noise environment such models are
typically embedded in.

To obtain realistic firing rates in the network model, the input
spiking rate each neuron receives must be bounded. Hence, the
firing rate from each neuronal population in the field model
was normalized so that the minimum and maximum input spik-
ing rates were 225 and 1125 s−1 for excitatory neurons and 30%
lower for inhibitory neurons. The input drive was obtained by
treating each of these normalized instantaneous firing rates as
the rate of an ensemble of Poisson processes for generating
spikes. These spikes were then used to drive each population
of spiking neurons, using the same connections as used in the
field model itself (e.g., excitatory cortical neurons in the net-
work model received input from the excitatory cortical field,
the inhibitory cortical field, and the thalamic field); relative
connection weights were also set to match those of the field
model. Thus, each neuron belonging to a given population in
the network model receives the same average rate of input from
the field model, but from a separate Poisson process, thereby
avoiding artificial correlations in input spike times between
neurons.

Four different inputs were explored in this work. First, all neu-
rons in the network were driven by spikes drawn from a spectrally

white distribution (“WN”, the white noise model). This represents
the control condition, and is identical to the approach used in
previous work with the network model (Neymotin et al., 2011b).
Second, neurons were driven by the thalamocortical version of
the field model (“TC”, the thalamocortical model); i.e., connec-
tion strengths to and from the basal ganglia neuronal populations
were set to zero. Third, neurons were driven by the full basal gan-
glia/thalamocortical model described above (“BG”, the healthy
basal ganglia model). Finally, neurons were driven by the full basal
ganglia/thalamocortical model, using parameter values shown by
Van Albada and Robinson (2009) to best match the electrophysio-
logical changes associated with the degeneration of dopaminergic
projections to the striatum (“PD”, the Parkinson’s disease model).

2.4. ANALYSIS
2.4.1. Fano factor
The Fano factor, a common measure of spiking variability
(Churchland et al., 2010), is the ratio of the variance to the mean
of the spike rate:

F = σ2

μ
, (5)

where σ is the standard deviation and μ is the mean of the time
series of binned spiking activity across all neurons. To explore
spiking variability on a range of different time scales, the time bin
size was varied from 1 ms (resulting in 16,000 bins, with an aver-
age of roughly 10 spikes per bin) to 8 s (resulting in 2 bins, with
roughly 80,000 spikes per bin).

2.4.2. Population burst probability
A population burst (Benayoun et al., 2010) was defined as ≥2
neurons firing within a given 10 ms time bin. The probability of
a burst of size N was defined as the number of time bins with N
cells firing divided by the total number of time bins. The relative
burst probability was calculated by dividing the observed number
of bursts of each size by the number of bursts of that size expected
from uncorrelated activity, which in turn was determined via the
observed firing rate (averaged over the entire simulation) and the
binomial probability distribution.

2.4.3. Spectral granger causality
Information flow was quantified in terms of spectral Granger
causality, also called the directed transfer function (Kaminski
et al., 2001). Although many alternative tools for inferring causal-
ity exist, such as directed transfer entropy (Lizier et al., 2011), no
others allow the spectral properties of the signals to be analyzed
in detail.

As in standard Granger causality analysis, spectral Granger
causality of α( f ) → β( f ) is non-zero if prior knowledge of vari-
able α at frequency f reduces error in the prediction of β at
frequency f . The directionality of the causation arises from the
fact that Granger causality quantifies how much the history of
time series α can be used to predict the future of time series β:
if α has a strong causal influence on β, then the prediction error
will be reduced.

Spectral Granger causality is calculated by Fourier trans-
forming the multivariate autoregressive model used in standard
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Granger causality. Hence, the spectral Granger causality from
time series α(t) to time series β(t) is defined as (Cui et al., 2008)

Gα→β(f ) = − log

⎛
⎜⎜⎝1 −

(
Nαα − N2

βα

Nαα

)
|Hβ, α(f )|2

Sβ, β(f )

⎞
⎟⎟⎠ , (6)

where N is the noise covariance, H(f ) is the transfer function,
and S( f ) the spectral matrix, as derived from the bivariate autore-
gressive model of α(t) and β(t). This analysis was performed in
Matlab 2012a using code based on the BSMART toolbox, available
via http://www.brain-smart.org.

3. RESULTS
The neural field model results were similar to those reported pre-
viously (Van Albada and Robinson, 2009; Van Albada et al., 2009),
and are briefly presented here for completeness. We then present
the overall dynamics of the spiking network model (Kerr et al.,
2012), comparing its dynamics for each of the four drives (white
noise, the thalamocortical model, the healthy basal ganglia model,
and the PD model). Finally, we focus more closely on the alter-
ations that occur in the PD-driven model and their implications.
We have split the results into these sections in order to better
accomplish our dual goals of (1) presenting the new compos-
ite model, and (2) applying this model to help understand the
pathophysiology of PD.

3.1. FIELD MODEL DYNAMICS
Firing rates in each neuronal population were similar to those
reported previously (Van Albada and Robinson, 2009; Van Albada
et al., 2009). Because the drive from the field model to the network
model was normalized to a range that provided realistic firing
rates in the latter, tonic firing rates had negligible effect on the
simulations.

Changes in coherence are a commonly reported finding in PD.
In the PD model, coherence between the GPe and the GPi was
lost, and high frequency power (>10 Hz) in the GPi was reduced
(Figure 4). In the healthy state, activity in the GPe and GPi is
strongly correlated (r2 = 0.9). Following dopamine loss, this cor-
relation is substantially reduced (r2 = 0.3). This is because the
GPe and GPi are both mostly influenced by the striatum in the
healthy state, whereas the GPi is strongly driven by the STN in
the parkinsonian state, resulting in strong coherence between the
GPi and STN in the PD model. Increased STN-GPi coherence at
frequencies up to about 35 Hz has indeed been found in PD off
levodopa compared to the on-levodopa condition (Brown et al.,
2001). Since the GPi is the only nucleus of the basal ganglia that
projects to the thalamus or cortex (Figure 1), all changes observed
in the network model in the healthy versus PD cases are due to the
altered dynamics of the GPi.

To characterize the overall dynamics of the different field mod-
els, we looked at their power spectra. In the absence of the
basal ganglia, cortical excitatory neurons had a strong alpha peak
(10 Hz), and a weaker harmonic in the beta range (20 Hz), as
shown in Figure 4B. Cortical inhibitory neurons were driven
strongly by thalamocortical cells, evident both in the phase

locking between the two populations (Figure 4A), and in the
similarity of their power spectra below 70 Hz (Figure 4B). The
addition of the basal ganglia (Figure 4B, middle panel) reduced
the strength of the alpha peak in cortical excitatory neurons and
reduced the slope of the power law spectral fall-off at high fre-
quencies; in cortical excitatory neurons, this slope changed from
P( f ) ∝ f −5.3 to P( f ) ∝ f −4.3. Reduced dopamine corresponding
to PD reduced the power of higher frequencies (>10 Hz) relative
to lower frequencies (<10 Hz) in the cortical, thalamic, and GPi
spectra. For example, the GPi showed a 2% decrease in power at
10 Hz compared to a 76% decrease at 20 Hz. In contrast, reduced
dopamine increased power in the STN at frequencies >10 Hz
(e.g., 2.2 times larger at 20 Hz), a result also reported experi-
mentally (Brown et al., 2001; Cassidy et al., 2002; Priori et al.,
2004).

3.2. NETWORK MODEL DYNAMICS
The field drive into the network model strongly modulated its
spiking activity (Figure 5). Firing rates varied from near zero
during the troughs of input activity to >10 Hz during the
peaks (Figure 5A). The temporal structure of the spiking activity
depended strongly on the type of input drive used (Figure 5B).
As a control, white noise produced no consistent temporal struc-
ture. The TC-driven model input produced some structure, with
a characteristic time scale below 500 ms. The BG-driven model
added some features on longer time scales (of order 1 s) to the
activity produced by the TC-only field model. Variability in fir-
ing rate, as measured by the Fano factor, was lowest in the
WN-driven model (Figure 5D)—as would be expected since the
white noise had the lowest variability of the four inputs. On
time scales <1 s, the PD-driven model had the greatest variabil-
ity, while the BG-driven model had the greatest variability on
scales >1 s.

The power spectra of the network model, shown in Figure 6A,
were broadly similar to those of the input drives, but with several
interesting differences. The basic filter properties of the network
model are apparent from the shape of spectrum of the WN-driven
model; to a first approximation, the network acts like a low-pass
filter, with P(f ) ∝ f −4.0 for f > 20 Hz. However, actual afferent
activity in the brain is already low-pass filtered due to dendritic
properties, so a more realistic input (the thalamocortical drive)
results in even greater low-pass filtering. For example, the WN-
driven model predicts 5.4 times more power at 10 Hz than the TC-
driven model. Both BG- and PD-driven models differed markedly
from the TC-driven model in the 20–30 Hz band, where many
basal ganglia nuclei have their peak power. Interestingly, this
peak was much sharper in the network model than in the input
drive, demonstrating a resonance effect (compare Figure 4A with
Figure 6B).

To quantify synchrony in the model on a population level, we
used population burst size (Benayoun et al., 2010). All of the field-
driven models showed substantially higher population bursting
than the WN-driven model (Figure 6B). This is because the field
drive applies a global modulatory signal to the network, which
organizes the firing of its neurons into up and down states (as
evident from the bands of spikes in Figure 5A); in contrast, the
WN-driven model has a constant, intermediate level of activation.
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FIGURE 4 | Dynamics of the three field models (without the network

model). TC, thalamocortical field model; BG, healthy basal ganglia model;
PD, Parkinson’s disease model; white noise model not shown.
“Excitatory” and “inhibitory” refer to cortical subpopulations. (A) Local
field potential (LFP) time series, showing phase relationships between
populations. Activity in the globus pallidus internal (GPi) and external

(GPe) segments is normally in phase (red arrows), but this relationship is
lost in PD, since the GPi entrains to the subthalamic nucleus instead
(blue arrows). (B) LFP spectra. Except for the subthalamic nucleus,
healthy basal ganglia nuclei spectra are similar to the spectrum of the
thalamic relay nuclei from 10–40 Hz. This is disrupted in PD (green
arrows), especially in the GPi.

3.3. DYNAMICAL CHANGES IN THE PARKINSON’S DISEASE MODEL
The Parkinson’s disease model (PD-driven model) showed a
number of changes that suggest possible mechanisms underly-
ing the clinical dysfunctions of the disease. Compared to the
healthy control (BG-driven model), the PD-driven model showed
a shift in the LFP spectrum toward lower frequencies, with higher
delta power and a lower beta peak frequency (Figure 6), consis-
tent with clinical findings (Stoffers et al., 2007). These changes
were also readily apparent looking at the LFP time series, which
showed a flattening of activity between the slow, high-amplitude
features (Figure 5B). Soikkeli et al. (1991) noted such slowing
in 10 out of 18 non-demented PD patients, as well as in all 18
demented PD patients studied [see Figure 1 in Soikkeli et al.
(1991)].

The PD-driven model showed an 18 ± 2% decrease in fir-
ing rates compared to the healthy model (Figure 5C), consistent
with changes in fMRI indicators of activity (Monchi et al., 2007).
The PD-driven model also showed greater firing variability than
the healthy model on most time scales. For example, with a bin
size of 1 ms, the Fano factor was 41% higher in the PD-driven
model (Figure 5D). However, it showed less variability on very
long time scales: with a bin size of 8 s, the Fano factor was 2.4
times higher in the BG-driven model. The increased variability in
the PD-driven model on all but the longest timescales is consis-
tent with the enhanced oscillations and synchrony associated with
PD (Goldberg et al., 2002). Note that maximal dynamical richness
does not necessarily correspond to maximal variability in firing
rates: for example, tonic firing will have low dynamical richness
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FIGURE 5 | Temporal dynamics of the network model with each type of

input drive (WN, white noise; TC, thalamocortical; BG, healthy

thalamocortical/basal ganglia; PD, Parkinson’s disease). (A) Example
spike raster from the BG-driven model. Low-frequency oscillations are clearly
visible. (B) LFPs from layer 2/3 of each model. The BG case corresponds to
the raster shown in (A); peaks in voltage are correlated with peaks in spiking
activity. (C) Mean firing rates by cell type (averaged over both cortical and

thalamic populations). Overall, the PD-driven model had considerably lower
firing rates, which result from excessive inhibition of the thalamic nuclei.
(D) Variability in neuronal firing rates on different time scales. The PD- and
BG-driven models (which receive the most highly structured input) show the
most variability on short and long time scales, respectively; the WN-driven
model (which receives the least structured input) shows the least variability
on all scales.

and low variability on all time scales, while strong, seizure-like
oscillations will also have low dynamical richness, despite very
high variability (at least on the time scale of the oscillation).

The concentration of activity in large population bursts was a
prominent feature of the PD-driven model. For example, bursts
consisting of 40 neurons were 60% more common in the PD-
driven model than in the healthy model, while 70-neuron bursts
were three orders of magnitude more common. (Population
bursts smaller than 30 neurons were more common in the healthy
model, a result of its higher firing rate.) Although it is tempting

to consider these large population events in the context of parkin-
sonian tremor, we did not note a clear periodicity in their
occurrence.

A crucial question in PD is the mechanism by which infor-
mation flow is disrupted from higher cortical areas (e.g., those
involved in motor planning) to primary areas (e.g., those involved
in motor execution). Although information flow between cortical
layers is bidirectional, a dominant direction of information flow is
suggested by both anatomical and functional studies (Bollimunta
et al., 2008). This dominant information pathway is believed to
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FIGURE 6 | Spectral and information-theoretic characteristics of the

network model as driven by each field model. (A) Power spectra. The
WN- and TC-driven models have fairly featureless spectra, but with different
fall-off characteristics at high frequencies. BG- and PD-driven models are
similar to the TC-driven spectrum, except for the pronounced peak at
∼20 Hz. Spectral power is slightly shifted toward lower frequencies in PD.
(B) Population burst frequency, defined as the probability of a given number
of cells firing within a 10 ms time window, divided by the corresponding
probability for uncorrelated processes. All models are many orders of
magnitude more likely to show large bursts than would be predicted from
uncorrelated activity; large population bursts are most likely in the
PD-driven model.

stream from thalamic inputs to layer 4 (or upper layer 5 in agran-
ular motor cortices), up to layer 2/3 for processing, and thence to
layer 5, which in turn produces outputs to multiple sites including
the thalamus, basal ganglia, and brainstem. We hypothesized that
damage to this dominant pathway would represent a pathology
with major functional consequences. We therefore used Granger
causality to quantify information flow between the cortical layers
that comprise this pathway.

Overall, interlaminar spectral Granger causality was high-
est in the BG-driven model, and lowest in the WN-driven
model (Figure 7). Most notably, the BG-driven model showed
a prominent peak in causality in the high-beta/low-gamma
band (20–35 Hz). This peak was almost entirely absent in the

PD-driven model; for example, peak causality from layer 4 to layer
5 in this frequency range was only half that of the BG-driven
model (0.23 and 0.45 for PD- and BG-driven models, respec-
tively), even though these models had similar spectral power
(Figure 6A). As shown in Figure 7, similar results were seen in
other layer pairs (e.g., 4 → 2/3, 2/3 → 5, and 6 → 2/3).

4. DISCUSSION
We have explored the effects of driving a spiking network model
with several different types of input, including those corre-
sponding to the healthy brain and to PD. Many of the differ-
ences between the healthy and PD models accord with prior
experimental findings. For example, we found a modest but
consistent reduction in firing rates of cortical neurons in PD.
Although there are no direct studies of cortical firing rates dur-
ing PD in humans, several indirect measures from functional
imaging suggest such a decrease (Jenkins et al., 2004; Monchi
et al., 2004, 2007). We also found a shift toward lower LFP
frequencies, a finding consistent with PD electroencephalogra-
phy (Soikkeli et al., 1991; Bosboom et al., 2006; Stoffers et al.,
2007). We found increased synchrony between neurons in our
PD model, as measured by population burst size and probability;
increased synchrony among basal ganglia neurons is a commonly
reported finding in PD (Raz et al., 1996), and increased synchrony
among cortical neurons has also been reported (Goldberg et al.,
2002).

Our major finding was the loss of Granger causality between
cortical layers in the high-beta/low-gamma band. The Granger
causality for the PD-driven model was more similar to the TC-
and WN-driven models than to the BG-driven model, suggesting
that the dynamical properties of the basal ganglia that facilitate
cortical information flow are almost entirely lost in PD. The fre-
quency range of this disrupted information flow is thought to
be crucial for encoding motor commands, especially limb move-
ments (Van Der Werf et al., 2008; Muthukumaraswamy, 2010).
Gamma has also been implicated in many cognitive processes
(Fries et al., 2007), including the perceptual binding underlying
sensorimotor coordination (Lee et al., 2003) and consciousness
(Llinas et al., 1998). Hence, our observation of disrupted causality
might also partially account for some of the cognitive symp-
toms of PD, including bradyphrenia and planning deficits (Morris
et al., 1988; Chaudhuri and Schapira, 2009).

The fact that Granger causality was disrupted in the PD-
driven model (Figure 7) while the power spectrum was nearly
unchanged in the same frequency band (Figure 6A) shows that
the changed input drive has reorganized the dynamics of the net-
work in complex ways. Since the GPi does not project directly
to the cortex, these changes are entirely mediated by the thala-
mus; indeed, thalamic lesions alone are sufficient for producing
parkinsonian symptoms in rats (Oehrn et al., 2007). Since the tha-
lamus projects differentially to the different layers of the cortex, a
major change in thalamic input is sufficient explanation for why
the causality would shift so dramatically. Specifically, the thala-
mus normally projects strongly to layer 4; the peak in causality
at 20–35 Hz is consistent with thalamic modulation by the GPi.
In PD, inhibition to the thalamus is increased, which results in
weaker drive to the cortex and thus a loss of information flow.
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FIGURE 7 | Spectral Granger causality between cortical layers in each

of the models. (A) The BG-driven model shows strong causality from
layer 4 to 2/3 in the delta (<5 Hz) and high-beta/low-gamma (20–35 Hz)
bands; causality in the latter band is almost entirely lost in Parkinson’s
disease. (B) The causality from layer 2/3 to layer 5 is slightly reduced in
this band in Parkinson’s disease. (C) These two effects combine to

significantly reduce the total Granger causality from layer 4 to layer 5 in
PD, especially in the high-beta/low-gamma band. (D) Similar reductions of
Granger causality in this band were seen in other layer pairs, such as
layer 6 to layer 2/3. In each case, the high-beta/low-gamma band Granger
causality is significantly higher in the BG-driven model than in any of the
other models.

Our findings suggest that therapeutic interventions, such as deep
brain stimulation (Deuschl et al., 2006), may be more effective if
they restore both the dynamics and the tonic level of activity of
the GPi, rather than just the latter.

Several of our findings are qualitatively consistent with exper-
imental results pointing to a loss of complexity in EEG time
series from patients with a variety of cognitive disorders, includ-
ing PD (Stam et al., 1994, 1995; Vaillancourt and Newell, 2002).
For example, in the healthy model, the slope of the Fano fac-
tor increases roughly linearly on time scales from 1 ms to 10 s,
indicating dynamical structure across a wide range of time scales
(Figure 5D). This result can be seen qualitatively in the LFP time
series of the healthy model, which appeared to show meaning-
ful structure over a broader range of time scales than any of
the other models (Figure 5B). We speculate that these proper-
ties may reflect the number of possible states that the network
can assume, which may in turn be related to the number of
different motor programs that can be implemented by the net-
work. This principle is closely related to the concept of φ, defined
as “the repertoire of causal states available to a system as a
whole” (Balduzzi and Tononi, 2008). While φ cannot be eas-
ily computed for moderately large networks such as ours, we

expect that it will be manifested in terms of the network’s abil-
ity to perform real motor tasks—a topic we will explore in future
work. Specifically, we predict that the BG-driven model will per-
form better on simulated reaching tasks than the WN-, TC-, or
PD-driven models.

Beta-band activity (15–30 Hz) was predominantly generated
by the thalamic and inhibitory cortical neuronal populations in
our model (Figure 4B, top panel), in agreement with previous
experimental and modeling studies (Brown and Williams, 2005;
Hahn and McIntyre, 2010). Most empirical studies of beta activ-
ity in PD have focused on the basal ganglia nuclei, with increased
power in the STN being a commonly reported finding (Brown
and Williams, 2005; Kühn et al., 2005; Weinberger et al., 2006).
In our model, we found that beta power in the STN was indeed
enhanced in PD (Figure 4B, middle and bottom panels), which
may reflect an idling or antikinetic state (Brown and Williams,
2005; Engel and Fries, 2010).

4.1. LIMITATIONS
Several experimentally observed features of PD, such as increased
coherence among neurons in the STN, can only be explicitly
represented using a neuronal network model of the basal ganglia
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(Terman et al., 2002)—a major benefit of that modeling
approach. However, it is not known whether these phenomena are
causally linked to parkinsonian symptoms. Hence, in the present
context, the benefits of using a neural field model for the basal
ganglia outweigh the drawbacks of this approach. In future, a
spiking network model of the basal ganglia would be desirable in
order to account for these and other phenomena, such as rein-
forcement learning. An explicit representation of dopamine in
such a mode—rather than the implicit representation used here—
would also allow the effects of pharmacological interventions to
be modeled directly.

Due to the eloquence of the motor system, movement disor-
ders are the most obvious symptoms of PD. Yet the pathophysiol-
ogy of the disease is widespread; even the retina is affected (Hajee
et al., 2009). We stress that the spiking network model used here
was designed as a model of association cortex, not primary motor
cortex; for example, our model includes layer 4 cells, which are
absent from the latter. However, since the thalamus and striatum
have broad projections to the cortex, we expect the dynamical
and information-theoretic changes in PD (such as increased syn-
chrony and reduced complexity) to extend to motor areas as well.
In the future, we will explore the effects of PD in a model of pri-
mary motor cortex controlling a virtual arm (Chadderdon et al.,
2012), with the aim of directly demonstrating classical parkinso-
nian motor symptoms. By incorporating sensory feedback into
this model, the white noise that was used to drive the neural field
component can be replaced with more realistic input, thereby
addressing another obvious limitation of the method used here.

4.2. MULTISCALE DYNAMICS IN A COMPOSITE MODEL
To our knowledge, this work represents the first composite spik-
ing network/neural field model of the brain. This is a multiscale
model that spans spatial scales from 10 μm to 30 cm and tempo-
ral scales from 1 ms to tens of seconds. The composite method
provides a way of linking two types of models that provide access
to different spatial scales—a network model than spans scales
from individual neurons (10 μm) to a cortical column (600 μm),
and a field model encompassing the whole diencephalon (30 cm).

Temporally, both network and field models are valid over many
orders of magnitude (approximately 10−3−104 s).

The mechanism used here to couple the field and network
models is just one of several alternatives (Wilson et al., 2012).
In the present case, the coupling was unidirectional; the net-
work model did not affect the dynamics of the field model. While
this can be easily justified in terms of the effective size of each
model, an alternative approach generates the neural field based
on the dynamics of the network model, using the new neuron-
in-cell approach of Robinson and Kim (2012). Because spiking
network models are still limited in their capacity to generate
accurate dynamics on a large scale, this approach cannot yet be
used in place of neural field models. However, this may change
if scientific advances and improved computing facilities enable
the development of larger and more realistic spiking network
models.

Many spiking network models that are too small to show self-
sustaining activity are driven by white noise (Hill and Tononi,
2005; Vogels and Abbott, 2005; Oswald et al., 2009; McDonnell
et al., 2011; Volman et al., 2011; Kerr et al., 2012; Muller and
Destexhe, 2012; Vijayan and Kopell, 2012). Here we demonstrated
that using physiologically realistic input instead of white noise
has a major impact on multiple measures of network activity,
including power spectra, spiking variability, burst probability,
and Granger causality. Thus, white-noise-driven spiking network
models are an abstraction away from the physiological environ-
ment, and should perhaps be considered as being analogous to
artificially driven slice preparations rather than in vivo activity.
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