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Controlling the movement of the arm to achieve a goal, such as reaching for an object,
is challenging because it requires coordinating many muscles acting on many joints.
The central nervous system (CNS) might simplify the control of reaching by directly
mapping initial states and goals into muscle activations through the combination of
muscle synergies, coordinated recruitment of groups of muscles with specific activation
profiles. Here we review recent results from the analysis of reaching muscle patterns
supporting such a control strategy. Muscle patterns for point-to-point movements can be
reconstructed by the combination of a small number of time-varying muscle synergies,
modulated in amplitude and timing according to movement directions and speeds.
Moreover, the modulation and superposition of the synergies identified from point-to-point
movements captures the muscle patterns underlying multi-phasic movements, such as
reaching through a via-point or to a target whose location changes after movement
initiation. Thus, the sequencing of time-varying muscle synergies might implement an
intermittent controller which would allow the construction of complex movements from
simple building blocks.
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INTRODUCTION
We perform reaching movements frequently and effortlessly, for
example when eating food or using a tool. Reaching is a proto-
typical goal directed behavior and, as such, has been investigated
extensively in human and non-human primates. Kinematic and
kinetic analyses of reaching have revealed invariant features sug-
gesting that the central nervous system (CNS) relies on simple
rules for movement planning and execution. For point-to-point
movements, hand paths are often roughly straight and tangen-
tial velocity is “bell-shaped” (Morasso, 1981). Moreover, paths
do not change much with speed (Soechting and Lacquaniti,
1981) or load (Lacquaniti et al., 1982; Atkeson and Hollerbach,
1985). Tangential velocity profiles have the same shape when nor-
malized for speed and distance. Moreover, shoulder and elbow
motions can be quasi-linearly related to each other (Soechting
and Lacquaniti, 1981; Lacquaniti et al., 1986), as are the corre-
sponding dynamic muscle torques, i.e., the net muscle torque
minus the torque required to counteract gravity (Gottlieb et al.,
1997).

In contrast, the analysis of the electromyographic (EMG)
activity recorded from many muscles acting on the shoulder
and elbow joints has revealed complex dependencies of the
shape and timing of the EMG waveforms on the movement
direction and speed. For reaching in vertical planes, the EMG
waveforms are constructed by combining components related
to both dynamic and gravitational torques (Flanders, 1991).
The waveform components responsible for the dynamic torques
(phasic activations) have an intensity and timing that change with

the movement direction in a complex manner: each muscle has
a distinct spatial and temporal pattern, with a recruitment inten-
sity which is maximal in multiple directions and a recruitment
timing that changes gradually across directions (Flanders et al.,
1994, 1996). Thus, there is an apparent discrepancy between the
kinematic/kinetic regularities of reaching movements and the
variability/complexity of the muscle patterns underlying their
control.

The control of reaching movements requires a sensorimotor
transformation of visual and proprioceptive information about
the target and the initial state of the arm into the coordinated
activation of many muscles acting on several joints. Because
the dynamic relationships between muscle activation and joint
torques and between joint torques and joint motions are com-
plex and non-linear, the control of reaching would seem as
a challenging task for the CNS (Bernstein, 1967). In robotics,
if the geometrical and inertial characteristics of the arm are
known or can be estimated precisely, inverse kinematics and
inverse dynamics can be used to compute joint angle trajecto-
ries and joint torque commands necessary to follow a desired
end-effector trajectory. Moreover, if fast sensing and actuation
is available, a desired joint angle trajectory can be executed
using feedback control. However, it is unlikely that the CNS per-
forms inverse dynamics computations explicitly. Moreover, the
CNS has to cope with substantial sensorimotor delays which
often make feedback control insufficient. One possibility that has
gained increasing support in recent years is that the CNS sim-
plifies the control of goal directed movements by implementing
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a direct mapping from the initial state of the arm and the goal
into appropriate muscle activity patterns through the combina-
tion of a few muscle synergies, that is, coordinated recruitments
of groups of muscles (Bizzi et al., 2002, 2008; Tresch et al.,
2002; Giszter et al., 2007; Ting and McKay, 2007; d’Avella and
Pai, 2010; Lacquaniti et al., 2012). Thus, muscle synergies are
thought to be stable and reproducible modules organized by
the CNS to take the role of “basis functions.” Support for a
modular control architecture has been provided in frogs (Tresch
et al., 1999; Saltiel et al., 2001; d’Avella et al., 2003; Hart and
Giszter, 2004, 2010; Cheung et al., 2005; d’Avella and Bizzi,
2005), cats (Ting and Macpherson, 2005; Torres-Oviedo et al.,
2006), monkeys (Overduin et al., 2008, 2012), and humans
(Krishnamoorthy et al., 2003; Ivanenko et al., 2004, 2005; d’Avella
et al., 2006, 2008, 2011; Torres-Oviedo and Ting, 2007) by
identifying a small number of muscle synergies whose combi-
nations explain a large fraction of the variation in the muscle
patterns.

Here we first review two notions of muscle synergies
commonly used to model the modular organization of muscle
patterns, that is, the time-invariant and time-varying muscle syn-
ergies. We then review recent results from the analysis of muscle
patterns recorded during reaching movements in humans indi-
cating that modulation and superposition of time-varying muscle
synergies is a key mechanism for the control of reaching. Time-
varying muscle synergies capture spatiotemporal features in the
reaching muscle patterns and provide a parsimonious description
of the changes of the muscle patterns across conditions, allow-
ing to reconcile the apparent discrepancy between kinematic and
kinetic regularities and muscle pattern complexity. Moreover, the
superposition and sequencing of time-varying muscle synergies
may underlie the intermittent control of complex, multiphasic
arm movements.

MUSCLE SYNERGIES
Muscle synergies are building blocks that can be used to con-
trol a task in different conditions by selecting a small number
of parameters. Synergies are building blocks because they cap-
ture a set of features in the muscle patterns that can be reused
across movement conditions. In the spatial domain, i.e., across
muscles, a muscle synergy captures a specific relationship in the
strength of activation of a group of muscles. In the temporal
domain, a synergy may capture time-invariant or time-varying
relationship among muscles. Considering D muscles, a time-
invariant synergy can be expressed as a D-dimensional vector w
of weighting coefficients specifying the relative activation level of
the muscles (Figure 1A). Then, a set of N synergies, [wi]i = 1,...,N ,
can be linearly combined to generate distinct muscle patterns
(Figure 1B):

m(t) =
N∑

i = 1

ci(t) wi (1)

where m(t) is a D-dimensional vector that specifies the activation
of each muscle at time t and ci(t) is the time-varying combina-
tion coefficient for the i-th synergy. Across movement conditions,
either the synergies wi or the activation coefficients ci(t), also
referred to as temporal components (Ivanenko et al., 2004), may

be invariant. A time-varying synergy, in contrast, is comprised by
a collection of muscle waveforms that can be expressed as a time-
varying vector w(t) (Figure 1C). In this case, the time dependence
of the muscle activations is captured by the temporal structure of
the synergies and by their onset times (ti) and Equation 1 can be
written as (Figure 1D) (d’Avella et al., 2003):

m(t) =
N∑

i = 1

ci wi(t − ti) (2)

The combination of time-varying synergies can be seen as a spe-
cial case of anechoic mixture model (Omlor and Giese, 2011).
Thus, time-varying synergies provide a parsimonious representa-
tion of the motor output because, once the synergies are given,
a few scalar amplitude and onset coefficients are sufficient to
specify the entire spatiotemporal structure of the muscle pattern.
In contrast, with time-invariant synergies the full time-series of
combination coefficients must be specified. When both types of
synergies are extracted from the same data, the spatial organiza-
tion of the time-varying synergies, given by the synergy wave-
forms averaged across time, closely matches the time-invariant
synergies (d’Avella and Bizzi, 2005). However, a larger num-
ber of time-invariant synergies is required to capture invariant
asynchronous activations across muscles (d’Avella et al., 2006).

SYNERGIES FOR FAST REACHING MOVEMENTS
The analysis of the muscle patterns for fast reaching move-
ments in 3D revealed that the complex dependence of the muscle
activation waveforms on movement direction results from the
combination of 4/5 time-varying synergies (d’Avella et al., 2006).
Muscle synergies were identified from the phasic muscle activa-
tion waveforms recorded from up to 19 shoulder and arm muscles
during fast point-to-point movements between a central loca-
tion and eight peripheral targets in both a frontal and a sagittal
plane. Phasic waveforms are the components of the EMG sig-
nal related to accelerating and decelerating the arm and were
computed by subtracting the tonic components responsible for
balancing gravitational forces and maintaining postural stability.
For each subject, an iterative optimization algorithm was used to
extract sets of synergies with an increasing number of elements
which minimized the average muscle pattern reconstruction error
across multiple directions (d’Avella and Tresch, 2002; d’Avella
et al., 2003). The number of synergies was determined, as a com-
promise between model parsimony and reconstruction accuracy,
observing the relationship between the amount of data varia-
tion explained by the model (R2) and the number of synergies.
The optimal number of synergies was selected as the number at
which the R2 curve had a change in slope, suggesting that addi-
tional synergies only captured small residual amounts of variation
attributable to noise.

Five synergies extracted in one subject (Figure 2A) illustrate
the typical basic features. Each synergy recruits a specific subset
of muscles with a similar biomechanical action (e.g., elbow flex-
ors in the first synergy, elbow extensors in the second synergy) but
each synergy involves muscles involving multiple joints (e.g., bra-
chioradialis and trapezius superior in the first synergy), and the
same muscle is often recruited by multiple synergies (e.g., medial
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FIGURE 1 | Concept of time-invariant and time-varying synergies.

(A) Three different activation balances among five muscles are expressed by
three vectors (wi ), whose components are represented by horizontal bars of
different lengths. (B) A time-varying muscle pattern [m(t)] is generated by
combining the synergies with time-varying scaling coefficients [ci (t)].
Different patterns can be obtained by changing the scaling coefficient
waveforms. (C) Each one of the two time-varying synergies illustrated is

composed by a collection of muscle activation waveforms. The profile inside
the rectangle below each synergy represents the mean activation waveform
for that synergy. (D) A time-varying muscle pattern [m(t)] is generated by
multiplying all waveforms of each synergy by a single scaling coefficient (ci ),
shifting them in time by a single delay (ti ), and summing them together.
Different patterns are obtained by changing two scaling coefficients and two
delays.

deltoid in the third, fourth, and fifth synergy). The synergy wave-
forms show synchronous bursts of activation in many muscles as
well as bi-phasic bursts (e.g., lateral head of triceps in the second
synergy) and asynchronous bursts (e.g., long head of biceps in the
second synergy). Some muscle waveforms have negative compo-
nents, indicating an inhibitory drive that reduces the activation of
that muscle due to excitatory drive from other synergies or tonic
components.

The reconstruction of the muscle patterns by synergy combi-
nation for movements in different directions occurs by recruiting
the synergies with different amplitude and at different times
(Figure 2B). For example, the muscle patterns for a forward
movement (first column) are generated by recruiting the second

plus the third synergy, and the fourth synergy with smaller
amplitude and later in time. The second and the third syner-
gies are also recruited in a downward movement (fourth column),
but with a different balance of activation and a different rela-
tive timing. Thus, different muscle patterns underlying reaching
movements with different kinematics are captured by selecting a
small number of parameters.

Plotting the dependence of the synergy amplitude coefficients
on the movement direction in a polar plot (Figure 2C) clearly
shows that synergy recruitment depends on movement direction
(directional tuning) and that each synergy has a specific direction
of maximal activation (preferred direction). In contrast to the
dependence of individual muscles (Flanders et al., 1996), in most
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FIGURE 2 | Muscle synergies for fast reaching movement. (A) A set of
five time-varying synergies, identified from the muscle patterns recorded
during point-to-point movements between one central location and 8
peripheral locations in the frontal and sagittal planes with a movement
duration below 400 ms. (B) The activation waveforms of 17 shoulder and
arm muscles for four movement conditions (columns) are reconstructed by
activating the five synergies with different amplitudes and at different
times and then by combining, muscle by muscle, the amplitude-scaled and
time-shifted muscle activation waveforms of each synergies. At the top of
the panel the gray areas represent the averaged EMG activity and the
solid black lines the synergy reconstruction. At the bottom of the panel,
the amplitude scaling coefficient ci of each synergy and movement
condition is represented by the height of a rectangle and the onset latency
ti and the duration of the synergy is indicated by the horizontal position of

the rectangle. The profile within each rectangle represents the mean
muscle waveform of each synergy i.e., they are scaled versions of the
waveforms shown below each synergy at the bottom of panel A. (C) The
amplitude coefficients (ci ) for all five synergies (color coded) across all
eight movement directions in the frontal (top) and sagittal (bottom) planes
are shown in a polar plot. Thus, for each movement direction, the
amplitude coefficient is indicated by the distance from the origin of a
colored marker in the corresponding direction. Such polar plots clearly
show that the amplitude coefficients are modulated by movement direction
(directional tuning) and that each synergy has a specific preferred direction
(direction of maximal activation). In most cases the directional tuning is
well captured by a cosine function (corresponding to a circle in the polar
plot). Adapted from (d’Avella et al., 2006) © 2006 by the Society of
Neuroscience, with permission.

cases the synergy coefficients have a single peak and, remarkably,
the directional tuning is well characterized by a simple cosine tun-
ing (d’Avella et al., 2006). Cosine tuning is characteristic of neural
activity in the motor system (Georgopoulos et al., 1982; Caminiti
et al., 1991) and represents an optimal encoding of motor com-
mands in terms of accuracy in presence of noise (Todorov, 2002)
and minimum effort (Fagg et al., 2002). Thus, the observed cosine
tuning of the synergy amplitude coefficients supports the role
of muscle synergies as a mechanism for implementing a simple,
direct mapping of movement goals into motor commands and
suggests that their recruitment may be encoded in motor cortical
areas (Overduin et al., 2012).

MODULATION OF PHASIC AND TONIC SYNERGIES WITH
MOVEMENT DIRECTION AND SPEED
If movement direction can be controlled by modulating the
recruitment of a few time-varying muscle synergies according to
a cosine directional tuning, is movement speed also related to
synergy recruitment in a simple way? The invariances observed

in the arm kinematics and present in the equations of motions
for an articulated arm suggest that a simple scaling rule might
be used to control speed. Reaching movements between two
given locations are executed at different speeds along an invari-
ant path (Soechting and Lacquaniti, 1981) by scaling in time the
entire motion (Atkeson and Hollerbach, 1985). Moreover, the
arm motion equations have the property that a solution is invari-
ant for changes in speed (i.e., the resulting joint motion follows
the same trajectory with a different time scale) if the dynamic
component of the torque profiles is scaled as the inverse of the
square of the time scale (Hollerbach and Flash, 1982; Atkeson
and Hollerbach, 1985). Thus, the CNS might control the speed
of a reaching movement between two locations simply by scaling
synergy activation according to movement duration. Such scaling
rule would have to be captured by a close-to-quadratic function
of the inverse of movement duration (notice, however, that joint
torque is related non-linearly to muscle activation).

The analysis of the muscle patterns for reaching in differ-
ent directions and with different speeds supports the notion of
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a simple scaling rule for speed control (d’Avella et al., 2008).
The patterns recorded during point-to-point movements in eight
different directions on the frontal plane with five different move-
ment durations, after scaling in time to equal movement dura-
tion, were reconstructed by the combination of three phasic and
three tonic time-varying muscle synergies. Phasic synergies, sim-
ilar in structure to the synergies identified only from the phasic
patterns of fast reaching movements and with a similar directional
modulation of amplitude and timing coefficients, were also scaled
in amplitude by movement speed. The synergy amplitude coeffi-
cients for movements in its preferred direction scaled with the
maximum speed of the movement according to a power law with
an exponent close to two (range over all synergies of five subjects:
1.4–2.7, median 2.0), i.e., approximately in accordance to the
torque scaling law. In contrast, tonic synergies, extracted from the
muscle pattern without any time-shifts, showed directional mod-
ulation in their amplitude coefficients but either non-significant
or weak speed dependence (exponent range: 0.1–0.6, median 0.3).
Thus, the modulation of a small number of time-varying mus-
cle synergies underlies the control of both direction and speed of
point-to-point reaching movements.

SUPERPOSITION AND MODULATION OF SYNERGIES FOR
MULTI-PHASIC MOVEMENTS
When reaching a set of different targets in sequence or a tar-
get whose location changes after movement initiation, movement
kinematics may be complex, with curved paths, and multiple
peaks in the tangential velocity. At the kinematic level, such
multi-phasic movements can be decomposed as a sequence of
superimposed sub-movements, each with the same features of
point-to-point movements (Flash and Henis, 1991). As the mus-
cle patterns for point-to-point movements are captured by the
combination of a few time-varying muscle synergies, are multi-
phasic movements constructed by a sequence of the same point-
to-point synergies? If superposition holds at the kinematic level,
because of the non-linear dependence of the muscle forces and
torques on the arm posture, one expects a simple superposition
of muscle patterns and muscle synergies not to hold. However,
synergies may provide a simple mechanism for generating the
muscle patterns underlying a multi-phasic movement by adjust-
ing a small number of control parameters. To test this hypothesis,
the muscle patterns recorded during reaching through a via-
point (d’Avella et al., 2006) and to a target changing location
after movement initiation (d’Avella et al., 2011) were analyzed
using time-varying muscle synergies identified in point-to-point
reaching. Indeed, the model of Equation 2 can be extended to
allow for the same synergy to be recruited at different, multi-
ple times. When multiple instances of point-to-point synergies
were fit to multi-phasic muscle patterns, they reconstructed the
muscle patterns with a level of accuracy comparable to that of
the point-to-point patterns. However, the recruitment of the
synergies, especially those underlying the second phase of the
via-point or target change movements, was adjusted with respect
to their recruitment in the corresponding point-to-point move-
ment. Indeed, the simple superposition of two, appropriately
aligned point-to-point patterns could not reconstruct the multi-
phasic patterns with the same accuracy as the synergies. Thus,

complex arm movements involving multiple phases appear to be
constructed by the modulation and superposition of the same
building blocks used for simple point-to-point reaching move-
ments. As time-varying muscle synergies represent an invariant
spatiotemporal component of a muscle pattern with a specific
duration, the superposition of a set of synergies recruited at
different times may be implemented by an intermittent controller.

MUSCLE SYNERGIES AND INTERMITTENT CONTROL
Sensory feedback is crucial for the control of accurate reach-
ing movements and an internal model of the dynamics of the
musculoskeletal system can be exploited to construct an opti-
mal feedback controller (Todorov and Jordan, 2002). However,
it might be challenging for the CNS to acquire such a model
explicitly and to perform the necessary computations. In con-
trast, an internal model sufficient for constructing an open-loop
controller may be acquired implicitly as a mapping from goals
and initial states into motor commands, and feedback might be
used for on-line adjustments and trial-to-trial adaptation. Muscle
synergies may then provide the basis functions that allow acquir-
ing and using such mapping quickly and efficiently by reducing
the number of parameters to be adjusted, stored, and retrieved.
An open-loop controller is used before feedback can be pro-
cessed (Woodworth, 1899; Keele and Posner, 1968), e.g., in the
initial phase or for brief movements. However, because of noise
and inaccuracy in the model, feedback-driven corrections are
required for accuracy. While it is often assumed that such correc-
tions are performed continuously, sensory feedback might also
be used intermittently to trigger discrete, open-loop corrections
(Doeringer and Hogan, 1998; Gawthrop et al., 2011; Loram et al.,
2011). In a synergistic controller, such intermittent corrections
may be simply implemented by re-using the mapping of goals
and states into synergy recruitment coefficients. Sensory feedback
may be processed continuously to update an estimate of the cur-
rent state and goal, necessary to prepare the synergy coefficients
for the appropriate correction. In addition, sensory feedback may
be used to construct an error signal which, possibly through a
threshold process, triggers a correction by recruiting a set of time-
varying synergies. As each synergy has a given duration, different
synergies or multiple instances of the same synergy may partially
overlap and generate a smooth movement that may appear to
be continuously controlled. The fact that the same set of mus-
cle synergies observed in fast point-to-point reaching movements
also appear to be recruited in via-point and target-change move-
ments, as reviewed above, supports the notion of a synergy-based
intermittent controller.

CONCLUSIONS
Reaching muscle patterns are reconstructed by the combinations
of a few time-varying muscle synergies. The complex changes of
the activation waveforms of individual muscle across movement
direction and speed are captured by the modulation in ampli-
tude and timing of these synergies according to simple rules,
such as amplitude cosine tuning for direction and time scaling
for speed. Multi-phasic reaching movements, such as reaching
through a via-point or toward a target whose location changes
after movement initiation, appear to be generated by sequencing
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and superimposing the same small set of muscle synergies identi-
fied in point-to-point movements. Thus, the regularities observed
in the muscle patterns across movement conditions suggest that
muscle synergies are building blocks used by the CNS to con-
trol goal directed movement. However, regularities may derive
from optimization or task constraints (Todorov and Jordan, 2002;
Tresch and Jarc, 2009; Kutch and Valero-Cuevas, 2012). Direct
support for muscle synergies as centrally organized building
blocks would come either from identifying their neural substrates
or by testing the prediction that motor adaptation must be more
difficult if it cannot be achieved recombining existing synergies
(d’Avella and Pai, 2010). Recent results in frogs (Hart and Giszter,

2010) and monkeys (Overduin et al., 2012) support a neural orga-
nization of muscle synergies both at the spinal and cortical levels.
Future investigations of adaptation after novel perturbations of
the musculoskeletal system either compatible or incompatible
with the synergies will help to clarify whether muscle synergies are
merely low-dimensional approximations of the muscle patterns
or building blocks organized by the CNS.
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