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The location of imperfections or heterogeneities in shapes and contours often
correlates with points of interest in a visual scene. Investigating the detection of such
heterogeneities provides clues as to the mechanisms processing simple shapes and
contours. We determined set-size effects (e.g., sensitivity to single target detection as
distractor number increases) for sampled contours to investigate how the visual system
combines information across space. Stimuli were shapes sampled by oriented Gabor
patches: circles and high-amplitude RF4 and RF8 radial frequency patterns with Gabor
orientations tangential to the shape. Subjects had to detect a deviation in orientation of
one element (“heterogeneity”). Heterogeneity detection sensitivity was measured for a
range (7–40) of equally spaced (2.3–0.4◦) elements. In a second condition, performance
was measured when elements sampled a part of the shapes. We either varied partial
contour length for a fixed (7) set-size, co-varying inter-element spacing, or set-size for a
fixed spacing (0.7◦), co-varying partial contour length. Surprisingly, set-size effects (poorer
performance with more elements) are rarely seen. Set-size effects only occur for shapes
containing concavities (RF4 and RF8) and when spacing is fixed. When elements are
regularly spaced, detection performance improves with set-size for all shapes. When
set-size is fixed and spacing varied, performance improves with decreasing spacing. Thus,
when an increase in set-size and a decrease in spacing co-occur, the effect of spacing
dominates, suggesting that inter-element spacing, not set-size, is the critical parameter
for sampled shapes. We propose a model for the processing of simple shapes based on
V4 curvature units with late noise, incorporating spacing, average shape curvature, and
the number of segments with constant sign of curvature contained in the shape, which
accurately accounts for our experimental results, making testable predictions for a variety
of simple shapes.
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INTRODUCTION
Successful interaction with the environment requires the identifi-
cation of the location of items of interest (Treisman and Gelade,
1980; Palmer et al., 2000), processing their shapes and textures
(Field et al., 1993; Wilson and Wilkinson, 1998; Loffler, 2008) and
recognizing objects (Biederman and Gerhardstein, 1993).

Points of interest catch the observer’s attention, sometimes
by a notch in a contour, a dent in a surface or by occlu-
sion/superposition of items in the background by closer objects.
Such points can be generalized as locations in a visual scene
with some kind of deviation from the surround: a heterogene-
ity. Detection of such heterogeneities is crucial for the successful
interpretation of our visual world.

As part of the ongoing research to investigate how the
visual system accomplishes these tasks, the discrimination of—
and search within—multi-element patterns has been employed
widely. One particular focus has been on the effect of the num-
ber of elements in the display on sensitivity (set-size effect). The
basic set size effect, whereby thresholds increase with set-size, has

been explained on the basis of signal detection theory (Palmer
et al., 1993, 2000; Palmer, 1994; Verghese and Nakayama, 1994;
Parkes et al., 2001). While substantial set-size effects occur for
uniform patterns (e.g., composed of elements with parallel ori-
entation), it has recently been shown (Scott-Brown and Orbach,
1998; Kempgens et al., 2007) that signal detection theories of
visual search cannot account for heterogeneous configurations
(e.g., elements with random orientations; Orbach et al., 2005),
where set-size performance is much worse than predicted. The
difference in results for uniform vs. random configurations indi-
cates that the orientational arrangement of pattern elements has
a considerable effect on observer sensitivity.

In contrast to the heterogeneous conditions above, in this
paper we will present data for heterogeneous cases where per-
formance is actually better than what signal detection theories
predict. This is the case when elements are positioned on the cir-
cumference of various contour shapes and therefore points to the
crucial role of element arrangement. In line with other studies,
the experimental results provide evidence for shape processing
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mechanisms (Wilkinson et al., 1998; Hess et al., 1999; Loffler
et al., 2003; Poirier and Wilson, 2006), the outputs of which
depend on a number of stimulus properties, such as element spac-
ing (Field et al., 1993; Polat and Sagi, 1993; Levi and Klein, 2000),
set-size, curvature (Field et al., 1993; Pettet, 1999; Loffler et al.,
2003), and the complexity of the overall pattern shape (Pettet,
1999; Barenholtz and Feldman, 2003). The influence of several
stimulus properties on shape processing can be explained with a
model based on probability summation of the outputs of inde-
pendent curvature detectors (Poirier and Wilson, 2006; Bell et al.,
2009a), resulting in a population code for representing shapes
(Pasupathy and Connor, 2002).

The objective of the experiments described below, was, first,
to investigate the effect of set-size, shape, spacing and other
factors on the detection of contour heterogeneity, second, to com-
pare observers’ performance to existing models of visual search,
and third, since existing models fail, to devise a model that can
account for the experimental results.

MATERIALS AND METHODS
SUBJECTS
A total of nine subjects aged between 18 and 35 participated in
the different experiments, usually three subjects per experiment,
and all except one were naïve as to their purpose. All subjects
had normal or corrected-to-normal acuity (≥6/6 with residual
astigmatism ≤0.25D). Informed consent was obtained from each
observer; and the study was approved by Glasgow Caledonian
University’s Life Sciences Ethics Committee. All experiments were
conducted in accordance with the Declaration of Helsinki (WMA,
2008).

GENERAL DESCRIPTION OF THE STIMULI
Stimulus patterns were pre-calculated and presented within
the Matlab™ (The MathWorks) environment, supplemented by
Psychophysics Toolbox extensions (Brainard, 1997; Pelli, 1997).
Stimuli were composed of various numbers of high-contrast
Gabor patches (Gabor, 1946) which were positioned on the cir-
cumference of simple shapes. The Gabor patches were defined
by a two-dimensional Gaussian windowing a one-dimensional
sinusoidal luminance grating. The phase of the Gabor’s carrier
grating was set to zero (cosine phase), and its contrast to −1,
which resulted in a luminance minimum at the center of each ele-
ment. The envelope’s standard deviation was set to 0.085◦, and
the carrier grating spatial frequency to 7 cycles per degree (cpd).

The shapes that were sampled by the Gabors were radial fre-
quency (RF) patterns (Equation 1). RF patterns (Wilkinson et al.,
1998) are sinusoidally modulated circles where the shape is deter-
mined by the number of modulation cycles and by the amplitude
of modulation.

R(ϕ) = r0 · (1 + A · sin(RF · ϕ + θ)) (1)

R(ϕ) is the radial distance of the contour from the center as a
function of ϕ (polar angle), r0 is the size of the contour (radius
of the unmodulated circle), A is the modulation amplitude, RF
the radial frequency and θ the phase of the shape. The radial fre-
quency determines the number of lobes of the RF pattern, the

amplitude the “spikiness” of each lobe, and the phase the overall
orientation.

We used three different RF shapes [see Figure 1, panel (A)]: a
circle (RF 0 and ARF0 = 0), a “dented square” (RF 4 and ARF4 =
0.18) and a “rounded star” (RF 8 and ARF8 = 0.1). The ampli-
tude of the RF 4 and 8 patterns were chosen so that the resulting
shapes contained both obvious convexities and concavities. In
different conditions, the orientations of the Gabor patches were
either parallel to each other, random or tangential to the sam-
pled contour. For each shape, the number of Gabors sampling the
contour (set-size) was varied. The mean radius of all contours was
set to r0 = 2.7◦. To avoid learning effects, global rotations of the
entire pattern were effected by setting the pattern angular phase
to 100◦, 111.25◦, or 122.5◦, placing the lobes of RF 4 and RF 8
patterns at three different angles.

Pilot experiments (Kempgens et al., 2006) showed that,
depending on the shape and number of elements, some con-
figurations exhibited a bilateral symmetry, which could be used
by subjects. To avoid such cues being present in some but not
other conditions, the position of each element was subject to
a small amount of random jitter along the contour by a polar
angle δi, according to Equation 2, where δmax is the maximum
jitter, n is the number of pattern elements, i is the patch number,
and rand is a random number (uniform distribution) between
0 and 1.

δi = δmax · rand with δmax = 0.4 · 360◦

n
− 3◦ (2)

This avoids symmetry but ensures sufficient inter-element spac-
ing (center-to-center spacing) so that adjacent patches for pat-
terns with large numbers of elements are not overlapping. In
addition, randomizing element position (and therefore inter-
element spacing) prevents observers from building an internal
template for any condition.

PROCEDURE
For most experiments, a temporal 2AFC procedure with the
method of constant stimuli was used, where base and increment
patterns were presented successively in random order. In a base
pattern, all elements were either parallel to each other (Figure 1E)
or aligned to the shape contour (Figures 1B–D). In an incre-
ment pattern, the orientation of one Gabor patch deviated from
this orientation (either not parallel to the other elements or ori-
ented away from being tangential to the shape). The task was to
indicate which of the two stimuli contained the heterogeneous
Gabor by pressing one of two keyboard buttons. No feedback
was given.

The first stimulus was preceded by a blank pre-stimulus inter-
val of 400 ms, where the monitor was set to a uniform mid-
gray. Each stimulus was shown for 200 ms, and stimuli were
separated by a 1000 ms blank screen. A central fixation dot
was present throughout. Different conditions (shape, number
of elements) were presented in different blocks. For each con-
dition, six levels of orientation increments were used, identical
for all observers. The magnitude of the increments was different
for different conditions and selected according to pilot experi-
ments. Subjects were given 20 practice trials before each condition
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FIGURE 1 | Panel (A) shows the shapes used in the experiments (left to

right) Circle, RF 4 and RF 8; panels (B–F) show the stimuli used in

different experiments. The two stimuli on the left are base and increment
(circled red) pattern with low set-size [with wide spacing in panel (C)], the
two stimuli on the right show the same with high set-size [with narrow
spacing in panel (C)]. (B–D): for reasons of brevity, the panels show
examples of RF 4 shapes only, although all shapes shown in (A) were used;

(B) shape alignment experiment, patterns ranging from sparsely to densely
sampled entire shapes; (C) spacing experiment, patterns ranging from
sparsely sampled entire shapes to short, densely sampled partial shapes; (D)

set-size experiment, patterns ranging from short, densely sampled partial
shapes to equally dense closed contours; (E) uniform orientation experiment,
parallel Gabors sampling a circle; (F) random orientation experiment,
randomly oriented Gabors sampling a circle.

and the shape sampled by the Gabor patches was shown as a
continuous contour prior to the experimental runs. Each incre-
ment was presented twenty times in random order and subjects
completed two runs for each experimental condition, resulting

in 240 trials per condition. Performance was measured in terms
of percentage correct as a function of orientation increment.
Data were fit with a Weibull function (Weibull, 1951) using a
maximum likelihood procedure (Watson, 1979) and thresholds
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defined as the orientation increment yielding a 75% correct
performance.

APPARATUS
A Philips monochrome CRT monitor, set to its low, one-gun,
mode with 256 gray levels, a frame refresh rate of 85 Hz, and a
spatial resolution of 1024 × 768 pixels (pixel width = 0.0177◦ at
1.2 m viewing distance), was used to display the stimuli. In order
to avoid horizontal and vertical orientation cues from the monitor
frame, a white cardboard mask with a 19.5 cm diameter circular
aperture (9.3◦ visual angle) was placed in front of the monitor.
The mask was illuminated by four tungsten light bulbs in order
to match the luminance on the mask to the mean luminance of
the screen (138 cd/m2). The monitor was linearized by adjusting
its look-up table, resulting in 151 approximately equally spaced
gray levels (Pelli and Zhang, 1991; Brainard et al., 2002). Subjects
viewed stimuli binocularly at a distance of 1.2 m. A constant
distance was maintained by using a chin and forehead rest.

DATA ANALYSIS
Observer performances were averaged and orientation increment
thresholds plotted as a function of set-size in log-log coordinates.
The data were fit with power functions, which, in log-log coor-
dinates, result in straight lines and their slope is a measure of
the set-size effect (Palmer, 1994). Univariate Analysis of Variance
(ANOVA) within SPSS (IBM) was performed on the data to
test for significant effects of set-size and shape. Post-hoc tests
(Bonferroni corrected paired t-tests) established whether thresh-
olds for different shapes were significantly different for individual
set-sizes.

RESULTS
UNIFORM ORIENTATION EXPERIMENT
The aim of the first experiment was to determine the effect of
set-size when elements are positioned on a circle and share the
same orientation. A set of 3, 9, 13, 17, and 25 uniform (i.e., paral-
lel) Gabors were positioned on a circle, with orientations constant
within a trial but randomly varied between trials (Figure 1E). The
task was to indicate which of two intervals contained the stimulus
where the orientation of one element deviated from being parallel
to the other elements.

The results of the “uniform-orientation” experiment are pre-
sented in Figure 2. Average thresholds are displayed as a function
of set-size. Thresholds for detecting the orientation change of one
element range from 9.4◦ to 12.9◦ for set-sizes between 3 and 25.
The slope of the set-size function (Suniform = +0.02), is essen-
tially flat, indicating that set-size does not affect performance.
Hence, contrary to predictions from standard models of visual
search, sensitivity does not decrease with increasing set-size when
elements have uniform orientations.

SHAPE-ALIGNMENT EXPERIMENT
Standard models of visual search, employing a max decision rule,
predict performance to decrease with increasing number of ele-
ments with a magnitude given by the slope of the set-size vs.
threshold function (set-size effect). These models predict a slope
between 0.20 and 0.35 when elements are sufficiently separated

FIGURE 2 | Threshold vs. set-size for parallel elements (uniform

orientation experiment). Average thresholds (orientation change for one
element required to detect it within a variable number of parallel elements)
for two subjects are plotted as a function of set-size (number of pattern
elements). Sensitivity is largely independent of element numbers,
evidenced by the flat set-size slope (+0.02). Error bars here and elsewhere
are standard error of the mean (SEM). The icons show two examples for
the uniform stimuli with a set-size of 7 (left) and 25 (right) elements.

(Palmer, 1994). The flat set-size slope for the uniform orientation
condition (Figure 2) is inconsistent with this prediction.

This raises the question of whether there are other configu-
rations, where element orientations are non-parallel that would
also show performance independent of set-size. One possibil-
ity is to place elements on the circumference of closed contour
shapes with orientations tangential to the sampled shape (“shape
alignment,” see Figure 1B). Employing a variety of pattern shapes
allowed us to determine the generality of any effect and to provide
insight into possible shape encoding processes.

The shapes from which elements were sampled were RF pat-
terns with radial frequencies of 0, 4 and 8 (circular, “dented
square” and “rounded star” shapes). Set-sizes used were 3, 7, 9,
13, 17, 25, and 40, except for the RF 8 where set-sizes 3 and 7 were
omitted because a pilot study showed that threshold to detect
the orientation change of one element was above the maximum
change of 90◦ that could be applied. The task was to identify the
interval in which the orientation of one Gabor was misaligned
with the contour shape.

The results of the “shape alignment” experiment can be seen
in Figure 3. Performance shows a clear dependence on set size
with thresholds ranging from 7 to 17◦ for the circular shape
(blue, circular symbols in Figure 3), from 14 to 60◦ for the
RF 4 (red squares), and from 28 to about 90◦ for the RF 8
(green diamonds).

Data were analysed using an ANOVA with shape and set-
size as factors. This analysis found significant main effects
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for shape [F(2, 57) = 294.43, p < 0.025] and set-size [F(6, 57) =
31.59, p < 0.025]. The data also show a significant interac-
tion between shape and set-size [F(10, 57) = 12.47, p < 0.025],
reflecting the difference in set-size slopes for the three shapes.

FIGURE 3 | Shape alignment experiment. Average performance for
detecting the misalignment of one element sampled from a circle (blue
circles), RF 4 (red squares) and RF 8 (green diamonds, shapes shown by
icons) as a function of the total number of samples (set-size). Thresholds
are given as the orientation deviation of one element required to
discriminate the pattern with the misaligned element against a pattern
where all elements were tangential. Asterisks indicate set-sizes where not
all observers were able to reach threshold performance.

Pair-wise comparisons showed significant (p < 0.025) differences
for corresponding set-sizes between each of the shapes tested.

Contrary to standard models of visual search, thresholds here
improved with set-size for each shape. This is an example of an
inverse set-size effect with negative slopes of −0.34, −0.57, and
−0.78 for circle, RF4 and RF8, respectively. Slopes for different
shapes are significantly different from each other (p < 0.025).

RANDOM ORIENTATION EXPERIMENT
The first two experiments showed a flat set-size slope for detect-
ing an orientation increment for uniformly oriented elements
and a negative slope for elements aligned along a contour. The
aim of this experiment was to devise a baseline for these per-
formances by determining the set-size effect for patterns with
elements positioned as before (on a circle), but with random
orientations.

The increment patch in a uniform pattern stands out because
it deviates from a common feature (uniform orientation) of all
other patches. This is not the case for randomly oriented ele-
ments, so the labels base and increment pattern are ambiguous,
making the task of detecting a Gabor patch with an orientation
increment impossible in a standard 2AFC paradigm. Therefore,
the stimulus sequence and task had to be modified in this exper-
iment, as shown in Figure 4. Each trial of the modified 2AFC
consisted of two intervals where each interval contained two
sequentially presented stimuli (pattern pairs). The task was to
indicate which interval contained the pattern pair that was not
identical, i.e., where the orientation of one element differed
between the two stimuli. Set-sizes were N = 3, 5, and 7. The base
patterns consisted of N Gabors with randomly assigned orienta-
tions (Figure 1F). A different base pattern was presented on each
trial. The location of the patch that changed in orientation was
varied randomly from trial to trial. Orientation increments were
randomly chosen to be either clockwise or anti-clockwise.

FIGURE 4 | Procedure for random orientation experiment. A 400 ms
pre-stimulus interval was followed by two intervals containing two
stimuli each (i.e., interval one with patterns P1 and P2, interval two
with patterns P3 and P4). The orientation of one element in one interval
changed so that either P1 and P2 or P3 and P4 were not identical.

The task was to indicate which interval contained the non-matching
stimuli. The orientations of the elements for each trial and each interval
were randomly selected. Stimuli were presented for 200 ms, separated
by 1000 ms inter-stimulus intervals. A blank screen was shown until the
subject responded.
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The random orientation experiment shows that a change in
orientation of one element, when embedded in a configura-
tion of elements with random orientations, becomes increasingly
harder to detect the more elements there are in the pattern.
Figure 5 shows thresholds for detecting a change in orientation
as a function of set-size. In contrast to the thresholds for the
“aligned circle” (Figure 3), the data for the random orientation
experiment show a strong positive set-size effect (slope = +1.1),
confirming earlier results (Orbach et al., 2005).

SPACING EXPERIMENT
In the “shape alignment” experiment (Figure 1B), the spac-
ing between pattern elements co-varied with set-size. To iso-
late the influence of inter-element spacing, elements in this
experiment were also positioned on RF shapes but set-size was
kept constant (seven elements) while the spacing between ele-
ments was varied. Reducing the average spacing of seven Gabors
resulted in patterns ranging from complete, but sparsely sam-
pled, RF shapes to short, but densely sampled, partial RF shapes
(Figure 1C).

Thresholds were determined for a circle, RF 4, and RF 8 (using
the standard 2AFC procedure) and for the random orientation
condition (modified 2AFC procedure). Data are presented as a
function of inter-element spacing, which was calculated as the
average distance between two adjacent elements (Figure 6). Six
different spacings were tested (0.4, 0.7, 1.0, 1.3, 1.8, and 2.3◦ cor-
responding to 3, 5, 7, 9, 13, and 16 λ, where λ is the Gabor carrier
wavelength).

FIGURE 5 | Random orientation experiment. Comparison of performance
for patches aligned to a circle (filled circles) and randomly oriented patches
on a circle (open circles) shows a strong positive set-size slope for the
latter, in sharp contrast to the negative set-size slope for the former. The
insets show examples of the stimuli.

Thresholds for circular shape range between 14◦ (for the
widest spacing, 16 λ) and 7.3◦ (7 λ). For the RF 4, thresholds
range from 59◦ (16 λ) to 20◦ (3 λ) and from 81◦ (16 λ) to 26◦
(3λ) for RF 8. Statistical analysis showed significant main effects
for shape [F(2, 51) = 223.52, p < 0.025] and spacing [F(5,51) =
35.23, p < 0.025] and a significant interaction between them
[F(9, 51) = 13.31, p < 0.025], consistent with the different slopes.
Post-hoc tests showed significant (p < 0.025) differences for cor-
responding spacings between each of the three shapes tested, with
the exception of RF 4 vs. RF 8 with 3, 5, and 13 λ spacing (p =
0.127, 0.72, and 0.063). The slopes were −0.22, −0.6, and −0.72
for circle, RF4 and RF8, respectively. The slope for the circle was
significantly different from those for RF 4 and 8 (p < 0.025), but
the slopes for RF4 and RF8 were not (p = 0.378).

There is an obvious similarity between the data for the “shape
alignment” experiment (Figure 3) and the “spacing” experi-
ment (Figure 6) when data are plotted with decreasing inter-
element spacing on the abscissa. To quantify this, we conducted
an ANOVA with the experimental condition (shape alignment
vs. spacing experiment) as an additional factor. This analysis
revealed no main effect of experimental condition [F(1, 114) =
0.145, p = 0.704], suggesting that co-varying the number of
elements with inter-element spacing seems to have no effect on
thresholds.

FIGURE 6 | Spacing experiment. Average performance (three observers)
for circular (blue circles), RF 4 (red squares) and RF 8 (green diamonds) is
displayed as a function of inter-element spacing expressed as multiples of
the Gabor carrier wavelength (λ). Asterisks indicate conditions where the
threshold of at least one observer was above the maximum of 90◦ and the
resulting value is the mean across the remaining observers. The inset
shows the results of the “shape alignment experiment” as a function of
inter-element spacing. It is immediately obvious that the results of shape
alignment and spacing experiments are very similar, and that in both cases
thresholds decrease with decreasing inter-element spacing.
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Performance was also measured for the random orientation
condition as a function of inter-element spacing, using the modi-
fied procedure described above, although the number of elements
was reduced to five patches because observers could not com-
plete the task with seven randomly oriented elements. Seven
inter-element spacings were tested (the same as above plus one
additional of 3.2◦ or 22 λ). This additional spacing corresponds
to the spacing between five equally spaced Gabor patches.

Performance is considerably worse for randomly oriented
elements (Figure 7) than for aligned elements (Figure 6).
Thresholds for the random condition slightly increase with
decreasing inter-element spacing. This is in contrast to the data
for the random condition as a function of element numbers
(Figure 7), where thresholds rose dramatically with set size.
Hence, the similarity between the data for set-size and inter-
element spacing that is evident when elements are aligned to
contour shapes is absent when they are oriented randomly.

SET-SIZE EXPERIMENT
The final experiment was designed to investigate the effect of set-
size independent of inter-element spacing. Inter-element spacing
in circular, RF 4 and RF 8 shapes was kept constant at 5 λ.
This spacing corresponds to the relatively narrow spacing of the
25-element patterns in the “shape alignment” experiment. Six set-
sizes (3, 7, 9, 13, 17, and 25 elements) were tested, resulting in
stimuli ranging from very short, densely sampled partial contours

FIGURE 7 | Comparison of thresholds as a function of inter-element

spacing for the random orientation experiment (dark blue circles) and

the random orientation spacing experiment (light blue circles). (Note
that the thresholds for the random orientation experiment are different
from the ones shown in Figure 5 because they come from different
subjects. Importantly, for both subject groups, the slopes are similar (≥ 1)
and the qualitative results are the same.)

to equally densely sampled circular, RF 4 or RF 8 contours
(Figure 1D).

As in previous experiments, performance is best for the circle,
intermediate for the RF 4 and worst for the RF 8 (Figure 8).

Thresholds for the circle range between 6.9 and 8.9◦ and are
largely unaffected by set-size, resulting in a flat set-size curve
(slope = +0.04). This shows that, with constant spacing, process-
ing of circular patterns is independent of the number of pattern
elements. Mean thresholds for the RF 4 increase from 11.4◦ for 3
elements to 23.0◦ for 25 elements. The set-size effect shows a pos-
itive slope of 0.31. For the RF 8 shape, a moderate set-size effect
was also found (slope = +0.40), with thresholds increasing from
18.0 to 40.3◦.

Statistical analysis reveals main effects for shape [F(2, 54) =
140.80, p < 0.025] and set-size [F(5, 54) = 12.91, p < 0.025]
and a significant interaction [F(10, 54) = 4.75, p < 0.025], cor-
responding to the different slopes. Post-hoc tests show that for
the same set-size, thresholds for circular partial contours are
significantly lower than for RF 4 and RF 8 and thresholds for
RF 4 partial contours typically lower than for RF 8 (p < 0.025,
with the exceptions of 3- and 7-element RF 4 vs. circle and RF
8; and 9-and 13-element RF 4 vs. RF 8, which are not signif-
icant). Furthermore, the set-size slope for circular patterns is
significantly lower than for RF 4 and RF 8 patterns (p < 0.025),
whereas the slopes of RF 4 and RF 8 are not significantly different
(p = 0.548).

FIGURE 8 | Set-size experiment. Stimuli in the set-size experiment had
constant inter-element spacing. Average thresholds (three observers) are
shown as a function of set-size for circular contours (blue circular data
points), RF 4 (red squares) and RF 8 (green diamonds). Insets show the
arrangement for patterns of 3 elements (left) and 25 elements (right).
Performance is best for the circle, followed by the RF4 and worst for the
RF8. The set-size slope is almost zero for circular patterns, and significantly
higher for RF 4 and RF 8.
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It is interesting that our data do not show an advantage of
closure (Kovacs and Julesz, 1993). Comparing thresholds for the
closed conditions (25 element) with those for the open partial
contours did not lead to a significant improvement in perfor-
mance for any of the shapes and actually caused a decrease in
performance for RF 4 and RF 8.

MODEL FOR SHAPE PROCESSING
This section describes a general model for shape processing that
we applied to our data for observers’ ability to detect an orienta-
tion change of one element in sampled circles and RF shapes. It
is based on physiologically plausible models previously described
in the literature (Wilson et al., 1997; Achtman et al., 2003;
Poirier and Wilson, 2006) but contains substantial modifications,
which are critical for its success in dealing with sampled shapes
containing convexities and concavities.

Model responses are determined by stimulus characteristics
such as inter-element spacing, curvature and complexity of the
shape, and are based on probability summation of independent
mechanisms. One of the important model features concerns the
local curvature of a shape and how it changes along the contour.
Circles and RF patterns with sufficiently low amplitude are exclu-
sively convex contours (Figure 9A). In RF N patterns (N = radial
frequency) with a sufficiently high amplitude (Figure 9B), curva-
ture changes sign at 2N inflection points, separating 2N segments
that are alternatingly convex and concave, i.e., alternating seg-
ments with positive and negative curvature. In the following text
segments without changes of the sign of curvature will be termed
“arcs.” For the complete contours used in the “shape alignment”
experiment, the circle consists of only one arc, the RF 4 of eight

arcs, and the RF 8 of sixteen arcs. For the incomplete shapes used
in the “spacing” and “set-size” experiments, the number of arcs
depends on the fraction of the shape that is sampled (see below).
As for curvature magnitude, curvature minima (Cmin) are located
where the pattern radius is at a minimum (Rmin), and curvature
maxima (Cmax) at the maximum radius (Rmax). At the intersec-
tions of the RF contour with the unmodulated circle (dashed
contour, Figure 9B), unsigned curvature (Cabs,min) is at a mini-
mum and, for sufficiently large amplitudes as used here, is equal
to zero.

DESCRIPTION OF THE MODEL
Stages 1–3: contour, center, and size
Based on a biologically plausible model for processing RF con-
tours (Poirier and Wilson, 2006), our model consists of five
stages. The first stage extracts local contour information, which
serves as input to successive stages of the model. From this,
stage 2 computes the center of the RF pattern (Wilson et al.,
1997; Wilson, 1999; Poirier and Wilson, 2006), and, stage 3,
its size. The pattern size is required to determine the distance
from the RF center to the locations where subsequent pro-
cessing, i.e., extraction of curvature, takes place. For a detailed
description of these first three stages the reader is referred to
Poirier and Wilson (2006).

Stage 4: Extraction of local curvature
The original Poirier and Wilson model (Poirier and Wilson, 2006)
only directly describes shape processing for convex RF patterns
because it contains a half-wave rectification of the outputs of
curvature detectors which restricts its computation to isolating

FIGURE 9 | Local curvature for RF contours. (A) low amplitude RF4;
(B) high amplitude RF 4. Regardless of amplitude, curvature minima
(Cmin) for RF shapes are located at the points where the pattern radius
is at a minimum (Rmin) whereas curvature maxima (Cmax) are at the
maximum radius (Rmax). (A) for a sufficiently low amplitude, the local
curvature of an RF shape is exclusively convex (curvature > 0) and
contains no inflection points where curvature changes sign.
Consequently, these shapes consist of only one segment of positive
curvature (or one arc); (B) for a sufficiently high-amplitude, curvature

changes from convex to concave and this change of curvature sign
occurs at inflection points. For an RF N shape, there are 2N inflection
points separating 2N arcs of alternating sign of curvature. The minimum
(unsigned) curvature (Cabs,min) is zero, and is located at the intersections
of the RF contour with the unmodulated circle (dashed contour). The
(signed) curvature is positive for convex contour parts and negative for
concave parts. The local radius of curvature for convexities (rcurv,convex)
points toward the interior of the RF shape; the local radius of curvature
for concavities (rcurv,concave) points away from the shape’s center.
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points of convex curvature maxima only, neglecting concave cur-
vature. This is consistent with experimental results (Loffler et al.,
2003) showing that RF discrimination sensitivity is affected most
strongly when points of convex curvature maxima are occluded,
although other parts of the contour have been shown to play a
non-trivial role (Poirier and Wilson, 2007; Hancock and Peirce,
2008; Bell et al., 2010). These observations were, however, for
RFs with low amplitude, which do not contain concavities. In
our experiments, the RF 4 and RF 8 patterns were of sufficiently
high amplitude so that patterns contained concavities. It has been
shown (Pettet, 1999) that observers are better at detecting a con-
tour of Gabor patches in noise when the contour does not change
the sign of curvature. It is, therefore, possible that the different
results in our experiments for circular and non-circular RFs are
related to contours either containing exclusively convex curva-
ture (circle) or containing changes in the sign of the curvature
(RF4 and 8). In sum, this suggests that, in some experimental
conditions, curvature information from concavities is required to
explain performance. We therefore modified Poirier and Wilson’s
model to respond to local points of convex and concave cur-
vature and this allows the model to be successfully applied to
our results.

Stage 4 of our model consists of multiple local curvature units,
responding to different points along the contour (as determined
by the earlier stages). Local curvature units sample information
from multiple orientation detectors (Figures 10A,B; Poirier and
Wilson, 2006). For each curvature unit, five orientation selec-
tive filters, all tuned to the same spatial frequency, are arranged
in such a way that they fall along the paths of two circular arcs
of opposite sign of curvature. One central filter is located at the
point where the two arcs touch; the other filters are positioned
on the two arcs, equidistant on either side of the central filter
with orientation preference tangential to the arcs (Figure 10B).
Depending on the filters’ spatial frequency tuning, their rela-
tive locations and orientation preference, curvature units can

be made to respond to a multitude of combinations of spatial
frequencies and curvatures. To enable the model to respond to
a range of curvatures with different profiles, additional curva-
ture units are implemented with filters tuned to different spa-
tial frequencies and with different relative distances and angles
between central and peripheral filters. Competitive interactions
between curvature units, each tuned to a combination of spatial
frequency/profile and curvature, via mutually inhibitive connec-
tions, results in the most highly active unit driving the model
response. An anatomical candidate for this is V2, which has been
shown to respond to curved stimuli (Hegdé and Van Essen, 2000),
lying between V1, where we assume local contour information to
be encoded, and V4, where population codes for shape are formed
(Pasupathy and Connor, 2002).

When processing a contour, only three of the five filters, a
triplet, will typically be excited. Their responses are multiplied,
an operation which ensures that when one of the three filters is
not sufficiently stimulated (e.g., if the curvature of the contour
segment is different from the curvature to which the curvature
mechanism is tuned or, in our experiments, by an increment
patch with orientation that sufficiently deviates from tangen-
tial), the output of the filter triplet is small or zero. The optimal
stimulus for the three filters, yielding maximum response, is
a contour, which passes through the three filters tangential to
the filters’ orientation (indicated by the solid curved line in
Figure 10).

In Poirier and Wilson’s model, the outputs of the two fil-
ter triplets are subtracted and the result is half-wave rectified
(Figure 10A), which results in activation of only one of the two
filter triplets (in this case Y but not Z). This restricts the com-
putation on e.g., convex curvature maxima. In our modification,
the responses of the two filter triplets are not subtracted and not
half-wave rectified, so that curvature information is available for
both convexities (unit Y, assuming a global pattern center that lies
below the contour) and concavities (unit Z).

FIGURE 10 | Curvature mechanisms. (A) Mechanism suggested by Poirier
and Wilson (2006), consisting of five oriented filters, arranged along two
curved lines of opposite curvature. The responses for each of two filter
triplets (center plus two filters above or below the midline) are multiplied and
their responses subtracted and half-wave rectified, to isolate points of convex

curvature. (B) Removing the subtraction and rectification stage allows our
modified curvature mechanism to process both convexities and concavities.
The solid curve optimally stimulates the lower triplet “Y”; the dashed curve
stimulates the upper triplet “Z.” Depending on the location of the overall
contour’s center, the response reflects convex or concave curvatures.
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Stage 5: population code of arc units with late noise as a
representation of shape
The results of the shape alignment experiment (Figure 3),
the spacing experiment (Figure 6) and the set-size experiment
(Figure 8) are inconsistent with standard models for visual search
(Palmer et al., 2000). These models assume early noise where
performance is limited by the noise of units low in the hierar-
chy of visual processing, e.g., V1 cells. The overall performance
in the presence of multiple elements is based on a probabilis-
tic summation of the responses of individual units. Increasing
the number of distractors while keeping the number of sig-
nal elements constant increases the total amount of noise and
predicts an increase in threshold in line with positive set-size
slopes.

A key question for any model explaining our results is how to
predict a decrease in thresholds while early noise clearly increases.
A possible solution is that the increase in early noise might
be made insignificant by a stronger late noise (Morgan et al.,
1998; Parkes et al., 2001). To implement this idea, our modi-
fied model assumes a strong late noise source, possibly at the
stage of area V4 that ultimately limits performance. Cells in
area V4 exhibit tuning for curvature, distance from the shape
center and polar angle of stimulus arcs. For modeling pur-
poses we termed model filters with characteristics similar to
those of V4 cells “arc units.” These arc units are different from
local curvature units (Figure 10), which only extract the local
curvature at various points along the contour. Arc units com-
bine the responses of one or more local curvature units with
inputs from earlier stages of the model, i.e., information about
the shape center and the radial extent of the shape at differ-
ent points (Poirier and Wilson, 2006). The resulting response
of one arc unit provides a code of curvature at a certain polar
angle with respect to the shape center. Finally, the responses
of multiple arc units responding to a contour form a popula-
tion code (Figure 11) for the representation of simple shapes
(Pasupathy and Connor, 2002; Poirier and Wilson, 2006).

In addition to noisy arc units, a further important assump-
tion of our model is that each arc of a shape is sampled by one
or more local curvature units. For some shapes, one local cur-
vature unit spans one relatively short arc, e.g., in an RF 4 or
RF 8 shape. Longer arcs without changes in the sign of cur-
vature, e.g., in the case of a full circle, necessitate the use of
several local curvature units feeding into a single arc unit. The
outputs of the local curvature units are combined multiplica-
tively, so that a diminished response in one local unit leads to a
similarly diminished input to the entire arc unit. It is for these
arc units that the noise is assumed to be high and constant. As
a result, a circle, containing only one arc, is represented by a
single arc unit, whereas high-amplitude RF 4 and RF 8 pat-
terns are represented by a population of 8 and 16 arc units,
respectively.

For incomplete RF 4 and RF 8 patterns (partial contours),
as used in the spacing and set-size experiments, the number
of active arc units depends on the number of segments with-
out changes in the sign of curvature that are contained within
the pattern. The stimuli used in the spacing and set-size exper-
iments do not usually have an integer number of arcs, and, for

simplicity, the number of arcs used for calculating the predic-
tions of this model is not restricted to integer values, although,
one might well-argue for “rounding to the nearest integer.” An
increasing number of arcs, and, thus, an increasing number in
noisy arc units, according to probability summation, leads to a
decrease in performance, which is reflected in our experimental
results. This causes the number of arc units to be the relevant
or “effective” set-size for the prediction of performance in our
heterogeneity detection task, rather than the number of Gabor
patches.

Decision rule
The model assumes that performance for our task (detecting
if one element is misaligned with respect to the contour) is
determined by a population code of arc units analogous to cells
in area V4 (Pasupathy and Connor, 2002; Poirier and Wilson,
2006), where individual arc units represent individual arcs.
Any arc unit response will be maximal when the position and
orientation of the Gabors are aligned with the subunits of the
local curvature unit(s) feeding into the arc unit. The observers’
task was to decide which of two patterns contained a misaligned
element (orientation increment). For a complete RF 8, all of the
activated 16 arc units, which represent individual arcs, respond
optimally when the elements are aligned to the RF 8 contour
(base pattern). For the increment pattern with one misaligned
element, only 15 arc units respond optimally whereas one arc
unit responds sub-optimally.

In visual search tasks, observers are often assumed to use a max
decision rule when looking for a target among distractors, e.g., in
a 2AFC with multiple distractors, they choose the interval that
gives the highest response to any of the elements (Graham, 1989;
Verghese, 2001). In our experiments, observers had to report
the interval with an orientation misalignment, which results in a
weakened response for the target. Therefore, in analogy to a max
decision rule, we assume a min decision rule (i.e., looking for the
minimum response in the hypothetical arc unit population). This
is consistent with probability summation over arc unit responses
(Graham, 1989; Verghese, 2001). Consider the example of an RF8
shape and a 2AFC task as used in our experiments. Two stimuli are
presented to the observer (pattern A and pattern B). The subject’s
decision would be

“Pattern A contains the misaligned element” if min
(A1, A2, . . . , A16) < min (B1, B2, . . . , B16), and “Pattern
B contains the misaligned element” if min (A1, A2, . . . , A16) >

min (B1, B2, . . . , B16),

where A1, A2, A3, . . . , A16 are the individual responses of the
activated arc units to pattern A, and B1, B2, B3, . . . , B16 the
responses to pattern B.

MODULATING FACTORS
The following two factors, absolute curvature and inter-element
spacing, were not part of the original model (Poirier and Wilson,
2006) but have to be considered here. As discrimination of
isolated curvature arcs (segments without a change in sign of
curvature) depends on average unsigned curvature (Bell et al.,
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FIGURE 11 | Overview of the model including local curvature processing,

arc units and population coding. (A) Two sample shapes. Left:
high-amplitude RF 4 with convex and concave points of curvature (at the
peaks and troughs of the sinusoidal modulation). Points of convex and
concave curvature are separated by inflection points with zero curvature.
Right: a circle with uniform curvature throughout. (B) Local curvature
processing. The images show details of the two sample shapes and
superimposed triplets of V1 orientation filters used to extract local curvature
(see also Figure 10). Curvature processing is supposed to be locally

antagonistic (convex vs. concave); “active” triplets are shown in high contrast
and their responses are combined multiplicatively. For the RF 4 (left), a
“convex” triplet responds to the orange segment and a “concave” triplet to
the green segment. For the circle (right), a number of “convex” triplets are
active. (C) Global arc units. The responses of local curvature units (B) are
integrated (�) along the contour up to the points where the contour’s
curvature changes sign. This integration is supposed to be multiplicative (see
text). The local curvature responses are combined with information about the

(Continued)
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FIGURE 11 | Continued

center of the contour and the distance from the contour to the center,
which are computed in parallel by “global arc units.” These global arc
units are therefore tuned to the location of a shape’s points of local
curvature extrema relative to its center (the relation to the center is
symbolized by showing arc units as closed “shapes” with an obvious
center), consistent with V4 physiology (Pasupathy and Connor, 2002).
Depending on the length of the contour segments without changes in
curvature sign (arcs), these global arc units receive input from one
[high-amplitude RF4; (B) left] or many [circle; (B) right] local curvature
units. For the examples shown (C), one arc unit is sensitive to a
convexity at 9 o’clock (orange), one responds to the concavity at 7

o’clock (green), another (blue) receives input from multiple local curvature
units sampling the entire circumference of the circular contour [(B) right].
(D) Shows the shape representation as a population code of arc units.
The first and third columns show arc units sensitive to convexities at
various positions, whereas the second and fourth columns show arc
units sensitive to concavities. Activation of units within this population
code depends on the shape of the stimulus. Active arc units to sample
shapes (blue = circle; yellow = RF3; red = RF4; turquoise = RF6) are
shown by colored dots. For example, an RF 3 activates six arc units
(yellow dots), an RF4 eight arc units, an RF 6 twelve arc units (only 10
of which are shown). A circle activates only one arc unit. Hence, shapes
can be differentiated on the basis of the pattern of active arc units.

2009b; Schmidtmann et al., 2012, 2013), and because the outputs
of local curvature units feed the model’s arc units, it is natural
to assume that performance differs for shapes with different cur-
vatures. The average unsigned curvature is the magnitude of a
shape’s average curvature ignoring its sign, i.e., if it is convex or
concave.

In support of this, performance in perceptual tasks such
as contour detection (Field et al., 1993; Pettet, 1999; Mathes
and Fahle, 2007), curvature discrimination of curved segments
(Wilson and Richards, 1989), curvature discrimination of texture
boundaries (Wilson and Richards, 1992) and a probe compar-
ison task (Barenholtz and Feldman, 2003) has been shown to
deteriorate with increasing curvature. Sensitivity also decreases
for RF pattern discrimination (Bell et al., 2009b; Schmidtmann
et al., 2012) and detection (Schmidtmann et al., 2013) with
increasing amplitude (and hence increasing curvature), although
the effect of manipulating radial frequency varies across tasks.
RF detection decreases with increasing frequency (Schmidtmann
et al., 2013), whereas RF discrimination remains largely con-
stant (Wilkinson et al., 1998). Consistent with Pettet (1999),
who found in a contour detection task that “the effect of changes
in magnitude of curvature were predicted by the average of local
curvature along the length of the contour”, we used the average
unsigned curvature (see supplementary material for equations)
to modulate model sensitivity. The average unsigned curvature
is highest for the RF 8 (Cav, unsig RF8 = 1.1795), intermediate
for the RF 4 (Cav, unsig RF4 = 0.6033) and lowest for the circle
(Cav, unsig circle = 0.37). Consistent with this, thresholds were typ-
ically highest for an RF 8 (A = 0.1) intermediate for an RF 4
(A = 0.18) and lowest for a circle.

Inter-element spacing, λ, also affects model predictions. This
is based on observations of an improvement in performance for
contour detection (Field et al., 1993) and for the detection of
positional perturbations (Keeble and Hess, 1999; Levi and Klein,
2000) with decreasing spacing.

The overall model performance is therefore dependent upon
the number of arcs in the shape (S), its average unsigned cur-
vature (Cavg) and the inter-element spacing between adjacent
elements (λ). These parameters are dictated by the stimulus
and are derived from theoretical considerations and are not
the result of data fitting. Model predictions were based on
Equation 3:

Tx = Tcircle−25 · S 0.3
x ·

(
Cavg,x

Ccircle

)1

·
(

λx

λcircle−25

)0.5

(3)

Tx is the predicted threshold for experimental condition x.
Tcircle-25 is the measured threshold (7.4◦) for a circular pattern
with 25 elements [measured once in the shape alignment experi-
ment (T = 7.43◦), and once again, albeit with different subjects,
in the set-size experiment (T = 7.42◦)]. This serves as a baseline
relative to which all other thresholds are calculated. We chose
the mean of subjects’ thresholds for a 25-element circle as the
baseline, since this is the most “basic” of our stimuli, and since
inter-subject variability for this stimulus was very low. Sx refers
to the number of activated arc units, which correlate with the
number of arcs in the stimulus. The outputs of these arc units
for each of the two patterns in a trial are compared employing
a min decision rule. The dependence of thresholds on the num-
ber of active arc units is given by probability summation (Palmer
et al., 2000). This predicts that log thresholds increase linearly
with the log of the number of active arc units, showing a lin-
ear relationship in log-log coordinates, with a slope of about 0.3
(Palmer et al., 2000). The exponent (0.3) reflects this relationship.
Cavg, x is the average unsigned curvature of the shape in condition
x, which is normalized by the average unsigned curvature of the
baseline condition Ccircle. The (redundant) exponent of 1 is based
on the observation that the threshold for curvature discrimina-
tion increases with curvature with a log-log slope of 1 (Wilson
and Richards, 1989). Finally, the inter-element spacing (λx) of
condition x is normalized by the inter-element spacing of the
baseline condition (λcircle-25). The exponent of the last term was
the only free parameter of the model. Its value (0.5) was calculated
(method of least squares) to give the best fit to the experimental
data.

We did not explicitly apply the model described by Poirier
and Wilson with our proposed elaborations and did not calcu-
late its direct response to our stimuli. Full model simulations were
beyond the scope of this study. Instead, we focused our analysis
on how the model response would differ for various parame-
ter manipulations. In this sense, the “basic Poirier and Wilson
model” output is assumed to be given by our baseline condition
(Tcircle-25) and the terms in Equation 3 are to reflect how the
model response would change depending on various parameter
manipulations.

MODEL PREDICTIONS
Figures 12–14 show the model predictions (blue line for RF
0; red line for RF 4; green line for RF 8) and the experi-
mental data (blue circles for RF 0; red squares for RF 4 and
green diamonds for RF 8). For the shape alignment experiment
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FIGURE 12 | Model predictions vs. experimental data—shape

alignment experiment. Here, and in Figures 13 and 14 blue circles, red
squares and green diamonds represent experimental data for circle, RF 4
and RF 8, whereas the colored lines show the respective model
predictions.

FIGURE 13 | Model predictions vs. experimental data—spacing

experiment.

(Figure 12), the model captures the data well. As can be seen
from Equation 3, the dependence of thresholds on set-size is the
same for all shapes and therefore gives lines parallel to each other.
Differences between shapes (vertical shifts of the curves) are due

FIGURE 14 | Model predictions vs. experimental data—set-size

experiment.

to differences in the number of activated arc units and shape
curvature.

Figure 13 shows the model prediction for the spacing exper-
iment. The effect of inter-element spacing is also generally
well-captured by the model. For the RF 8, the slope of the model
prediction line (how sensitivity depends on spacing) is appropri-
ate (this follows from Equation 3) although the model slightly
under-estimates observer sensitivity. The prediction for the cir-
cle remains unaltered compared to the shape alignment experi-
ment. Steeper slopes for the RF 4 and RF 8 result because with
increasing spacing, the number of activated arc units increases
for these shapes, compared to the circle, where only one arc
unit is active irrespective of the length of the sampled circular
contour.

Figure 14 shows thresholds and predictions as a function of
set-size for the set-size experiment. The model provides an excel-
lent fit for both circular and RF 4 data. As for the effect of
inter-element spacing, the predictions for circular and RF 4 data
are good, as is the slope for the RF 8, while absolute thresholds
for the RF 8 condition are, however, overestimated. The eleva-
tion of predicted thresholds with increasing RF stems mostly
from the different average curvatures (Equation 3) because spac-
ing is constant for all shapes and set-sizes. On the other hand,
the slopes of the model predictions depend on the number of
arcs, which increases with set-size for RFs 4 and 8. Given the
exponent in Equation 3, the predicted slope is 0.3. For the cir-
cular shape, the slope is zero, because the number of active arc
units is constant (one) irrespective of the length of the sampled
contour.

In summary, a wide range of experimental data is generally
well-captured by the model, which is based on physiologically
plausible mechanisms.
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DISCUSSION
IMPLICATIONS OF EXPERIMENTAL DATA FOR VISUAL SEARCH
Current decision noise models of visual search (Palmer, 1994,
1995; Palmer et al., 2000) do not generally differentiate between
uniform and random configurations and predict the same set-size
slopes (in the range of +0.20 to +0.35). The set-size effect
observed in the random orientation experiment is substantially
higher (slope = +1.1). This result is well-captured by limited
capacity models (Treisman and Gelade, 1980; Palmer et al., 2000),
which predict slopes of +1, but which fail to predict slopes for
aligned or parallel patterns.

It seems that randomizing element orientation might be a
universal method to degrade performance relative to aligned or
parallel configurations in various visual tasks, perhaps because
the many different orientations do not allow adjacent elements
to be bound or grouped (Duncan and Humphreys, 1992) by local
or global processes.

In their orientation discrimination experiments, Palmer
(Palmer et al., 1993; Palmer, 1994) and Pavel (Pavel et al., 1992)
found considerably smaller slopes of +0.23, and +0.37 than for
our random condition. Adding distractor heterogeneity (a small
amount of orientation jitter) resulted in a threshold elevation for
all set-sizes, but no considerable change in set-size slope (+0.37
vs. +0.4; Palmer et al., 2000). Palmer et al. (2000) suggested that
these small slopes (small compared to those predicted by lim-
ited capacity models) argue in favor of a decision noise model
rather than a limited capacity model. The results of our uniform
(zero set-size slope) and random condition (slope = +1.1) put
this hypothesis into question. It is possible that when distractors
are of uniform orientation or when the distractor heterogene-
ity is small, the elements can be grouped, thereby diminishing
the effect of set-size on performance (Duncan and Humphreys,
1989; Kingstone and Bischof, 1999; Roggeveen et al., 2004). In
this case, the small slopes found by Palmer might not be due
to a decision noise mechanism, but, instead, due to a limited
capacity mechanism where distractors can be grouped. However,
a quantitative grouping theory of the same predictive power as the
decision noise or limited capacity model has yet to be developed.
The uniform orientation experiment (Figure 2) showed that the
detection of an orientation increment in a uniform pattern is
independent of the number of elements in the display, confirming
results from earlier studies (Orbach et al., 2005). The zero set-size
slope in the uniform orientation experiment is not predicted by
any of the models of visual search mentioned in the introduc-
tion. One might argue, however, that the absence of a substantial
set-size effect is a classic example of pop-out, indicating a parallel
search (Treisman and Gelade, 1980). However, Palmer and col-
leagues (Palmer and Mclean, 1995) argued that such pop-out is
only observed when stimuli are presented well above threshold,
and that pop-out might be an artifact of not carefully calibrated
stimuli. The argument was that, if the stimuli in the so-called
classical pop-out tasks were presented near threshold, then one
does not see pop-out, but a regular set-size effect. Following this
line of argument for our threshold stimuli, a zero set-size slope
is indeed surprising. It remains unclear, however, why the ear-
lier orientation discrimination experiments (Pavel et al., 1992;
Palmer et al., 2000) gave a non-zero set-size slope for parallel

distractors, opposed to the results of our “uniform” orientation
experiment.

The improvement in performance that is sometimes seen as
set size increases—or any performance better than predicted by
signal detection theory models—might also be argued to be
related to the configuration superiority effect (Pomerantz et al.,
1977; Bacon and Egeth, 1991) or to attentional engagement the-
ory (Duncan and Humphreys, 1992). According to this, the
relationship between the elements, e.g., their parallel orientation,
allows distractors to be grouped, and thus affects orientation dis-
crimination performance, resulting in a substantially higher sen-
sitivity for the uniform condition than for the random orientation
condition. We certainly see an effect of the configuration improv-
ing performance. However, to establish a connection between our
inverse set size effect with the classic configuration superiority
effect, further experiments are required to systematically evalu-
ate the effect of set size on stimuli, generalizing those used for the
classic effect and also to use threshold, rather than suprathreshold
discrimination.

One possible reason for the difference between random and
uniform orientation patterns is that, for certain arrangements,
mechanisms tuned to global stimulus properties (e.g., texture
or extended contour shape) become engaged and their per-
formance exceeds that of the process responding to random
arrangements including those typically seen in visual search. This
hypothesis was confirmed by the shape-alignment experiment.
Consistent with the uniform condition, if elements are aligned
tangent to a contour, the detection of an orientation increment
is not adversely affected by increasing the numbers of elements.
In contrast to the uniform condition, performance, rather than
being unaffected, actually improves as the number of elements
increases. Such an improvement with increasing set-size is sur-
prising when viewed in the context of visual search because an
increase in set-size is accompanied by an increase in spatial uncer-
tainty as to the number of possible positions where the incre-
ment patch might appear. According to current theories of visual
search, having to spread attention over a larger number of posi-
tions, or having to monitor more orientation detectors (Palmer
et al., 2000), should negatively affect sensitivity. The results of the
shape alignment experiment are, however, in qualitative accord
with a number of investigations on shape perception (Braun,
1999; Keeble and Hess, 1999; Levi and Klein, 2000; Li and Gilbert,
2002; Mathes and Fahle, 2007) who found performance for con-
tour detection in noise (or, in the case of Keeble and Hess, perfor-
mance for detection of position displacement from a contour) to
improve with an increasing number of contour elements and/or
with decreasing inter-element spacing. This discrepancy may be
explained in the following way: in a visual search task where mul-
tiple elements that are uncorrelated (i.e., not forming a shape or a
texture) have to be monitored, observer performance is captured
by a “visual search” process and declines with set-size. Irrespective
of the exact nature of the visual search mechanism (a serial mech-
anism or a spatial uncertainty mechanism, Palmer et al., 2000),
it results in a positive set-size effect. Such a search mechanism
would presumably always be available when confronted with mul-
tiple elements. However, as soon as the elements are arranged in
such a way that they stimulate other mechanisms (when pattern

Frontiers in Computational Neuroscience www.frontiersin.org May 2013 | Volume 7 | Article 67 | 14

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Kempgens et al. Set-size effects for sampled shapes

elements become part of a larger context, e.g., form a texture or
a shape), the response from both mechanisms would be avail-
able and observer performance would be limited by whichever
one is more sensitive. Visual search processes with low sensitiv-
ity only predict performance when the stimulus is deprived of
any global context. For example, for the shapes used in the “shape
alignment” experiment, a classical visual search mechanism mon-
itoring multiple elements with heterogeneous orientations, would
predict a positive set-size slope. A shape mechanism, on the other
hand, would explain the negative set-size slopes because it is more
sensitive to orientation changes of individual elements forming a
shape. The reason why thresholds decrease with increasing set-
size might then be due to a finer sampling advantage enabling the
shape mechanism to make more accurate discriminations.

IMPLICATIONS OF EXPERIMENTAL DATA FOR SHAPE PROCESSING
Effect of set-size and spacing
The similarity of the results for equivalently sampled contours
(shape alignment experiment) and partial contours (spacing
experiment) indicates that the main factor driving performance
is inter-element spacing, not set-size. Narrow spacing improves
processing of the contours and yields higher sensitivity for the
detection of an orientation deviation of one element. This is
in agreement with Levi and Klein’s (2000) results for a task of
detecting positional jitter of pattern elements within sampled
circles.

Performance for the random orientation experiment, however,
indicates that this is not a general effect. Spacing has no, or very
little, influence on the processing of that type of element arrange-
ment. For patterns with randomly oriented elements, the main
factor determining performance is set-size.

Furthermore, if spacing alone was the determining factor for
the detection of orientation heterogeneities, the set-size experi-
ment, where set-size was varied while separation remained fixed,
should have produced flat set-size curves for all shapes. This was
indeed found for circular patterns, but not for RF 4 and RF 8.
Hence, set-size and spacing have qualitatively and quantitatively
different effects on performance depending on shape. For the
circle, varying set-size while keeping spacing constant does not
alter performance. For RF 4 and RF 8, on the other hand, an
increase in set-size, with constant spacing has a detrimental
effect. For all shapes, decreasing spacing while keeping set-size
constant improves performance. When the two effects co-occur
(increase in set-size and a decrease in spacing; “shape alignment”
experiment), spacing dominates. The dominant role of spacing
is consistent with earlier reports on circles (Levi and Klein,
2000), but the results for the RF 4 and RF 8 shapes point toward
more complicated interactions between set-size and spacing for
non-circular shapes.

Effect of stimulus shape
The other main finding of the experiments is that the stim-
ulus shape strongly affects thresholds. The “shape alignment”,
“spacing” and “set-size” experiments deliver converging evidence
that sensitivity for the detection of orientation increments
decreases with increasing radial frequency. This result is in accord
with a recent study showing that thresholds for the detection

of RF patterns embedded in noise increase with radial fre-
quency (Schmidtmann et al., 2013). Decreasing performance with
increasing radial frequency might also be indicative of a shift
from global processing to local computations, which has been
reported for radial frequencies of about 8–10. This shift has been
shown for low (Jeffrey et al., 2002; Loffler et al., 2003) and high
(Schmidtmann et al., 2012) amplitudes.

On the other hand, studies investigating RF discrimination
from a circle have shown that there are only insignificant per-
ceptual differences between different RF shapes (Wilkinson et al.,
1998), yielding constant discrimination thresholds for different
RFs.

Consequently, depending on the task (on one hand detection
of orientation increments in RF shapes and RF detection, on the
other hand RF discrimination), performance does or does not
decrease with increasing RF.

THE MODEL
The Poirier and Wilson model was developed for, and applied
to, continuous RF patterns. It is unclear how it would respond
to sampled RFs. Sampling a contour would have an effect on a
number of model components: obviously local curvature but also
likely the extraction of the center of the contour and its radial
extent. Since all of these feed into subsequent stages and since
many stages are non-linear, it is difficult to predict the model’s
behavior to sampling. As our data show, sampling has a profound
effect on sensitivity, but its effect also depends on shape: for RF
4 and RF 8 shapes, narrow spacing improves performance, for
circles there is no effect of spacing. Furthermore, it is not clear
how the Poirier and Wilson model would respond to our task
of heterogeneity detection. Orientation increments that appear in
concave arcs would probably not be detected, whereas increments
in convex arcs might lead to a diminished response of a local cur-
vature unit sampling that arc, or it might result in responses from
curvature units tuned for higher or lower curvature than that of
the arc.

However, making a number of modifications (based on our
and other laboratories’ data) to the original Poirier and Wilson
model which still retained its basic spirit of a population code to
represent shape and incorporating well-established psychophys-
ical results, we were able to derive an equation (Equation 3)
that we would expect to be consistent with detailed mathematical
modeling from this, or, indeed, a whole class of models for shape
perception. Such models have the following properties: Firstly,
the models assume performance in shape tasks to be based on
a population code of arc units which respond to both convexities
and, when present, concavities, in agreement with psychophysi-
cal work (Pettet, 1999) and that these arc units essentially signal
the arcs (segments without change is the sign of curvature) con-
tained within a shape. Secondly, we assume that performance is
limited by late noise (Morgan et al., 1998; Parkes et al., 2001)
in these units. Thirdly, the average unsigned curvature of the
RF pattern modulates sensitivity, in agreement with earlier work
(Pettet, 1999). This last point seems reasonable as curvature
discrimination, within a curvature range of 1/deg to 10/deg,
follows a Weber law relationship (Wilson and Richards, 1989).
To reflect this, we incorporated a modulating factor depending
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on the average curvature of the contour. This has the effect of
uniformly elevating thresholds for shapes with higher average
curvature. Note that in the curvature factor, average unsigned
curvature of the RF pattern is normalized by the curvature of
the unmodulated circle, so that the RF radius is cancelled out
(see supplementary material for curvature equations). Therefore,
thresholds predicted by our model are scale invariant, consis-
tent with other studies (Wilkinson et al., 1998). Fourthly, inter-
element spacing has been shown to have a strong influence on
contour integration contour detection tasks (Field et al., 1993;
Levi and Klein, 2000) as well as contour appearance (Day and
Loffler, 2009). Inter-element spacing was incorporated into the
model and elevates thresholds with increasing spacing.

The Poirier and Wilson model uses a population code as a rep-
resentation of simple shapes and the model’s sensitivity is based
on that. That model, applied to the discrimination of continuous
RF patterns, assumes a cross-correlation of a given pattern with an
internal template, analogous to Edelman’s representation of simi-
larities (Edelman, 1998). The discriminability between two shapes
(pattern A vs. pattern B) is defined as the difference between the
two cross-correlations, i.e., the distance in a multi-dimensional
shape space representation. Our model assumes a min decision
rule comparing the population code responses of the bank of arc
units to patterns A and B. The Poirier and Wilson model may have
certain advantages for efficiency of coding and for the invariant
recognition of shape, but we chose the min rule using the origi-
nal population codes for patterns A and B as an algorithm arising
naturally out of signal detection theory.

CONCLUSIONS
The aim of the experiments presented here was to determine the
effects of set-size, shape, spacing and other factors on the detec-
tion of contour heterogeneity, and also to put our results into con-
text with existing models of visual search and shape processing.

Pattern shape has a strong effect on performance, which deteri-
orates with increasing complexity (radial frequency). Dense sam-
pling improves performance for patterns with elements aligned to
the contour, but not for random orientation patterns. We found
high set-size slopes, consistent with the prediction of limited
capacity models, for randomly oriented elements, a zero set-size
slope for parallel elements, and negative set-size slopes when ele-
ments were aligned to a contour shape. This is consistent with
the proposal that whenever elements cannot be grouped (when
they are, e.g., randomly oriented), performance is limited by a
process that monitors multiple elements, similar to the bulk of
experiments on visual search. However, when the configuration
supports grouping (in the form of texture or global contours)
performance is limited by more sensitive, global pooling mech-
anisms. For the parallel configuration, the zero set-size slope may
be explained by a global mechanism for parallel texture, per-
formance of which has been shown to be independent of the
number of elements and of element density in the display (Wilson
and Wilkinson, 1998). For the experiments where elements were
aligned to a contour performance is well-explained by the model
presented in this paper.

A sensible generalization of our results for random, uniform
and aligned shapes is that the “effective set-size” determines

performance for heterogeneity detection, where the effective
set-size is equal to the number of pattern parts that can be
grouped. For patterns with random Gabors, the effective set-size
is equal to the number of Gabor patches because grouping does
not take place. For aligned patterns, the effective set-size is equal
to the number of segments without a change in the sign of curva-
ture (arcs), and performance for these patterns is also influenced
by spacing and curvature. In the uniform orientation patterns,
the effective set-size is equal to one, because all elements can be
grouped into one texture. A prediction from this is that, for tex-
ture patterns containing more than one orientation, the effective
set-size is equal to the number of “interleaved textures.”

The results of our experiments provide insight into the rela-
tion between contour integration, shape and texture mechanisms.
When elements were aligned to a shape, performance was bet-
ter than when they were randomly oriented. This, and the effect
of spacing on performance, supports the assertion by Wilkinson
et al. (1998) that an association field or collinearity mechanism
(Field et al., 1993; Polat and Sagi, 1993) enhances the input into a
shape mechanism. Under the assumption that the uniform con-
dition probes texture processes whereas the aligned conditions
probe global shape processes, differences between the condi-
tions can be attributed to differences for the two types of global
computations. The uniform orientation (texture) results show
a zero set-size slope, whereas the aligned circle (shape) results
show a negative slope. This indicates that, although the sensi-
tivity of a mechanism for circular shape and a mechanism for
parallel texture seems to be similar, increased set-size and prox-
imity improves performance for shape, but increased set-size and
higher density of elements does not improve performance for par-
allel texture, in agreement with reports on Glass patterns (Wilson
et al., 1997; Wilson and Wilkinson, 1998).

The model presented here is based on physiologically plau-
sible mechanisms, and the equation to predict performance is
derived from stimulus properties, such as spacing, curvature, and
complexity of the shape (RF). With only one free parameter the
model fits our experimental data well. It is based on the assump-
tion of late noise, i.e., on the testable possibility that the noise
in arc units (the model equivalent of V4 cells) is higher than
the noise in orientation filters (equivalent to V1 cells). Although
psychophysicists have previously suggested late noise as an expla-
nation for their experimental data (Morgan et al., 1998; Parkes
et al., 2001), it would be useful to have an explicit experimen-
tal comparison of neurophysiologically measured noise in V1 vs.
V4 cells.
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