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We investigated how the two properties short-term synaptic depression of afferent
input and postsynaptic firing dynamics combine to determine the operating mode
of a neuron. While several computational roles have been ascribed to either, their
interaction has not been studied. We considered two types of short-term synaptic
dynamics (release-dependent and release-independent depression) and two classes of
firing dynamics (regular firing and firing with spike-frequency adaptation). The input–output
transformation of the four possible combinations of pre- and post-synaptic dynamics
was characterized. Adapting neurons receiving input from release-dependent synapses
functioned largely as coincidence detectors. The other three configurations showed
properties consistent with integrators, each with distinct features. These results suggest
that the operating mode of a neuron is determined by both the pre- and post-synaptic
dynamics and that studying them together is necessary to understand emergent
properties and their implications for neuronal coding.
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INTRODUCTION
Synapses exhibit a range of activity-dependent plasticities at var-
ious timescales (Dobrunz et al., 1997; Dittman et al., 2000;
Fuhrmann et al., 2004; Regehr, 2012). Short-term synaptic
plasticity is the change in efficacy of the postsynaptic poten-
tial/current upon repeated stimulation lasting for a few to hun-
dreds of milliseconds. Excitatory synapses in neocortex exhibit
short-term depression and recover at a rate of about 1 s.
Depression is dominant with minimal facilitation in layers 2/3, 4,
and 5 of rat barrel cortex (Cowan and Stricker, 2004; Fuhrmann
et al., 2004). However, the mechanisms underlying facilitation are
much less clear. Hence, we restrict our investigation to synaptic
depression and its role in encoding.

Functionally, these depressing synapses show two differ-
ent types of dynamics, defined here as type 1 or 2. Type 1
synapses show depression due to vesicle-depletion (VDD) that
reduces the probability of neurotransmitter release upon subse-
quent action potentials (Markram and Tsodyks, 1996; Markram
et al., 1997; Matveev and Wang, 2000; Regehr, 2012). At
these synapses, the recovery rate from depression is constant.
Type 1 synapses are capable of signaling a stimulus rate change
but not rate (Fuhrmann et al., 2004; Jedrzejewska-Szmek and
Zygierewicz, 2010). Type 2 synapses on the other hand exhibit
release-independent depression, i.e., they depress even when
no neurotransmitter has been released (Dobrunz et al., 1997;
Thomson, 1997; Brody and Yue, 2000; Cowan and Stricker,
2004; Fuhrmann et al., 2004; Muñoz-Cuevas et al., 2004; Regehr,
2012). Additionally, the recovery rate is frequency-dependent and
increases with higher stimulus frequencies (Cowan and Stricker,
2004; Fuhrmann et al., 2004). Type 2 synapses are capable of

relaying both information about the stimulus rate and its rate
change (Cowan and Stricker, 2004; Fuhrmann et al., 2004).

Previous work has largely focused on type 1 synapses that
might endow single neurons and neuronal networks with specific
capabilities. Type 1 synapses provide a gain control mechanism
resulting in improved sensitivity of neurons to small changes
in stimulus firing pattern (Abbott, 1997). Through simulations
of networks in primary visual cortex, type 1 dynamics of tha-
lamocortical synapses have been shown to precisely control the
oscillatory response (Paik and Glaser, 2010). These properties also
facilitate synchrony detection in a network (Senn et al., 1998). The
functional implications of type 2 synapses have not been widely
studied (but see Graham and Stricker, 2008; Scott et al., 2012).
Previous studies of synaptic dynamics have primarily focused on
its impact on information transfer in isolation, while neglecting
the postsynaptic dynamics in detail (London et al., 2008; Fung
et al., 2012).

As synaptic input is integrated at the postsynaptic side into a
sequence of action potentials, the variations in firing dynamics
also need consideration. The importance of studying both pre-
and post-synaptic dynamics together for a holistic understand-
ing of information processing has been recognized in the context
of the dynamics of long-term plasticity and intrinsic plasticity of
the postsynaptic membrane (Turrigiano et al., 1998; Xie et al.,
2006; Triesch, 2007). To address this issue, we adopt the simple
classification proposed by (Hodgkin, 1948)—class 1 and class 2
firing characteristics of a neuron (subsequently also called class
1 or 2 neuron). Class 1 firing is regular and there is a linear
relationship between injected current and firing rate. Class 2
firing on the other hand shows spike-frequency adaption and
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consequently a non-linear relationship between current and firing
rate. From a dynamical systems point of view, class 1 and class 2
neurons exhibit saddle node on a limit cycle and Hopf bifurca-
tions, respectively (Izhikevich, 2000). The rationale for adopting
this classification is similar to that for adopting a phenomeno-
logical description for modeling synaptic dynamics—the focus
is on functional dynamics without considering the physiological
mechanisms that define them.

Here, we consider all four combinations between types and
classes and study how pre- and post-synaptic properties together
determine whether the neuron functions as an integrator of
stimuli or a coincidence detector in the presence of synaptic
background noise. That the cell is quiescent with a stimulus gen-
erating sparse firing is supported by several experimental stud-
ies (Shadlen and Newsome, 1998; Brecht and Sakmann, 2002).
Further, we also study how each combination is affected by vari-
ations in noise properties and extent of depression exhibited by
synapses. This investigation is especially relevant in the context of
highly debated question of whether neurons use precise spike tim-
ings, thereby functioning as coincidence detectors or they work
more broadly using spike rates, thereby functioning as integra-
tors (Shadlen and Newsome, 1998; deCharms and Zador, 2000).
This question is also highly relevant to whether neurons are capa-
ble of acting as integrators in vivo where there is an increase in
background conductance due to synaptic activity (Rudolph and
Destexhe, 2001).

METHODS
STIMULUS
Each stimulus consisted of Ntot number of presynaptic spikes
delivered through Nsyn number of synapses (either type 1 or 2)
that relay excitatory postsynaptic potentials to the postsynaptic
neuron with either class 1 or 2 firing characteristics. As shown in
Figure 1, this stimulus was constructed as follows. Ntot Gaussian
random numbers were generated with the specified parameters.
Each of the generated numbers was assigned to a randomly
picked synapse. The sum of all synaptic stimulations, thus, had
a Gaussian distribution (in time). Simulations were performed
by repeated iterations using a Gaussian stimulus, which was com-
puted by distributing Ntot stimuli across Nsyn number of synapses
(see Figure 1A2). The timing of each presynaptic spike that com-
prises the stimulus was based on a Gaussian distribution with
the following two parameters, μstim and σstim where the former
is the mean of the stimulus distribution and the latter its stan-
dard deviation, subsequently also called dispersion. Specifically,
since presynaptic spike times are generated based on a Gaussian
distribution, this parameter signifies the time of stimulus peak.
Small values of σstim imply tightly synchronized presynaptic spike
arrivals while large values imply a less synchronized stimulus.

In order to facilitate comparison and interpretation of various
values, σstim and, in general, all values capturing a time quantity
were normalized by the membrane time constant τm. As an exam-
ple, if σstim = 0.1, dispersion of the stimulus is 10% of the time
constant. Since in a Gaussian distribution, 99.73% of all events
occur within three times the standard deviation on either side
of the mean, this implies that almost all presynaptic spikes arrive
within 60% of τm.

Synapse model
The phenomenological model used is an extension of that pro-
posed by Fuhrmann et al. (2004). Type 1 synapses show release-
dependent depression with a constant rate of recovery. Type 2
synapses show release-independent depression and a frequency-
dependent recovery rate. The model exhibits either type 1 or 2
dynamics depending on the parameter values.

The synaptic conductance (gs) due to a single synapse is
computed as:

gs(t) = USE(t) · Pv(t) · ASE

USE and PV represent the maximal response when all synapses
release their vesicles and probability of vesicle availability, respec-
tively. Their product corresponds to the fraction of available
vesicles that are released. ASE is the maximal conductance. The
variables in turn are governed by the following set of equations.
The first is,

dPV

dt
= 1 − PV

τVDD
− USE · PV ·

∑
Ntot

δ(t − tAP),

where τVDD is the time constant of the synaptic vesicle refilling
process, δ is the Dirac delta function and tAP is the time of arrival
of an action potential. The formulation of release-independent
depression is encapsulated with the variable USE being decre-
mented from an initial availability of U0 with a strength of SRID

followed by an exponential recovery with a characteristic time
constant τRID, i.e.,

dUSE

dt
= U0 − USE

τRID
− SRID · USE ·

∑
Ntot

δ(t − tAP).

In analogy, the frequency-dependent recovery of type 2 synapses
is captured by decrementing the recovery time constant with a
strength of SFDR upon the arrival of an action potential, i.e.,

dτRID

dt
= τ0 − τRID

τFDR
− SFDR · τRID ·

∑
Ntot

δ(t − tAP).

In other words, the recovery rate becomes faster following which
τRID approaches its original value with an exponential time
course governed by τFDR.

For excitatory synapses, typical model parameter values of
type 1 and 2 synapses were chosen based on parameter estimates
using experimental data of Fuhrmann et al. (2004).

The model has six parameters with values as specified in
Table 1.

Noise model
A noisy current IN , was injected into neurons and modeled as
an Ornstein–Uhlenbeck process (OUP) and approximated in dis-
crete time simulations using the method proposed by Gillespie
(1996), i.e.,

IN (n) =
(

1 − �t

τN

)
· IN (n − 1) +

(
σN

√
2�t

τN

)
G (0, 1),
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FIGURE 1 | (A1) Response of type 1 (top left) and type 2 (top right)
synapses to 30 Hz stimulation. For a current injection of 0.5 nA response
of class 1 (bottom left) and class 2 (bottom right) neurons are shown.
(A2) Illustration of stimulus. In the example, 1000 Gaussian-distributed
(in time) presynaptic spikes are relayed through 75 synapses.
(B) Synaptic conductance if synapses were static; σstim = 60 (B1) or
120 ms (B2). (C,F) Synaptic conductances with type 1 (C) synapses

and type 2 (F) synapses. (D,E) With type 1 synapses, raster of spiking
response over 1000 iterations for class 1 (D) and class 2 (E) neurons.
(G,H) With type 2 synapses, raster of spiking response over 1000
iterations for class 1 (G) and class 2 (H) neurons. Dashed line signifies
stimulus mean (μstim) while solid lines indicate response mean (μresp).
Gray boxes indicate ±0.5·σstim in (B,C, and F) and ±0.5 · σresp in
(D,E,G, and H).

where G(0,1) is a zero mean, unit variance Gaussian distributed
number. The sample time �τ was set to 0.2 ms. This noise is char-
acterized by the standard deviation (σN ) and the correlation time
(τN ) which indicates the time window within which correlations
in noise can be observed. As no two samples of white noise are
correlated, an increase in the correlation time window results in

greater “coloring” of white noise. τN was varied to study how it
interacted with short-term synaptic dynamics in shaping the neu-
ronal response properties. The standard deviation of the process
σN was set to a constant value of 50 pA and τN was varied in the
simulations. Action potentials generated were almost always due
to the stimulus and very rarely sole due to injected noise (<1%).
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Table 1 | Synapse parameters.

Parameter/Type Type 1 Type 2

U0 0.6 0.25

τVDD [s] 0.5 0.005

τFDR [s] 0.9 0.9

τ0 [s] 0.6 0.6

SRID 0 0.25

SFDR 0 0.30

ASE [nS] 1 1

RESPONSE
Each Gaussian stimulus comprising of several presynaptic spikes
was relayed to the postsynaptic neuron through dynamic
synapses. To explore the operating mode of the neuron, Nsyn

was varied between 75 and 125 in steps of 5 and the back-
ground noise correlation τn was varied between 50 and 100
in steps of 10. Ntot was set to 1000, unless mentioned other-
wise. For each parameter set, individual Gaussian stimuli were
repeated 5000 times and if the neuron spiked, the time of the
first action potential was recorded. Resulting peri-stimulus time
histograms (PSTHs) were characterized by a Gaussian distri-
bution of width σresp and with respect to the stimulus distri-
bution, shifted by a precession, tpre (see Figure 1). Timing of
only the first action potential was considered. While acknowl-
edging the potential of spike trains to encode information,
the focus of this study is on the encoding of stimulus infor-
mation in the timing, reliability, and dispersion of the first
action potential. Information encoded in repeated spiking is not
considered.

Neuron model
We used an adaptive integrate-and-fire model formulated by
Brette and Gerstner (2005); i.e.,

C
dV

dt
= f (V) − IW (t) − IN(t) − gS(t) · (V − Ee),

where V is membrane voltage, C is the membrane capacitance,
f (V) the function capturing the passive properties and the action
potential generation dynamics, Iw the adaptation current, IN the
injected noise, gS the synaptic conductance, and Ee the reversal
potential for excitatory synapses. f (V) is defined as:

f (V) = −gL · (V − EL) + gL · �T · exp

(
V − VT

�T

)
,

where gL is the leak conductance, EL the leak reversal, �T the
slope factor, and VT the spike threshold.

The adaptation current, IW , is generated as follows:

τW
dIW

dt
= a · (V − EL) − IW ,

where τw is the time constant determining the rate of spike fre-
quency adaptation. When an action potential is generated and the

Table 2 | Neuron parameters.

C [pF] 1000

gL [nS] 8

EL [mV] −70.6

VT [mV] −50.4

�T [mV] 2

τW [ms] 144

a [nS] 1 (class 1) or 8 (class 2)

b [nA] 0.0805

membrane potential (V) goes over the threshold (VT ):

V → EL

Iw → Iw + b

where b represents spike-triggered adaptation.
For class 1 neurons, the parameters were exactly those speci-

fied in Brette and Gerstner (2005), except that for class 1 and 2,
a was set to 1 and 8, respectively. The variable that mainly deter-
mines the class is the subthreshold adaptation variable a with the
spike-triggered adaptation variable b playing a more minor role
in our simulations (Touboul and Brette, 2008). See Table 2 for
parameter values of the neuron models.

Response characteristics
We define the following variables that capture the characteristics
of the spiking response, namely Niter as the total number of iter-
ations (set to 5000 in our simulations), Nresp as the number of
spikes evoked over all iterations, R as the reliability of spike gen-
eration, defined as the ratio of number of spikes evoked across all
iterations and the total number of iterations; i.e., R = Nresp/Niter,

tpre as the precession of the mean of response Gaussian distribu-
tion with respect to the stimulus distribution, normalized by the
membrane time constant τm, σresp as the width of the response
Gaussian distribution, again normalized by τm and ζ as the sharp-
ening of responses defined as the ratio between the stimulus and
response dispersions (σstim/σresp).

Definition of operating modes
We considered the two operating modes coincidence detector
and integrator. As an operational definition, we defined each
mode in terms of one or more response parameters. Coincidence
detectors were defined to be reliable (R > 0.75) only for tightly
synchronized stimuli (defined as, σstim/τm < 0.4) and other-
wise unreliable (R = 0.75). Thus, a coincidence detector is selec-
tively sensitive to synchronized inputs while failing to reliably
relay dispersed inputs. Integrators were defined as being reliable
over a range of stimulus synchronies (0.2 < σstim/τm < 1.2) but
requiring to exhibit a regular relationship between stimulus and
response dispersion. Thus, an integrator relays stimulus infor-
mation reliably with the response dispersion having a regular
relationship with stimulus dispersion.

Simulation
All simulations were done in Igor Pro 6.2 (WaveMetrics Inc.,
Lake Oswego, OR, USA) on a Windows 7 workstation. For the

Frontiers in Computational Neuroscience www.frontiersin.org April 2013 | Volume 7 | Article 41 | 4

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Mohan et al. Interaction of synaptic and neuronal dynamics

synapse model, the analytic solution was used instead of solv-
ing the differential equations (Scott et al., 2012). For the neuron
model, the differential equations were solved numerically using
a fourth order Runge–Kutta algorithm (Press et al., 2007). Five
thousand trials took approximately 1 h with a time step �τ =
0.2 ms. All analysis was done using custom routines written in
Igor Pro.

RESULTS
Type 1 synapses show release-dependent depression and constant
recovery rate while type 2 synapses show release-independent
depression with a faster recovery rate for higher presynaptic
spike rates. Figure 1A1 (top) shows these two examples stimu-
lated at 25 Hz. Type 1 synapses depress and rapidly reach the
steady state, the amplitude of which is inversely proportional to
the stimulus frequency (Cowan and Stricker, 2004; Fuhrmann
et al., 2004). Type 2 synapses on the other hand, depress but also
recover rapidly and hence exhibit a larger steady state response
the amplitude of which is more or less constant. Thus, it might
be expected that type 1 synapses are effective to relay low fre-
quency stimuli or high frequency stimuli that are highly syn-
chronous. Type 2 synapses might be expected to be able to relay
low and high frequency stimuli irrespective of the degree of
synchronization.

On the postsynaptic side, class 1 neurons fire regularly and
class 2 neurons show spike-frequency adaptation (see Figure 1A1;
bottom). The ability to generate the first action potential is higher
for class 2 neurons as the dynamics enables firing at arbitrarily low
frequencies. Thus, class 1 neurons might be expected to be able
to relay incoming stimuli irrespective of the degree of synchro-
nization. Class 2 neurons cannot relay highly synchronized (i.e.,
not dispersed) inputs because the latter cannot depolarize the
membrane sufficiently enough to counteract the hyperpolarizing
current present in class 2 neurons.

Both synaptic and postsynaptic dynamics have implications
in how presynaptic spike information is processed. This is illus-
trated in Figures 1C–H. As shown in Figure 1C, when a Gaussian
stimulus is transmitted through type 1 synapses, the peak of the
stimulus is shifted to the left (precession) in addition to a gen-
eral decrease in amplitude due to depression. No such precession
is observed with type 2 synapses (Figure 1F), which also depress
less. As a result, even if the stimulus arriving from presynaptic
neurons is the same, the response of class 1 differs depending on
whether the stimulus is transmitted through type 1 (Figure 1D)
or 2 synapses (Figure 1G). Similarly, the response of class 2 neu-
rons differs based on whether the stimulus is transmitted via
type 1 (Figure 1E) or 2 synapses (Figure 1H).

We systematically investigated the operating mode of a neu-
ron for all possible combinations between synaptic types (T) and
firing class (C); i.e., T1C1, T1C2, T2C1, and T2C2. In addition,
the impact of the number of synapses comprising the stimulus
and the injected background noise correlation was also studied.
The number of synapses was chosen as a parameter because the
extent of the number of synapses influences the amount of synap-
tic depression. The background noise correlation was included in
order to study the interaction with the time constants of synaptic
depression and recovery.

T1C2 ALLOWS FOR COINCIDENCE DETECTION
As predicted, the response of a neuron with class 2 firing receiv-
ing inputs through type 1 synapses is largely reliable for highly
synchronous stimuli (smaller σstim). A reliable response is, by def-
inition, when R > 0.75 (shaded regions in Figures 2A2 and 2B2).
As the stimulus becomes more dispersed (increasing σstim), reli-
ability decreases rapidly. This property is robust to variations in
noise correlation and number of synapses. Dispersion of stimulus
largely determines response precession (Figures 2A1 and 2B1).
This property is also robust to variations in noise correlation and
number of synapses for stimulus dispersion, σstim <0.8.

Varying the synapse number while keeping τn to 50 ms reveals
the extent to which presynaptic depression dynamics shape
the response properties of the neuron. For example, if Ntot =
Nsyn, each synapse will, on average contribute only one event
to the total stimulus. Since the first response of all synapses
is identical and depression is apparent only from the second
stimulus onwards, no effects of depression can be observed
in this case. As the value of Nsyn is decreased, each synapse
receives a greater number of presynaptic spikes to the total
stimulus and hence, the responses are subject to more depres-
sion. With changing synapse number, the ability for coinci-
dence detection of the T1C2 configuration remains unaltered.
Precession is largely determined by the stimulus dispersion
(Figure 2B1). However, reliability is dependent on the number
of synapses (Figure 2B2). A decrease in the number of synapses
(increase in number of presynaptic spikes delivered to each
synapse) results in greater overall depression and hence reduces
reliability.

REMAINDER OF THE CONFIGURATIONS ARE LARGELY INTEGRATORS
Responses were reliable (R > 0.75) through out the range of sim-
ulated stimulus dispersions (0.1–1.4) for T1C1, T2C1, and T2C2
configurations. For T1C1, the reliability was primarily deter-
mined by the stimulus dispersion when the noise correlation
was varied, keeping Nsyn = 1.0 (Figure 3A1). Moreover, relia-
bility did not decrease dramatically as demonstrated by T1C2
configuration, i.e., the coincidence detector. For varying number
of synapses (with τN = 50 ms), the reliability was determined by
the stimulus dispersion and the number of synapses. As might
be expected with an increasing number of synapses, reliabil-
ity drops slightly (Figure 3A2) due to increased depression of
type 1 synapses. Simultaneously increasing stimulus dispersion
also improves reliability of response.

For integrators, an increase in stimulus dispersion must result
in an increase in response jitter. We investigated this by comput-
ing the slope of this relation for various parameters. The relation
between stimulus dispersion and response jitter was always more
or less linear with varying slopes. For various values of noise
correlation and synapse number, we computed the slope and
plotted them against noise correlation (Figure 3D1) and num-
ber of synapses (Figure 3D2). T2C1 and T2C2 exhibited more
or less similar slopes. Given that type 1 synapses depress rapidly,
a surprising result was that the T1C1 configuration exhibited
the steepest slope. This suggests that both pre- and postsy-
naptic dynamics together determine the operating mode of the
neuron.
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FIGURE 2 | Cellular response with varying number of synapses and

background noise correlation. (A) Contour plots showing precession (A1)

and reliability (A2) of response Gaussian distribution with respect to the
stimulus distribution and changing background noise correlation (Nsyn set
to 100). Contour lines join points of equal value thus indicating regions in the
two-dimensional parameter space (stimulus synchrony vs. noise correlation)

in which an response characteristic of the system is similar even while
parameter values change. In addition, contour lines are useful in visualizing
regions which are lesser or greater than a specified value. (B) Contour plots
showing precession (B1) and reliability (B2) of response Gaussian
distribution with respect to the stimulus distribution and synapse number
(τN is set to 50 ms).

T1C1: PRESERVES SYNCHRONY MOST EFFECTIVELY
To study how the four configurations preserve stimulus syn-
chrony in their response jitter, we investigated the behavior of
response sharpening, ξ = σstim/σresp. Strictly speaking if ξ < 1,
the response of the neuron does not preserve stimulus syn-
chrony. Instead, the response jitter is more desynchronized than
the stimulus. If ξ = 1, stimulus synchrony is preserved. If ξ > 1,
response synchronization is greater than that of the stimulus;
i.e., synchrony is enhanced. We define the region 0.5 < ξ < 1.5
as preserving the stimulus synchrony in the response jitter. For
T1C1 configuration, this region is larger (Figures 4A1 and 4A2)
than for T2C1 (Figures 4B1 and 4B2) and T2C2 configurations

(Figures 4C1 and 4C2). For T2C1, the area is least com-
pared to the other two configurations. T2C2 shows the highest
sharpening, which is robust to variations in noise correlation
(Figure 4C1) and number of synapses (Figure 4C2). This is
consistent with previous work (Pinto et al., 1996; Marella and
Ermentrout, 2008), which suggests that class 2 neurons show
a greater tendency toward stochastic synchronization than class
1 neurons.

T1C1 neurons show the greatest preservation of stimulus syn-
chrony, especially as dispersion of stimulus increases. An increase
time constant of noise correlation results in an increase in the
preservation of synchrony (ξ tends toward 1 or lower).
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FIGURE 3 | Reliability of the cellular response with varying number of

synapses and background noise correlation. (A) Contour plots reliability
for varying noise correlation (A1) and number of synapses (A2) for class
1-type 1 configuration. (B) Contour plots showing reliability for varying

noise correlation (B1) and number of synapses (B2) for class 2-type 1
configuration. (C) Contour plots showing reliability for varying noise
correlation (C1) and number of synapses (C2) for class 2-type 2

(Continued)
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FIGURE 3 | Continued

configurations. In all of the above contour plots, when noise correlation is
varied, Nsyn is set to 1000 and when number of synapses is varied, τN is set
to 50 ms. (D) Analysis of the slope of relationship between stimulus
synchrony and response jitter. Graphs are plotted with the number of
synapses (D1) or the noise correlation (D2) systematically changing along the

abscissa with the corresponding slope plotted along the ordinate. (D1) For
Nsyn = 100 and τN = 50, plot showing the relationship between number of
synapses and ratio between response and stimulus dispersion. A straight line
was fit and the slope computed. This was repeated for all parameter values
to obtain relationship between number of synapses and the slope (D2) for
T1C1 (solid), T2C1 (dashed), and T2C2 (dotted).

In order to explore the preservation of stimulus disper-
sion by T1C1, we studied the behavior of response sharpen-
ing (ξ) for three different total numbers of presynaptic spikes,
Ntot = 500, 750, and 1000. As the total number of spikes
increases, the area under the contour indicating synchrony preser-
vation progressively decreases. For 500 stimuli, this area is
largest (Figures 5A1 and 5A2) with the area decreasing for 750
(Figures 5B1 and 5B2) and even more for 1000 (Figures 5C1
and 5C2). For highly synchronized stimuli (σstim/τm < 0.5),
synchrony preservation was primarily determined by noise cor-
relation and only to a much lesser extent by the number of
synapses comprising the total stimulus. Type 1 synapses depress
rapidly, especially when relaying highly synchronous stimuli at
a high frequency. Thus, the response to a change in stimulus
to the neuron after depression is minimal and hence it has lit-
tle effect on synchrony preservation. But for a less synchronous
stimulus, preservation of synchrony is dependent on the num-
ber of synapses. Type 1 synapses are in a less depressed state and
hence small changes in synchrony are relayed to the postsynap-
tic neuron. Note that even though the area indicating synchrony
preservation varies for different number of stimuli, the maximum
sharpening for highly synchronous stimuli remains roughly the
same (3.2–3.6). This suggests that for a small number of stim-
uli, synchrony preservation is more robust to variations in noise
correlations and number of synapses.

T2C1: MOST RELIABLE INTEGRATOR
For T2C1, responses were always reliable (R = 1) when either
noise correlation or number of synapses was varied (Figures 3B1
and 3B2). This is explained by the fact that type 2 depress
less than type 1 synapses. Moreover, they undergo frequency-
dependent recovery and hence are much more capable of reliably
relaying presynaptic spikes to the neuron. But this property is not
entirely dependent on synapse type alone. For T2C2, responses
were reliable (R > 0.75) when noise correlation or number of
synapses was varied (Figures 3C1 and 3C2). But reliability is
not as perfect as with class 1 neurons. This is because class 2
neurons have a hyperpolarizing current, which reduces the fir-
ing an action potential; i.e., reliability. Thus, while synapses with
smaller depression can influence a configuration to function as an
integrator, synapse type alone does not govern operating mode.
For example, class 2 neurons receiving type 1 synapses function
as coincidence detectors (see above), but when class 1 neurons
receive type 1 synapses, the operating mode is that of an integra-
tor. Thus, operating mode of a configuration is set synergistically
by both synaptic and neuronal dynamics.

T2C2: MAXIMUM RESPONSE SHARPENING
For T2C2, we studied the behavior of response sharpening (ξ)
for three different total numbers of presynaptic spikes, Ntot—500,

750, and 1000 (see Methods). For 500 stimuli, this area is small-
est (Figures 6A1 and 6A2) and increasing for 750 (Figures 6B1
and 6B2) and 1000 stimulus (Figures 6C1 and 6C2). For highly
synchronized stimuli (σstim/τm < 0.5), sharpening influenced by
both variations noise correlation and the number of synapses
comprising the total stimulus. This result is expected because with
a greater number of spikes, the reliability of responses increases
and resulting in a decrease in output dispersion.

DISCUSSION
In order to explore the interaction of short-term depression with
neuronal firing dynamics in setting the operating mode of the
neuron, we studied four canonical combinations of pre- and
postsynaptic dynamics. Type 1 synapses show release-dependent
depression and constant rate of recovery. They are capable of
encoding the stimulus rate change in the response amplitude.
Type 2 synapses, on the other hand show release-independent
depression, and recover faster at higher rates. They are capable of
maintaining substantial response amplitudes even at high stim-
ulus rates. For the postsynaptic dynamics, we considered class 1
neurons that fire regularly and class 2 neurons, which exhibit
spike-frequency adaptation. The first action potential response of
all four possible combinations (T1C1, T1C2, T2C1 and T2C2)
to a stimulus that was Gaussian distributed in time was charac-
terized. We also investigated the sensitivity of these responses to
correlations in background noise and to the number of synapses
comprising the stimulus.

We found that the combination T1C2 can be characterized
as a coincidence detector while the other three combinations
were integrators each with specific features: T2C1 was an inte-
grator with greatest reliability, T1C1 an integrator with greatest
preservation of synchrony and T2C2 and integrator with great-
est response sharpening. Specifically, the degree of reliability
and preservation of synchrony varied across these integrators.
The sensitivity to noise correlation and the extent of synaptic
depression were different.

Though the results are based on simulations using models
of dynamical synapses as well as neurons, we believe that our
results capture the interactions realistically for the following rea-
sons, Firstly, the synaptic dynamics are based on fitting the chosen
model to EPSCs recorded in pairs of neurons in vitro (Scott et al.,
2012). Individual EPSC peak conductances were set at 1 nS, a
value that has been determined experimentally and modeled as
alpha synapses with a decay time constant of 1 ms, which is sim-
ilar to experimentally measured values (Stricker et al., 1996). In
addition, varying the extents of type of classes did not system-
atically change the results in a qualitative sense (data not shown).
We tested if it was indeed the adaptation current in class 2 neurons
that produced the dynamics or whether an increased conductance
of class 1 neurons might be sufficient to reproduce the effect.
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FIGURE 4 | Sharpening of the cellular response with varying number of

synapses and background noise correlation. (A–C) Heat plots showing
response sharpening for varying noise correlation (A1) and number of
synapses (A2) for T1C1, T2C1, (B1 and B2), and T2C2 (C1 and C2)
configurations. In all of the above heat plots, when noise correlation is varied,

Nsyn is set to 100 and when number of synapses is varied, τN is set to 50 ms.
Scaling of the heat plot is linear from values of 0.5 to 8. The white line in
(A1,A2, and B1) is an isocline with a value of 1.5. The area circumscribed by
this isocline encompasses sharpening values less than or equal to 1.5. The
corresponding area in the other graphs is negligible.

Increasing the conductance of a class 1 neuron did not repro-
duce operating modes that were obtained with class 2 neurons but
produced responses that were qualitatively similar to those with
class 1 neurons (data not shown). This is consistent with existing

work that suggests that increase an in conductance converts
class 2 into class 1 (Stiefel et al., 2008, 2009). Consequently, we
think that our results robustly reflect the dynamics between type
and class.
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FIGURE 5 | Sharpening of the cellular response of T1C1 with varying

number of synapses and background noise correlation. (A–C) Heat plots
showing sharpening for varying noise correlation (A1) and number of
synapses (A2) when total number of presynaptic spikes (Ntot; see Methods)
was set to 500, 750 (B1 and B2), and 1000 (C1 and C2). In all of the above

heat plots, when noise correlation is varied, Nsyn is set to 100 and when
number of synapses is varied, τN is set to 50 ms. Scaling of the heat plot is
linear from values of 0.5 to 8. The white line in all the above graphs is an
isocline with a value of 1.5. The area circumscribed by this isocline
encompasses sharpening values less than or equal to 1.5.

Secondly, the postsynaptic neuron had an effective neuronal
time constant of 60 ms (in the presence of synaptic background
noise), which is similar to experimentally measured values both
in vitro and vivo (Destexhe et al., 2003). For the cell to fire a

first action potential, typically about 45 synaptic events required
to be activated within 10 ms. For class 2 neurons, the adapt-
ing current resembled a slow potassium conductance. There are
two ways to interpret times of individual events that comprise
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FIGURE 6 | Sharpening of the cellular response of T2C2 with varying

number of synapses and background noise correlation. (A–C) Heat plots
showing sharpening for varying noise correlation (A1) and number of
synapses (A2) when total number of presynaptic spikes (Ntot; see Methods)
was set to 500, 750, (B1 and B2) and 1000 (C1 and C2). In all of the above

heat plots, when noise correlation is varied, Nsyn is set to 100 and when
number of synapses is varied, τN is set to 50 ms. Scaling of the heat plot is
linear from values of 0.5 to 8. The white line in all the above graphs is an
isocline with a value of 3.0. The area circumscribed by this isocline
encompasses sharpening values less than or equal to 3.0.

the stimulus. The first is to consider them presynaptic spike
arrival times. The second is to consider them presynaptic spike
times. Propagation delays are not considered and hence, if the
second interpretation is followed, precessions reported might be

systematically overestimated. Timing of only the first spike was
considered. Thus, our results are applicable in a context when
the membrane potential of a class 1 or class 2 neuron is near
threshold and presynaptic spikes are delivered through type 1 or
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type 2 synapses. In this study, information encoded in repetitive
spiking is not considered as it is affected not only by incoming sig-
nal but also back-propagating action potentials and steady state
dynamics.

EMERGENT PROPERTIES THROUGH INTERACTION OF PRE- AND
POST-SYNAPTIC DYNAMICS
An important question to answer is if the properties observed
were largely the result of either pre- or post-synaptic dynam-
ics alone or if these combinations gave rise to emerging char-
acteristics. We think the latter is the case for the following
reasons. Considering presynaptic dynamics separately, the pre-
diction might be that T1C1 and T1C2 are coincidence detectors
while T2C1 and T2C2 are integrators. In addition, combina-
tions with type 1 synapses will have reliable responses only
when inputs are sufficiently synchronized and combinations
with type 2 synapses will have reliable responses over a much
higher range of stimulus dispersion. In contrast, considering
firing dynamics separately, the prediction might be that T1C1
and T2C1 are integrators and T1C2 and T2C2 are coinci-
dence detectors. Furthermore, combinations with class 1 neurons
exhibit reliable responses over a wide range of stimulus dis-
persion and those with class 2 neurons require synchronous
inputs. Since class 2 neurons have a slow hyperpolarizing con-
ductance, stimuli have to be sufficiently short and strong to
evoke a response before the slow conductance is activated and
decreases the probability of an action potential. However, only
some of these predictions are correct. For instance, T1C2 is
a coincidence detector, but T1C1 is an integrator with great-
est synchrony preservation, even though presynaptic dynamics
remain the same. All four configurations have unique proper-
ties and hence not considering the contribution of either result
in an incomplete view of neuronal encoding. Intuitively, T2C1
is expected to be the most effective integrator and it is indeed
from the standpoint of reliability. But T1C1 is a more effec-
tive integrator from the standpoint of the relation between
stimulus dispersion and response jitter. Stimulus dispersion is
more effectively captured by the response dispersion. This can
be viewed as a tradeoff between synchrony preservation and
reliability.

Both pre- and post-synaptic dynamics contribute for a specific
operating mode to emerge. Our results suggest that a complete
characterization of neuronal encoding can be obtained only by
considering both pre- and post-synaptic dynamics together.

There is evidence for matching of synapse type with
firing class in the literature. For example, synapses in
layer IV show target-specificity with spiny stellates receiv-
ing predominantly type 1 synapses and star pyramids and
pyramids receiving predominantly type 2 synapses (Cowan
and Stricker, 2004). Such specificity has also been reported
in the lobster pyloric network where a disruption of speci-
ficity results compromised function (Mamiya and Nadim,
2005). Since each combination performs specific stimulus to
response transformations, a slight change in either synapse
type or neuron class can cause significant changes in infor-
mation processing of individual neurons and within the
network.

IMPLICATIONS FOR SYNCHRONIZATION AND CODING
The background noise correlation was found to be a critical deter-
minant of response sharpening (ξ) as preservation of stimulus
synchrony or its enhancement would have important conse-
quences for processing at the network level. When ξ > 1, stimulus
synchrony is enhanced by postsynaptic neurons and, thus, the
firing becomes more synchronized as excitation is transmitted
through subsequent layers (Marsálek et al., 1997). The signal
becomes temporally sharpened while losing information about
the stimulus dispersion (Gerstein et al., 1989). From the per-
spective of single neuron oscillations, if ξ is taken to indicate
the relation between successive cycles of oscillation, discharges
of neurons might become more synchronized (ξ > 1), con-
serve synchrony (ξ = 1) or progressively lose synchrony (ξ < 1).
While previous studies have considered either synaptic dynamics
(Mamiya and Nadim, 2005; McDonnell et al., 2012) or neuronal
dynamics (Ermentrout, 1996, 1998; Marella and Ermentrout,
2008) in shaping oscillatory dynamics in networks, there was vir-
tually no study exploring how these properties might together
determine synchronization of individual neurons and conse-
quently the network. In fact, we show that the combination T1C1
is best suited for preserving input synchrony. In this context,
T1C1 might aid in the preservation of asynchrony in a net-
work and might aid in encoding of network information through
desynchronization (Hanslmayr et al., 2012). But, in general, net-
work effects of integrator configurations are much harder to
speculate about without performing detailed simulations since
the larger time window of summation (when compared with the
integrators) allows for possible interactions with feedback con-
nections of a recurrent network and the timing of the second
action potential might be modulated by network effects. Even so,
our results for integrators do have relevance for network pro-
cessing since sharpening (see T1C1: Preserves Synchrony Most
Effectively and T2C2: Maximum Response Sharpening) and delay
to fire first action potential (data not shown) will influence the
overall network encoding.

TYPE AND CLASS MIGHT ENHANCE INFORMATION PROCESSING
For the purpose of this paper, both synapse type and firing
class were taken to be discrete properties. However, experimental
evidence shows that type 1 and type 2 synapses exist along a con-
tinuum between release-dependence and release-independence
and various experimental conditions can alter the extent of the
release-dependence (Cowan and Stricker, 2004; Fuhrmann et al.,
2004). Likewise, postsynaptic firing can vary smoothly between
class 1 and class 2 properties (Stiefel et al., 2008, 2009). In addi-
tion, both the synapse type (unpublished data) and the firing
class (Stiefel et al., 2008) can be altered concomitantly by neu-
romodulators like noradrenaline, and, thus, can be converted into
each other. Further, there is intrinsic variability in firing dynamics
among neurons of the same type (Schulz et al., 2006) that might
be critical for maximizing information content (Padmanabhan
and Urban, 2010). Our results suggest that variability in synapse
type and firing class allows for specific neurons in the same net-
work to capture and thereby encode different aspects of the stimu-
lus. For instance, combinations with T1C2 properties would act as
coincidence detectors. Upon exposure to a neuromodulator like
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noradrenaline, both type and class are converted to become
more T2C1-“like” and as a consequence, the same node in
the network would act now as an integrator with greatest reli-
ability. Any partial conversion along type and/or class would
allow for other features about the stimulus to be encoded.
For instance, the combination of T1C2 (coincidence detec-
tor) might be converted to a reliable integrator (T2C1) by

concomitant conversion of type and class due to adrener-
gic modulation. For the same condition, T1C1 (integrator
with greatest synchrony preservation) would be converted to
T2C1, an integrator with improved reliability but loss of syn-
chrony preservation. Thus, neurons in a network might be
tuned to capture and encode various stimulus properties of
interest.
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