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A novel direction to existing neural mass modeling technique is proposed where
the commonly used “alpha function” for representing synaptic transmission is
replaced by a kinetic framework of neurotransmitter and receptor dynamics.
The aim is to underpin neuro-transmission dynamics associated with abnormal
brain rhythms commonly observed in neurological and psychiatric disorders. An
existing thalamocortical neural mass model is modified by using the kinetic
framework for modeling synaptic transmission mediated by glutamatergic and GABA
(gamma-aminobutyric-acid)-ergic receptors. The model output is compared qualitatively
with existing literature on in vitro experimental studies of ferret thalamic slices, as
well as on single-neuron-level model based studies of neuro-receptor and transmitter
dynamics in the thalamocortical tissue. The results are consistent with these studies:
the activation of ligand-gated GABA receptors is essential for generation of spindle
waves in the model, while blocking this pathway leads to low-frequency synchronized
oscillations such as observed in slow-wave sleep; the frequency of spindle oscillations
increase with increased levels of post-synaptic membrane conductance for AMPA
(alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic-acid) receptors, and blocking this
pathway effects a quiescent model output. In terms of computational efficiency, the
simulation time is improved by a factor of 10 compared to a similar neural mass model
based on alpha functions. This implies a dramatic improvement in computational resources
for large-scale network simulation using this model. Thus, the model provides a platform
for correlating high-level brain oscillatory activity with low-level synaptic attributes, and
makes a significant contribution toward advancements in current neural mass modeling
paradigm as a potential computational tool to better the understanding of brain oscillations
in sickness and in health.
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1. INTRODUCTION
Neural mass computational models mimicking synchronous
behavior in populations of thalamocortical neurons are often
used to study brain oscillations (David and Friston, 2003;
Suffczyński et al., 2004; Breakspear et al., 2006; Sotero et al.,
2007; Deco et al., 2008; Izhikevich and Edelman, 2008; Pons
et al., 2010; Robinson et al., 2011; de Haan et al., 2012).
The term “neural mass” was coined by Freeman (1975), while
the neural mass modeling paradigm is based on the math-
ematical framework proposed by Wilson and Cowan (1973);
each cell population in a neural mass model represents a
neuronal “ensemble” of mesoscopic-scale (104–107), which are
densely packed in space and work at the same temporal-scale,
so that for all practical purposes, they can be mathemati-
cally treated as a single entity (Liljenström, 2012), whence
“mass”. In a seminal work, da Silva et al. (1974) used a neu-
ral mass model of a simple thalamocortical circuitry to sim-
ulate EEG (Electroencephalography) alpha rhythms (8–13 Hz).

Subsequently, this model has been the basis of several research
(Zetterberg et al., 1978; Stam et al., 1999; Suffczyński, 2000;
Bhattacharya et al., 2011a), albeit with modifications and
enhancements; of special mention is the modification introduced
by Jansen and Rit (1995) where the model is expressed as a set
of ordinary differential equations (ODE). This modification, in
turn, has been the basis of many significant research (Wendling
et al., 2002; Grimbert and Faugeras, 2006; Ursino et al., 2010).
However, the computational basis of the models remain the
same—the conversion from firing rate to membrane potential
by excitatory and inhibitory neurotransmitters is simulated by
convolution of the input from a pre-synaptic neuronal mass
with an exponential function, commonly known as the “alpha
function”, proposed by Rall (1967). Although the alpha func-
tion is a fair estimate of the synaptic process (Bernard et al.,
1994), it does not allow an insight into the underlying cellular
mechanisms of synaptic transmission associated with abnormal
brain oscillations—an aspect emphasized to be crucial as an
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aid to research in brain disorders (McCormick, 1992; Basar and
Guntekin, 2008). The importance of understanding the neuro-
transmission mechanisms in slow wave synchronized as well as
spindle oscillations is also discussed in several relevant experi-
mental studies (Steriade et al., 1993; von Krosigk et al., 1993).
Moreover, correlating synaptic kinetics with brain oscillatory
activity has the potential to aid neuropharmacological advances
in treating the diseased brain (Aradi and Erdi, 2006). Along
these lines, Destexhe et al. (1998) argue that the alpha func-
tion is inappropriate for representing post synaptic events other
than the originally proposed post-synaptic potential in spiking
neural networks; they propose a kinetic framework as a more
biologically plausible method of modeling synaptic transmis-
sion compared to the alpha function (Destexhe et al., 2002).
The ability of such a modeling framework to capture the phys-
iological properties of synaptic transmission was demonstrated
by fitting the model outputs to experimental data from hip-
pocampal slices. Moreover, kinetic modeling is reported to be
computationally efficient (Destexhe et al., 1994), a vital pre-
requisite in large-scale computational models. Subsequently,
the kinetic models of neurotransmission was used in several
single-neuronal-level model-based studies—to investigate thala-
mic oscillations (Destexhe et al., 1996) and corticothalamic influ-
ence on brain oscillatory activity (Destexhe, 2008); to investigate
network synchrony (Breakspear et al., 2003); to simulate syn-
chronous behavior observed during in vitro experimental studies
on ferret thalamic slice by Wang and Rinzel (1992), Golomb et al.
(1994, 1996) and Wang et al. (1995).

A significant modification to current neural mass model-
ing framework was proposed by Suffczyński et al. (2004) by
applying single-neuronal-level model based techniques. Toward
this, they proposed an “ensemble” representation of the mem-
brane conductance and post-synaptic current in a neuronal mass
model of the thalamocortical circuitry; an integrator is used
to generate the “ensemble” post-synaptic membrane potential.
In the work presented here, a similar approach is adopted to
implement the kinetic framework of synaptic transmission in
neural mass models—each post-synaptic attribute is assumed to
be an “ensemble” representation corresponding to a “neuronal
mass”. For brevity, only two-state (“open” and “closed”) ion-
channels (Destexhe et al., 1998) are considered, the desensitized
state is ignored. While two-state models are a significant sim-
plification of the very complex nature of ion channel dynamics
in biology, they have shown a remarkable fit to biological data
compared to more-than-two-state models (Destexhe et al., 1998,
2002). This work aims to interface an abstraction of the ion chan-
nel dynamics, such as the two-state ion channel kinetic models,
with an abstraction of the population level neuronal behavior,
such as neural mass models. The goal is to enable the correlation
of higher-level brain dynamics observed in EEG with cellular-level
dynamics.

The work is presented thus: first, the kinetic frame-
work for modeling AMPA (α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic-acid) and GABA (γ-amino-butyric-acid)
receptor mediated synapses is introduced in an existing thala-
mocortical neural mass model (section 2); second, a qualitative
comparison of the model behavior with experimental studies on

ferret thalamocortical tissue reported in von Krosigk et al. (1993)
as well as to single-neuronal-level model based observations
reported in Golomb et al. (1996; section 3) is presented; the lack of
a quantitative study is mainly to avoid erratic conclusions as dif-
ference in model structure and simulation techniques are bound
to induce mismatch in numerical results. The model behavior is
observed to be consistent with these studies (von Krosigk et al.,
1993; Golomb et al., 1996)—The post synaptic membrane con-
ductance in both the thalamocortical relay (TCR) and thalamic
reticular nucleus (TRN) cell population plays a role in effecting a
bifurcation in model behavior from spindling mode [oscillations
with the characteristic waxing-and-waning pattern seen in early
stages of sleep (Steriade et al., 1993; Hughes et al., 2004) as well as
in alpha rhythmic oscillations during resting brain state (da Silva
et al., 1973)] to a limit-cycle mode (synchronized oscillations as
seen in later stages of sleep or during absence seizures). The post-
synaptic membrane conductance for both AMPA and GABA in
the TRN cell population is responsible for sustaining and mod-
ulating spindle oscillations in the model output. Blocking the
GABA-ergic synapses in the self-inhibitory loop of the TRN cell
population effects a low-frequency synchronized oscillation in
the model; this is aided by the secondary-messenger-gated GABA
synapses in the TCR cell population. In addition, the reverse rate
of transmitter binding plays a role in increasing or decreasing the
frequency of synchronized oscillations, besides functioning as a
bifurcation parameter, an observation that has not been reported
in experimental studies. A comparison of the simulation time of
the model with previous research using neural mass models based
on alpha functions show a factor of 10 improvement in simulation
time. This is a dramatic improvement on computational effi-
ciency and emphasizes the appropriateness of the model proposed
herein toward building large-scale software models for investi-
gating neuronal disorders. The observations from this study as
well as issues related to the modeling approach are discussed in
section 4.

2. MATERIALS AND METHODS
2.1. FROM ALPHA FUNCTION TO KINETIC MODEL: A BRIEF OUTLINE
A single neuronal mass structure as used commonly in neu-
ral mass models is shown in Figure 1 and is defined in
Equations (1–5):

hw̄(t) = Hw̄

τw̄
texp(−t/τw̄) (1)

yN(t) =
∑

hw̄(t) ⊗ EN
w̄ (t) (2)

ÿN(t) = Hw̄

τw̄
EN

w̄ (t) − 2

τw̄
ẏN(t) − 1

τ2
w̄

yN(t) (3)

VP(t) =
∑

N ∈ {1, 2, 3,...n}
CN .yN(t) (4)

EP
w̄(t) = S(VP) = 2e0

1 + eν(s0 − VP)
(5)

where w̄ ∈ {e, i} represents pre-synaptic neuronal populations
which make excitatory (e) and inhibitory (i) synapses on a
post-synaptic neuronal population; τw̄ is the time constant and
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FIGURE 1 | Block diagram of a single “neuronal mass” in current state-of-the-art neural mass models.

Hw̄ is the amplitude of the synapse; EN
w̄ (t), N ∈ {1, 2 . . . n} is the

firing frequency of an extrinsic or intrinsic cell population that is
pre-synaptic to the population P; CN is a percentage of the total
number of synapses from all afferents to P; VP is the “ensemble
post-synaptic membrane potential”; EP

w̄ is the “ensemble firing
rate” of P and is defined by a sigmoid function where 2e0 is the
maximum firing rate of the population, s0 is the threshold poten-
tial at which the neurons spike and ν is the sigmoid steepness
parameter.

2.1.1. A modified neural mass representation
In a recent work, Suffczyński et al. (2004) modified the neu-
ral mass representation of a cell population and introduced
post-synaptic current mediated by the ligand-gated glutamater-
gic receptors AMPA, and the ligand- and secondary-messenger-
gated GABA-ergic receptors GABAA and GABAB, respectively.
The input EN

ξ̄
(t), ξ̄ ∈ {AMPA, GABAA, GABAB}, is the firing rate

of an excitatory (AMPA) or inhibitory (GABAA and GABAB)
pre-synaptic neuronal population N ∈ {1, 2 . . . , n}. The model
(Figure 2A) is defined in Equations (6–11):

hξ̄(t) = Hξ̄

(
exp

(
−t/τa

ξ̄

)
− exp

(
−t/τb

ξ̄

))
, τb

ξ̄
> τa

ξ̄
(6)

gN
ξ̄

(t) =
∑

hξ̄(t) ⊗ EN
ξ̄

(t) (7)

g̈N
ξ̄

(t) = 1

τa
ξ̄
τb
ξ̄

[
Hξ̄

(
τa
ξ̄
− τb

ξ̄

)
EN

ξ̄
(t) −

(
τa
ξ̄
+ τb

ξ̄

)
ġN
ξ̄

(t)

− gN
ξ̄

(t)
]

(8)

IN
ξ̄

(t) = gN
ξ̄

(t)
(

VP(t) − Vξ̄

)
(9)

κmV̇P(t) = −
∑

N ∈ {1,2,3,...,n}
CN .IN

ξ̄
(t) − Iλ(t) (10)

Iλ(t) = gλ

(
VP(t) − Vλ

)
(11)

where hξ̄(t) is the synaptic transmission function with τa
ξ̄

and

τb
ξ̄

as the rise and decay times, respectively; gN
ξ̄

denote the post-

synaptic “ensemble” membrane conductance; Vξ̄ is the reversal

potential for the synapse mediated by ξ̄; VP is the ensemble

post synaptic membrane potential of the population P due to
PSC from all pre-synaptic cell populations N ∈ {1, 2 . . . , n}; κm

is the ensemble membrane capacitance; CN is the synaptic con-
nectivity parameter; Iλ, gλ and Vλ are the ensemble leakage
current, conductance and reversal potential, respectively for P.
The ensemble firing rate EP

ξ̄
(t) is as defined in Equation (5)

and is the pre-synaptic firing rate input to other neuronal
populations.

2.1.2. Introducing kinetic model of synapses in a neural mass
representation

The single neuronal mass structure presented in Figures 1, 2A is
modified by replacing the alpha function with kinetic models of
AMPA, GABAA, and GABAB synapses; the enhanced representa-
tion (Figure 2B) is defined in Equations (12–19):

[T]χ(Vχ) = Tmax

1 + e− Vχ − θs
σs

(12)

drξ̄1
χ (t)

dt
= αξ̄1 [T]χ

(
1 − rξ̄1

χ (t)
)

− βξ̄1 rξ̄1
χ (t) (13)

dRξ̄2
χ (t)

dt
= αξ̄2 [T]χ

(
1 − Rξ̄2

χ (t)
)

− βξ̄2 Rξ̄2
χ (t) (14)

d[X](t)

dt
= αξ̄2 Rξ̄2

χ (t) − βξ̄2 [X](t) (15)

rξ̄2
χ ((t)) = [X]n(t)

[X]n(t) + Kd
(16)

Iξ̄
χ(t) = g ξ̄rξ̄

χ(t)
(

VP(t) − V ξ̄
)

(17)

κm
dVP(t)

dt
= −

∑
χ∈{1,2}

Iξ̄
χ(t).Cχ − Iλ

P(t) (18)

Iλ
P(t) = gλ

P

(
VP(t) − Vλ

P

)
(19)

Let Vχ, χ ∈ {1, 2} be the “ensemble” membrane potential of two
pre-synaptic neuronal population that are afferent to the post-
synaptic population P such that the synapses made by χ = 1 is
mediated by a ligand-gated receptor ξ̄1 ∈ {AMPA, GABAA} while
that made by χ = 2 is mediated by a secondary-messenger-gated
receptor ξ̄2 ∈ {GABAB}. The concentration of neurotransmitters

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 81 | 3

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Bhattacharya Synaptic transmission in neural mass models

FIGURE 2 | Block diagram of (A) Suffczyński et al. (2004)’s modification

of the structure in Figure 1 by introducing “ensemble” representation of

post-synaptic membrane conductance and current. (B) Neuronal mass
structure with the kinetic framework implemented for modeling synaptic

transmission as an alternative to the alpha function (hw̄ (t) in Figure 1). A
diagrammatic representation of the ion-channel kinetics during synaptic
transmission is presented in Figures 3A,B. (C) A thalamocortical circuitry
implementing the modified neuronal mass representation in (B).
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FIGURE 3 | The state transition diagrams for (A) AMPA and GABAA

neuro-receptor dynamics defined in Equation (13); α and β are rate of

transitions between the two states and α is a function of the

transmitter concentration in the synaptic cleft [T ] defined in

Equation (12); (B) GABAB neuro-transmission as defined in

Equations (14–16)—the neurotransmitter T binds to the inactivated

receptor R0; a fraction of activated receptors R act as a catalyst to

transform the G-protein from an inactivated form X0 to an activated

form X , which binds at n independent sites to open a fraction of the

ion channels. The desensitized state of the ion-channels are ignored in this
work for brevity (see Destexhe et al., 1998 for a detailed comparison of
kinetic models with more than two-states).

[T]χ in the synaptic cleft is defined as a function of Vχ and is
expressed by a sigmoid function (Equation 12) where Tmax is
the maximum neuronal concentration in the synaptic cleft and
is well approximated by 1 mM (Destexhe et al., 1998), θs rep-
resents the threshold at which [T] = 0.5Tmax and σs denote the
steepness of the sigmoid. The proportion of open ion-channels
due to the bound receptors ξ̄1 on the ensemble membrane of
the post-synaptic cell population corresponding to the synapse
made by the population χ = 1 is defined in Equation (13) where

αξ̄1 and βξ̄1 are the forward and backward rate constants, respec-
tively for transmitter binding. The transition diagram is shown
in Figure 3A. However, GABAB mediated synapses, unlike AMPA
and GABAA synapses, activate G-proteins which in turn act as the
“secondary messengers” and initiate the opening of ion channels.

The process is defined in Equations (14–16) where Rξ̄2
χ is the frac-

tion of activated ξ̄2 receptors, which acts as a catalyst in activating
the secondary-messenger G-protein (guanine nucleotideŰbind-
ing proteins); [X] is the concentration of the activated G-protein;

rξ̄2
χ is the fraction of open ion channels caused by binding of

X with independent binding sites; αξ̄2 and βξ̄2 are the binding
rate constants; n is the number of bound receptor sites and Kd

is the dissociation constant of binding of X with the ion chan-
nels. The transition diagram of this process is shown in Figure 3B.
The resulting ensemble PSC mediated by the receptor ξ̄ ≡ ξ̄1 ∪ ξ̄2

due to a synapse from the pre-synaptic population χ is defined in

Equation (17) where g ξ̄ and V ξ̄ are the maximum conductance
and reverse potential, respectively corresponding to ξ mediated
synapse. VP (Equation 18) is the ensemble post-synaptic poten-
tial (PSP) of P, where κm is the ensemble membrane capacitance
of P, Cχ, χ ∈ {1, 2} is the synaptic connectivity parameter. Iλ

P
(Equation 19) is the ensemble leak current of the post-synaptic
membrane, where gλ

P and Vλ
P are conductance and reverse poten-

tial, respectively, corresponding to “non-specific” leak (Golomb
et al., 1996; Suffczyński et al., 2004) in the ensemble membrane
of the post synaptic cell population. In the following section,
we implement this framework in a neural mass model of the
thalamocortical circuitry.

2.2. NEURAL MASS MODEL OF A THALAMOCORTICAL CIRCUITRY
WITH KINETIC SYNAPSES

The thalamocortical circuitry is shown in Figure 2C and con-
sists of the two thalamic cell populations that communicate
with the cortex viz. the TCR and TRN. The third group of
cells viz. the Interneurons (IN) participate in intra-thalamic
communications and are ignored here for brevity. The synap-
tic structure and connectivity are informed from experimental
data based on the dorsal thalamic Lateral Geniculate Nucleus
(LGNd) (Horn et al., 2000). The input to the model is assumed
to be the ensemble membrane potential of pre-synaptic reti-
nal cells (Vret) in a resting state with no sensory input and is
simulated using a Gaussian white noise (da Silva et al., 1973).
The TCR cells make AMPA receptor mediated glutamatergic
synapses on the TRN cells (other types of glutamatergic recep-
tors are ignored in this work for brevity); the TRN cells make
GABA-ergic synapses on the TCR cells mediated by both the
ligand-gated GABAA and the secondary-messenger-gated GABAB

receptors. Furthermore, the TRN cells make GABAA receptor
mediated synapses within the population. The model is defined
in Equations (20–27); all variables and parameters in the model
are assumed to be the ensemble representation corresponding to a
neural mass:

[T]�̄ (V�̄(t)) = Tmax

1 + exp
(
− V�̄ (t)−θs

σs

) (20)

drη̄1

�̄
(t)

dt
= αη̄1 [T]�̄

(
1 − rη̄1

�̄
(t)

)
− βη̄1 rη̄1

�̄
(t) (21)

dRη̄2

�̄
(t)

dt
= α

η̄2
1 [T]�̄

(
1 − Rη̄2

�̄
(t)

)
− β

η̄2
1 Rη̄2

�̄
(t) (22)

d[X](t)

dt
= α

η̄2
2 Rη̄2

�̄
(t) − β

η̄2
2 [X](t) (23)

rη̄2

�̄
((t)) = [X]n(t)

[X]n(t) + Kd
, (24)

Iη̄

�̄
(t) = g η̄rη̄

�̄
(t)

(
Vϒ̄ (t) − V η̄

)
(25)

κm
dVϒ̄ (t)

dt
= −

∑

�̄ ∈ {ret, trn, trn}
Iη̄

�̄
(t).Cūv̄w̄ − Iλ

ϒ̄
(t), (26)

Iλ
ϒ̄

(t) = gλ
ϒ̄

(Vϒ̄ (t) − Vλ
ϒ̄

), (27)

where �̄ ∈ {ret, trn, trn} represent the afferent cell popula-
tions; ϒ̄ = {trn, trn} represent the efferent cell populations; η̄1 ∈
{AMPA, GABAA}, η̄2 ∈ {GABAB}, η̄ ≡ η̄1 ∪ η̄2; Cūv̄w̄ are con-
nectivity parameters where ū ∈ {t, n} and v̄ ∈ {r, t, n, s} denote
the post-synaptic and pre-synaptic cell populations, respectively
of the retina (r), TCR (t), TRN (n), while s denote an intra-
population afferent; w̄ ∈ {e, i} represent an excitatory (e) or an
inhibitory (i) synapse. All other parameter nomenclatures are as
defined in section 2.1. The initial parameter values are mentioned
in Table 1.
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Table 1 | Initial values of the parameters defined in Equations (21–27).

Neuroreceptors → AMPA GABAA GABAB

Units↓

(A) NEUROTRANSMISSION PARAMETERS

mM.msec−1 αη̄1 = 2 αη̄1 = 2
α

η̄2
1 = 0.02

α
η̄2
2 = 0.03

msec−1 βη̄1 = 0.1 βη̄1 = 0.08
β

η̄2
1 = 0.05

β
η̄2
2 = 0.01

mS gη̄ = 0.1
gη̄

TRN to TCR = 0.1
gη̄ = 0.06

gη̄

TRN to TRN = 0.2

mV Vη̄ = 0
Vη̄

TRN to TCR = −85
Vη̄ = −100

Vη̄

TRN to TRN = −75

Kd = 100

n = 4

(B) CELL MEMBRANE PARAMETERS

TCR TRN

gλ
ϒ̄

(mS) 0.01 0.01

Vλ
ϒ̄

(mV) −55 −72.5

Vrest (mV) −61 −84

(C) CONNECTIVITY PARAMETERS

Efferents →
TCR

TRN
Retinal

Afferents ↓ GABAA GABAB

TCR X
Ca

tni Cb
tni Ctre

3
4 of 30.9 1

4 of 30.9 7.1

TRN
Cnte Cnsi X X
35 20

Data in (A) and (B) are as in Golomb et al. (1996) and Suffczyński et al. (2004).

In Equation (20), both θs and σs act as bifurcation parameters in the model

(see Bhattacharya et al., 2012). However, the emphasis here is on post-synaptic

membrane attributes as in von Krosigk et al. (1993) and Golomb et al. (1996).

Thus these parameters (θs = −35 and σs = 2) are set by trial and error at values

just before the model undergoes bifurcation from a “point-attractor” mode to

a “limit-cycle” mode, based on a recent study where we observed rich model

dynamics and power spectral behavior around the bifurcation point (Bhattacharya

et al., 2013); Tmax = 1 mM (Destexhe et al., 1994). The input noise mean

μ = −45 mV and standard deviation ϕ = 20 mV2 are set by trial and error and

represents the resting state membrane potential fluctuations in retinal cells.

While the total number of GABA-ergic synaptic count on TCR cells is reported

as 30.9%, specific data on GABAA and GABAB are not available in literature

to the best of our knowledge. Thus, values for Ca
tni , Cb

tni and Cnsi in (C) are

selected, within the reported biological range [see Bhattacharya et al. (2011b) for

details], when the model output showed an increased frequency content within

the theta (4–7 Hz) and alpha (8–13 Hz) bands. Ctre and Cnte are as in Bhattacharya

et al. (2011b). All variables in the ODEs are initialized to an arbitrarily small value

0.0002.

3. RESULTS
The ODEs are solved using the 4th/5th order Runge-Kutta-
Fehlberg method (RKF45) in Matlab for a total duration of 600 s
(10 min) at a resolution of 1 ms. The output voltage time series is

averaged over 20 simulations, each simulation run with different
seed for the noisy input. For frequency analysis, an epoch from
100–599 s of the output signal is sampled every 4 ms (250 Hz) and
bandpass filtered between 3.5–14 Hz with a Butterworth filter of
order 10. Short Time Fourier Transform (STFT) is done with a
Hamming window of duration 10 s and overlap of 50%.

The model displays a point-attractor mode behavior (initial
transient oscillations before settling down to a low amplitude
noisy output, which reflects the noisy input of the model) cor-
responding to initial parameter values (Figure 4A). There is a
behavioral transition in the model to a limit cycle mode with
increasing values of βampa, which correlates with a decrease in
the fraction of open ion channels in the post-synaptic ensem-
ble membrane (Figures 4B,C). Varying αampa, on the other hand,
does not affect the model behaviour (Figures 4D,E). A transi-
tion from the limit cycle mode to a spindling mode is effected
in the model by increasing gampa, the post-synaptic membrane
conductance for AMPA mediated synapses in both TCR and TRN
cell population, and shown in Figures 4F,G. STFT of the output
time series indicates the non-stationary behavior of the model
(Figures 4H–K). A decrease and increase, respectively of the theta
and alpha band components imply an overall increase in fre-
quency with increasing values of gampa ≡ {gampa

TCR , g
ampa
TRN }, where

g
ampa
TCR and g

ampa
TRN correspond to the incoming signal from the

retina (to the TCR) and TCR (to the TRN), respectively in the
model. These observations are consistent with similar reports of a
transition in the state of the model output with increasing values
of gampa in Golomb et al. (1996; pp. 756–757), accompanied by
an abrupt increase in the ratio of the frequency of oscillation of
the TCR and the TRN cell populations; we have not studied the
latter aspect in this work. A more detailed study on the model pre-
sented herein where g

ampa
TCR and g

ampa
TRN are varied separately specify

the g
ampa
TCR as the control parameter that causes a bifurcation in

the model output from a limit cycle mode to the spindling mode
with an increase in its value. On the other hand, the g

ampa
TRN does

not effect any behavioral change in the model output, rather, it is
effective in increasing the inter-spindle frequency with an increase
in its value when the model is in a spindling mode. This observa-
tion implies that a change in AMPA receptor related attributes
in the TRN plays a role in modulating thalamocortical spin-
dle oscillations, which finds strong support in the experimental
study by von Krosigk et al. (1993), where “activation of AMPA-
kainate receptors on the PGN” (Peri-geniculate nucleus—the part
of the TRN associated with the LGNd) is described as “critical
to the generation of spindle waves”. Furthermore, this observa-
tion is in line with the TRN being widely implicated as being
the key “ingredient” in the generation of thalamocortical spindle
oscillations (McCormick, 1992; Steriade et al., 1993).

Varying the GABA-ergic synaptic attributes when the model
is in a point-attractor mode does not show any change in model
behavior. When the model is in a spindling mode (Figure 5A),
increased synchronization within the limit cycle mode with

increasing values of g
gabaA
TRN to TCR (Figures 5B,C) is observed. An

increase in the parameter βgabaA affects the output only when
the model is in a limit-cycle mode and counters the effect

of increase in g
gabaA
TRN to TCR (Figure 5D). However, varying αgabaA
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FIGURE 4 | The model output time series with (A) all parameters at their

initial values as in Table 1. (B) The model displays a bifurcation in output
behavior when βampa is increased to 0.2; (C) a further increase in the
parameter shows sustained oscillations with increased magnitude and
decreased frequency. The frequency behavior may be observed qualitatively
in the embedded line plots displaying the respective time-series in each plot
for an arbitrarily selected period of 60 s. (D) An increase in αampa has a
reverse effect resulting in reduced magnitude and increased frequency in the
limit-cycle mode; (E) further increase in the parameter do not show any
significant effect on the magnitude or the limit-cycle behavior while there is a

slight increase in frequency. (F) Maintaining these modified values of
αampa = 20 and βampa = 1, an increase in gampa brings a bifurcation in model
behavior from a limit-cycle mode to a “spindling” mode. A “zoomed-in” plot
from the 3rd minute to the 9th minute is shown; the initial transient
oscillations are neglected. (G) The frequency of spindle oscillations increase
with increasing values of gampa. This is indicated by a distinct (H,I) decrease
(more blue pixels) in theta band components and (J, K) increase (more red,
orange and yellow pixels) in alpha band components in the corresponding
output time series plots. The abscissa in the figures denote (A–G) time
(seconds) (H–K) time windows (seconds).

does not affect the model output. For g
gabaA
TRN to TCR � 0.5, which

is the approximate bifurcation point (Figure 5B), increasing

g
gabaA
TRN to TRN causes the model to revert back to the spindling

mode; the frequency of the inter-spindle oscillations increase
with increasing values of the parameter (Figures 5E,F). This
is also indicated by a decrease (Figures 5H,I) and increase
(Figures 5J,K) of theta and alpha band components respectively
in the STFT of the output time series. In other words, decreas-

ing values of the parameter g
gabaA
TRN to TRN causes increased syn-

chronization within the spindling mode behavior of the model
along with a decrease in the inter-spindle frequency. However,

blocking g
gabaA
TRN to TRN effects a switch in the model behavior to

a very low-frequency oscillatory state (Figure 5G). These results
are consistent with experimental findings (von Krosigk et al.,
1993) where application of GABAA inhibitor either “abolished
spindle waves or decreased within-spindle frequency,” which
correspond to the condition of either blocking or decreasing,

respectively of g
gabaA
TRN to TRN in our model. Thus, the model impli-

cate the intra-TRN synaptic activity to be a key factor in sus-
taining spindle oscillations in the thalamocortical circuitry, an
observation which conforms to those made in Golomb et al.

(1996; p. 755). Furthermore, a “frequency jump” with increas-
ing ggabaA , and associated transition in model behavior is also
reported in Golomb et al. (1996; see Figure 7) as a comparative
study between the TCR and TRN cells. This is similar with the
increase in frequency of the spindle oscillations corresponding to

increasing g
gabaA
TRN to TRN in the present model, although we have not

done a comparative study with the TRN cell population behavior.
However, the current study implicate the increased post-synaptic
conductance for GABAA receptors in the TCR cell population

(g
gabaA
TRN to TCR) to play a significant role in effecting state-transition

between spindle and slow-wave oscillations, an observation that
is yet to find support from experimental or model-based studies.

A quiescent state is observed corresponding to blocking

either AMPA (gampa = 0) or both GABAA (g
gabaA
TRN to TCR = 0) and

GABAB (g
gabaB
TRN to TCR = 0) mediated synapses in the TRN to TCR

pathway (not shown). This is consistent with both experimen-
tal (von Krosigk et al., 1993) and model-based (Golomb et al.,
1996) studies. The role of the synaptic parameters in the GABAB

pathway in our model was minimal—to sustain a non-quiescent
model behavior with blockage of GABAA; to sustain a high
amplitude of limit-cycle oscillations in the model. Again, this
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FIGURE 5 | (A) The model output (corresponding to the “zoomed-in” plot in
Figure 4G) when αampa = 20, βampa = 1, gampa = 0.3). Retaining these
parameter values, (B) increasing ggabaA

n2r , where “n2r” denotes the TRN to
TCR pathway, from its initial value effects a bifurcation in model behavior
from a spindling mode to a limit-cycle mode, indicating highly synchronized
oscillations in the thalamocortical circuitry. (C) Synchronization increases with
increase in ggabaA

n2r , indicated by increased magnitude and decreased

frequency of oscillation. For ggabaA
n2r � 0.5 [approximate point of bifurcation,

shown in (B)], (D) increasing βgabaA effects an increase in frequency within the

limit-cycle mode, while (E) increasing ggabaA
n2n , where “n2n” denotes the self

inhibitory pathway of the TRN, effects a transition from the limit-cycle mode
to the spindling mode. (F) Further increase in ggabaA

n2n causes an increase in the
frequency of the spindle oscillations, indicated by (H,I) a decrease (more blue
pixels) in theta band components and (J,K) increase (more red, orange and
yellow pixels) in alpha band components in the corresponding output time
series plots. (G) Blocking of ggabaA

n2n shows a very low-frequency (≈0.03 Hz)
synchronized oscillation whose magnitude decreases with time. The abscissa
in the figures denote (A–G) time (seconds) (H–K) time windows (seconds).

is in agreement with experimental studies (von Krosigk et al.,
1993), where activation of GABAB receptors are reported as
“not essential” for generating synchronized oscillations, while
application of GABAB antagonist abolished “evoked or sponta-
neous slowed oscillations.” The model in Golomb et al. (1996; see
in Discussion p. 763) is also mentioned as being consistent with
these experimental results.

In a recent work (Bhattacharya et al., 2012), a simple neural
mass model implementing kinetic modeling for synaptic trans-
mission is presented; the synaptic connectivity parameters in
the model correlate directly to that of an alpha function based
neural mass model [modified Alpha Rhythm model (modARm)
from Bhattacharya et al. (2011a)]. The model behavior is studied
corresponding to changes in the synaptic connectivity parame-
ters as well as transmitter concentration related parameters, and
a relevant comparison is made with the modARm. However,
the model presented in this work has a larger set of synaptic
connectivity parameters; model behavior corresponding to this
parameter space and its usefulness in understanding neurological
disorders will be the topic of a future work.

4. DISCUSSION
The work presented here explores a novel approach toward corre-
lating current neural mass model based studies with underlying

cellular mechanisms during synaptic transmission. The aim is
to underpin the synaptic correlates of abnormal brain oscilla-
tions in neurological and psychiatric disorders such as observed
in Electroencephalogram (EEG). A kinetic framework for mod-
eling AMPA and GABA receptor mediated synapses is imple-
mented in an existing thalamocortical neural mass model con-
sisting of an excitatory and an inhibitory neural mass, repre-
senting cell populations of the thalamocortical relay (TCR) and
the thalamic reticular nucleus (TRN), respectively. Parameters
in the model are assumed to be “ensemble” representations
of the corresponding attributes in a single neuron. A prelim-
inary observation is made on the model behavior by varying
the parameters corresponding to the post-synaptic membrane
conductance of the cell populations as well as the forward and
reverse rates of synaptic reaction; of specific interest is the
transition of the model behavior between the spindle oscilla-
tory mode and the limit-cycle mode, the latter resembling the
slow-wave (high-amplitude, low-frequency) synchronized oscil-
lations that are signatures of absence seizures as well as slow-
wave sleep. Furthermore, only the alpha (8–13 Hz) and theta
(4–7 Hz) frequency bands of the output power spectra are stud-
ied here, as EEG alpha and theta bands are believed to have
a strong correlation with thalamocortical oscillations (Hughes
et al., 2004).
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The results indicate that: (1) The post synaptic membrane con-
ductance for both AMPA and GABAA receptors in the TRN cell
population play a role in sustaining spindle oscillations of the
TCR cell population (the model output). (2) Blocking the GABAA

mediated synapses in the self-inhibitory feedback pathway of the
TRN cell population effects synchronized oscillations with high
amplitude and increased time-period of oscillation (≈0.03 Hz).
(3) The post-synaptic membrane conductance for GABAB in the
TCR cell population does not play any role in generating or
sustaining spindle oscillations, but is responsible for sustaining
the slow-wave oscillations in the model associated with blocking
of the intra-TRN GABAA synapses. (4) Blocking both GABAA

and GABAB or only the AMPA mediated synapses in the TCR
cell population results in a quiescent model output. These find-
ings are consistent with in vitro studies based on multiple unit
recordings from ferret thalamic slices (von Krosigk et al., 1993)
as well as single-neuron-level model based studies (Golomb et al.,
1996). In addition, this study identifies—(a) the reverse rate of
transmitter binding as an important attribute in effecting thala-
mocortical synchronized oscillations that can be induced in the
model by increasing (decreasing) the fraction of open channels
due to GABAA (AMPA) mediated synapses in the TCR (TRN)
cell populations; (b) the post-synaptic membrane conductance
for GABAA in the TCR cell population as a control parameter for
effecting a behavioral transition in the model.

It may be noted that the above-mentioned observations are
only a qualitative comparison with single-neuron-level model-
based (Golomb et al., 1996) and experimental (von Krosigk et al.,
1993) studies; a drawback of the current work is a lack of quan-
titative comparison with these studies. The neural mass model
presented in this work is at a mesoscopic scale, representation
of a population of ≈104−107 neurons, unlike that in Golomb
et al. (1996), which is at single-neuronal-level. Similarly, the mul-
tiple unit recording based study in von Krosigk et al. (1993)
observes neuronal behavior of either a single neuron or a popula-
tion of <102 neurons. In addition, the modeling and simulation
methods in the current work and that in Golomb et al. (1996)
are not similar. Thus, a quantitative comparison of the cur-
rent work with these studies may lead to erroneous conclusions.
However, model validation with experimental data is a crucial
criteria when investigating brain disorders. Along these lines, an
ongoing work is investigating ways to validate the model pre-
sented herein with EEG data, and will be the topic of a future
study.

The model structure in the current work is a consider-
ably simplified representation of the thalamocortical circuitry.
The role of the thalamocortical circuitry in generating slow
wave brain oscillations is discussed at length in Steriade et al.
(1993), based on in vivo and in vitro studies. More recently,
three parameters in the thalamo-cortico-thalamic loop viz. the
cortico-thalamic, thalamo-cortical and intra-thalamic pathways
are specified in Breakspear et al. (2006) for generating insta-
bilities in the thalamocortical circuitry, leading to synchronized
oscillations such as seen during absence seizures. Furthermore, a
non-linear dynamical analysis of the model is shown to predict
seizure onset by validating with patient EEG data. In a previ-
ous research (Bhattacharya et al., 2011b), we have proposed a

more elaborate alpha-function based neural mass model that have
considered these vital pathways in the thalamocorticothalamic
loop. Also, we have performed a non-linear dynamical analy-
sis of a simple thalamocortical model based on alpha functions
in Bhattacharya et al. (2013) to understand EEG power spectra
abnormalities associated with several neurological disorders. Such
research directions will be considered as an extended work based
on the model presented herein.

It is worth mentioning here that biologically plausible param-
eterizations has been a major constraint in neural mass modeling
of brain dynamics. This is largely due to insufficient experimental
data, published or otherwise, as well as to a lack of “homogene-
ity” of published data from different experimental laboratories.
The trend thus far has been to use biologically plausible data
if and when available; otherwise, i.e., for parameter values that
cannot be availed from experimental data, the models are tuned
to estimated parameter values which provide a desirable out-
put in context to the objectives of the research [the reader may
refer to Robinson et al. (2004) for a model parameterizations
related work and discussion]. Thus, the model in Breakspear et al.
(2006) was based on neurophysiological parameters obtained
from Robinson et al. (2002), which in turn are based on inverse
parameterizations during model validation with EEG data from
patients of epileptic seizures. The parameterizations of the model
presented in this work is largely based on neurophysiological
parameters obtained from experimental studies: the cellular-level
parameters, including those of the synaptic kinetics, are based on
in vitro studies and model-based studies of thalamocortical tissue
by von Krosigk et al. (1993) and Golomb et al. (1996), respec-
tively; the model connectivity parameters are based on experi-
mental studies of the cat and rat thalamus obtained from Horn
et al. (2000); Sherman and Guillery (2001). On the other hand,
the extrinsic (retinal) input and neuro-transmitter concentration
parameter values are adjusted to maintain a “dynamically active”
model behavior (this is as opposed to a continuous “quiescent”
state of the model corresponding to certain parameter values, and
does not conform to biology). However, technological advances
in the field of neuro-imaging during the last decade such as func-
tional Magnetic Resonance Imaging (fMRI), Diffusion Tensor
Imaging (DTI) and Transcanial Magnetic Stimulation (TMS) are
paving the way for biologically-realistic mapping of parameter
values in computational models; for example as in Izhikevich and
Edelman (2008).

The observations made herein support the motivation toward
this preliminary work, which is to correlate higher-level brain
dynamics with underlying cellular-level synaptic mechanisms. It
may be noted that in all our previous works using alpha function
based neural mass models, the emphasis has been on studying
the model behavior with varying values of synaptic connec-
tivity parameters toward a meaningful mapping to Alzheimer
disease-related EEG anomalies. However, such “synaptic parame-
ter variation only” studies are highly constrained and do not make
much sense when trying to understand generic brain-state con-
ditions e.g., the sleep-awake cycle, or several other neurological
and psychiatric disorders e.g., absence seizures, which rely heav-
ily on various aspects of cellular dynamics in the thalamocortical
circuitry. Rather, the emphasis of this work is on laying the
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ground-work for a more elaborate, and yet computationally effi-
cient scheme, whereby large-scale computational models may be
simulated to mimic brain rhythms, which can then be correlated
to model parameters emulating cellular dynamics. The synaptic
transmission kinetics and subsequent post-synaptic membrane
parameters are some of the key constituents of brain signaling,
and are affected significantly in various brain diseases. Clearly,
the alpha-function based neural mass models are inadequate in
dealing with research directions where model parameters can be
mapped in a biologically plausible manner to synaptic attributes.
In terms of computational efficiency, the time for simulating

20 trials with the model presented in this work takes 60 s; this
may be contrasted with 600 s for simulating a similar model [the
modified Alpha Rhythm model in Bhattacharya et al. (2011a)]
based on alpha functions. This is a dramatic improvement in
computational efficiency and highlight the plausibility of using
the kinetic-model based neural mass modeling framework in
simulating large-scale computational models toward mimicking
real-time EEG signals. This in turn will provide a powerful tool
for specifying cellular pathways that need be targeted for symp-
tomatic alleviation of anomalous brain rhythms as well as to
inform effective neuropharmacological research directions.
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