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The existence of dedicated neuronal modules such as those organized in the cerebral
cortex, thalamus, basal ganglia, cerebellum, or spinal cord raises the question of how
these functional modules are coordinated for appropriate motor behavior. Study of human
locomotion offers an interesting field for addressing this central question. The coordination
of the elevation of the 3 leg segments under a planar covariation rule (Borghese et al.,
1996) was recently modeled (Barliya et al., 2009) by phase-adjusted simple oscillators
shedding new light on the understanding of the central pattern generator (CPG) processing
relevant oscillation signals. We describe the use of a dynamic recurrent neural network
(DRNN) mimicking the natural oscillatory behavior of human locomotion for reproducing
the planar covariation rule in both legs at different walking speeds. Neural network
learning was based on sinusoid signals integrating frequency and amplitude features
of the first three harmonics of the sagittal elevation angles of the thigh, shank, and
foot of each lower limb. We verified the biological plausibility of the neural networks.
Best results were obtained with oscillations extracted from the first three harmonics in
comparison to oscillations outside the harmonic frequency peaks. Physiological replication
steadily increased with the number of neuronal units from 1 to 80, where similarity index
reached 0.99. Analysis of synaptic weighting showed that the proportion of inhibitory
connections consistently increased with the number of neuronal units in the DRNN.
This emerging property in the artificial neural networks resonates with recent advances
in neurophysiology of inhibitory neurons that are involved in central nervous system
oscillatory activities. The main message of this study is that this type of DRNN may
offer a useful model of physiological central pattern generator for gaining insights in basic
research and developing clinical applications.

Keywords: central pattern generator (CPG), human locomotion, biological oscillations, dynamical recurrent neural
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INTRODUCTION
Neuronal modules profoundly influence many aspects of motor
behavior. However, little is currently known about the con-
trol mechanisms that allow the coordination of these modular
entities. In this theoretical context, human locomotion is a chal-
lenging movement because of the numerous neuroanatomical
modules implicated in the different aspects of whole body move-
ment, ranging from the cyclic propulsion of the limb to balance
control. In spite of these intricate movement components and
neuronal modules involved, it has been proposed that the over-
all control can be realized by reducing the number of degrees
of freedom of the system into global variables (Bernstein, 1967;
Lacquaniti et al., 1999, 2002; Flash and Hochner, 2005; Latash,
2008). The fact that the elevation angles of the three main lower
limb segments are coordinated during gait within a covariation

plane (Borghese et al., 1996), forming an elliptic loop corrobo-
rates the idea that control of locomotion is also submitted to the
general law of reducing variables (Barliya et al., 2009). This gen-
eral law is also applicable for different walking speeds (Bianchi
et al., 1998), for forward and backward directions (Grasso et al.,
1998), rectilinear or curvilinear walking paths (Courtine and
Schieppati, 2004), walking with stilts (Dominici et al., 2009; Leurs
et al., 2011), or with a transfemoral prosthesis walk (Leurs et al.,
2012), with different levels of body weight unloading (Ivanenko
et al., 2002) and for running (Ivanenko et al., 2007). Notably,
this inter-segmental coordination is not present in newly walk-
ing toddlers (Cheron et al., 2001a,b; Ivanenko et al., 2005), but
covariation planarity rapidly emerges over the first few days of
independent walking experience, while the shape of the loop
and plane orientation “mature” gradually over several years.
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This evolution indicates that the attractor plane and the shape
of the loop are neurophysiologically defined, rather than being
imposed by biomechanical constraints (see Hicheur et al., 2006;
and Ivanenko et al., 2008 for discussion). More recently, the
developmental study of this complex behavior in a new born
baby (Dominici et al., 2011) has permitted revisiting the con-
cept of locomotor modules coding for the control of movement
primitives.

This modular approach raises the question of the dynamic
coordination of modules in the context of oscillatory prop-
erties of neuronal ensembles. Indeed, the dynamical structure
of these modules must logically obey a common principle for
movement generation: the production of oscillatory activity.
Although this principle is well accepted in case of the rhyth-
mic nature of locomotion (Georgopoulos and Grillner, 1989;
Grillner, 2006), the recent study of Churchland et al. (2012)
surprisingly demonstrates that non-periodic movements such
as reaching are also generated by neuronal oscillation. This
means that there is a strong possibility that the spinal mod-
ules organized in a central pattern generator (CPG) could be
dynamically controlled by cortical and/or supraspinal oscilla-
tions. Interestingly, Barliya et al. (2009) recently modeled the
time course of elevation angles of the three lower limb seg-
ments in terms of simple oscillators coupled with appropriate
time shifts reproducing the orientation of the plane and their
elliptical shape. The oscillators were obtained by taking, after
Fourier transform, the first three harmonics of the elevation
angle kinematics. Each of these oscillators could be interpreted
in term of oscillatory module acting in such a way that the
orientation of the plane and the elliptic shape of the coordi-
nation are conserved. It could thus be possible that oscillatory
signals derived from these harmonics are used for activating CPG
modules.

The existence of CPG in the spinal cord in mammals has been
proposed a century ago (Brown, 1911). In essence, it represents
a group of neurons acting as a network to produce coordinated
patterns of rhythmic activity. New evidence has shown the pres-
ence of CPG in the spinal cord in humans (Calancie et al., 1994;
Bussel et al., 1996). The characteristics of such CPG modules
are their adaptability and robustness that lead to the production
of different gait patterns adapted to their current environmen-
tal context. For example, young infants (less than 1-year old)
are already able to walk over a split-belt treadmill with differ-
ent types of coupling (Yang et al., 2005). Some of them were
even able to walk in opposite directions. Mimicking physiology,
the robotic and neuroscientific community developed artificial
CPGs that are commonly used to animate robots from multi-
legged insect-like to humanoids (for a review see Ijspeert, 2008).
In their pioneering work in the cat, Patla et al. (1985) pro-
posed an analytic model of limb locomotor pattern generator
based on recorded muscle activity induced by electrical stimu-
lation over the mesencephalic locomotor region (MLR) in the
decerebrate cat. In this model, locomotor like patterns of six
muscles resulted from six independent oscillators with dedicated
parameters. These oscillators were reduced to simple sine and
cosine functions fed by a tonic input. Since then, different meth-
ods have been used from coupled non-linear oscillators (Ijspeert

et al., 2007; Duvinage et al., 2011, 2012a), to highly detailed bio-
physics of small groups of interconnected neurons (Hellgren et al.,
1992) and rhythm genesis of larger groups of neurons (Wadden
et al., 1997) mainly in animal models. While human locomo-
tion has often been reproduced computationally in the robotic
field using equations that are numerically integrated (Righetti
et al., 2005; Righetti and Ijspeert, 2006; Ceccato et al., 2009;
Duvinage et al., 2011, 2012a), few methods involving neuron
modeling for human gait generation have been studied so far.
Among them Prentice and coauthors (1998, 2001) have success-
fully transformed fundamental timing signals (sine and cosine
inputs) into individual muscles activation bursts related to gait
locomotion at different speeds using a feedforward neural net-
work. Our group used the electromyographic (EMG) signals of
the lower limb muscles as input for a dynamic recurrent neu-
ral network (DRNN) producing as output the lower kinematics
during locomotion (Cheron et al., 2003, 2012). However, the pos-
sibility to produce the motion of the lower limb segments by
means of oscillations derived from the three harmonics of the
Fourier transform of walking kinematics has not yet been assessed
by means of the same DRNN. We show here that after learn-
ing based on different walking velocities, the DRNN is able to
reproduce the lower limb kinematics of both legs. The DRNN can
also generalize to the unlearned walking velocities. The analysis
of the required network structure (e.g., number of units, distri-
bution of time constant, and synaptic sign) provides a basis for
the discussion about the constraints required for the elaboration
of a CPG.

METHODS
EXPERIMENTAL SETUP
Seven healthy subjects aged from 25 to 35 years (mean age:
28 years) participated in this experiment. The protocol con-
sisted of walking on a treadmill at 11 different velocities [from
1 (0.28 m/s) to 6 km/h (1.67 m/s) stepped by 0.5 km/h (0.14 m/s)]
leading to 11 trials per subject (total of 77 trials over all subjects).
Whole body kinematics was recorded using Vicon system with six
infrared Bonita cameras recording at 100 Hz during 40 s for each
trial. The tracking consisted of recording 29 markers placed over
the whole body. The position of the markers in an orthogonal ref-
erence was computed using a custom biomechanical model. From
the position of the markers of both legs, the kinematic (elevation)
angles relative to the vertical plane of the laboratory have been
calculated bilaterally for thighs, shanks, and feet. In this study
we performed two experiments. The first one, “proof of con-
cept,” was done to ascertain the feasibility of a DRNN to learn
elevation angles from pure sine waves. This part only includes
supervised learning on a single pattern (Figure 1A). The second
experiment was performed in order to study the possibility to
learn multiple patterns of walking (i.e., velocities) and to predict
kinematics from unlearned patterns (Figure 1B). After that, the
DRNN structures were analyzed.

DYNAMICAL RECURRENT NEURONAL NETWORK
The DRNN is capable of modeling time-varying input–outputs
and has varying weights as well as varying time constants for
the artificial neurons (Pearlmutter, 1990). The adaptive time
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FIGURE 1 | Realization of a CPG module based on experimental

recordings of human walking. (A) In the first step, the elevation angles of
the thigh, shank, foot of the two legs are transformed in the time frequency
domain using fast Fourier transform (FFT). Then the signal characteristics are
computed for the first three harmonics and back-transformed into temporal

space using sine waves formulation. These data are fed as input to the DRNN
learning the transformation in kinematic signals (elevation angles). (B) A
successful learning will permit the DRNN to predict kinematics based on sine
wave inputs only. These output signals can produce biologically plausible
walking patterns in a virtual reality avatar or an actual robotic exoskeleton.

constants make it dynamic (Draye et al., 1996). The DRNN is
governed by the following equations:

Ti
dyi

dt
= −yi + F(xi) + Ii (1)

where F(a) is the squashing function F(a) = (1 + e−a)−1, yi is the
state or activation level of unit i, Ii, is an external input (or bias),
and xi is given by:

xi =
∑

j

wijyi (2)

which is the propagation equation of the network (xi is called
the total or effective input of the neuron i, wij is the synaptic
weight between units i and j). The time constants Ti will act like a
relaxation process. In order to make the temporal behavior of the
network explicit, an error function is defined as:

E =
t1∫

t0

q(y(t), t)dt (3)

where t0 and t1 give the time interval during which the correction
process occurs. The function q(y(t), t) is the cost function at time
t which depends on the vector of the neuron activations y and on
time. We then introduce new variables pi (called adjoint variables)
that will be determined by the following system of differential
equations:

dpi

dt
= 1

Ti
pi − ei −

∑
j

1

Ti
wijF

′(xj)pj (4)

with boundary conditions pi(t1) = 0. After the introduction of
these new variables, we can derive the learning equations:

δE

δwij
= 1

Ti

t1∫
t0

yiF
′(xj)pjdt (5)

δE

δTi
= 1

Ti

t1∫
t0

pi
dyi

dt
(6)

The sinusoid signals derived from the Fast Fourier transform
(FFT) kinematic data are sent as input to a DRNN (Figures 1, 2
cf. Experiments 1, 2) that has to learn from these data to pro-
duce the kinematics specified as elevation angles (Figure 1A).
Successful trainings were also used to produce kinematic patterns
from unknown inputs (Figure 1B) aiming to produce walking for
multiple purposes, such as virtual avatars or robotic exoskeletons.
The training is supervised, involving learning rule adaptations of
synaptic weights and time constant of each unit (Draye et al.,
1995, 1996). A specific training procedure using Almeida algo-
rithm was used to optimize learning performance (Cheron et al.,
2011). The DRNN involves a looping mechanism (fully con-
nected structure) which enables this network to learn and store
information (memory). This equips the network with the abil-
ity to model complex situations with multiple influences. The
DRNN was successfully used to map EMG signals into kine-
matics during walking (Cheron et al., 2003), for the identifica-
tion of the triphasic EMG pattern in subjects performing fast
elbow flexion movements (Cheron et al., 2007) or to predict
specific muscular activity in elite fencers compare to amateurs
(Cheron et al., 2011).

EXPERIMENT 1: PROOF OF CONCEPT
DRNN computation has been used to prove that simple sine
waves with specified temporal characteristics can be used as input
to an artificial neural network to be transformed into elevation
angles obtained from kinematic recordings during locomotion
(Figure 3).

Input: construction of sine waves
As the learning phase of the DRNN is a time-consuming process,
we had to select appropriate sample from the whole available data
as input. Moreover, even if the kinematics during walking is rela-
tively stable, it may vary too much to feed the DRNN during the
learning phase. For these reasons, we extracted two consecutive
gait cycles from the 40 s of experimental data recorded in each
trial (Figure 2A, black curves). They were chosen so as to be rep-
resentative in terms of frequency of the whole recording set. Then,
to determine the kinematic characteristics of gait, we transformed
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FIGURE 2 | (A) Elevation angles (in degree) of the three segments (thigh,
shank, and foot) for each leg as a function of time for a subject walking
at 3 km/h (0.83 m/s). The whole pattern is presented for duration of 5 s.
The black lines represent a pattern for two gait cycles used to determine
the FFT characteristics. (B) The mean FFT transformation for six joints

for 40 s (in gray) and the two gait cycles (in black). Note that the two
gait cycle patterns are selected so as to preserve the FFT characteristics
in terms of amplitude and frequency (stars) for the overall pattern of
40 s. These characteristics are used as parameters to generate sine
waves as input of the DRNN.

FIGURE 3 | DRNN learning method for Experiment 1. For each subject,
we trained 100 DRNNs to learn a pattern of kinematic [corresponding to
a velocity of 3 km/h (3.83 m/s)] from sine waves (Equations 7 and 8).
Three sets of learning were defined as the input differed (SEA, SEB,
SEC). The structures of DRNNs were modeled with 30 hidden units for

each set of training. Each network iterated 10,000 times to change its
synaptic weights and time constants. For each subject and structure we
selected the network with the highest SI value. For each condition, the
design of the network is then processed with 6 inputs, 30 hidden units,
and 6 outputs.

the data of the lower limb segments elevation angles into the time
frequency domain using the Matlab fft function to get the FFT
power amplitude and their related frequency values of the first
three harmonic peaks (Figure 2B). It has been shown previously
that the first two Fourier harmonics accounted for approximately
98% of the experimental variance of the thigh, shank, and foot

angles (Bianchi et al., 1998). We decided to create sine waves
based on the characteristics of the first three harmonics to ensure
that the signal proposed as learning input to the DRNN contains
enough information to match the desired output precisely.

We extracted the values of the three frequencies (f 1, f 2, f 3)
corresponding to the maximal amplitudes (a1, a2, a3). It was
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verified that f 2 = 2f 1 and f 3 = 3f 1. We then artificially pro-
duced six sinusoidal signals using frequency values as parameters
(Equations 7 and 8).

yfi,1 = sin(2π × fi × t) (7)

yfi,2 = sin(−(2π × fi × t)) (8)

For i = 1, 2, 3

These six sine waves thus correspond to the frequency charac-
teristics of the kinematic patterns that will be further used as
pattern to be learned. For the sake of clarity we called the set of
original inputs set SEA (for set of Equations A). Additionally, we
produced six new sine waves using the preceding computations
(Equations 7 and 8) where f 1′ = f 1 + 0.25 Hz and six other sine
waves where f 1′′ = f 1 − 0.25 Hz, respectively called SEB (for set
of Equations B) and SEC (for set of Equations C). Please note
that in the latter two cases the original relations f 2 = 2f 1 and
f 3 = 3f 1 were respected and hence f 2′ = 2f 1 + 0.50 Hz; f 3′ =
3f 1 + 0.75 Hz in the set SEB and f 2′′ = 2f 1 − 0.50 Hz; f 3′′ =
3f 1 − 0.75 Hz in the set SEC. Three different input sets (SEA,
SEB, SEC) were thus defined for learning.

Pattern to learn: kinematic data
The pattern to learned corresponds to the elevation angles of the
right and left thigh, shank, foot segments in the two gait cycles
of a 3 km/h (0.83 m/s) walk, normalized between −1 and 1. The
outputs were the same for SEA, SEB, and SEC whereas inputs
differed.

DRNN learning phase
It was expected that the DRNN would learn how to transform the
input to output thanks to its dynamical and recurrent structure
of 30 hidden neurons. For each of the seven subjects, the network
iterated 10,000 times. This process was repeated 100 times, lead-
ing to 100 different networks. At the end of the learning phase,
we selected for each subject the network for which the differ-
ence between predicted and real kinematics was minimal. This
computation was performed by calculating a similarity index (SI)
(Bengoetxea et al., 2010) defined by the following equation:

SI =

∫ Tc
2

− Tc
2

p1(t)p2(t)dt

[∫ Tc
2

− Tc
2

p1(t)2dt

∫ Tc
2

− Tc
2

p2(t)2dt

] 1
2

(9)

where Tc is the period of the limit cycle, p1 and p2 being syn-
chronized, i.e., the matching between both patterns is based on
the maximum of each pattern. Note that if both functions are
identical, SI = 1. SI was calculated with the recorded pattern of
elevation angles and the output of the DRNN.

EXPERIMENT 2: MULTIPLE PATTERN LEARNING AND PREDICTION
In this experiment sine waves were modulated in frequency
and amplitude and transformed into kinematic data using

multi-pattern training. The prediction of kinematic pattern from
unknown sine wave pattern was also tested.

Input
As for the proof of concept methods, we extracted two
gait cycles of each trial for multiple velocities (in km/h)
(v = {1.5, 2.5, 3.5, 4.5, 5.5}). We transformed the kinematic
data into the time-frequency domain to get their frequency
(f 1, f 2, f 3) and amplitude (a1, a2, a3) (Figure 2B) parameters
using the following set of Equations (10 and 11).

yv, fiv, aiv,1 = aiv × (sin(2π × fiv × t)) (10)

yv, fiv, aiv,2 = aiv × (sin(−(2π × fiv × t))) (11)

For i = 1, 2, 3

Patterns to learn: kinematic data
The patterns to be learned consisted of elevation angles of the
right and left thigh, shank, and foot segments corresponding to
the two gait cycles, normalized between –1 and 1. These patterns
were obtained from recordings at multiple velocities (in km/h)
(v = {1.5, 2.5, 3.5, 4.5, 5.5}).

DRNN training phase
We used the possibility to train the DRNN in a multi-pattern pur-
pose (Bengoetxea et al., 2005). For each subject, the DRNN was
trained to match the inputs/outputs patterns corresponding to
five different velocities within a single DRNN structure. Hundred
networks were made per subject, each of them iterating 50,000
times. This operation was assigned for 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20,
30, 40, 50, 60, 70, and 80 hidden units. When this was completed,
we selected the best network for each subject and each number of
hidden units using the maximal SI values.

Output prediction
We built sine waves from intermediary pattern velocities (km/h)
(v = {2, 3, 4, 5}) as explained above. We fed the best DRNN
structures previously obtained after the training phases with these
unlearned inputs sine waves and analyzed DRNN behavior by
calculating the predicted output with experimental data using SI
values.

NEURONAL PROPERTIES AND CONNECTIVITY AFTER LEARNING
Introduction of timing allows modeling of more complex fre-
quency behavior, improves the non-linearity effect of the sig-
moid function and the memory effect of time delays (Draye
et al., 1995). The distribution of the time constant and the
synaptic weights between units (Draye et al., 1996) after learn-
ing was analyzed after multiple pattern learning and predic-
tion. In particular, we recorded the number of positive and
negative connections inside DRNN structures of the best net-
works. Additionally we studied the distribution of neuronal
time-constants.

STATISTICAL ANALYSIS
Statistical analysis was performed using Statistica software
(Statsoft, www.statsoft.com). For each test performed and
described in the result section, we firstly verify whether the
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data were distributed normally using Kolmogorov–Smirnov test.
When the data were normally distributed we use ANOVA with
repeated measures and post-hoc Fisher analyses. When it was not
possible to use ANOVA we used non-parametric tests such as
Friedman ANOVA or sign tests.

COMPUTATIONS
All DRNN computations were performed in the Hydra com-
puting center hosted in ULB (https://cc.ulb.ac.be/hydra/). We
allocated 1 node and 10 Gb of memory per computation (i.e., per
subject per condition in the Experiment 1, per subject per struc-
ture in the Experiment 2). The computations were run in parallel
to optimize the learning duration. Afterwards we simulated 5%
of the overall experiment in the same conditions to estimate the
learning time. The overall duration of the process was obtained
by linear interpolation (Figure 4).

RESULTS
EXPERIMENT 1: PROOF OF CONCEPT
A statistical test was designed to compare SI values from different
input types (SEA, SEB, or SEC) (Figures 3,5). The Kolmogorov–
Smirnov did not reject the hypothesis that SI values were

normally distributed (D = 1.4414, p > 0.20) when analyzing
together values of the different inputs (SEA, SEB, or SEC). We
used an ANOVA with repeated measures where dependant vari-
able was SI and the independent variable chosen was the type
of input. The analysis showed an effect of the input frequency
in the DRNN prediction (SI value) [H F(2, 12) = 38.110, p =
0.00001]. Post-hoc analysis confirmed that SI values of original
group of unchanged frequency input (SEA) were higher than the
2 modified groups where frequency inputs have changed (SEB
and SEC).

EXPERIMENT 2: PREDICTION OF INTERMEDIARY VELOCITIES
As we decided to use frequency (f 1, f 2, f 3) and amplitude (a1, a2,
a3) characteristics to modulate inputs for multiple learning pro-
cedures (Equations 10 and 11), we have verified that there was a
statistical significance of these parameters for different velocities.
The Kolmogorov–Smirnov test for f 1 (D = 0.14370, p < 0.1),
f 2 (D = 0.14370, p < 0.1), and f 3 (D = 0.14370, p < 0.1) was
not clear enough to reject the fact their population may fol-
low a normal law. When looking at the distribution, they tend
to be normal and it is possible that the significance of the test
is due to the weak number of values. According to similar test,

FIGURE 4 | Illustration of the DRNN structure and computational

time. (A) Computational learning duration for one subject for
experiment 2 (in hours). The gray circles represent the estimation of
time required per number of hidden units from a recalculation of 5%
of the procedure. Please note that the overall process for the seven
subjects has taken approximately 200 days to be computed. (B), (C),

and (D) represent the connectivity of the hidden layer with 5, 10, and
20 neurons, respectively. As the number of neurons increases, the
number of connections increases by a factorial multiplication as well as
the time required to adjust connection weight and time constant.
Please note that only the units of the hidden layers are represented
without input or output neurons.
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FIGURE 5 | Planar covariation between normalized thigh, shank, and

foot for all participants. (A) Recording data—the patterns correspond to the
real kinematics of 2 gait cycles for all participants. Best kinematic patterns

predicted by the DRNN for each subject where SEA (B), SEB (C), and SEC
(D) were fed as input. SI is the average of similarity index value (SI) in each
condition for all subjects when compared with the recording data.

the values for parameters a1 (D = 0.08476, p > 0.2), a2 (D =
0.08758, p > 0.2), and a3 (D = 0.09035, p > 0.2) were normally
distributed. We then used two ANOVA with repeated measures
where the dependent variables were, respectively, the amplitude
and frequency values and the within-subject factors were velocity
of walking and the specific harmonic (1, 2, or 3).

ANOVA shows significant changes in amplitude [F(10, 60) =
31.351, p < 0.0001] and frequency [F(10, 60) = 69.276, p <

0.0001] with an increase in velocity. Post-hoc analyses revealed
an increase in f 1, f 2, a1, a2, a3 and a decrease of f 3 with an
increase in the velocity. These significant differences justified their
use for building specific sine waves for different walking velocities
(Figure 6).

Concerning the performance of the DRNN outputs, we
wanted to verify if the SI value applied for the best networks was
different for learning and prediction. Additionally we wanted to
statistically check if the number of hidden units of the networks
increases the SI value (Figure 7). The Kolmogorov–Smirnov did

not verify that the populations of SI values among the learn-
ing (D = 0.18467, p < 0.01) or the prediction (D = 0.20684,
p < 0.01) were normal. Thus, to compare the SI values between
learning and prediction process we chose to use a sign test as
the structure of the network (weights and time constant) were
the same. This test reveals no significant differences in SI values
between the two populations except when the network contains
1, 2, 4, 5, 6, and 7 neurons. Moreover we use a Friedman test to
analyze SI values (dependent variable) according to the number
of hidden units (independent variables) of the network. There is
an effect of the number of hidden units to the SI both for learn-
ing [χ2

(16)
= 111.5630, p < 0.0001] and for prediction [χ2

(16)
=

109.3721, p < 0.0001].
We also analyze the output of the DRNN for specific veloc-

ities where the hidden layer was the biggest with 80 units. A
Kolmogorov–Smirnov run together with learning and prediction
values did not verify that the populations of SI was normal (D =
0.18342, p < 0.05).
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FIGURE 6 | Evolution of the frequency (A) and amplitude (B) of

the first three harmonics when transforming elevation angles

into the time frequency domain (FFT) at different walking

velocities [from 1 to 6 km/h (0.28 to 1.67 m/s)]. The FFT peaks

of each angle are averaged for each velocity for both frequency
and amplitude. Squares, circles, and triangles represent the mean
value for 7 subjects and whiskers represent the 95% confidence
interval.

We use a Friedman test to analyze SI values (dependent vari-
able) according to the velocity (independent variables) of the
network. There is an effect of the velocity to the SI [χ2

(8)
= 30.22,

p = 0.00019] (Figure 8). A post-hoc analysis at 0.05 significance
level reveals that SI values of 4.5 km/h were different from 1.5 and
2 km/h. SI values of 4 km/h were also different from 2 km/h. An
example of prediction of intermediate velocities in one subject is
illustrated in (Figure 9).

DRNN STRUCTURES FROM EXPERIMENT 2
Weight distribution analysis
The percentage of positive and negative weights was calculated
for each best network per subject per condition. We wanted to

verify if the distribution of the positive and negative weights
were different (Figure 10A). The Kolmogorov–Smirnov test did
not verify that the distribution of positive weights were normal
(D = 0.15022, p < 0.01) nor the distribution of negative weights
(D = 0.15022, p < 0.01). We then used a non-parametric sign-
test to compare the two-distribution as the two samples were
dependent. Regardless of the number of hidden units, the test
shows a difference between the distributions of the two popu-
lations (Z = 9.482, p < 0.0001). When the number of units in
the test were included, it appears that the population of nega-
tive weights is higher than population of positive weights when
the network possesses more than 3 hidden units (for 4 hid-
den units, Z = 2.268, p = 0.023342). When the structure of the
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FIGURE 7 | SI values of all multi-patterns learning and prediction for all participants with different number of hidden neurons. Whiskers correspond to
95% confidence interval.

FIGURE 8 | SI values for learning and prediction with a 80 hidden units network according to walking velocity. Whiskers correspond to 95%
confidence interval.

DRNN reaches 80 hidden neurons, 70.6 ± 0.84% of the synapses
are negative.

Time constant distribution analysis
The distribution of the time constant was represented by
the median of neuronal time constants of the best networks

per subject and number of hidden units (Figure 10B). The
Kolmogorov–Smirnov displayed a normal distribution of the
time constant median (D = 0.09110, p > 0.20). ANOVA with
repeated measures was designed with the number of hid-
den units as independent variable and time constant median
as dependent variable. ANOVA analysis shows an interesting
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FIGURE 9 | Prediction of intermediate velocities in one subject.

(A) Planar covariation of the normalized thigh, shank, and foot for one
participant walking at 2 km/h. (B) Planar covariation of the normalized
thigh, shank, and foot for the same participant walking at 5 km/h. (C)

Kinematics of walking of the normalized thigh, shank, and foot for the

same participant walking at 2 km/h. (D) Kinematics of walking of the
normalized thigh, shank, and foot for the same participant walking at
5 km/h. In each subplot the red dotted line corresponds to the
experimental data whereas black thick line corresponds to the output of
the DRNN.

effect of the number of hidden neurons [F(16, 96) = 3.6245,
p < 0.0001]. Overall, post-hoc analysis revealed that the dis-
tribution of the time constants were different when the net-
work was small (less than 5 hidden units). It also reveals
that the networks with 80 hidden neurons were differ-
ently distributed than medium-sized network (8–10 hidden
neurons).

DISCUSSION
MAIN FINDING
We show here that a fully connected recurrent neural network
is able to reproduce human walking pattern based on oscilla-
tory properties of kinematics. Although, this network is a black
box model without prewired structure mimicking a physiologi-
cal CPG, its actual performance allows direct comparison with
CPG dedicated structure and related algorithm (Duvinage et al.,
2012a). Moreover, by the inherent input-output mapping, the

DRNN models not only the CPG but also neural feedback
pathways and the musculoskeletal system. For simplicity, we con-
sider this neural network as “CPG-like structure” here. We proved
that the DRNN is capable of generating the kinematics as ele-
vation angles pattern of walking for both limbs (six degrees of
freedom) from simple oscillations corresponding to the three
main harmonics of the walking kinematics. Moreover, by mod-
ulating those frequencies and tuning them in amplitude as input,
the DRNN was able to learn and reliably predict walking kine-
matics at different velocities (Figure 9). After this appropriate
learning the DRNN can thus be considered as a CPG-like struc-
ture that would continuously receive oscillation inputs to produce
the relevant elevation patterns of the six leg segments. Another
interesting result is observed when looking at the structure of
best CPGs obtained after learning. Hence, it appears that all of
them contain a major part of negative connection weight between
units.
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FIGURE 10 | Distribution of weights (A) and time constants (B)

among the DRRN structures. The horizontal axis represents the
number of hidden neurons and vertical the percentage of

population. The bars represent the mean distribution among the
best DRNN for each subject. Whiskers represent the 95%
confidence intervals.

LIMITATIONS OF THE PRESENT APPROACH
Obviously, there are infinite different ways to train the DRNN
and this is a strength of this approach. However, it implies a
corollary limitation as not all possibilities could be tested in
the present study. For example, in order to better document its
generalization ability, the model could be trained for a defined
low range of velocities, e.g., from 1 to 4 km/h, and then tested
with unlearned oscillation input corresponding to higher veloc-
ities. A reverse procedure could also be made, i.e., from faster
training to slower predictions. Furthermore, inter-subjects gen-
eralization has not been studied in the present investigation.
The actual usefulness of performing this would largely depend
on the basic or application purposes. Another limitation of the
present work is the lack of feedback testing, which necessitates
a priori identification of a reliable signal and a new operational
strategy for learning. Future work will address these aspects
specifically.

NEUROPHYSIOLOGICAL SIMILARITY BETWEEN MODELED CPG AND
CPG IN HUMANS AND OTHER MAMMALS
The understanding of CPG mechanisms remains central in loco-
motion study (Grillner, 2006; Kiehn, 2006; Rossignol and Frigon,
2011). The CPG is a spinal network of neurons capable of gen-
erating a rhythmic pattern of alternate activities between flexor
and extensor motoneurons on the same side with reciprocal acti-
vation of homologous motoneurons in the contralateral limb.
This intrinsic spinal circuitry has been well described in many
invertebrate and vertebrate animals, and is highly conserved even
in humans, where greater cortical control of spinal modules is
required working in conjunction with sensory feedback (Calancie
et al., 1994; Bussel et al., 1996; Duysens and Van de Crommert,
1998; Drew et al., 2002; Rossignol et al., 2009). The unique char-
acteristics of human walking probably reflect a complex neural
mechanism responsible for pattern production. It is therefore
difficult to directly extend experimental findings obtained in

quadruped animals to human walking (Barbeau et al., 1998;
Capaday, 2002).

The fact that some patients with incomplete spinal injury can
move their legs in a rhythmic fashion (Dietz et al., 1995) and
that the primary sensorimotor cortex provides oscillatory com-
mands toward the spine during walking (La Fougère et al., 2010)
motivates new experiments in which different types of oscillatory
signals could be used as input to the CPG-like DRNN. In this con-
text, recent studies have showed EEG oscillations in relation to
the gait cycle phase including event-related spectral perturbation
in the alpha-beta and gamma bands (Gwin et al., 2011; Haefeli
et al., 2011; Cheron et al., 2012; Wagner et al., 2012).

These results are consistent with a top down control of
locomotion (Capaday, 2002) and demonstrate the feasibility of
extracting EEG signals from the sensorimotor cortex controlling
the contralateral foot placement during walking. Although the
distinction between the brain signals directly linked to the motor
commands and those related to the treatment of multiple sen-
sory signals is a hard task. In this context, Petersen et al. (2012)
have found evidence of synchrony in the frequency domain
between the primary motor cortex and the tibialis anterior muscle
prior to heel strike during the swing phase of walking signifying
that rhythmical cortical activity is transmitted via the corti-
cospinal tract to the active muscles. Additionally Wagner et al.
(2012), showed a significant difference in the alpha (8–12 Hz)
and beta (18–21 Hz) rhythm recorded over the central midline
area between passive and active walking with exoskeleton. The
role played by specific oscillations related to the initiation and
control of human locomotion coming from supraspinal struc-
ture was recently demonstrated by local field potential recordings
performed in the pedunculopontine nucleus in parkinsonian
patients during rest and unconstrained walking (Thevathasan
et al., 2012). Alpha oscillation recorded in the caudal part of
this nucleus is correlated with gait speed and permits to suppress
“task irrelevant” distraction for improving gait performance.
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Moreover, these authors showed that gait freezing of parkinsonian
patient was associated with the attenuation of these alpha waves.

Consistent with this aspect of gait physiology, in our model,
input sine waves are sufficient to predict successful output with
the DRNN and offer the possibility to mimic such type of
supraspinal oscillatory input. It could be advanced that nonlinear
mapping of sinusoidal oscillations to kinematic pattern should
be realized by other mathematical functions, such as by a Taylor
series, but such multi-dimensional approximation seems to be
highly difficult to obtain and does not permit testing different
network configurations mimicking biological organization such
as the CPG. In the present study, we focused on input oscilla-
tion derived from the first three harmonics of kinematic signals,
which were slower than the alpha frequency range. However, it
could be possible to extract slower oscillation from alpha or beta
derived signals (envelope) in order to activate the DRNN in our
future work.

STRUCTURAL SIMILARITIES OF MODELED CPG AND
NEUROPHYSIOLOGICAL CPGs IN ANIMALS
It has been suggested that the biological CPG is considered to
serve two basic functions: rhythm generation (RG) and pattern
formation (PF).

Initially proposed by Perret and Cabelguen (1980), the idea
that the biological CPG is composed of a rhythm and a pattern-
amplitude generator is now widely accepted (Kriellaars et al.,
1994; Guertin et al., 1995; Perreault et al., 1995; Grillner, 2006;
Kiehn, 2006; Talpalar et al., 2011) and paved the way to more
complex models of multi-level CPG (McCrea and Rybak, 2008,
see below).

It is well-recognized that rhythm generating networks can be
realized by means of (1) pacemaker neurons with intrinsic mem-
brane properties such as those described in the stomatogastric
ganglion of crustaceans or in the mammalian thalamus (Steriade
and Llinás, 1988) or (2) most simplistic neurons without intrin-
sic pacemaker properties but interacting with inhibitory synapses
for producing oscillation as emergent properties of this neuronal
population (Geisler et al., 2005). Both neuronal systems thus
present the fundamental ability to oscillate. Firstly described in
the tadpole and lamprey CPGs, glutamatergic excitatory neurons
distributed along the cord (Grillner, 2003) assume the func-
tion of rhythmic generator by driving motor neurons and other
ipsilateral and commissural inhibitory neurons coordinating the
different CPG modules. By blocking the inhibitory networking in
the lamprey and also in rodent and cat, many authors (see Kiehn,
2006 for a review) have demonstrated that the glutamatergic burst
neurons are the generators of the CPG rhythm.

In addition to intrinsic RG properties, the walking CPGs need
to integrate the ipsilateral coordination of flexors and extensors
across the same or different joints in a limb and perform inter-
limbs coordination. It has been proposed (Zhong et al., 2012) that
a subpopulation of neuronal CPG that drives extensor activity is
tonically active and is regulated via inhibitory interactions with
another CPG rhythmic structure responsible for flexors activity
in the same hemicord. This assumption may explain why, during
experimental recordings on the neonatal mouse isolated spinal
cord, spontaneous deletions of extensor activity do not perturb

rhythmic flexor activity. Thus, the inhibitory interneurons play
a major role in the temporal sculpting and coordination of the
CPG units. The interneurons and the Renshaw cells are involved
in this function and in the regulation of walking speed. In addi-
tion, the left-right coordination is assumed by a complex network
of excitatory and inhibitory commissural interneurons acting on
both motor neurons and inhibitory interneurons of the con-
tralateral side (Kiehn, 2006). Interestingly, we have shown that
a great percentage of artificial neurons became inhibitory neu-
rons (negative synaptic weight) when the number of neurons
progressively increases in the DRNN structure. In this context,
it was recently demonstrated in awake mice that the spiking
activity of inhibitory neurons of the barrel cortex is organized
in order to balance excitation and prevent explosive activity in
the recurrently connected cortical microcircuit (Gentet et al.,
2010). This physiological mechanism can also be proposed in
the present case of the emergent structure of artificial DRNN
circuit. Another, not exclusive explanation can reside in the preva-
lence of inhibitory recurrent connections for producing network
oscillation (Geisler et al., 2005; Wildie and Shanahan, 2011).
In their review, Nishimaru and Kakizaki (2009) have proposed
that inhibitory interneurons play a major role in the CPG of
rodent spinal cord. The interneurons are likely to control the
bursting of motor neurons during locomotion and it appears
that the synaptic transmission mediated by glycine and GABA
shifts from excitatory to inhibitory during the prenatal period.
It was recently demonstrated that in the absence of glutamater-
gic synaptic transmission, the flexor-extensor alternation appears
to be generated by the inhibitory interneurons, mediating recip-
rocal inhibition from muscle proprioceptors to antagonist motor
neurons (Talpalar et al., 2011).

The present artificial model does not pretend to mimic the
complexity of the CPG structure. Instead, it presents a highly
simplified recurrent organization from which CPG-like dynamic
function emerges, following appropriate learning. Sinusoidal
inputs serve as temporal referent to produce rhythmic angles pat-
terns. This model could correspond to the RG structure described
previously as a higher order structure that determines rhythmic
output of the system (McCrea and Rybak, 2008; Zhong et al.,
2012) since sine waves are transformed into kinematics. Another,
lower order structure responsible for the phasing and intensity
coordination (McCrea and Rybak, 2008; Zhong et al., 2012) could
be assumed by another model of DRNN transforming theoretical
kinematics into practical muscle orders. We have already stud-
ied such relation where EMG signals from walking where used
to predict kinematics (Cheron et al., 2003). To conclude to this
point, we propose that the two model driving two specific DRNNs
(one for producing elevation angles from sine waves and one pro-
ducing muscular patterns from elevation angles during walking)
could act as a complementary top-down pathway to produce ade-
quate coordinated patterns as it has been proposed to model the
locomotion in spinal mouse (Zhong et al., 2012).

The present results can also be discussed in the light of the
electrical stimulations performed in the MLR) inducing locomo-
tor behavior in decerebrate cat (Shik et al., 1969) or in lamprey
(McClellan and Grillner, 1984). In mice, prolonged rhythmic
stimulation on the midline of the caudal hindbrain or the ventral
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spinal cord (C1–C4) induces a stable locomotor activity (Talpalar
et al., 2011). Typically, low-frequency stimulation leads to slow-
frequency movements and inversely fast-frequency stimulation
leads to fast-frequency movements. Our model is in accordance
with this physiological behavior, when amplitude of the artificial
sine wave inputs increases, the amplitude of stepping increases
as well, leading to a change in walking velocities (Figure 6B). In
terms of neurological development, there is some evidence for the
existence of CPG very early in CNS maturation (Yang et al., 1998;
Dominici et al., 2011). Neonatal, so-called “infant” stepping has
been ascribed to similar EMG patterns activity in different direc-
tions inducing stereotyped yet non-functional walking patterns
(Lamb and Yang, 2000). This leads the authors to conclude that
the same CPG controls different stepping in human infants in
contrast with some studies in adults (Thorstensson, 1986; Grasso
et al., 1998). Interestingly, we found that DRNN with only four
hidden artificial neurons can generate walking pattern, whereas
at least 50 hidden neurons are the prerequisite to generate accu-
rate movements (Figure 7). Obviously, recruitment and training
of such high numbers of neurons requires long computational
time. For example, with a 4 hidden units DRNN structure, the
learning process lasts about 5 min based on our computer per-
formance while 160 min are necessary for a DRNN containing
80 units (Figure 4).

PERSPECTIVES
Such a tool can be used to produce gait kinematics in numer-
ous and various applications. For rehabilitation it can be used
to train people for recovering a walking pattern corresponding
to their physical characteristics by training with an appropri-
ate feedback. Specifically dedicated DRNN based on the proper
dynamics of participants could be used for medical applications
such as in prosthesis and exoskeleton control (Cheron et al.,
2012). It can also be integrated in BCI applications in which
higher order commands can be used, e.g., from steady state visual

or somatosensory evoked potentials (Cheron et al., 2012) or P300
(Castermans et al., 2011; Duvinage et al., 2012b). This neuronal
avenue might lead to the decoding of higher neuronal commands
that govern CPG mechanisms. Since these CPG can be trained
using specific sinusoidal frequency signals, it might be possible
to extract this type of signals from specific EEG rhythms since
the brain itself is an effective machine for producing oscilla-
tions (Buzsáki and Draguhn, 2004). One of the strengths of this
approach is that it is not necessary to determine in advance the
topology and the timing sequences between the artificial neu-
rons. This contrasts with other CPGs, such as a recently developed
ones (Duvinage et al., 2011) based on coupled oscillators (Righetti
and Ijspeert, 2006), where adjustment of intrinsic parameters by
optimization techniques was necessary.

In future studies, by introducing an informational delay
(Draye et al., 1997) or an artificial distance based on a Gaussian
factor modulating the weights between the different neurons
(Draye et al., 2002), it will be possible to analyze the self-tailored
organization of the links between neurons and the possible emer-
gence of specific topologies. In this case it will also be possible to
select different modular architectures of the DRNN.
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