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Short term plasticity is a highly abundant form of rapid, activity-dependent modulation
of synaptic efficacy. A shared set of mechanisms can cause both depression and
enhancement of the postsynaptic response at different synapses, with important
consequences for information processing. Mathematical models have been extensively
used to study the mechanisms and roles of short term plasticity. This review provides
an overview of existing models and their biological basis, and of their main properties.
Special attention will be given to slow processes such as calcium channel inactivation and
the effect of activation of presynaptic autoreceptors.
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INTRODUCTION
Chemical synapses are highly specialized structures that enable
neurons to exchange signals, or to send signals to non-neural cells
such as muscle fibers. Even though there is a staggering diversity
of synapse morphologies and types in the brain, the fundamental
process of synaptic transmission is always the same. A presynap-
tic membrane potential depolarization, typically caused by the
arrival of an action potential, triggers the release of neurotrans-
mitter, which then binds to receptors that, in turn, generate a
response in the postsynaptic neuron.

A key quantity in neural circuits is the synaptic efficacy or
strength, which varies over time. Cellular processes such as long-
term potentiation and depression contribute to the patterning of
the nervous system during development, and are thought to con-
stitute the basis of learning and memory (Morris, 2003). Slow
and long-lasting homeostatic processes adjust synaptic strength
to maintain circuit activity within functional regimes (Turrigiano
and Nelson, 2004). In addition, a whole range of activity-
dependent processes exist that modulate synaptic efficacy con-
tinuously on very short time scales ranging from milliseconds to
minutes (for reviews, see Zucker and Regehr, 2002; Fioravante
and Regehr, 2011). Unlike long-term and homeostatic plasticity,
short term plasticity, the topic of this review, has a direct influence
on the computation performed by neural circuits as these dynam-
ics take place on the time scale of stimulus-driven activity, neural
computations and behavior.

Broadly, short term plasticity can be classified as synaptic
depression and facilitation. Depression refers to the progres-
sive reduction of the postsynaptic response during repetitive
presynaptic activity, while facilitation is an increase synaptic
efficacy. Each of these may be caused by a range of different
mechanisms with different time constants, and the two forms
are not mutually exclusive. For instance, a particularly well-
studied example of a strongly depressing synapse is the calyx
of Held, a giant synaptic terminal in the mammalian audi-
tory brainstem (Schneggenburger and Forsythe, 2006). A closer

look at the underlying mechanisms, however, reveals that the
response is also modulated by facilitation, which is however,
partially masked by depression. In fact, most synapses express
some combination of these two mechanisms, but with consid-
erable variability between different neuron types (Wang et al.,
2006).

The purpose of this review is to summaries models of short
term plasticity, to discuss their biological background and plausi-
bility, and to provide a guide for selecting an appropriate model
and level of detail. The focus here is on the mechanistic aspects of
these models, for a review of functional implications see Abbott
and Regehr (2004). The review begins with a reminder of the
main processes involved in synaptic transmission. Next, the vesi-
cle depletion model and its variants will be introduced as a
canonical model for short term plasticity. Finally, several addi-
tions to this class of models will be discussed that were required
to explain more recent experimental findings.

PRINCIPLES OF SYNAPTIC TRANSMISSION
Almost all factors contributing to short term plasticity are located
in the presynaptic terminal. To identify the relevant variables
required in models, we begin with a brief review of the main
events following the arrival of a presynaptic action potential
at a synapse, as illustrated in Figure 1. The site where synap-
tic transmission of neural activity is initiated is called the active
zone (AZ), a presynaptic morphological specialization where vesi-
cles containing neurotransmitter and proteins required for the
release process are clustered. The AZ is opposed by the postsy-
naptic density (PSD), an area that contains a large number of
different proteins implicated in synapse maintenance and plas-
ticity. In addition to a whole variety of structural and signaling
complexes, the PSD contains the bulk of the neurotransmitter
receptors mediating the postsynaptic response.

Neurotransmitter release from vesicles located at the AZ is
initiated by an elevation of the intracellular calcium concentra-
tion [Ca2+]i due to opening of voltage gated calcium channels
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Hennig Models of short term plasticity

FIGURE 1 | Schematic illustration of the main steps involved in

synaptic transmission, and of variables subject to use-dependent

modification. Symbols refer to quantities used in the model equations in
this review.

(VGCC). VGCCs are thought to be tightly co-localized with AZs,
such that the arrival of the presynaptic action potential causes an
increase of [Ca2+]i within a localized nanodomain from around
30 nM at rest to about 10–30 μM. This brief elevation of [Ca2+]i

increases the probability of vesicle fusion with the cell membrane
and subsequent release of transmitter into the synaptic cleft.
Hence the release probability p(t) is the first variable required
in a model of short term plasticity. Importantly, the relation-
ship between [Ca2+]i and release probability p is not linear, but
follows a steep power function relationship with an exponent
between three and four (Bollmann et al., 2000; Schneggenburger
and Neher, 2000; Lou et al., 2005). The release probability is often
modulated in an activity-dependent manner, hence it is expressed
as a function of time.

Electronmicrographs show that presynaptic terminals contain
vesicles filled with neurotransmitter. The release of a single vesi-
cle then constitutes the smallest signal (or quantum) that can be
transmitted to the postsynaptic neuron, which can be seen as
spontaneous miniature postsynaptic current at an unstimulated
synapse. Usually only a small fraction of the vesicles in the termi-
nal are located in close vicinity of the cell membrane at the AZ.
These vesicles are assumed to be release-ready or “primed,” while
the remaining are assumed to be on hold to replace empty vesi-
cles following transmitter release. The existence of anatomically
distinguishable vesicle populations has led to the concept of vesicle
pools: docked vesicles form the releasable pool and those in waiting
the reserve pool. The release process is termed excocytosis, which is
followed by the retrieval of empty vesicles through endocytosis,
and replenishment of vesicles on available release sites from the
reserve pool. There is evidence that more than two vesicle pools
may exist, which differ in release probability and retrieval rate
(Trommershäuser et al., 2003; Wölfel et al., 2007), which may be
due to their distance from VGCCs (Wadel et al., 2007). However,
the details of this matter are still debated and will not further
discussed here (for reviews, see Sudhof, 2004; Rizzoli and Betz,
2005).

Hence the second variable required in a synapse model is the
number of vesicles N(t) available for release. Again, as will be
discussed in more detail below, the number of release-ready vesi-
cles changes over time since the occupancy of the pool changes
during neural activity. Vesicle number and release probability
are the key ingredients for a model of presynaptic transmitter
release:

T(t) = p(t) · N(t) (1)

Here T(t) is the amount of transmitter released into the synaptic
cleft at time t. Simulating a highly realistic synapse model using
this expression would require a precise, time continuous model
of calcium influx and vesicle cycling. However, since the release
probability dramatically increases upon the arrival of a presy-
naptic action potential from a resting value of almost zero, it is
usually sufficient to update these quantities only once every time
a presynaptic action potential arrives.

Finally, the released transmitter diffuses through the synaptic
cleft and binds to receptors to generate a postsynaptic response,
the main quantity of interest in synapse models. Here, we focus
on the action of ionotropic receptors, which contain an ion chan-
nel that opens when transmitter is bound. The kinetics of such
a response is determined by the rates of transmitter binding and
unbinding and opening and closing of the channel, as well as tran-
sitions to and from desensitized states. The simplest model of this
process is when the postsynaptic conductance is proportional to
the amount of transmitter released:

g(t) = gmT(t) (2)

The peak conductance is denoted by gm. If the time course of
the response is relevant, for instance to distinguish between fast
AMPA receptor and slow NMDA receptor mediated transmission,
alpha functions, double exponential models, or simple kinetic
models are useful to model this process (Destexhe et al., 1994b;
Roth and Rossum, 2009).

Numerous studies have been devoted to assessing the release
probability and quantal content of synapses in various brain
areas and neurons types. As will be shown below, this is gen-
erally achieved through model-based analysis, which is possible
because the synapse models provide a good mapping between
experimental observables, usually the postsynaptic current and
its variance, and the underlying synaptic parameters. A com-
prehensive overview of parameters of a range of neuron types
assessed in this way can be found in a review by Branco and Staras
(2009).

THE VESICLE DEPLETION MODEL AND EXTENSIONS
VESICLE DEPLETION AS MAIN CAUSE OF SYNAPTIC DEPRESSION
The outline in the preceding section hints that presynaptic
vesicles are a limited resource, and that their depletion during
ongoing activity can lead to a suppression of the postsynap-
tic response. The first formal model of such a process was
published by Liley and North (1953), even before synaptic vesi-
cles were discovered by De Robertis and Bennett (1955). It
sought to explain synaptic depression during brief tetanic stim-
ulation of the rat neuromuscular junction, and was based on

Frontiers in Computational Neuroscience www.frontiersin.org April 2013 | Volume 7 | Article 45 | 2

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Hennig Models of short term plasticity

the assumption that releasable neurotransmitter is produced at
a limited rate. Tetanic stimulation was assumed to cause trans-
mitter depletion and a concomitant reduction in postsynaptic
response. This process is described by a simple first order kinetic
model:

dn(t)

dt
= 1 − n(t)

τr︸ ︷︷ ︸
replenishment

−
∑

j

δ(t − tj) · p · n(t)

︸ ︷︷ ︸
release

(3)

where n(t) is the occupancy of the release pool, bounded between
zero and one, τr the time constant of the vesicle replenishment,
and tj the presynaptic spike times. Note that in this and all follow-
ing equations, the dynamic quantity, here n(t), is evaluated before
the delta function [as in n(t − ε), here the ε is omitted for clarity].
The release term reduces the vesicle pool occupancy by T(t) =
p · n(t), which is proportional to the postsynaptic response (see
Equation 2). Experiments suggest that the recovery time con-
stant is typically in the order of seconds. Equation (3) describes
a continuous form of the model, which may be inappropriate for
synapses with a small number of releasable vesicles, as it is often
the case. Then a discrete form should be used where the release
pool occupancy n(t) is replaced by the vesicle number N(t). In
this case, a discrete form is also required to accurately model the
stochasticity of synapses.

This model predicts an exponential decay of the postsynap-
tic response during stimulation at a constant rate, and an inverse
relation between input frequency ν and steady state level of
depression n∞ = 1/(pντr + 1) (Figures 2A,E). It was found to
fit responses recorded from some depressing synapses very well
(Liley and North, 1953; Tsodyks and Markram, 1997), including
EPSCs during stimulation of the calyx of Held with in vivo-like
activity patterns (Hermann et al., 2009). However, often synapses
show substantial deviations. In particular, the steady state values
decrease more slowly with increasing frequency than the inverse
behavior predicted here.

SYNAPTIC FACILITATION
To explain such deviations from the deletion model, it was first
suggested by Betz (1970) to extend it by release probability facil-
itation that counteracts depression. Potential underlying mecha-
nism of facilitation are an accumulation of residual calcium in the
synaptic terminal (Atluri and Regehr, 1996; Blatow et al., 2003;
Felmy et al., 2003), which causes rapid VGCC facilitation (Katz
and Miledi, 1968; Borst and Sakmann, 1998; Cuttle et al., 1998;
Mochida et al., 2008). A simple phenomenological model of such
processes is to increase the release probability after each presynap-
tic spike (Betz, 1970; Varela et al., 1997; Markram et al., 1998):

dp(t)

dt
= p0 − p(t)

τf
+

∑
j

δ(t − tj) · af · (1 − p(t)) (4)

Here p0 is the baseline release probability, af the amount of facil-
itation per action potential and τf the recovery time constant.
The time constant is typically in the range of tens of milliseconds,
much faster than vesicle replenishment. Therefore, facilitation is

usually observed during more intense periods of activity. Steady-
state facilitation approaches p∞ = (p0 + νaf τf )/(1 + νaf τf ) for
a stimulus with constant frequency ν (Figure 2E).

The net effect of the combined model of facilitation and vesi-
cle depletion depends strongly on the basal release probability:
for a small p0, facilitation can have a substantial effect since it is
not masked by rapid vesicle pool depletion, and for large values
depression will dominate over depletion (Figure 2B). As a general
rule, it appears that synapses with a larger vesicle pool also tend
to have a higher release probability (Dobrunz and Stevens, 1997).
Hence facilitation is expected to be more dominant at “smaller”
synapses.

This extension of the depletion model can account quite well
for data where the simpler depletion model fails, in particu-
lar the relationship between stimulus frequency and steady-state
response amplitude (Varela et al., 1997; Markram et al., 1998). For
instance, a comprehensive survey of cells in the medial prefrontal
cortex has shown that this model can fit a wide range of different
behaviors encountered in such data sets, despite large variability
in the relative contribution of depression and facilitation (Wang
et al., 2006).

This depletion model with facilitation has become very popu-
lar as a canonical model for short term plasticity. It has, either in
the form given here (Equations 3, 4) or using a slightly different
set of equations as introduced by Tsodyks et al. (1998), been used
in many studies investigating the functional importance of short
term plasticity (see e.g., Abbott et al., 1997; Tsodyks et al., 1998;
Fuhrmann et al., 2002; Mongillo et al., 2008; Pfister et al., 2010).
As usual, however, a closer experimental investigation of synapses
has shown that this relatively simple and intuitive model lacks
potentially important detail, as will be discussed in the following
sections.

USE-DEPENDENT VESICLE REPLENISHMENT
An important observation at odds with the depletion model is
that vesicle replenishment can accelerate after intensive stimula-
tion. This effect was found to depend on an increase in intracel-
lular calcium concentration, and to occur in a physiological range
of input firing rates (Dittman and Regehr, 1998; Stevens and
Wesseling, 1998; Wang and Kaczmarek, 1998; Sakaba and Neher,
2001; Fuhrmann et al., 2004; Hosoi et al., 2007). Enhanced vesicle
replenishment can be included in the depletion model by adding
some form of activity-dependent component to Equation (3).
Two slightly different approaches have been proposed, both
capable of explaining the slow reduction in steady state depres-
sion for strong stimuli that the simple depletion model fails to
replicate.

The first model, introduced by Fuhrmann et al. (2004) to
reproduce depression at cortical synapses, was based on the idea
that presynaptic activity directly modulates the time constant τr

of vesicle replenishment in Equation (3) above:

dτr(t)

dt
= τr0 − τr(t)

τFDR
− aFDRτr(t) ·

∑
j

δ(t − tj) (5)

Here each presynaptic action potential reduces the time con-
stant by aFDRτr(t), which recovers to its resting value τr0 with
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A B C

D

GFE

FIGURE 2 | Summary of the key characteristics of the models discussed

in this review. (A–D) Postsynaptic response for the different models during
stimulation at different frequencies. (A) The vesicle depletion model
(Equation 3) predicts exponential decay of the response and an inverse
relation between stimulus frequency and steady-state amplitude. A higher
release probability causes faster and stronger depression [compare upper
and lower graph, see also panel (E)]. (B) The depletion model with facilitation
(Equations 3, 4) predict a transient response increase during high-frequency
stimulation. For a low basal release probability p0 the response remains
elevated (top graph), while for higher p0 vesicle depletion masks facilitation
[bottom graph, see also panel (E)]. (C) Use-dependent vesicle replenishment
(Equation 6) increases the steady-state response. (D) As panel (C), but with

added slow use-dependent suppression of release probability. Here the
postsynaptic response continues to slowly decay when the depletion model
reaches steady-state [compare (C) and (D)]. (E) Steady-state response
magnitude as a function of input frequency for the depletion model (circles)
and the depletion model with facilitation (dashed lines). (F) Same as (E), but
for the depletion model with use-dependent replenishment (UDE, circles) and
the UDE model with slow suppression of release probability (RS, dashed).
Note that the latter increases depression in particular at low frequencies. (G)

Occupancy of the releasable vesicle pool for the models in panel (F). It is less
depleted for the RS model as steady-state depression is mediated by the
reduction in release probability. Parameters: τr = 1 s, af = 0.3, τf = 0.2 s [no
facilitation in (C,D)], ae = 0.4, τe = 0.1 s, ai = 0.01, τi = 10 s.

a time constant τFDR in the order of hundreds of milliseconds.
A very similar model with a non-linear relation between intra-
cellular calcium concentration and recovery rate was proposed
to explain the different kinetics observed at hippocampal and
cerebellar synapses (Dittman and Regehr, 1998; Dittman et al.,
2000).

Alternatively, it may be assumed activity leads to a tempo-
rary enhancement of vesicle replenishment. This is based on the
observation that high-frequency stimulation causes a fast but
short-lived component of recovery from depression, which is
absent after weaker stimulation (Wang and Kaczmarek, 1998).

In these experiments, the recovery time course was fit by two
exponential functions, suggesting the combined action of at least
two processes. This can be modeled by augmenting a constant
background replenishment with a low rate (kr = 1

τr
) with an

activity-dependent component:

dke(t)

dt
= −ke(t)

τe
+ ae ·

∑
j

δ(t − tj) · (1 − ke(t)) (6)

This process is activated by presynaptic activity, leads to an incre-
ment ae of the replenishment rate for each action potential,
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and decays with a time constant τe in the range of 10–100 ms.
Equation (3) then becomes:

dn(t)

dt
= (kr + k̃eke(t))(1 − n(t))︸ ︷︷ ︸

rreplenishment

−
∑

j

δ(t − tj) · p(t) · n(t)

︸ ︷︷ ︸
release

(7)

where k̃e is the peak rate of activity-dependent vesicle replen-
ishment. This model predicts weaker steady-state depression at
high frequencies (Figures 2C,F), and has been shown to rather
accurately reproduce the vesicle pool kinetics (Hosoi et al., 2007)
and steady-state behavior at the calyx of Held (Wong et al., 2003;
Hennig et al., 2008).

The biophysical mechanism behind use-dependent vesicle
replenishment is still not well understood. It appears clear that it
depends on calcium influx (Wang and Kaczmarek, 1998; Sakaba
and Neher, 2001; Hosoi et al., 2007), but it has been diffi-
cult to experimentally disentangle the role of calcium-dependent
vesicle recruitment and calcium-dependent endocytosis, perhaps
because most studies so far used extremely strong and unphysio-
logical stimuli to deplete the vesicle pool. A recent study suggests
that these two processes may in fact be linked, and that perhaps
the speed at which release sites are made available by endocy-
tosis is an important rate limiting step during high frequency
transmission (Yao and Sakaba, 2012). Use-dependent replenish-
ment may then reflect faster recruitment due to more efficient
endocytosis.

A main function of this mechanism appears to maintain the
ability of a synapse to transmit during sustained periods of high
activity (Wong et al., 2003; Hosoi et al., 2007). It is as such an
important, and often overlooked component of short term plas-
ticity that has implications for transmission of varying firing
rates. In addition, it has been suggested to improve transmission
by broadening the range over which information about rate and
rate changes are reliably transmitted (Fuhrmann et al., 2004; Yang
et al., 2009). Which of the two models discussed here is more
appropriate is unclear. The difference between the two models
is that enhanced replenishment is unbounded in Equation (5),
but bounded in Equation (6). Hence the former predicts a faster
decrease of the steady state response amplitude with increasing
frequency, which more quickly settles to a constant value. It is
therefore possible that it underestimates the amount of depres-
sion at some synapses, but this would require a more exhaustive
comparison with data.

SLOW MODULATION OF RELEASE PROBABILITY
A further omission of the depletion model is that activity-
dependent release probability suppression may also contribute to
synaptic depression (Xu and Wu, 2005; Mochida et al., 2008).
Potential mechanisms include VGCC inactivation (Forsythe et al.,
1998; Patil et al., 1998) or activation of presynaptic autoreceptors
such as mGluRs or AMPARs, which in turn can cause a reduc-
tion of the release probability (Takahashi et al., 1996; Takago
et al., 2005). A possible molecular route of such effects is cal-
cium/calmodulin (Lee et al., 1999). Postsynaptic release of endo-
cannabinoids has also been shown to suppress synaptic strength

over short time scales, but the mechanisms are currently not well
understood (Brenowitz and Regehr, 2005). Overall, the degree to
which these mechanisms are relevant under physiological condi-
tions is still not fully understood. For instance, release probability
suppression has been reported to strongly contribute to synap-
tic depression during weak activity at the calyx of Held (Xu and
Wu, 2005), but this effect may be more pronounced at imma-
ture synapses were morphological development renders synaptic
transmission is less effective (Renden et al., 2005; Nakamura et al.,
2008).

A generic model incorporating both release probability
facilitation and depression can be constructed by extending
Equation (4) by an activity-dependent modulation of the baseline
release probability p0 (Billups et al., 2005; Hennig et al., 2008):

dp0(t)

dt
= − p̃0 − p0(t)

τi
−

∑
j

δ(t − tj) · ai · p0(t) (8)

Here the baseline release probability p0(t) is reduced by a constant
fraction ai after each spike, and recovers back to p̃0 with a time
constant τi in the order of several seconds. Then depression of
release probability is proportional to the incoming spike rate. An
alternative form, which models the activation of autoreceptors,
is to replace the term on the right-hand side with

∑
j δ(t − tj) ·

aa · p0(t) · p(t) · n(t). In this case, depression of release probabil-
ity is release-dependent. Combinations of both mechanisms are
also possible, as shown by Hennig et al. (2008). In combination
with the depletion model and facilitation (Equations 3 or 6, and
Equation 4), this model can account for a slow form of depres-
sion that follows initial rapid vesicle depletion (Figures 2D,F),
as observed at GABAergic synapses (Kraushaar and Jonas, 2000)
or the calyx of Held (Hennig et al., 2008) during prolonged
stimulation.

The analysis of the steady-state behavior the model reveals
an interesting further property (Hennig et al., 2007). If the
release probability is assumed to vary slowly compared to the
effective vesicle replenishment rate k̃e, the quasi-stationary solu-
tion of Equation (3) with use-dependent vesicle replenishment
(Equation 6) is n∞pc = k̃e(1 − n∞), where the index c indicates
that pc is constant over the time interval considered, and we
obtain n∞ = ke/(pc + ke). This solution is valid when all fast pro-
cesses (e.g., facilitation) have settled to their stationary values.
If the release probability is now changed by a small amount to
p

′
c = αpc , then the vesicle pool occupancy settles to a value that

differs by a factor of n
′
∞/n∞ = (pc + ke)/(αpc + ke).

Hence a slow reduction in release probability will not only
slowly depress the postsynaptic response, but also increase the
size of the releasable vesicle pool (Figure 2G). This corresponds
to a transfer of depression from vesicle depletion to a reduction
of release probability. The net effect is a decrease in postsynap-
tic response that is slower than the change in release probability,
and a concomitant refilling of the vesicle pool. Analysis of synap-
tic depression at the calyx of Held during prolonged stimulation
support this conclusion, and suggest that it is, in part, mediated
by mGluR autoreceptor activation (Billups et al., 2005; Hennig
et al., 2008).
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A CLOSER LOOK AT RELEASE PROBABILITY
A central variable in the models discussed is the release probabil-
ity, and so far the effect of activity was assumed to be linear. This
is however, incompatible with the steep non-linearity that couples
presynaptic calcium influx to release rate (Bollmann et al., 2000;
Schneggenburger and Neher, 2000; Lou et al., 2005). If we assume
that the effects of facilitation and depression discussed above such
as accumulation of residual calcium, channel facilitation or inac-
tivation, have a linear effect on the calcium concentration, this
non-linearity would predict a far more drastic effect on the release
rate. In fact, early studies already found that a third to fourth-
power relationship is a better model for facilitation than a linear
model (Zengel and Magleby, 1982).

An analysis of synaptic depression at the calyx of Held by
Xu and Wu (2005) further confirms this intuition. This study
suggested that depression during slow stimulation (in the range
between 1 and 10 Hz) is primarily mediated by a reduction
in calcium influx, while vesicle depletion is only effective at
higher frequencies. Interestingly the model presented in the pre-
ceding section qualitatively reproduces this effect. As shown in
Figure 2F, slow depression of release probability has a significant
effect at low frequencies when compared to an equivalent deple-
tion model, which becomes weaker with increasing frequency.
However, as shown above this model also predicts that the depres-
sion at higher frequencies is still due to reduced release proba-
bility, which replaces vesicle depletion during sustained activity.
There is some experimental evidence based on fluctuation analy-
sis in support of this hypothesis (Hennig et al., 2008), but it will
be interesting to see if alternative vesicle depletion models can also
account for these findings.

AUGMENTATION AND POST-TETANIC POTENTIATION
Augmentation and post-tetanic potentiation are two slowly devel-
oping and long-lasting forms of synaptic enhancement (Fisher,
1997; Zucker and Regehr, 2002). They are induced by prolonged
stimulation of the synapse, and vary in their activation and relax-
ation kinetics. The faster form, with time constants of seconds, is
typically referred to as augmentation, whereas post-tetanic poten-
tiation operates on time scales of tens of seconds. It appears that
these processes are caused by an increase in release probability,
which can be occluded by depression due to vesicle depletion dur-
ing ongoing stimulation (Habets and Borst, 2007). While early
studies proposed accumulation of residual calcium at the synap-
tic terminal as a primary mechanism (Zengel and Magleby, 1982;
Zucker and Lara-Estrella, 1983; Habets and Borst, 2007), more
recent work also implicated PKC activation (Korogod et al., 2007)
or calmodulin/CaM kinase II activity (Fiumara et al., 2007).

A model which could account for a range of findings in data
from the frog and toad neuromuscular junction was proposed by
Zengel and Magleby (1982). They proposed that facilitation (F),
augmentation (A) and post-tetanic potentiation (P) affect release
probability in a multiplicative manner:

P(t) ∝ F(t)A(t)P(t) (9)

Each process follows first order kinetics, and facilitation was best
captured by including a fast and a slow component (see also

Zucker and Lara-Estrella, 1983). While facilitation required
a fourth-power relationship between the corresponding state
variables and release rate, it was sufficient to assume a linear
dependence for augmentation and potentiation. This points to
different potential sites of action of these mechanisms as outlined
above. In addition, it was found that augmentation increases with
longer stimuli. This was modeled by including a time-dependent
increase in activation rate a = a0zνT (where ν is the stimulus
frequency, T is stimulus time and z a constant), but could also
indicate the presence of multiple first-order processes acting on
different time scales (Drew and Abbott, 2006; Hennig et al., 2008).
For instance, activation of presynaptic NMDA receptors has also
been shown to enhance release probability, with a time course in
the order of minutes (Duguid and Smart, 2004).

So far, few theoretical studies have investigated the implica-
tions of slow enhancement of release using detailed models. A
simple, phenomenological model based on Equation (4) above,
where time constants were chosen in the range of augmentation,
suggests a potential role in short term memory (Mongillo et al.,
2008).

THE OTHER SIDE: RECEPTOR DESENSITIZATION
The time course of the postsynaptic response depends not only
on the amount of released transmitter and its time course, but
also on the kinetics of the receptors. The interplay of these fac-
tors with synapse morphology has been investigated in great detail
with Monte Carlo simulations (Stiles et al., 1996; Franks et al.,
2003; Coggan et al., 2005; Postlethwaite et al., 2007), which are
in particular useful to understand the sources of variability at
synapses. The semi-quantitative models discussed in this review
cannot easily accommodate this level of detail, but can still be
extended to include salient aspects of the postsynaptic response
(Destexhe et al., 1994a; Roth and Rossum, 2009).

Apart from the response latency and duration, desensitiza-
tion is an important property of receptors which has been shown
to contribute to synaptic depression during physiological activ-
ity levels (Trussell et al., 1988, 1993; Jones and Westbrook, 1996;
Neher and Sakaba, 2001). A simple but effective approximation
of the state of the population of receptors D(t), can be modeled
using first order kinetics:

dD(t)

dt
= 1 − D(t)

τD
−

∑
j

δ(t − tj) · aD · p(t) · n(t) · D(t) (10)

The quantity D(t) represents the fraction of non-desensitized
receptors. Recovery from desensitization τD is typically in the
order of tens of milliseconds, such that it is only effective dur-
ing intense episodes of activity. The postsynaptic response is then
expressed as R(t) = gmD(t) · n(t) · p(t), where gm is the peak
conductance.

This basic model captures synaptic depression due to desensi-
tization well. In particular, simulations have shown that a main
effect is the masking of presynaptic facilitation at high stimu-
lus frequencies (Jones and Westbrook, 1996; Wong et al., 2003).
Yet in this form the model obviously neglects the time course
of the postsynaptic potential, which can also be affected by
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desensitization. To model this, it is possible to extend it by adding
more states, such as closed, open and desensitized, and to model
state transitions in a transmitter concentration-dependent man-
ner as a Markov process. Such models have been proposed to
better account for the kinetics of the postsynaptic response, in
particular for kinetics of different receptor subunit composition
(Destexhe et al., 1994a; Robert et al., 2005; Postlethwaite et al.,
2007). A drawback of this approach is that this also requires an
appropriate model of the time course of neurotransmitter seen
by the receptors, which has to be obtained by more detailed dif-
fusion models (see e.g., Franks et al., 2003; Postlethwaite et al.,
2007). Finally it is also worth mentioning that potentially other
postsynaptic mechanisms exist that contribute to short term
plasticity, which have not yet been investigated in models. For
instance, AMPA receptors can show an increased paired-pulse
facilitation during activity-dependent relief of polyamide block
(Rozov and Burnashev, 1999). This effect is potentially impor-
tant at immature synapses lacking the GluR2 AMPA receptor
subunit.

STOCHASTICITY OF SYNAPSES
Transmitter release is a stochastic process, and as a consequence
the magnitude of the postsynaptic current evoked by each presy-
naptic action potential fluctuates from time to time. Due to
the quantal nature of synaptic transmission, the variance of the
postsynaptic response is described by binomial statistics, with
a predicted variance of Var(g(t)) = gm · N(t) · p(t) · (1 − p(t))
(Del Castillo and Katz, 1954). This shows that changes in the
synaptic parameters due to short term plasticity will not only
cause changes in the average postsynaptic response, but also in
the magnitude of the fluctuations, as measured by the coefficient
of variation:

CV(g(t)) =
√

1 − p(t)

N(t)p(t)gm
(11)

This value is high when the release probability or the number
of release-ready vesicles is small, as, for instance, often found
for cortical neurons (Wang et al., 2006; Brémaud et al., 2007).
The expression also shows that stochastic effects are bound to be
more important when synaptic depression is dominated by vesi-
cle depletion. In addition, the entire vesicle cycle, which includes
vesicle replenishment, consists of stochastic events. In contrast,
the influx of calcium during an action potential, which triggers
transmitter release, is considered a much more salient event, and
is therefore expected to contribute much less to postsynaptic
response variability. To model the main sources of stochasticity
of synaptic, the models discussed above can be directly cast into a
stochastic form by simulating vesicle release and replenishment as
random events (see e.g., de la Rocha and Parga, 2005; Yang et al.,
2009; Rosenbaum et al., 2012).

Stochastic models are extremely useful for quantitative eval-
uation of models of synaptic transmission and plasticity, since
postulated changes in N and p have predictable effects on vari-
ability that can be directly tested experimentally (see e.g., Quastel,
1997; Scheuss and Neher, 2001; Brémaud et al., 2007). This type
of analysis requires a careful dissection of synaptic function, since

for instance conductance changes through receptor desensiti-
zation may be mistaken for presynaptic effects if not properly
controlled for. Recent work exploiting this approach provided
evidence for substantial variability of synaptic parameters for
synapses between cortical pyramidal neurons, the presence of
multi-quantal release (Loebel et al., 2009), and the coordina-
tion of pre-synaptic release probability and postsynaptic synaptic
strength (Hardingham et al., 2010).

Studies investigating stochastic synapse models have reported
several effects indicating that this also has important implications
for neural computations and network function. For instance, shot
noise due to stochastic release can increase the output firing
rate of a neuron operating in a fluctuation driven regime when
compared to deterministic dynamics (de la Rocha and Parga,
2005). The same study also showed that short term depression
in stochastic synapses causes a further, non-monotonic modula-
tion of output firing in presence of input correlations (see also
Rosenbaum et al., 2012). Such effects were further analyzed by
Rosenbaum et al. (2013), who showed that, unlike for a deter-
ministic model, a stochastic synapse with short term depression
can significantly de-correlate neural activity. Finally, an analysis
of stochastic models including slow release probability modula-
tion and activity-dependent vesicle replenishment suggested that
multiple mechanisms of short term plasticity may act synergis-
tically to maintain stable information transmission over a broad
range of input frequencies (Yang et al., 2009). Overall, however,
the models used so far to analyze stochastic effects were mostly
rather simple, typically only the depletion model was considered,
and assumed constant random inputs to the neuron (see Merkel
and Lindner, 2010, for an extension).

OUTLOOK
Theoretical models have contributed much to our understanding
of synaptic transmission and short term plasticity by providing
a framework to express conceptual models in rigorous terms, and
to derive quantitatively testable hypotheses. The models discussed
here capture the central biophysical processes involved in synap-
tic transmission in relatively simple mathematical form, such that
an exact or at least approximate analytical treatment is possible.
Moreover, key variables in these models have direct measurable
correlates. This supports analysis and comparison with data, as
often exploited for deriving synaptic parameters from experi-
mentally recorded synaptic currents. It is however not straight
forward to experimentally interfere with short term plasticity
in intact neural circuits in a targeted manner, for instance to
assess functional implications and consequences. Therefore, these
models are also a valuable tool that enables analysis beyond the
experimentally feasible.

The basic depletion model with facilitation has passed the test
of time, which nicely illustrates the success of simple, mathemat-
ically tractable phenomenological models in biology. However,
as shown here, short term plasticity can be more complicated.
In particular slow forms of synaptic depression and facilitation
merit more thorough investigation, both in terms of mechanisms
and their relevance for neural computations. While the deple-
tion model can very successfully replicate even synaptic responses
during in vivo-like activity patterns (Hermann et al., 2009),
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slow synaptic modulation may have important effects during
firing rate modulation on time scales of tens of seconds (see
e.g., Mongillo et al., 2008). A combination of slow facilitation
and depression has also been shown to support differential
responses to time varying stimuli (Barak and Tsodyks, 2007).
These studies show that these mechanisms certainly warrant
further investigation.

As shown in this review, even the extended and more complete
models of short term plasticity have a relatively simple mathemat-
ical form, which will greatly facilitate the understanding of their
effects in networks. Perhaps a central question in this context is
in how far the different mechanisms discussed here have direct
functional implications, or rather reflect the biophysical proper-
ties and limitations of chemical signaling between neurons. Some
of the studies touched upon above and in the previous section
suggest the former may be the case (for a more detailed discus-
sion, see e.g., Abbott and Regehr, 2004). On the other hand it is

equally plausible some aspects of short term plasticity may related
to homeostatic effects or metabolic efficacy of synapses, issues
that have received little attention so far and are now easily testable
in models. Addressing such questions may require the analysis
of the models under more physiologically relevant conditions.
For example, recent experiments indicate that unreliable synapses
with short term plasticity are particularly suited to transmit infor-
mation contained in brief bursts of activity typically observed in
hippocampus (Rotman et al., 2011). Therefore, modeling stud-
ies specifically investigating synapses in their “natural habitat” of
recurrent networks should allow us to refine and consolidate such
hypotheses, and to establish more of the much sought-after links
between neural biophysics and brain function and dysfunction.
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