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Efficiently passing spiking messages in a neural model is an important aspect of
high-performance simulation. As the scale of networks has increased so has the size
of the computing systems required to simulate them. In addition, the information
exchange of these resources has become more of an impediment to performance. In
this paper we explore spike message passing using different mechanisms provided by
the Message Passing Interface (MPI). A specific implementation, MVAPICH, designed for
high-performance clusters with Infiniband hardware is employed. The focus is on providing
information about these mechanisms for users of commodity high-performance spiking
simulators. In addition, a novel hybrid method for spike exchange was implemented and
benchmarked.
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1. INTRODUCTION
The highly distributed nature of the animal nervous system
presents a unique challenge in theoretical and computational
modeling of neurobiology. Whether these models are intended
to provide a better understanding of biological function or to
build more intelligent agents, the comparatively limited paral-
lelization inherent in all modern computing architectures must
be overcome to achieve models that accurately represent the
highly parallel nature of biology. The current computing and
software paradigms have prevented truly scalable neural mod-
els that can faithfully simulate biology in reasonable amounts of
time. In addition, a compromise between biological realism and
performance must be made. This is a concession that is often
unacceptable to the overall performance of the task.

There are two major steps in simulating the nervous system:
incrementally solving the governing equations and communi-
cating the results to other parts of the system. We previously
presented ways of improving the performance of the former by
parallelizing the computations on clusters of General Purpose
Graphical Processing Units (GPGPU) (Thibeault, 2012). The
purpose of this work is to demonstrate where the spike communi-
cation can be optimized on generic high-performance computing
architectures.

The effort to efficiently simulate spiking neural networks
has a long history that spans hardware implementations (VLSI
and FPGA) and the more popular highly distributed compute
cluster implementations. Although hardware options are increas-
ing in popularity with projects like SPINNAKER (Furber et al.,
2012) and SyNAPSE (Merolla et al., 2011; Srinivasa and Cruz-
Albrecht, 2012), they still cannot compete with the practicality

and flexibility of generalized simulators. Even the aforementioned
hardware options are generally supported by high-performance
distributed simulation environments.

Recently, Hines et al. (2011) explored several different spike
exchange methods on an IBM Blue Gene/P (BG/P) cluster
and concluded that point-to-point communication using the
built-in standard Message Passing Interface (MPI) non-blocking
MPI_Isend was the worst performing method. Of the top
performing methods of that work, the MPI collective routine,
MPI_Allgather, was among the best; often with simulation
times comparable to the BG/P specific direct memory access
routines.

Hardware such as the BG/P provide unprecedented perfor-
mance per watt but comes with a price point that can be out
of reach to most computational neuroscientists. Because of this,
commodity clusters using Commercial Off-The-Shelf (COTS)
components are more prevalent in research labs. With the avail-
ability of GPUs, the architecture of COTS clusters has changed
considerably. Unlike the BG/P architecture were there can be
over 100,000 processors linked together, GPU based COTS clus-
ters have much higher processing capabilities at the single node
(computer within the cluster) level. These then share a common
communication link. The dense parallelization available on a sin-
gle node allows for a much larger number of computations but
results in a communication bottleneck as more information must
be shared between nodes.

Morrison et al. (2005) presented a generic architecture for
distributed neural computation in which they contend that the
amount of time spent in communication is small compared to
the amount of time required to update the neurons. This appears
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to be a reasonable statement so long as the number of compute
nodes is small. However, as both the number of compute nodes
and the number of neurons simulated increases the amount of
time spent in communication becomes significant.

In this paper we explore how the cost of spike message passing
can be reduced. To begin with, several different communica-
tion mechanisms provided by the MPI standard are explored on
a COTS computing cluster using both Infiniband and Ethernet
hardware backends. This is in contrast to the work of Hines
et al. (2011) which focused on the BG/P architecture. We then
present a novel hybrid method that combines two spike exchange
schemes to reduce the maximum amount of information sent
between compute nodes. These results not only benefit users of
high-performance spiking neural network simulators but also the
neuromorphic engineering community.

2. METHODS
When distributing the network simulation, different portions
of the model are simulated by separate computers in parallel.
The neurons in the model are integrated at each iteration, and
the spiking information is sent to all the neurons connected
to those that fired. Ideally, when performing this paralleliza-
tion, the computational cost of the mathematical integration and
synaptic computations is balanced with cost of communicating
information between nodes. Historically, as mentioned above, the
communication time was significantly lower than the compute
time. With the introduction of higher-performance architectures
such as General Purpose Graphical Processing Units (GPGPU)
and specialized neural hardware systems, this is no longer the
case. However, the manner by which spiking information is sent
has not changed.

Almost all hardware and software simulation environments
use a variant of address event representation (AER) (Boahen,
2000). The simplest and most efficient implementation of AER
sends a firing neuron’s unique identification number to all of the
nodes containing any of that neuron’s targets. In general, all of the
neurons that fire during the current iteration can be collected and
sent as a single packet to all of the connected nodes.

As the number of neurons that fired increases, the size of
the data packets correspondingly increase. In this case, the time
spent in communication is a direct correlation to the number of
neurons that fired. Similarly, as the number of compute nodes
increases so does the number of packets that need to be sent. In
some cases, for both software and hardware based systems, this
can prevent scaling up to desirable model sizes.

2.1. DUMMY NEURONS
HRLSim (Thibeault, 2012) uses the concept of dummy neurons
to not only reduce the amount of information distributed for
a spike event but also the complexity of updating the synaptic
weights. Dummy neurons are essentially copies of pre-synaptic
neurons that are located on remote compute nodes. These neuron
copies receive the spiking information from the remote neuron
and then relay that to all of the locally connected post-synaptic
neurons. In addition, the pre-synaptic information is computed
at the dummy neurons locally, rather than on the remote node.
This scheme is illustrated in Figure 1.

FIGURE 1 | Dummy neurons. (A) A sample network. (B) Distribution of
the sample network among three nodes.

2.2. RATE INDEPENDENT MESSAGE PASSING
In Thibeault et al. (2011) the spiking information between nodes
was encoded as single bits within a packet. Essentially, each out-
put neuron is represented by a bit, where a “1” indicates that
neuron fired and a “0” indicates it did not. This bit-packed rep-
resentation was used to simplify some of the GPU computations
but abused the spike message passing by sending packets that are
larger than necessary. Here we propose a method of combining
AER with that bit-packed representation referred to here as the
hybrid message passing scheme. The key to this method is that the
transition to bit-packing is only done when firing rates are high
enough that it will reduce packet sizes. In addition, this is only
performed between the nodes with neurons that satisfy the firing
rate requirement. The novelty of the hybrid message scheme lies
in its deterministic upper bound performance, flexibility to neu-
ron firing rates and scalability greater than traditional message
passing methods.

The network in Figure 2 illustrates the use of the hybrid
scheme. There are four compute nodes, each simulating a group
of neurons. Consider node A, which has 2000 neurons with pro-
jections to node B, 1000 neurons with projections to node C,
and 5000 neurons with projections to node D. The maximum
communication cost associated with transferring action poten-
tials between the populations and the remote nodes is a function
of these population sizes as is the theoretical transition point.

The transition point between the protocols in the hybrid
scheme is where it is computationally cheaper to represent the
neurons in a bit-packed notation compared to traditional AER.
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FIGURE 2 | Hybrid message passing. (A) The number of neurons that
fired are below the transition threshold. (B) When the number of neurons
increases past the threshold the simulator automatically switches into the
bit-packing mode.

Suppose that on node A at a particular iteration, 50 neurons
connected to B fire an action potential, 24 neurons connected
to C fire, and 100 neurons connected to D fire. In this case
the AER scheme is used to communicate between all nodes.
If instead 72 neurons with efferents on B fire, and everything
else stayed the same, then the bit-packed scheme is used only
between nodes A and B. In this case, only 63 integers would
have to be transferred instead of the 72 with the AER scheme
(we are assuming that integers are 32-bits wide throughout
this paper).

A single byte at the beginning of each packet is use to facilitate
the dynamic switching between message packing schemes. For the
AER scheme this header byte indicates the total number of firings
contained in the current message. For the bit-packed scheme this
will be a negative value signaling the receiving node to process the
packet as such.

For example the physiologically realistic action selection
model of Thibeault (2012) is a case where the rate-independent
message passing scheme could have a significant performance
impact. The network consists of three micro-channels of the
rodent basal ganglia using 576 neurons with an integration time-
step of 1 ms. For this example, it is assumed that the 192 neurons
in the external segment of the Globus Pallidus (GPe) have output
projections whose spiking information must be passed to another
node. Physiologically the rodent GPe has a basal level of activ-
ity around 30 Hz (Humphries et al., 2007), which is a level where
other message passing schemes show performance degradation.

It takes 18 integers to encode all 576 neurons, which is equiv-
alent to encoding 3.125% of the total outputs with AER. Figure 3
illustrates the amount of simulation time spent for the different
rates of spiking activity over a 5 second simulation of basal activ-
ity. The results show that 31% of the simulation time is spent in
the region were more than 18 neurons fire.

FIGURE 3 | Example spike generation for a 5 s simulation of the GPe

region of the network model of Thibeault (2012). The packet size for the
AER scheme (purple line) and bit-packing scheme (black line) are shown.
The histogram corresponds to the percentage of simulation time where the
GPe region fired that percentage of cells during an integration step. The
gray box highlights the region where the hybrid method would use the
bit-packing scheme (31% of the time).

2.3. BENCHMARK EXPERIMENTS
Here we explore two different aspects of spike exchange with
MPI on general computing architectures. The first, is the type of
communication mechanism. The performance between two peer-
to-peer, blocking and non-blocking, and one collective commu-
nication method, all to all variable (alltoallv), using the included
MPI functionality were analyzed to determine if one demon-
strated a clear benefit. These experiments were completed for
both Infiniband communication fabric and standard Ethernet
using the AER method.

The blocking communication is accomplished with separate
calls to MPI_Isend and MPI_Recv. Whereas the non-blocking
scheme uses MPI_Isend combined with MPI_Irecv. This
method allows the underlying communication to be handled
by the MPI threads. The alltoallv method uses a single call
to MPI_Alltoallv to complete the spike exchange. A dis-
advantage to MPI collective methods is that they block pro-
cessing so no other computations can be performed while
spikes are exchanged. Here, in order to allow for com-
munication and the spike computations to occur in paral-
lel, the spike exchanges for collective communication were
threaded.

The second aspect explored was the benefit of the hybrid
message passing scheme as well as the optimal pivot point.
The pivot point is a multiplier used to determine where the
transition point occurs in relation to the number of efferent
connections to a remote node. For a pair of nodes A and B,
let N represent the number of node A neurons that project
onto B. For a given time step, denote the number of those
N neurons that spike as S, and let F be the hybrid threshold
number for which when S ≤ F, AER is used, and for S > F,
bit-packing is used. Then, we define the multiplicative pivot
point P by:

F = P
N

32
, (1)
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where 32 is the number of bits in an integer. P is the param-
eter considered in the following benchmarks. Note that P = 0
indicates that bit-packing is always used and corresponds to the
horizontal line of Figure 3, P = 32 would mean the AER mes-
sage passing scheme is used exclusively and corresponds to the
diagonal line of Figure 3, and P = 1 would mean the hybrid
scheme is used and corresponds to the intersection of the the
horizontal and diagonal lines of Figure 3. Currently only the non-
blocking and alltoallv mechanisms have the option of bit-packing
and since the initial performance for the non-blocking method
was better, it was chosen for the hybrid message passing exper-
iments. During these, pivot points of P ∈ {0, 1, 2, 3, 10, 20, 32}
were used.

For both the communication mechanism experiments and
hybrid method experiments, two different types of networks
were simulated, strong scaling and weak scaling. The networks
are summarized in Tables 1, 2. The strong scaling experiments
explore networks of the same size distributed over a larger num-
ber of compute nodes. In the weak scaling experiments the size
of the network increases in direct correlation with the number
of nodes. Only communication time is measured in the bench-
marks and each trial was run three times, with the lowest trial
time reported here.

2.4. HARDWARE
The Infiniband fabric is a hardware level communication sys-
tem specifically designed for high-performance applications.

Table 1 | Strong scaling experiments.

Nodes Neurons Connections per Neuron

8 2,000,000 1000

16 2,000,000 1000

32 2,000,000 1000

64 2,000,000 1000

96 2,000,000 1000

8 250,000 10,000

16 250,000 10,000

32 250,000 10,000

64 250,000 10,000

96 250,000 10,000

Table 2 | Weak scaling experiments.

Nodes Neurons Connections per Neuron

8 2,000,000 1000

16 4,000,000 1000

32 8,000,000 1000

64 16,000,000 1000

96 24,000,000 1000

8 250,000 10,000

16 500,000 10,000

32 1,000,000 10,000

64 2,000,000 10,000

96 3,000,000 10,000

It offers low-latency and high-bandwidth over short dis-
tances. In contrast, Ethernet hardware is a ubiquitous tech-
nology found on most modern computing architectures. It
is primarily used for local-area connections and includes
the physical and data link layers of the Open System
Interconnection model. Although, in high-performance sys-
tems hardware communication fabrics like Infiniband are
more prevalent, evaluating the lower bandwidth and lower
latency mechanisms is important for both remote applica-
tions (i.e., robotics), as well as inexpensive high-performance
clusters.

The benchmarks presented here were completed on a cluster
of 92 compute nodes, each with two Intel Xeon E5520 2.27 GHz
CPUs and two NVIDIA Tesla C1060 cards, with Infiniband and
Gigabit Ethernet communication backends.

2.5. TEST SUITE
A software suite was developed to facilitate the benchmarks. The
suite consisted of C++ implementations of network genera-
tion, neuron spike generation, and spike exchange, along with
Python modules for job submission, results analysis and plot-
ting. The network is split randomly with each node simulating
the same number of neurons. The connections are randomly
selected from a uniform distribution. The neural activity is
generated by a Poisson random point process with the cen-
ter at the target frequency. Figure 4 illustrates the activity and
statistics for 200 neurons of the test network. Four target fre-
quencies were used, 10, 30, 50, and 80 Hz. The spike exchange
was then controlled by one of the three mechanisms described
above. Simulations are run for a duration of 1 s and a mini-
mum of 3 trials were completed. However, in some cases, where
the results were inconsistent, more trials were conducted. The
test suite was compiled with the MVAPICH 1.7 library from
the Network-Based Computing Laboratory at The Ohio State
University.

FIGURE 4 | Example activity of 200 neurons from a 50 Hz Poisson

network. (A) Fire rate of the network calculated using a Gaussian
window. (B) Neuron spike frequency histogram. (C) Raster plot of
spiking activity for 1 s. (D) Coefficient of variation for the 200 neurons
displayed in (C).
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FIGURE 5 | Results for communication method experiments on

Infiniband. Along the x-axis are the different communication methods for the
different number of compute nodes. The letters correspond to B-blocking,

N-non-blocking, A-alltoallv. The subplots are: (A) Strong scaling for 1000 efferent
synapses. (B) Strong scaling for 10,000 efferent synapses. (C) Weak scaling for
1000 efferent synapses. (D) Weak scaling for 10,000 efferent synapses.

3. RESULTS
3.1. COMMUNICATION METHODS
3.1.1. Infiniband
The strong scaling results shown in Figures 5A,B reveal an
interesting trend in the cost of increasing the distribution of a
network. In theory, as a network is distributed over more com-
pute nodes, the performance will increase. This is an effect of
reducing the amount of computational work required by each
node. However, as illustrated here, the communication cost rises
with a corresponding increase in compute nodes. Eventually
the communication cost becomes greater than the paralleliza-
tion benefit. This is an important consideration for balancing
the number of neurons per node with the number of nodes.
Unless the network activity and the number of compute nodes
is low, the simulations would be unable to run in real-time. The
real-time measure is particularly important for embodied mod-
eling where simulations need to run fast enough for control of
the agent.

Another interesting trend can be seen in the blocking commu-
nication results of Figure 5A. At first these were assumed to be
anomalies. However, after running 12 extra simulations for 8, 16,

and 32 nodes at both 50 and 80 Hz firing rates the results stayed
consistent. It is still unclear why there is a drop in simulation time
at 64 nodes compared to 8, 16, and 32.

The benefit of dummy neurons is illustrated in Figure 5B.
There is a clear penalty to encoding more spike messages,
however, it is not dependent on firing as in Figure 5A. This is
likely due to the smaller number of neurons.

The weak scaling experiments shown in Figures 5C,D show
how an increase in both neurons and nodes can affect the overall
performance. However, the correlation between the two follows
an exponential trend rather than a linear one.

Overall, on Infiniband hardware, the choice of communi-
cation method seems to favor the non-blocking method. This
is slightly surprising in the context of early hardware charac-
terizations (not shown), where the blocking and non-blocking
methods appeared to be identical. The non-uniform nature
of the Poisson network is the likely explanation for the dif-
ference. The non-blocking code allows message processing to
happen out of order, favoring those that are sent earlier. There
is obviously less time wasted waiting for messages to arrive
in order.
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3.1.2. Ethernet
The strong scaling experiments on Ethernet hardware in
Figure 6A show a similar increase to that seen on Infiniband.
However, the alltoallv method shows an advantage for higher rates
of activity and lower number of nodes. Why this happens is again
unclear, as is the large increase in communication time at 64 and
96 nodes for the alltoallv method. When the number of efferent
connections is increased to 10,000, Figure 6B, a surprising plateau
in the blocking and non-blocking schemes emerges between 16
and 96 nodes. The alltoallv scheme however, continues to trend
upwards.

For the weak scaling experiments, Figures 6C,D, the alltoallv
scheme actually performs considerably worse than the other two
methods. With the non-blocking scheme generally demonstrating
better timings throughout the weak scaling experiments.

3.2. HYBRID MESSAGE PASSING
In the bit-packing experiments on Infiniband hardware an opti-
mal pivot point for a given experiment was not found despite
thorough analysis (not shown). Although on Ethernet hard-
ware some trends toward an optimal pivot point did appear,
it was still difficult to predict where that point would lie for a

generic network (not shown). Optimally, the pivot point would
be adapted dynamically, during a simulation. This will result in
improved communication performance as the simulation pro-
gresses and is something that will be explored in future work.

Despite the difficulty in selecting the optimal pivot point, in
86% of the cases, 69 out of 80, using the hybrid method shows
an improvement over the AER method alone. The improvement
is illustrated in Figure 7, where the average percent change, η,
between the hybrid method at the optimal pivot point and the
AER method is computed for each set of experiments at each of
the compute node quantities. The average was taken over the four
target activity rates since most large-scale experimental networks
rarely maintain a uniform fire rate. Despite the fact the gains from
the hybrid method are modest there is still a benefit to using it.

On the Ethernet hardware the hybrid method offers sub-
stantial performance improvement compared to Infiniband.
These experiments resulted in 96% of the simulations, 77 out
of 80, showing a benefit to employing the hybrid method.
Figure 8 illustrates the average percent improvement between
the four different rates for the experiments; again this was at
the optimal pivot point for each of the experiments. In general,
using the hybrid method resulted in 11–47% improvement.

FIGURE 6 | Results for communication method experiments on Ethernet.

Along the x-axis are the different communication methods for the different
number of compute nodes. The letters correspond to B-blocking,

N-non-blocking, A-alltoallv. The subplots are: (A) Strong scaling for 1000 efferent
synapses. (B) Strong scaling for 10,000 efferent synapses. (C) Weak scaling
for 1000 efferent synapses. (D) Weak scaling for 10, 000 efferent synapses.
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FIGURE 7 | Average percent improvement between the hybrid method

and the AER method (η) and the standard error of the mean (SEM) for

Infiniband hardware. The number of nodes are listed along the x-axis.

The subplots are: (A) Strong scaling for 1000 efferent synapses. (B) Strong
scaling for 10,000 efferent synapses. (C) Weak scaling for 1000 efferent
synapses. (D) Weak scaling for 10,000 efferent synapses.

For large-scale systems this is a significant gain. In addition to
Ethernet hardware this result is important for hardware based
spiking neural networks. In these, the available communica-
tion fabric between compute elements is generally not as pow-
erful as that provided by Infiniband. Employing the hybrid
method in these instances could offer important performance
benefits.

4. DISCUSSION
Past research in spike exchange methods has been sparse. Many
groups present a single communication mechanism with minimal
justification for its selection. The majority of general simu-
lation environments use the point-to-point blocking mecha-
nisms in MPI (Wilson et al., 2001; Morrison et al., 2005;
Pecevski et al., 2009). Morrison et al. (2005) combined that
with the Complete Pairwise EXchange (CPEX) algorithm. At
the time this was selected based on the assumption that it
was more robust. However, it was later stated that the collec-
tive, MPI_Allgather, was more efficient on certain hardware
(Eppler et al., 2007); benchmarks were not presented to support
that claim. PCSIM also uses blocking communication with the
CPEX algorithm (Pecevski et al., 2009).

The NEURON simulation environment is one of the few that
use the collective MPI_Allgather as opposed to the point-to-
point methods (Migliore et al., 2006). This decision is based
on the simplicity of the implementation and that the perfor-
mance of NEURON is dominated by the more complex models
that are its niche. However, the use of NEURON on the BG/P
Supercomputer was the motivating factor for work presented in
Hines et al. (2011). This is the most current analysis of different
spike-exchange methods but is unfortunately specific to the BG/P
hardware. The work presented here is the first analysis aimed at
the COTS hardware more readily available to the computational
neuroscience community.

4.1. CHOOSING A COMMUNICATION MECHANISM
Selecting a spike exchange method is still a difficult problem.
The type of hardware as well as the configuration can create
situations where one method clearly outperforms. The results
of this work suggest that a safe pick for COTS architectures
would be the non-blocking point-to-point communication meth-
ods. This is contradictory to the results found for Infiniband
backend in Eppler et al. (2007), and the BG/P hardware in
Hines et al. (2011). This analysis will need to be repeated as
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FIGURE 8 | Average percent improvement between the hybrid method

and the AER method (η) and the SEM for Ethernet hardware. The number
of nodes are listed along the x-axis. The subplots are: (A) Strong scaling for

1000 efferent synapses. (B) Strong scaling for 10,000 efferent synapses.
(C) Weak scaling for 1000 efferent synapses. (D) Weak scaling for 10,000
efferent synapses.

new hardware as well as more optimized communication meth-
ods are released. In the future we hope to package and release
this work to provide an automated mechanism for selecting
the highest performing communication method for a given
hardware setup.

4.1.1. Why not alltoall?
The results of early communication characterizations suggested
that for truly large-scale simulations, using the basic alltoall
mechanism, rather than alltoallv, would offer much higher per-
formance (not shown). The motivation behind alltoall is to
reduce code complexity while allowing developers of the MPI
middleware to optimize the functions at the device level. In
MVAPICH2 alltoall in particular has been the focus of significant
optimizations on Infiniband (Sur et al., 2005).

The alltoall collective requires that all nodes send the exact
same amount of information to each node in the simulation.
Message packets must be a fixed size and the overflow of those
must be handled by a separate mechanism. Early testing with this
method in the neural simulator presented in Thibeault (2012)
resulting in performance that was much worse than the methods
presented here. However, recent tests (not shown) suggest that the
alltoall method may be beneficial for networks using greater than
96 nodes. In the future we plan to expand the original code base

and rerun the benchmarks completed here to see if there is in fact
a niche for the alltoall method.

Another possible benefit of this method that was not tested,
is the reduced overhead in creating the spiking messages. In the
methods benchmarked here each node keeps a local buffer that is
filled with spiking information. These are contiguous in memory
and require some form of locking to prevent multiple com-
pute threads writing to the same location. With the alltoall fixed
message size scheme, each thread can be assigned a unique sec-
tion of the buffer; enforcing mutual exclusion. This would allow
the removal of thread-blocking which may provide another point
of optimization. This concept will be tested in the future.

4.2. HYBRID MESSAGE PASSING
With software simulation environments, there is generally a
computational cost associated with packing the spike mes-
sages. In most cases it is insignificant or can be reduced by
using GPGPU’s, which are designed for just such parallel
tasks. The hybrid spike passing scheme has already proven
effective in large-scale cluster based neural simulations by
HRL (Thibeault, 2012). It is important to emphasis in these
large-scale simulations that the overall activity of the network
does not need to be high in order for the hybrid message passing
to be effective. The method will only switch to bit-packing
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when the activity of the neurons connected to a particular node
are above the threshold set by the pivot point. This effectively
balances the communication load throughout the cluster.

In addition to large-scale simulations, this technique can also
improve the performance of communication between neuromor-
phic architectures. These have traditionally used AER schemes.
Take for example SpiNNaker (Khan et al., 2008), which was
designed to use an AER communication to simulate a neural
network with a firing rate of 10 Hz. The final hardware was theo-
retically able to simulate networks firing up to 77.5 Hz (Navaridas
et al., 2009). Once the network is firing above this rate, either
spikes would have to be dropped or the whole system slowed
down. The problem is that in biological systems, even though the
firing rate is on average low, there are times and regions, in which
the firing rate goes beyond 100 Hz. Using the hybrid encoding
scheme would allow for scaling to any firing rate.

Finally, as outline above, the existing simulators available to
researchers use either the AER or the bit-packing scheme. In
comparing the two methods it was found that for Infiniband
hardware exclusively using the bit-packing method is less effi-
cient than using an AER scheme (not shown). However, for
the Ethernet based simulations, the opposite result is found for
most cases (not shown). In these instances the cost of choos-
ing either AER or Bit-packing depends entirely on the hardware

platform. Alternatively, the hybrid method can be tuned, in some
cases automatically, to perform on any of the hardware platforms
tested.

4.3. MODEL COMPLEXITY
The conclusions of this work are based on the idea that the neu-
ron and synaptic computations are completed relatively quickly.
Additionally, it is assumed that a single compute node can pro-
cess a large number of neurons. This is the case for most point
neuron implementations but as the complexity of the neuron
model increases past the capabilities of the compute hardware, the
time spent in numerical integration correspondingly increases. In
these instances we suggest that optimization efforts be focused on
improving the performance of numerical techniques.
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