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The burst-suppression pattern is well recognized as a distinct feature of the mammalian
electroencephalogram (EEG) waveform. Consisting of alternating periods of high ampli-
tude oscillatory and isoelectric activity, it can be induced in health by deep anesthesia as
well as being evoked by a range of pathophysiological processes that include coma and
anoxia. While the electroencephalographic phenomenon and clinical implications of burst
suppression have been studied extensively, the physiological mechanisms underlying its
emergence remain unresolved and obscure. Because electroencephalographic bursting
phenomenologically resembles the bursting observed in single neurons, it would be rea-
sonable to assume that the theoretical insights developed to understand bursting at the
cellular (“microscopic”) level would enable insights into the dynamical genesis of bursting
at the level of the whole brain (“macroscopic”). In general action potential bursting is the
result of the interplay of two time scales: a fast time scale responsible for spiking, and
a slow time scale that modulates such activity. We therefore hypothesize that such fast-
slow systems dynamically underpin electroencephalographic bursting. Here we show that
a well-known mean field dynamical model of the electroencephalogram, the Liley model,
while unable to produce burst suppression unmodified, is able to give rise to a wide vari-
ety of burst-like activity by the addition of one or more slow systems modulating model
parameters speculated to be major “targets” for anesthetic action. The development of a
physiologically plausible theoretical framework to account for burst suppression will lead to
a more complete physiological understanding of the EEG and the mechanisms that serve
to modify ongoing brain activity necessary for purposeful behavior and consciousness.
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1. INTRODUCTION
Prior to the development of the modern intensive care unit in
the early 1960s, that featured intubation, artificial respiration, and
comprehensive physiological monitoring, reports of the electroen-
cephalographic pattern of burst suppression (BS) were confined
to animal studies involving deep anesthesia and the occasional
case of psychosurgery (Niedermeyer, 2009). Since then the burst-
suppression pattern has become well recognized as a major diag-
nostic feature of the EEG waveform that is encountered in a range
of encephalopathic conditions, in addition to its appearance in
health during deep anesthesia. Typically the BS pattern consists of
bursts of high amplitude slow, sharp, or spiking electroencephalo-
graphic activity separated by periods of electroencephalographic
suppression (isoelectricity). The oscillatory features of the bursts,
together with their duration and the duration of suppressed peri-
ods show a high degree of variability (see Figure 1 for examples)
that presumably reflects its myriad of initiating causes. First iden-
tified during deep anesthesia with tribromoethanol in cats (Der-
byshire et al., 1936), labeled burst-suppression pattern by Swank
and Watson (1949) during barbiturate and ether anesthesia in
dogs, it is now associated with cortical deafferentation (Henry
and Scoville, 1952), cerebral anoxia and hypoxia, various types
of intracortical lesions (Fischer-Williams and Cooper, 1963), deep

coma, various infantile encephalopathies, the final stages of deteri-
orated status epilepticus (Treiman et al., 1990), hypothermia, and
high levels of many sedative and anesthetic agents (Schwartz et al.,
1989; Akrawi et al., 1996).

Burst suppression in the absence of anesthesia is in general
associated with a very poor prognosis. For example in neonates
(Grigg-Damberger et al., 1989) the appearance of BS, even if tran-
sient, is a portent of death or severe neurodevelopmental disability.
In contrast, in adult populations while an anoxic/hypoxic BS pat-
tern signals a serious pathophysiological event the outcome is not
necessarily fatal and recovery with or without severe neurological
damage is possible (Niedermeyer, 2009). Consistent with this are
results of experimental work with EEG monitoring in rats reveal-
ing that animals with greater rates of high amplitude bursts have a
better survival and neurological outcome compared to those with
lower rates of low amplitude bursts (Geocadin et al., 2002).

While the electroencephalographic phenomenon and clinical
implications of BS have been studied extensively (Brenner, 1985;
Niedermeyer, 2009) the physiological mechanisms underlying its
emergence remain in general unresolved and obscure.

Burst suppression is typically thought to be spatially homoge-
neous with burst onset and termination reported to occur near
simultaneously across the entire scalp (Brenner, 1985; An et al.,

Frontiers in Computational Neuroscience www.frontiersin.org April 2013 | Volume 7 | Article 46 | 1

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/about
http://www.frontiersin.org/Computational_Neuroscience/10.3389/fncom.2013.00046/abstract
http://www.frontiersin.org/Computational_Neuroscience/10.3389/fncom.2013.00046/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=DavidLiley&UID=63160
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=MattWalsh&UID=60543
mailto:dliley@swin.edu.au
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Liley and Walsh Mesoscopic modeling of burst suppression

FIGURE 1 | Example traces of electroencephalogram and
electrocorticogram illustrating the heterogeneity of BS patterns.
(A) Changes in neocortical electroencephalogram in the rat, recorded
using dural surface electrodes, in response to a 5 mg/kg/min thiopental
infusion [figure reproduced with permission from Lukatch and MacIver
(1996)]. (B) Electroencephalogram recorded in acute anoxia showing a
clear burst-suppression pattern with grouped spikes [figure reproduced
with permission from Hockaday et al. (1965)]. (C) BS pattern during
closed loop target controlled propofol infusion at a target level of

approximately 15µg/ml (data courtesy of Professor Michel Struys,
Groningen). Note the bursts consist of fast activity (>10 Hz) on a slow
wave background. (D) Electrocorticogram obtained from an adult
merino sheep during deep enflurane anesthesia, demonstrating high
amplitude spikes interspersed with isoelectric periods of variable
length [figure reproduced with permission from Voss et al. (2006)]. (E)
Electroencephalogram recorded from a 3-month-old infant suffering
from infantile myoclonic encephalopathy [reproduced with permission
from Niedermeyer (2005)].
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1996; Ching et al., 2012), indicating that low level subcortical
mechanisms may be playing a decisive role. However arguing
against this is the fact that this pattern persists subsequent to corti-
cal deafferentation (Lukatch and MacIver, 1996), indicating that it
probably represents an intrinsic, though physiologically abnormal,
dynamical mode of cortex. Indeed the phenomenal resemblance of
the patterns of BS to disorders of neuronal hyperexcitability sug-
gests the involvement of similar physiological mechanisms. For
example the bursting during burst suppression is often associated
with myoclonic jerks resembling those seen during epileptic fits.
Like generalized epileptiform activity, bursts are recorded simul-
taneously at multiple electrode derivations, implying the wide
synchronization of neuronal activity.

At the cellular level a commonly reported finding is that hyper-
polarization of the membrane potential of cortical neurons reli-
ably precedes any overt electroencephalographic activity of BS
(Steriade et al., 1994). Such hyperpolarization, which has been
attributed to an increase in neuronal membrane potassium con-
ductance (Steriade et al., 1994), has been hypothesized to play a
major role in the induction of BS. This implied importance of
inhibition in the genesis of BS is further supported by results
involving rat neocortical brain slice micro-EEG preparations in
which the application of a direct acting GABAA agonist, musci-
mol, readily induces BS. However contradicting this result is work
reporting that inhibition is diminished during isoflurane-induced
BS, in an in vivo feline preparation, as evidenced by increases in
cortical neuronal input resistance and extracellular chloride con-
centration (Ferron et al., 2009). Of course it may be that slow
periodic modulations in inhibition, rather than singular increases
or decreases in inhibition, underpin BS. In support of this view
is the recent model of Ching et al. (2012), in which alterations
in brain metabolism, due to the effects of hypoxia or anesthesia,
parametrically regulate an activity dependent slow modulation of
an adenosine triphosphate-gated potassium channel conductance
to give rise to BS. However modulations in inhibitory activity
alone may not be sufficient to account for BS and more consider-
ation might need to be given to other mechanisms. For example
Kroeger and Amzica (2007) present empirical evidence suggest-
ing that modulations in excitatory synaptic efficiency, due to the
progressive depletion of interstitial calcium during the periods of
high amplitude electroencephalographic activity and its recovery
during isoelectric periods, might account for BS. Consistent with
this are reports involving laboratory slice preparations in which
burst suppression induced by thiopental, propofol, and isoflurane
is abolished by the application of glutamate receptor antagonists
(Lukatch and MacIver, 1996). Whatever the pathophysiology of BS
is it is reasonably clear that it is unlikely to be accounted for by a
unitary physiological perturbation. That the physiological factors
identified to date in BS all lead to a single well defined state sug-
gests the possibility of an unifying dynamical mechanism. Thus
the best hope for progress in understanding the phenomena of BS
may be theoretical.

How might we theoretically approach BS? The well studied
dynamical mechanisms of action potential bursting (Izhikevich,
2007) may be able to provide vital insights into the mechanisms of
bursting in the EEG. In general the dynamical mechanisms under-
lying bursting can be divided into two broad classes (i) fast-slow

bursters in which there is a clear separation of the underlying
time scales, with a fast system responsible for the fast spiking, and
a slow system its slow modulation, and (ii) “hedgehog” bursters
(Izhikevich, 2000) in which there is no clear separation of time
scales. In terms of developing a theory of BS the former might
represent the preferable starting point as the little empirical evi-
dence that is available (Ching et al., 2012), at least in humans,
suggests that alphoid activity, indicative of normal resting EEG, is
preserved during the bursts of BS. Thus a theoretical starting point
to understanding BS might be to consider the slow modulation of
a dynamical system developed to describe the resting EEG.

One such dynamical system is the mesoscopic electrocortical
model of Liley et al. (Liley et al., 1999, 2002, 2011; Bojak and Liley,
2005; Frascoli et al., 2011). This model is capable of accounting
for a range of resting electroencephalographic phenomena that
includes the alpha rhythm (Liley et al., 2002), the modulation of
resting activity by sedative and anesthetic action (Bojak and Liley,
2005) as well as the proconvulsant properties of the latter (Liley
and Bojak, 2005), all within a physiologically plausible/admissible
parameter space. This model is therefore well suited as a founda-
tion from which to explore the physiological and dynamical genesis
of BS. However, because in this model rhythmogenesis emerges
from a strong coupling between cortical excitatory and inhibitory
population activity, in its present form it has a restricted ability to
exhibit BS through the parametric separation of time scales, either
through the simulated actions of anesthetics or through other
parametric routes. Here we show that BS can however emerge in
this model by the addition of a slow system driven by one or more
of the originally defined mean fields. We speculate that such a
slow system represents a mathematical ansatz for the slow neuro-
modulation of activity by a variety of intracortical, inter-cortical,
and subcortical systems that include thalamus and the ascending
neurotransmitter modulatory systems.

2. MATERIALS AND METHODS
2.1. MESOSCOPIC MEAN FIELD MODELING OF ELECTROCORTICAL

ACTIVITY
The electroencephalogram and electrocorticogram arise out of
the cooperative activity of many thousands of neurons. A sin-
gle electroencephalographic electrode records the synaptically
induced currents of well over a 100,000 neurons (Nunez and Srini-
vasan, 2005) and thus detailing each neurons contribution to this
summed activity would appear superfluous. For this reason it is
preferable instead to model the activity of populations of neurons.
One general way of achieving this, in which known stochastic fluc-
tuations can be included, is to dynamically evolve the probability
distributions associated with the states of the neuronal ensemble.
While in principle providing a rigorous way forward the formula-
tion of such stochastic equations of motion entails a great deal of
physiological uncertainty. For this and other reasons (Deco et al.,
2008) a more resolute path is to dynamically evolve some average
quantity such as the mean soma membrane potential or the mean
firing rate of some suitably defined neuronal ensemble. In this
manner a mesoscopic level model can be developed which acts as
a bridge between cellular (or microscopic) level activity and whole
brain (or macroscopic) level behavior. While the current math-
ematical approach for formulating the equations of motion for
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the activity of neuronal populations or masses, stems principally
from the works of Wilson and Cowan (1972, 1973), Nunez (1974),
Freeman (1975), and Amari (1975), they are not particularly suc-
cessful in articulating the genesis of rhythmic activity in the EEG
and its modulation by pharmacological agents, due to a range of
mathematical simplifications that cannot be justified by an appeal
to physiology. For this reason a range of biologically more refined
neuronal populations models have been developed (Deco et al.,
2008) that form a more appropriate basis from which to model
the physiological genesis of the electroencephalogram. The model
of Liley et al. (Liley et al., 1999, 2002, 2011; Bojak and Liley, 2005;
Frascoli et al., 2011) is one such model and will be the focus of our
attempts to account for the phenomenon of BS.

The model of Liley et al. is able to account for the major features
of the mammalian electroencephalogram in the context of a para-
meterization that accords with physiological measurement and
experiment. Because it aims to provide a dynamical description
of the electroencephalogram the model is spatially coarse-grained
over the approximate extent of a cortical macrocolumn, reflecting
the general physiological wisdom that such columniation signi-
fies populations of neurons having similar functional behavior
and anatomical connectivity. The multiple interactions between
individual neurons are replaced by effective feed-forward and feed-
back interactions between the mean activity (or mean fields) of
excitatory and inhibitory populations of neurons over the spa-
tial extent of the column. In this way mammalian neocortex is
conceived as consisting of localized populations of excitatory and
inhibitory neurons interacting by all possible combinations of
feed-forward and feed-back connectivity interacting globally via
long-range excitatory connections (Figure 2).

Thus the response of the mean soma membrane potential
hk (k = e, i) at position r on a two-dimensional cortical sheet,
in response to induced post synaptic activity Ilk (l = source,
k = target population) is given by

τk
∂hk(r , t )

∂t
= hr

k − hk(r , t )+
∑
l=e,i

h
eq
lk − hk(r , t )∣∣heq

lk − hr
k

∣∣ Ilk(r , t ) (1)

The postsynaptic response to a single pre-synaptic action
potential (at t = 0) is modeled by the well-known synaptic alpha
function of cable theory as 0lkγ lkt exp(1− γ lkt )2(t ) where 0lk

is peak amplitude (occurring at t = t peak= 1/γ lk) of the respec-
tive excitatory (l = e) or inhibitory (l = i) postsynaptic potential
(PSP), and 2(t ) is the Heaviside step function. Thus we assume
that the time course of the synaptically induced excitatory and
inhibitory currents is described by a critically damped oscillator
driven respectively by the mean rate of incoming excitatory and
inhibitory axonal pulses:(

∂

∂t
+ γlk

)2

Ilk(r , t ) = exp(1)0lkγlk Alk(r , t ), (2)

with

Aek(r , t ) = N β

ek Se [he(r , t )] + φek + pek(r , t ), (3)

and

Aik(r , t ) = N β

ik Si[hi(r , t )] + pik(r , t ), (4)

FIGURE 2 | Schematic overview of the essential intracortical and
cortico-cortical interactions between excitatory and inhibitory
neuronal populations in the model of Liley et al. (Liley et al., 1999,
2002, 2011; Bojak and Liley, 2005; Frascoli et al., 2011). Following
conductance based approaches typically used to model networks of
synaptically interacting networks of individual model neurons, excitatory
and inhibitory neuronal populations are modeled as single passive
resistive-capacitive compartments into which all synaptically induced
postsynaptic currents flow. Functionally these populations are equivalent to
the excitatory and inhibitory KO sets of Freemans K-set hierarchy (Freeman,
1975). Cortical activity is then described by the mean soma membrane
potentials of the spatially distributed excitatory (he) and inhibitory (hi)
neuronal populations. The connection with physiological measurement is
obtained through he, which is assumed to be linearly related to the surface
recorded electroencephalogram (Freeman, 1975; Nunez and Srinivasan,
2005). Figure reproduced with permission from Frascoli et al. (2011).

where Alk comprises the different sources of pre-synaptic spikes:

N β

lk Si (input from local cortical neuronal populations),φek (input
from long-range excitatory cortico-cortical fibers), and plk (extra-
cortical sources). While the present consensus is that extra-cortical
sources (thalamo-cortical afferents) are purely excitatory in nature
and thus pik= 0, we choose to retain these terms as when time
independent they can be utilized to include the effects of tonic
inhibition that are known to be induced by anesthetic action. The
time courses of the synaptically induced currents, 1/γ lk are taken
to describe the time course of “fast” excitatory [l = e: α-amino-3-
hydroxl-5-methyl-4-isoxazole-propionate (AMPA) and kainate]
and inhibitory [l = i: γ -amino-butyric-acid type A (GABAA)]
neurotransmitter kinetics. Thus each type of PSP (excitatory,
inhibitory) is described by two parameters 0lk, γ lk. However, as
we will describe later, a parametrically more flexible description
of the PSP is required to meaningfully model the effects of anes-
thetics in which we can independently vary peak amplitude, rise
(t peak) and decay times. Mean neuronal population firing rates,
Sl, are assumed to instantaneous sigmoid functions of the mean
soma membrane potential i.e.,

Sl [hl(r , t )] = Smax
l /{1+ exp[

√
2(hl(r , t )− µ̄l/σl)]} (5)

The axonal pulses φek propagated by the exclusively excitatory
long-range cortico-cortical fiber system is in the simplest case
described by the following two-dimensional telegraph equation,(

∂

∂t
+ vek3ek

)2

φek(r , t )−
3

2
v2

ek∇
2φek(r , t )

= v2
ek3

2
ek N α

ek Se [he(r , t )] (6)
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where N α
ek is the total number of excitatory connections formed by

long-range cortico-cortical axons on long on local population k,
and assumes a single axonal conduction velocity vek and an expo-
nential fall off with distance (characteristic scale= 1/3ek) of the
strength of cortico-cortical connectivity. For simplicity, and given
the fact that at least in anesthesia BS appears to have a degree of spa-
tial uniformity, we chose to only study the spatially homogeneous
case, i.e.,52

= 0.
Equations (1)–(4) and (6) represent a system of 8 coupled

non-linear partial differential equations that typically defines the
Liley model of electrocortical rhythmogenesis, which is capable of
reproducing the main features of spontaneous human electroen-
cephalogram (alpha resonance,“1/f” activity). Table 1 summarizes
all model parameters, their definitions, and approximate ranges.

2.2. MODEL PARAMETERIZATION: GENERATION OF NORMATIVE
PARAMETER SETS

Because BS activity (at least that induced by anesthetic and seda-
tive action) is assumed to ultimately arise out of a background of
normal electroencephalographic activity it is important to define
parametrically normative states in order to study how they may
be perturbed during health and disease. We therefore chose to

Table 1 | List of spatially averaged parameters for different types k, l ∈

{e, i } of neuronal target populations in the electrocortical model of

Liley et al. (Liley et al., 1999, 2002, 2011; Bojak and Liley, 2005; Frascoli

et al., 2011), with typical ranges that are assumed to be

physiologically admissible.

Definition Min Max Units

hr
k Resting membrane potential −80 −60 mV

τ k Passive membrane decay

time

5 150 ms

heq
ek Excitatory reversal potential −20 10 mV

heq
ik Inhibitory reversal potential −90 hr

k − 5 mV

0ek EPSP peak amplitude 0.1 2.0 mV

0ik IPSP peak amplitude 0.1 2.0 mV

1/γ ek EPSP rise time to peak 1 10 ms

1/γ ik IPSP rise time to peak 2 100 ms

Nα
ek Number of excitatory

cortico-cortical synapses

1000 5000 –

Nβ

ek Number of excitatory

intracortical synapses

2000 5000 –

Nβ

ik Number of inhibitory

intracortical synapses

100 1000 –

vek Axonal conduction velocity 0.1 1 mm ms−1

1/3ek Decay scale cortico-cortical

connectivity

10 100 mm

Smax
k Maximum firing rate 0.05 0.5 ms−1

µ̄k Mean firing threshold −55 −40 mV

σ k Firing threshold standard

deviation

2 7 mV

plk Extra-cortical synaptic input

rate

0 10 ms−1

Table adapted from Liley et al. (2011). EPSP, excitatory PSP; IPSP, inhibitory PSP.

utilize previously defined parameter sets (Bojak and Liley, 2005)
that have the following properties: (i) are confined to the physio-
logically admissible parameter space (see Table 1), (ii) give rise to
electroencephalographically and physiologically plausible activity
(“1/f” decay at low frequencies plus a relatively sharp peak at alpha
frequencies, 8–13 Hz; mean excitatory/inhibitory neuronal firing
rates <20 s−1) and (iii) that exhibit transient increases in total
power and monotonic reductions in mean frequency with respect
to modeled anesthetic action (see below). In general such sets can
be found by randomly searching the high dimensional physio-
logically admissible (and plausible) parameter space. For further
details see Bojak and Liley (2005).

2.3. MODELING ANESTHETIC ACTION
The range of molecular and cellular targets identified to date as
sites of anesthetic action is so varied that a unitary biological mech-
anism for anesthetic effect seems unlikely. Nevertheless, at least
functionally, at the level of cortex anesthetics seem to act princi-
pally by enhancing the actions of inhibitory activity (Liley et al.,
2011). Indeed from the perspective of the mean field model we
have described many of its parameters can be related in a fairly
straightforward way to these alterations in inhibitory activity and
other identified sites of anesthetic action in cortex (see Table 2).
However a parametrically more flexible description of the PSP,
than is presently incorporated, is required to meaningfully model
the effects of anesthetics in which we can independently vary peak
amplitude, rise (t peak) and decay times. For example isoflurane,
a volatile halogenated anesthetic, has been shown to prolong the
decay time of the unitary IPSP without altering its time to peak.
Fortunately a simple modification of the equation describing the
dynamics of the PSP enables independent adjustment of the peak
amplitude, rise (t peak) and decay times. By defining Ilk to satisfy

[
∂

∂t
+ γlk(εlk)

] [
∂

∂t
+ γ̃lk(εlk)

]
Ilk(r , t )

= γ̃lk(εlk) exp[γlk(εlk)/γ
0
lk ]0lk Alk(r , t ), (7)

γlk(εlk) = εlkγ
0
lk/(e

εlk − 1), γ̃lk = γlk(ε)e
εlk (8)

Table 2 | Relationship between major experimentally identified sites

of cortical anesthetic action and parameters of the electrocortical

model of Liley et al. (Liley et al., 1999, 2002; Bojak and Liley, 2005).

Site of action Main anesthetic effect Parameters

2PK channels and

extrasynaptic GABAA

Increase in tonic inhibition pik, hr
k

nACh receptors Reduction in tonic excitation pek, hr
k

Synaptic GABAA Increase of IPSPs γ ik, 0ik

AMPA/kainate receptors and

NMDA receptors*

Reduction of EPSPs γ ek, 0ek

Myelinated axons Slowdown of conduction
†

vek

Na channels Alteration of neuronal firing Smax
k , µ̄k , σ k

*Parameters will depend on membrane potential in this case.
† Effect demonstrated in periphery, speculative in cortex (Swindale, 2003).
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where 1/γ 0
lk defines the time to peak, we can control the decay of

the unitary PSP by altering εlk> 0. Increasing εlk will monoton-
ically increase the decay time of the tail of the unitary PSP (see
lower left panel, Figure 6). Empirically it is found that increas-
ing the aqueous concentration of a range of GABAergic anesthetic
agents leads to a progressive increase in the decay time of the uni-
tary inhibitory PSP (e.g., Banks and Pearce, 1999) and thus εik

will be a monotonic function of anesthetic concentration c, i.e.,
εik(c). Liley et al. (2011), based on a range of empirical evidence,
have numerically estimated εik(c) for the volatile anesthetic agent
isoflurane. However because εik(c) is not currently known for
other GABAergic anesthetic agents we will assume that in general
εik∝ c.

It is worth noting that equation (7) reduces to equation (2) as
εlk→ 0. Further details regarding this formulation can be found
in Bojak and Liley (2005).

2.4. DEFINING A THEORETICAL BASIS FOR BURSTING
We call a bursting system fast-slow if it can be written in the
following form

ẋ = f (x , y) (fast oscillatory system) (9)

ẏ = µg (x , y) (slow modulatory system) (10)

where x ∈Rm describes the m-dimensional system responsible for
the fast oscillatory (spiking in single neuron models) dynamics
and y ∈Rn the n-dimensional slow system that modulates the fast
oscillations (or spiking behavior). The parameterµ represents the
ratio of the time scales between the slow and fast system. It is
typically assumed that µ� 1. Because µ can be made as small as
we like equations (9) and (10) represent a singularly perturbed
system.

We will assume that equations (1)–(4) and (6), which puta-
tively describe the genesis of the “fast oscillatory” resting EEG,
correspond to the m-dimensional fast system. To motivate the
slow n-dimensional slow modulatory system we will make a plau-
sible appeal to the biophysics of synaptic resource depletion and
recovery during periods of sustained neuronal population activity.
During periods of high firing neural activity a variety of factors
come into play to diminish synaptic efficiency. The most important
of these are receptor desensitization and synaptic vesicle deple-
tion. Tsodyks and Markram (1997) developed a model to account
for the biophysics of such activity dependent short term synaptic
depression estimating that its onset is rapid, of the order of mil-
liseconds, but that its recovery is quite slow, of the order of 800 ms.
Given that such a time scale is approximately at least an order of
magnitude greater than the characteristic time scales associated
with resting EEG activity, this may represent a candidate slow
EEG modulatory system. On this basis we choose to include this
activity dependent short term synaptic depression using the fol-
lowing two different formulations, referred respectively to as SS1
and SS2,

0̇lk = µl [θl − kl Sl(hl)], (SS1) (11)

0̇lk = µl [0
0
lk/(1+ exp[κl(hl − ξl)])− 0lk ], (SS2) (12)

where 1/µl is the characteristic time scale of the respective slow
modulatory system. Based on Tsodyks and Markram (1997) we
will fix 1/µl to 1000 ms. The advantage of the first formulation is
that the rates of synaptic recovery (µlθ l) and depletion (µlkl) can
be separately specified. The advantage of the second formulation
is that 0lk remains bounded between 00

lk (the resting value) and
zero decreasing monotonically with increasing mean soma mem-
brane potential hl, with 00

lk remaining as a free parameter. For
low levels of the respective neuronal activity (hl) there is very little
decrease in 0lk until a threshold ξ l is reached, with the parame-
ter κ l controlling the sensitivity of the change at this threshold to
variations in neuronal activity. This formulation has previously
been used by Tabak and Rinzel (2005) in their mean field model
for spontaneous electrical bursting activity in embryonic chick
spinal cord.

2.5. COMPUTATIONAL METHODS
All numerical integrations and one-dimensional dynamical con-
tinuations were performed using the XPPAUT package (Ermen-
trout, 2002). A 4-th order Runge-Kutta scheme with a time step of
0.1 ms was used to numerically integrate the differential equations.
Because of the multiple time scales our differential system may
suffer from stiffness and numerical solutions may not converge.
In these cases we have used the recommended “stiff” integra-
tor CVODE (Cohen and Hindmarsh, 1994) as implemented in
XPPAUT.

3. RESULTS
All numerical simulations were performed using a single model
parameter set having a physiologically plausible white noise fluctu-
ation spectrum (see top left panel Figure 3) and a single stable fixed
point. This parameter set was found using the methods described
in section 2.2. The parameters used, all within the physiologically
admissible domain, can be found in the Table 3.

Figure 3 shows the effects of the activity dependent modulation
of 0ii on simulated mean field EEG activity using SS1 [equation
(11)]. Bursts emerge periodically, with intervening near isoelec-
tric intervals, apparently driven by slow variations in 0ii (red line,
top right panel). A spectrogram of a sufficiently long simulated
time series reveals that the frequency of the model EEG activity
decreases from low beta (∼= 15 Hz) to high alpha (∼= 12 Hz) over
the period of the bursts. Such intra-burst “chirping” is a common
feature of many of the topologically identified single neuronal
bursters (Izhikevich, 2007). Of interest are the multiple harmonics
of this dominant oscillatory activity.

Figure 4 illustrates how we might dynamically account for the
transition to, and cessation from, bursting and follows the now
standard method of the dissection of neural bursting pioneered by
Rinzel (1985). Here we have setµi= 0 and consider how the “fast”
EEG system responds. Figure 4 shows a one-dimensional bifurca-
tion diagram of this “fast” EEG system with 0ii as the bifurcation
parameter. Thick black lines show the fixed points as a function
of 0ii. For small values of 0ii there is a single stable fixed point.
As 0ii is increased this fixed point loses stability by a super-critical
Hopf bifurcation, thus signaling the onset of limit cycle activity.
Periodic continuations of this low amplitude activity reveals that
it, and a stable fixed point, co-exist with a higher amplitude limit
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FIGURE 3 | Effects of the slow, activity dependent modulation of
IPSPs on the inhibitory neuronal population, 0ik using the SS1
model of equation (11). The top left panel shows the fluctuation
spectrum of the unmodulated “fast” EEG system (Bojak and Liley,
2005). When 0 ik of this system is slowly modulated (µi =0.001 ms−1,
θ i =0.1818 mV, ki =10 mV s) bursting emerges (top right panel). Bursting

is associated with the periodic modulation of 0 ii (red line, top right panel)
on a much longer time scale than that of intra-burst oscillatory activity.
Time-frequency analysis (bottom right panel) reveals that intra-burst
activity sweeps down through a range of frequencies from low beta
(13–30 Hz) to high alpha (8–12 Hz). Parameter values used for the “fast”
EEG system can be found inTable 3.

cycle, thus suggesting that an activity dependent hysteresis drives
the system between a fixed point and a high amplitude oscilla-
tion, thus giving rise to the bursting activity observed. This can be
better seen by superimposing on this diagram the trajectory of a
single burst (thin solid black line). Here we can see that the burst
terminates through a fold-limit cycle bifurcation. At this stage it
is not clear what bifurcation accounts for the emergence of the
burst.

A well described feature of anesthetic action is the reduc-
tion in cerebral blood flow and metabolism (Kaisti et al.,
2003). Therefore during anesthetic action it would be reason-
able to assume that the recovery of pre-synaptic neurotransmit-
ter levels will be impaired. In particular as the anesthetic level
increases then the rate of synaptic recovery should decrease.
Figure 5 shows the effects of systematic reductions in the synap-
tic recovery rate for the SS1 model. As θ i (synaptic recovery)
is decreased the burst duration decreases and the period of
non-oscillatory isoelectric activity increases until the model EEG
becomes fully isoelectric. This trend is also observed clinically
during anesthesia.

Short term synaptic depression would be expected to affect all
synapses, though the depression would not be expected to be uni-
form. So far we have assumed that the synaptic depression would
principally affect inhibitory synapses between inhibitory neu-
rons. Will such bursting survive when all types of “fast” synaptic
activity is subject to the biological forces of short term synap-
tic depression? Figure 6 reveals that bursting does occur when
both excitatory and inhibitory synaptic activity undergoes activity
dependent short term synaptic depression. Further, the bursting
that emerges is strongly modulated by parameters of the “fast”

Table 3 | Model parameter set used in simulations of Figures 3–8.

Parameter Value Parameter Value

hrest
e (mV) −68.1355 Nα

ee 4994.4860

hrest
i (mV) −77.2602 Nα

ei 2222.9060

heq
ee (mV) −15.8527 Nβ

ee 4582.0661

heq
ei (mV) 7.4228 Nβ

ei 4198.1829

heq
ie (mV) −85.9896 Nβ

ie 989.5281

heq
ii (mV) −84.5363 Nβ

ii 531.9419

τe (ms) 138.3660 vek (cm ms−1) 0.1714

τ i (ms) 89.3207 3ek (cm−1) 0.2433

0ee (mV) 0.3127 Smax
e (ms−1) 0.2801

0ei (mV) 0.9426 Smax
i (ms−1) 0.1228

0ie (mV) 0.4947 µe (mV) −47.1364

0ii (mV) 1.4122 µi (mV) −45.3751

γ ee (ms−1) 0.4393 σ e (mV) 2.6120

γ ei (ms−1) 0.2350 σ i (mV) 2.8294

γ ie (ms−1) 0.0791 pee (ms−1) 3.6032

γ ii (ms−1) 0.0782 pei (ms−1) 0.3639

Parameter set taken from Bojak and Liley (2005). Because parameters were

obtained as part of a numerical search their full precision had been detailed,

however their sensitivity to perturbation is much less than the precision reported

(Bojak and Liley, 2005).

EEG system (see Table 2) that have been identified as targets
for the action of anesthetic agents. Prolonging the decay of the
unitary IPSP and reducing subcortical input are both found to
significantly modulate modeled EEG bursting. In particular it is
found that reducing excitatory extra-cortical input (pee), which
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FIGURE 4 | One-dimensional continuation of the “fast” EEG system in
he suggests how we might account for the dynamics of bursting. Thick
black lines (solid= stable, dashed=unstable) shows the fixed points (fp) as
a function of 0 ii. Solid black circle indicates fixed point for the default
parameter values for “fast” EEG system (parameters as for Figure 3). Solid
blue lines indicate the locus of maximum and minimum amplitudes
respectively of stable limit cycle (lc) activity, whereas solid red lines
correspond similarly to locus of unstable limit activity. Transitions between
stable and unstable lc activity is predominantly through fold-limit cycle
bifurcations, except for middle limit cycle branch where transition is through
a torus bifurcation. Superimposed on this one-dimensional bifurcation
diagram is the trajectory of a single burst.

presumably dominantly arises from thalamus, leads to very long
quiescent (isoelectric) periods.

One of the limitations in using SS1 is that the PSPs are, in prin-
ciple, free to take any value whereas physiology would dictate that
they should remain bounded. To explore the effects of this restric-
tion we chose to define an alternative slow modulating system [SS2,
equation (12)]. Figure 7 shows the effect of utilizing this system
to provide a slow activity dependent modulation of excitatory and
inhibitory synaptic efficacy of our “fast” EEG system. In the left
panel of this figure we have plotted ce≡0el/0

0
el as a function of

time. The interesting thing to note is that in contrast to Figure 3
excitatory synaptic efficacy decreases during the quiescent inter-
burst period and increases during the burst. The left hand panel
however shows that there is a significant phase difference between
the normalized excitatory synaptic efficacy ce≡0el/0

0
el and the

FIGURE 5 |The effect of parametrically varying the rate of recovery of
synaptic efficacy in modulating the modeled burst duration and the
quiescent (isoelectric) period. If θ i is made small enough the bursting
solutions will undergo a bifurcation to a non-oscillatory state. All parameters
as per Figure 4.

normalized inhibitory synaptic efficacy ci≡0il/0
0
il . This suggests

that there is an important dynamical interplay between excitatory
and inhibitory synaptic efficacy to regulate neuronal population
excitability such that bursting occurs. This may explain why there is
confusion in the empirical literature regarding the role alterations
in synaptic efficiency have in the genesis of BS.

An important difference between SS2 and SS1 is that parameters
hypothesized to be important targets of anesthetic action pee and
εil are able not only to parametrically regulate bursting but appear
also able to switch bursting on (presumably through a bifurcation
from a stable fixed point). Figure 8 illustrates this. If the inhibitory
neuronal IPSP decay time is not long enough then a single fixed
point dominates which has an associated white noise fluctuation
spectrum. But as the IPSP decay time increases (beyond εii> 1.8
for the parameter set chosen) then bursting emerges. However
if pee is decreased, as we would expect during anesthesia, then
the isoelectric period is prolonged until at some critical value of
pee bursting is extinguished to be replaced by an infinitely long
quiescent/isoelectric period.

4. DISCUSSION
We have described here how a well-known model of the “fast”
dynamics of the EEG can be modulated by a number of slow sys-
tems to produce bursting activity that bears some resemblance to
BS seen clinically. The slow systems that we used were all based
on some form of activity dependent short term plasticity that has
been empirically observed, and used successfully in other models
of macroscopic level bursting (Tabak and Rinzel, 2005). While we
were able to clearly show the existence of bursting, because we
did not include any additive or multiplicative noise sources, we
were unable to account for the quasi-periodicity of BS. Thus all
our busting arises from purely deterministic processes, presum-
ably involving a range of well described bifurcations (Izhikevich,
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FIGURE 6 |The effects of short term synaptic depression of both
excitatory and inhibitory cortical synapses in the genesis of burst
suppression and its modulation by variations in extra-cortical input (pee)

and the IPSP decay time (εii, εie) (see section 2.3 for further details).
Parameters: θ e =0.1818 mV, θ i =0.07 mV, ke = 14 mV s. All other parameters
as for Figure 3.

FIGURE 7 | Bursting produced by the activity dependent slow
modulation of excitatory and inhibitory synaptic efficacy
according to SS2 [equation (12)]. Left panel shows he (solid black
line) and normalized excitatory synaptic efficacy ce ≡0el/00

el (solid red

line) as a function of time. The left hand panel shows the phase
relationship between normalized excitatory and inhibitory (ci ≡0 il/00

il )
synaptic efficacies. Parameters: κe =0.2 mV−1, κ i =0.1 mV−1, εii = 1.8,
εie =1.5.
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FIGURE 8 | Parametric variability of bursting produced by the activity dependent slow modulation of excitatory and inhibitory synaptic efficacy
according to SS2 [equation (12)]. For εii <1.8 simulated EEG was isoelectric as was the case for labeled combinations of εii and pee. Parameters as for Figure 7.

2007). However because our system clearly exhibited bistability
(see Figure 4) it is almost certain that our system will be able to
exhibit some form of burst excitability in response to stochastic
forcing. Such burst excitability has been described experimentally.
For example during BS induced by various halogenated anes-
thetic agents, bursts can be readily evoked by auditory, visual,
or somatosensory stimuli (Hartikainen et al., 1995). Neverthe-
less while burst onset and duration may be random variables it
would seem that the bursts themselves should reveal a high degree
of determinism (weak non-linearity) when compared to EEG in
which bursting or epileptiform activity is not evident.

Because the parameter space of the underlying “fast” EEG
model is potentially extremely large it is not possible to system-
atically explore its dynamical repertoire and it may be possible
that this system, not augmented with one of the slow systems
described, is able to burst. Nevertheless, on the basis of our
results, and what is known regarding the dynamical mechanisms

of bursting, it would seem likely that multiple pathways to BS
exist through a variety of activity dependent slow modulatory
systems.

Further we might hypothesize that such slow modulatory sys-
tems might span a number of functional scales in the brain.
Figure 9 diagrammatically illustrates some possible candidate sys-
tems. An obvious activity driven slow modulatory system would
be that associated with thalamus and the corresponding thalamo-
cortical feed-back. Mean field models of the EEG that incorporate
thalamo-cortical feed-back have been developed (Rennie et al.,
2002) and it will be interesting to see if they are structurally config-
ured to support BS. In addition to synaptic fatigue another obvious
cortical system that might be marshaled to provide slow activity
dependent modulation is the cortico-cortical conduction system.
Although at this stage there is currently little evidence to suggest
anesthetics slow conduction velocities, it is widely documented
that axonal conduction velocities are significantly decreased in
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FIGURE 9 | Diagram illustrating a number of hypothesized,
physiologically plausible, multiple scale slow modulatory systems
that could be important in the genesis of electroencephalographic
bursting in the context mean field model of Liley et al. (A)
Thalamo-cortical feed-back (B) changes in the conduction properties of the
long-range cortico-cortical fiber system (C) slow changes in the efficacy of
synaptic function due to activity dependent resource depletion and
restitution. See accompanying text for symbol definitions.

hypothermia. Decreases of up to 5% per ˚C for conduction veloc-
ity have been reported (Waxman, 1980). As BS has been observed
to occur in hypothermia (Schwartz et al., 1989; Akrawi et al., 1996)
we can conclude that a slow system emerging in the long-range

coupling via a slowing of axonal conduction velocity is a possible
route to BS.

Our attempts to account for the dynamical pathogenesis of
burst suppression differ from other approaches, most notably
Ching et al. (2012). Ching et al. described the scalp EEG in terms of
the activity of a small scale, biophysically detailed, computational
model of interacting populations of cortical and thalamic neurons.
Burst suppression was modeled as arising from metabolically
induced alterations in an ATP-gated slow neuronal membrane
potassium current (IKATP ) on the basis that the reduction in cere-
bral metabolic rate (CMRO2) induced by anesthetic agents and
hypoxia was associated with the depletion of ATP, and hence mem-
brane hyperpolarization. While on this basis they claim to have
accounted for a number of defining features of BS that included
(i) the spatial synchrony of burst onset (ii) the parametric variabil-
ity of burst duration/isoelectricity and (iii) the characteristically
long time scales associated with bursting/isoelectricity compared
to resting EEG, some caution needs to be exercised.

Firstly their model of resting/spontaneous EEG is constructed
on the basis of the activity of no more than 20 model neurons.
Because EEG is a distributed large scale phenomena such a model
is unlikely to meaningfully account for resting/spontaneous activ-
ity particularly given the absence of any long-range excitatory
cortico-cortical coupling. This has important implications for the
propagation of burst activity particularly given that the onset of
bursts, when examined at fine temporal scales, is probably not
truly spatially homogeneous.

Secondly while the relationship between CMRO2 and ATP pro-
duction cannot be reasonably disputed, not all anesthetic agents
that produce reductions in CMRO2 produce BS. For example the
noble gas xenon has been reported to reduce CMRO2 by up to
33% in human participants (Rex et al., 2006) yet is not associated
with any discernable BS.

Thirdly the approach they have taken to producing BS essen-
tially depends on the slow modulation of a faster system, the
approach we have adopted here. The modeled time scales of IKATP

variability are very long, of the order of tens of seconds.
For clarity and tractability the current investigations have

focused on the spatially homogeneous case for the model of Liley
et al. [i.e.,52

= 0 in equation (6)]. Clearly the emergence of BS in
the spatially extended case will need to be investigated through the
appropriate numerical solution of the defining partial differen-
tial equations. Because the cortical phase synchrony (Hartikainen
et al., 1995) of burst suppression has not, as far as we are aware,
been explicitly investigated it will be crucial to empirically deter-
mine the spatiotemporal emergence of bursts in order to assess
the importance of excitatory cortico-cortical connectivity in the
emergence and modulation of BS as implied by the model and as
we have suggested. This will require recording high density EEG
during anesthesia in which BS is present.
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